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Abstract 

How documents of Web site are replicated and where they are placed among the 
server nodes have an important bearing on balance of load in a Distributed Web 
Server (DWS) system. The traffic generated due to movements of documents at 
runtime during load balance could also affect the performance of the DWS system. In 
this paper, we prove that minimizing such traffic in a DWS system is NP-hard. We 
propose several heuristic document distribution schemes that perform partial 
replication of a site’s documents at selected server locations so that load balancing is 
maintained. We carry out simulation of these schemes using both a synthetic 
workload and real log data. From the simulation results, we find that using an 
additional 50% of storage for replication, our heuristics can improve the load 
balancing performance in the DWS system by 48%, and the internal traffic due to 
movements of documents has an negligible effect on the system’s performance.  

1. Introduction 

With the increasing popularity of the World Wide Web, more people are getting 
online. According to a recent survey, the size of the “wired population” increases 
from 407 million in November 2000 to 513 million in August 2001 [25]. This puts a 
heavy demand on Web servers. And with broadband technology getting more and 
more pervasive and Internet bandwidth expanding, Web servers could easily face the 
danger of becoming a bottleneck. Distributed Web Server (DWS) system was 
proposed to meet this requirement. A DWS consists of multiple server nodes that are 
connected by a LAN or WAN and uses the aggregate computing power and storage 
available from these nodes to handle client requests.  

In a DWS system, the Web site’s documents are distributed among the server nodes 
using certain rules. These rules determine each document’s set of replicas and the 
placement of these replicas among the server nodes. These rules constitute the 
“document distribution scheme” which is the subject of this paper. A good scheme is 
necessary for achieving load balancing in a DWS system. 
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We classify DWS systems according to the document distribution schemes used. 
With the first type, “mirroring”, each server node receives and maintains a copy of all 
the documents. Client requests are copied to multiple server nodes by DNS servers or 
a centralized scheduler [1,8,10,19,5]. The problem with mirroring is that the caching 
of IP addresses on the client side or in intermediate DNS servers could easily result in 
uneven load among the server nodes, and the scheduler may therefore become a 
performance bottleneck. Moreover, this type of DWS systems can lead to much 
wasting of disk space by storing documents that are not frequently requested. 

Non-duplication DWS systems partition the documents without duplication of 
contents. They depend on content-aware distributor software to direct or redirect a 
client request to the server node that has the document requested [18]. There are now 
products that support content level switching, such as Alteon Content Director [22], 
CISCO Content Services Switch [23] and Resonate Global Dispatch [26]. Advanced 
features can be added to such a DWS, such as when a server node gets overloaded, 
some of its documents are migrated to other nodes [4,13]. However, if the system 
happens to contain many hot spots (i.e., popular Web pages with extremely high 
request rates), to equalize the load is absolutely non-trivial.  

One way to avoid the load balancing problem due to hot spots is to allow 
partial-duplication of popular documents on multiple server nodes [11,15,16,20]. 
Some of these systems adopt a static approach which places the documents and their 
replicas on selected server nodes based on past access records [15,16]. They aimed at 
equalizing the average load of each server node over a long period of time, such as 
one day. Other partial-duplication DWS systems monitor the current global load 
situation and duplicate popular documents dynamically to maintain a balanced load 
[11,20]. Although this approach can adapt to the access patterns quickly, it is not clear 
how it might impact on the traffic inside the DWS system.  

In this paper, we focus on geographically distributed DWS with homogeneous 
nodes and examine partial-duplicated document distribution schemes from a 
theoretical as well as experimental viewpoint. Geographically distributed DWS 
systems are becoming more common because of the increased performance of WAN 
connections and the availability of Web servers in wide areas. The homogeneity 
feature is preferred here so that the model and its algorithms can be more tractable 
during analysis. We propose document distribution schemes that can achieve the 
following goals when deployed: 

• Load balancing: Since most requests are for a small part of the entire 
collection of documents [2], frequently requested documents should be 
duplicated to avoid bottlenecks. Documents and their replicas should be placed 
in such a manner that most of the time the load of the participating server 
nodes is equalized. 

• Reduced traffic inside the DWS system: To adapt to users access patterns, 
documents need to be re-duplicated and re-distributed among the server nodes 
dynamically or periodically. Such actions should result in reduced traffic inside 
the system when compared to a system that does only static duplication and 
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• Scalability: Adding a new server node or adding new documents to the system 
should be easy and transparent, and should not perturb the load-balance 
currently enjoyed by the system. The same for deletion of nodes or documents. 
This enables fast expansion of a DWS system to handle increased client 
requests. 

It is easy to see that document distribution in DWS is an optimization problem that 
is NP-hard. We present various approximation algorithms in this paper. Their 
performance is evaluated through simulation using synthetic as well as real access log 
data. The results show that these algorithms can balance the load in the DWS system 
during run-time efficiently, and the internal traffic generated due to these algorithms 
is reasonably minimal. 

The rest of the paper is organized as follows. Section 2 introduces the DWS system 
model and gives a proof of the NP-hardness of the problem. Section 3 presents our 
document distribution algorithms. In Section 4, we describe our simulation 
methodology and present the performance results. Section 5 surveys related work. 
Section 6 concludes the paper and discusses future work.  

2. System Model 

2.1  Architecture 

Figure 1 gives a bird-eye view of a DWS system. There is one request redirector, one 
document distributor, and multiple back-end server nodes connected by a WAN. Their 
functions are described as follows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 1 Geographically Distributed Web Server System 
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� Request redirector: The request redirector keeps track of each server node’s 

documents. It redirects a user request to a server node having the requested 
document. If there are multiple such qualified server nodes, it chooses one based 
on a certain policy. Note that Figure 1 shows only an example. In reality, there 
could be multiple request redirectors (using techniques such as Round Robin DNS) 
to share the load.  

� Document distributor: The document distributor executes the document 
distribution scheme. Periodically, it collects the server nodes’ log data, and decides 
on the replicas and their placement based on the access records in the last period 
and the current placements. The rules it applies in making the decisions aim to 
maintain load balancing with minimal traffic inside the DWS system.  

� Server nodes: The server nodes are interconnected and each of them keeps a 
subset of the site’s documents. During each period, they perform internal transfers 
or copying of documents, following the latest placement decisions coming from the 
document distributor. When a server node receives a client request, it needs to deal 
with two cases: (a) if the requested document is locally available, the server node 
serves the request; (b) if the server node does not have the document, it will 
forward the request to the redirector since the redirector has the location 
information of all documents. 

2.2 Problem Formulation 

In our model, there are N documents, 1{ , }ND D… , and M server nodes, 
1{ , }MS S… . Each document iD  is characterized by its size is  and its weight iw  

that is calculated as *i i iw s δ= , where iδ  is the access rate of the document. iw  
represents the workload iD brings to the server node holding it (we use the length of a 
document to compute its weight [15]). If iD  is replicated, ci stands for its number 
of replicas. iD ’s replicas are ( 1, )l

i iD l c= … , each having size is  and weight /i iw c . 
In the following discussion, we use “replicas” to refer to all the documents and their 
replicas. Each server node has storage capacity C, and load capacity L which is the 
maximum number of simultaneous HTTP connections it can support. The weight jW  
of jS  is the sum of the weights of all documents that it has.  

We have the following assumptions: at any time, (i) the total number of client 
requests does not exceed the total load capacity, i.e., M * L; (ii) the total size of the 

replicas does not exceed the total storage capacity, i.e., 
1

( ) *
N

i i
i

s c M C
=

∗ ≤∑ . 

We construct a “cost link” between each document and each server: ijp (i = 1,…N, 
j = 1,…M), to be associated with the bytes to be transferred when ( 1, )l

i iD l c∈ …  is 
assigned to jS . We know that ijp  equals to is  if jS  already holds a replica of 

iD . Otherwise, ijp  is zero. 
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We also have the following variables: 

 
1, if  is placed on server 

 
0, otherwise

        {1,... }, {1,... }, {1,... }

l
l i
ij

i

D j
t

j M i N l c


= 


∈ ∈ ∈

 

The replicas are placed on the server nodes under these constraints: (1) each server 
can only hold replicas whose total size does not exceed its disk space; (2) each server 
can hold at most one replica of a document; (3) no document is left unassigned to any 
server node; (4) load is equalized among the server nodes. 

Chen [7] has proved that minimizing the maximum load over all server nodes, i.e., 
satisfying (4) is NP-complete. We will prove that even when the load balancing 
constraint is removed, the problem of minimizing the communication cost of moving 
the documents is NP-hard. 

The formulation of our replica placement problem is as follows.  

 minimize  
1 1 1

iM N c
l
ij ij

j i l
z t p

= = =

=∑∑∑   

 subject to  
1 1

icN
l
ij i

i l
t s C

= =
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1
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l
ij

l
t j M i N

=

≤ ∈ ∈∑  (2) 

 
1 1

, {1,... }
icM

l
ij i

j l
t c i N

= =

= ∈∑∑  (3) 

 

 0 or 1,  {1,... }, {1,... }, {1,... }l
ij it i N j M l c= ∈ ∈ ∈   

A replica placement that fulfills all the constraints is a “feasible placement.” Our 
discussion is under the assumption that a feasible placement always exists. We call 
this optimization problem the Replica Placement Problem (RPP). When 

1 ( 1,... )ic i N= = , the problem is a 0-1 RPP. 

Lemma 0-1 RPP is NP-hard.  
Proof: We reduce the bin-packing problem, which is NP-hard [12], to the 0-1 RPP. 
For the bin-packing problem, si denotes the sizes of the objects and the bin’s size is C. 
We assume that, in any feasible solution, the lowest indexed bins are used. This 
means that if there are two bins with the same available storage, the object will be 
placed in the one with the lower index.  

Given the bin-packing problem, we can construct a 0-1 RPP with costs ijp  as 
follows.  

 
, 1

1,   {1,... }, 1
( )* 1,   {1,... }, {2,... }ij

i j

i N j
p

p N i N j M−

∈ =
=  + ∈ ∈
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With such costs, any set of replicas assigned to 1{ , }jS S… has a lower value than 
any set of replicas assigned to 1 1{ , }jS S +… . It is then obvious that the bin-packing 
problem gets the minimal value if and only if the 0-1 RPP gets the minimal value. 

Since the 0-1 RPP is a special case of the RPP, our document placement problem is 
NP-hard.  

3. Document Distribution Algorithms 

Since the optimization problem at hand is NP-hard, finding the optimal solution in 
polynomial time is not feasible. We present several heuristics that use the available 
information in different ways in order to arrive at the best results. The input 
parameters to these heuristics are C, M, N, 1{ , }Ns s s= … , 1{ , }Nw w w= … , and P , 
the N*M matrix of ijp . The output is an N*M matrix called T , formed by ijt . We 
refer to the ratio between the total storage capacity and the total size of the documents, 
i.e., ( * ) / iM C s∑ , relative capacity, and denote it by R. 

We hope to balance the load among the server nodes through appropriately 
duplicating popular documents. Therefore, before introducing the heuristics, we first 
describe the replication algorithm some of the heuristics will invoke to obtain the 
numbers for the documents’ replicas, 1{ , , }Nc c c= … . The replication algorithm is 
called the “Density Algorithm” and is shown in Figure 2. It assumes a different 
interpretation of iD ’s access rate iδ . Notice that /i i iw sδ = , which can be seen as the 
measure of the workload per one unit of storage of iD , i.e., density of iD . When 

iD  is replicated, for each of its replica, the new density is ( / )*(1/ )i i i iw s cδ ′ = . 
The Density Algorithm first initializes c as {1,…1}, thus making sure that each 

document has at least one copy in the system. In Step2, the minimal density minδ  is 
found and each document gets a temporary replica number so that its replicas all have 
density minδ . Step3 calculates the ratio between the total size of these temporary 
replicas and the total size of the original documents, and adjusts each temporary 
replica number proportionally according to this ratio. The maximal integer that is less 
than the result is added to ic , and if ic  is greater than M, it is reduced to M. This is 
because a document can only be duplicated integral times, and its replica number will 
not exceed the number of servers. 

This algorithm duplicates the documents according to their densities under the 
storage limitation, and produces as result, 

1 1/( 1) /( 1) /( 1)k k k k N Nc c cδ δ δ+ +− ≈ − ≈ ≈ −� , ( 1 2 1, ,N k kc M c Mδ δ δ −≥ ≥ ≥ = <� ). 
We can assume that generally if u vδ δ> , / /u u v vc cδ δ> , a replica of a document 
with large density has larger density than a replica of a document with small density. 
The time complexity of the algorithm is NΘ . 



 

We use the following heuristic to place the replicas on the server nodes.  

3.1 Greedy-cost Algorithm 

The Greedy-cost Algorithm is shown in Figure 3. Before placing the replicas, it sorts 
the pairs (i, j) (i = 1,…N, j = 1,…M) by increasing pij. Then in this order, a replica of 

iD  is placed on jS  if jS  has enough storage space and does not already hold a 
replica of iD .  

According to its definition, pij is either 0 or is , depending on whether jS  was 
assigned a replica of iD  or not during the last period. Therefore, Greedy-cost 
actually sorts all documents whose ci is larger than the number of its replicas in the 

s
t
t

3

Variable: 1* , { , },NS M C t t t temp= = …

Begin

Step1 : 1, {1, }ic i N= ∀ ∈ … , temp := (R-1) * is∑
Step2

2.1 Go through {1, },i i Nδ ∀ ∈ … and find minδ
2.2 Foreach Di do {

ti := min/iδ δ ;
temp := temp + ti * si }

Step3 Foreach Di do {

:=   * /i i ic c t S temp+   
temp := temp - ti * si;
If ci > M Then ci := M
S := S – ci * si }

End
Figure 2 Density Algorithm
Begin
Step1 Call Density Algorithm
Step2

2.1 Sort (i,j)_by pij increasingly, i=1,…N, j=1,…M
2.2 Foreach (i,j) in the sorted list do {

If (ci > 0) Then {
Assign Di to Sj if there is enough space on Sj

and Sj does not have Di
l on it

ci := ci – 1; } }
End

Figure 3 Greedy-cost 
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ystem by their sizes. It tries to keep as many replicas as possible, but does not care if 
he load of the system is balanced or not. Its Step2 takes ( log )MN MNΘ time, and 
herefore the total time complexity is ( log )N MN MN MNΘ + + . 

.2 Greedy-load/cost Algorithm 
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Unlike Greedy-cost, Greedy-load/cost considers balancing the load among the server 
nodes while minimizing the cost caused when placing the documents.  

This heuristic prefers replicas with higher load and smaller size, that is, larger 
density. Therefore in Step2, the replicas are sorted in decreasing iδ ′ and replicas that 
possess the same iδ ′  are sorted in increasing si. In this order, the replicas are 
assigned to server nodes one by one. When choosing a server node for a single replica, 
the qualified server nodes are sorted according to their communication costs given the 
replica. If two server nodes have the same cost, we choose the one with less weight 
Wj. 

The time complexity of Greedy-load is ( log log )N X X XM MΘ + + , where 
iX c=∑ , and X N≥ . From the result of the Density Algorithm, however, we know 

that it will be rare for replicas of two different documents to have the same density as 
well as the same size. All of iD ’s replicas, ( 1, , , {1, })l

i iD l c i N= ∈… … , can be 
assumed to appear consecutively in the list sorted by Step2. Actually, they can be seen 
as sorted and then placed as one integral unit in Step2 and Step3. The time 
complexity of the heuristic is therefore reduced to ( log log )N N N NM MΘ + + . 

There can be variants of this heuristic; for example, server nodes can be sorted in 
increasing available space in Step3. 

3.3 Greedy-penalty Algorithm 

It is possible that if we do not place l
iD  immediately, extra communication cost may 

be caused. For example, if we place l
iD  immediately, we can assign it to xS  with 

small ixp ; if we delay placing it for a while, however, xS  may have become full 
when we try to place l

iD  again and l
iD has to be placed on yS  with large iyp . In 

this case, we say we are punished and use if  to refer to the value of penalty. 
To compute the possible penalty for each document, ( 1, )l

i iD l c= …  are treated as 
an integral unit. Since we cannot predict the status of the server nodes, fi is computed 
as the difference between the costs of l

iD ’s best and second-best placements 
according to the current situation of the server nodes. A placement is “better” if it 
requires less communication cost. To find the best one, the qualified server nodes are 
sorted in increasing pij. The first to the th

ic server nodes form the best placement, while 
the second to the ( ic +1)th form the second-best placement. if  is the difference 
between the communication costs of the first server node and the ( ic +1)th server node 
in the sorted list.  

Begin
Step1 Call Density Algorithm
Step2 Sort replicas according to iδ , decreasingly. If they

have same iδ , sort them by increasing si
Step3 Foreach replica in the sorted list do {

Sort Sj in increasing communication cost. If two
servers have the same cost, sort them by decreasing weight

While (ci > 0) do {
Place Di in the order of sorted server nodes
cn := cn – 1; } }

End
Figure 4 Greedy-load/cost



 

Greedy-penalty iteratively places the replicas until they are all assigned to the 
server nodes. Each time it needs to select and place a document and its replicas, it 
computes if  for all unassigned documents. The document yielding the largest 
penalty is placed in its best placement. This heuristic runs in 

2( log log log )N N N NM M N NΘ + + +  time. 

ser
D
co
inf
Gr

3.

Th
pre
de
sto
bu
ha
no
Θ

eff
do

4.

W

Variables: 1{ , }Nf f f= …

Begin
Step1 Call Density Algorithm
Step2 Sort Di in increasing iδ
Step2 While there are unassigned documents do {

Foreach unassigned Di do {
If number of qualified server for Di <= ci Then {

Assign Di
l to qualified servers;

goto While }
Else {

Sort Sj in increasing pij. If two servers have
the same cost, sort them in increasing load

fi = cost of (ci+1)
th server node - cost of 1st

server node } }
Sort Di according to fi, decreasingly
Assign Dmin according to the sorted list of server

nodes}
End

Figure 5 Greedy-penalty
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If there is only one placement for l
iD , we know that there are currently only ic  

ver nodes having enough storage to hold l
iD . This implies that we need to place 

l
i  immediately. Otherwise, we might leave a replica unassigned, which violates 
nstraint (3). In this case, we set if  to ∞ . If there are multiple documents with 
inite penalty, they are placed in the order of decreasing iδ . As such, 
eedy-load/cost is just a special case of Greedy-penalty. 

4 M/1 Algorithm 

e above heuristics all use the Density Algorithm to duplicate documents. The one 
sented in this section uses a different duplication approach. We sort iD  in 

creasing iδ  and replicate as many documents M-1 times in this order as the 
rage constraint would allow. As a result, documents that have heavier workload 
t smaller size are placed on every server node, while other documents would only 
ve one copy in the system. In placing documents whose ci is 1, the available server 
de jS  with the smallest ijp  is chosen. The time complexity of this approach is 
( log )N N MN+ .  
Although this approach sounds simple, we believe that it can be used with good 
ects in Web sites whose user accesses tend to target at a tiny part of the total 
cuments. The existence of such Web sites was discussed and justified in [17]. 

 Simulation Details and Results 

e used the CSIM 18 package for our simulation experiments [24]. We tested our 
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heuristics with a synthetic trace as well as log files of a real Web server. At time 0, 
documents are randomly placed on the server nodes with no replication. As time 
progresses, documents are replicated and distributed to the server nodes using the 
different heuristics. 

We simulated the heuristics presented in Section 3: Greedy-cost (GC), 
Greedy-load/cost (GL/C), Greedy-penalty (GP) and M/1 (M/1).  

4.1 Simulation Model and Metrics 

Our simulation model is similar to the one used by Vivek et al. [18], whose “back-end 
nodes” and “front-end nodes” are actually our “server nodes” and “redirector” 
respectively. We made several modifications. First, since our focus is on the load 
balancing performance of our document distribution algorithms, main memory in 
server nodes is not used for document caching, and all of the documents are assumed 
to be stored on disk. Second, we assume the technique of HTTP redirection is used 
for user request redirection. 

Based on the cost figures of different processing steps for a given Web request 
provided in [18], we could see that compared to the disk access time and disk transfer 
time, the connection establishment time and teardown time are negligible. Therefore, 
in our model, processing a web request comprises (1) redirection (if necessary), (2) 
waiting in the queue of the serving server node, and (3) reading the file from disk. We 
assume that the round-trip time of redirection is 100 ms [6]. The disk reading 
parameters are derived from Seagate ST360020A technical specification, with the 
disk access time of about 19 ms and the disk transfer time about 21 MB/s [27].  

4.2 Experiment Settings 

Experiment 1 – Synthetic Workload 

In this experiment, there are 200 documents, each of size 10x , where x is randomly 
drawn from a normal distribution with µ =1, and σ =0.3, giving us files sizes that 
are mostly in the range of (1.26 KB, 79.4 KB). 

At any time, the total number of client requests in the system is kept under 
0.667*M*L. The client requests follow a Zipf distribution. According to the Zipf law, 
if documents are ranked according to their access frequencies, the access rate of the 
i-th most popular document is proportional to αi/1 . In our experiment, α  is set to 
1.4, which has been shown to be suitable for a real Web server [17]. To make the 
access pattern closer to reality, at the middle of each period, the most popular 
document is substituted by another document randomly chosen. 

Experiment 2 – Real Log files 

This experiment uses the dataset and log files of a Web site that hosted mainly 
personal homepages. For simplicity, we group documents under each personal 
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account together as one “group” and use the group as the basic unit of replication and 
distribution in this experiment. In order to expedite the simulation, we prune 
unpopular groups that account for less than 0.05% of the total traffic. This leads to a 
75% reduction in the number of groups while only 3.89% reduction in the bytes 
transferred to clients. The details of the groups are shown in Table 1.  

Table 1. MU statistics 
Total Number 201 
Minimal Group size 8.2KB 
Maximal Group size 63.5MB 
Total size of Groups  4,571MB 

In this experiment, we use three consecutive days worth of log files from the Web 
server, as shown in Table 2. The period of document distribution to simulate is 8 
hours. 

Table 2. Log files statistics 
Period Jan/24/01 – Jan/26/01 
Average successful requests per day 227,124 

4.3 Load Balancing Analyses 

We study the load balancing effects of the proposed heuristics in both experiment 
settings. The Load Balance Metric (LMB) [3] is used as a performance metric for 
comparing results. To obtain the LMB value, the peak-to-mean ratio of server load is 
measured at different sampling points (1 sampling point every hour) in the simulation. 
The server load is defined as the utilization value of the server node. The LBM value 
is obtained by calculating the weighted average of the peak-to-mean ratios measured, 
using the total server load as the weight for the sampling period in question. A smaller 
value indicates a better load balancing performance. 

For the purpose of comparison, we include a dummy heuristic that does not 
duplicate documents at all. It places the documents in order of increasing wi, and each 
document is assigned to the server node with the least jW  at the time. We call this 
heuristic Non-replication (NR). 

We first fix the number of server nodes, M (= 8), and then step by step increase the 
relative capacity R from 1 to M. We know that with the proposed heuristics, when R = 
1, the system is actually a non-replication DWS; on the other hand, when R = N, the 
system becomes a mirroring DWS. Therefore, we ignore these two cases in our 
discussion. 

Figure 6 and Figure 7 show that in both experiments, the proposed heuristics 
achieve much better load balancing than NR does. With 50% additional storage, the 
GC/L can improve on its performance by 48% and 31% in the two experiments 
respectively. 
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Figure 6 Load Balancing Performance in Experiment 1 
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Figure 7 Load Balancing Performance in Experiment 2 

We also notice that the performance of the heuristics gets better as R increases. 
When R is equal to M/2, almost half of the documents are duplicated on each server 
node and the performance becomes very close to mirroring. M/1 is not as good as the 
other three, because it does not duplicate documents with small δ  and only 
considers communication cost when placing the replicas. 

Figure 8 presents the performance of GC, GL/C and GP. GC does not consider load 
balancing when placing the documents, but it achieves better load balancing than M/1. 
This proves that the Density Algorithm it employs helps to keep load balanced. When 
R is small, GL/C’s performance and GP’s performance are similar. When R gets 
bigger, GP achieves better load balancing than GL/C. 

Because of the large variance of group sizes and access patterns, the load balancing 
results in Experiment 2 are not as good as those in Experiment 1. But the shapes of 
the curves are similar to those from Experiment 1, and so are the differences among 
the curves. 
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Figure 8 Load Balancing Performance of heuristics in Experiment 1 
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Figure 9 Load Balancing Performance of heuristics in Experiment 2 

We then fix R at 1.5, and increase M from 8 to 64 to see how well the proposed 
heuristics can adapt to the change of number of server nodes.  
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Figure 10 R = 1.5 in Experiment 1 
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Figure 11 R = 1.5 in Experiment 2 

When M increases, the capacity of each server node, C, decreases. Therefore in 
Figure 8, all the LBM values become larger as R increases. M/1’s performance 
deteriorates the fastest, because it duplicates all the hottest documents on every server 
node. When M is large, it can only duplicate very few documents.  

We see that GP’s performance is between GC/L and GC, of which GC/L takes load 
balance into account when placing the replicas, and GC considers only 
communication costs. When C is small, GP is similar in performance to GL/C. When 
C decreases, GP gets closer and closer to GC. This is consistent with the result we 
obtained when M is fixed.  

4.4 Traffic Analyses 

We use the algorithm in Figure 12 to transfer the documents inside the DWS system. 
If xS  needs to give a replica ( 1, )l

i iD l c= … to yS  which doesn’t have the replica, 



 

we record the bytes xS needs to transfer, i.e. is . When a server node needs to fetch a 
replica from other server nodes, it chooses the one which has had to transfer least 
bytes to other server nodes so far. We record the total bytes transferred inside the 
system in each period and compute the average at the end of the simulation. The 

sm
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Output: 1{ ,..., }MO O O=
Begin

Step1 Oj := 0, {1, , }j M∀ ∈ …

Step2 Foreach Di, do {
Foreach Sj do {
If Di is assigned to Sj and pij == si Then {

Find Sl that holds Di and Ol is minimal
Ol := Ol + si } } }

End
Figure 12 Algorithm of moving MUs
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aller this average is, the less affected is the performance of the DWS system due to 
vements of the documents.  
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Figure 13 Traffic Analyses in Experiment 2 

Figure 13 plots the internal traffic figures generated by the heuristics in Experiment 
The x-axis is R, and the y-axis is the average we mentioned above, as the 

rcentage of the total document size. M is fixed to 8. For NR, its traffic remains 
changed as R changes. In most cases, its cost is much larger than the other 
uristics. The largest cost generated by GP and GL/C is only 1.01% of 
rresponding NR’s costs.  
For the proposed heuristics, as R increases, the traffic increases at first. This is 
cause there are more replicas in the system, and if the access pattern changes, more 
licas needed to be moved around. When R is larger than M/2, however, the traffic 

gins to decrease because many documents are now duplicated on each server node, 
s decreasing the need to move them.  

It is easy to understand that GC, which cares most about communication costs, 
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incurs the least cost. The M/1 approach generates the most traffic because ci can only 
be M or 1, and so when the ranking of documents changes, more replicas would be 
affected. GP and GL/C both consider the request rate of documents as well as the 
current placement when placing documents, and thus their costs are in between the 
other ones and they are very close to each other. Although we use total bytes 
transferred as the metric, the actual time needed to move documents is t = 
max(oi)/bandwidth. From the algorithm of moving documents, we know that  

 /( * )
M

j
j

t o bandwidth M≈∑  

Therefore, in this experiment, if we assume that the network bandwidth is 1 MB/s, 
moving documents would not take more than several minutes. Since during this 
period, the DWS system can continue to serve requests with documents not in the 
move, this length of time is acceptable. 

From the simulation results, we see that our heuristics can improve load balancing 
in a DWS system significantly and generate acceptable traffic. Among the four 
schemes, M/1 is the simplest, but the traffic it generates is heaviest and its load 
balancing capability is the worst. GC generates the least internal traffic, but its load 
balancing performance is not as good as GP and GL/C. GP and GL/C incur similar 
costs. When the server capacity, C, is small, GL/C balances the load among the server 
nodes better than GP, and when C is large, the other way around. Since GP requires 
more computation, it might not be as practical as GL/C. Therefore, we conclude that 
GL/C, which considers the documents’ load and size and the current placement when 
placing documents, is most suitable for DWS systems. 

5. Related Work 

In a full-mirroring DWS system, each server node has all the documents of the Web 
site. The system relies on a mechanism to direct client requests to selected server 
nodes. This mechanism may reside on the client side or on the server side, called 
client-based or server-based respectively [5]. Client-based approaches put the burden 
of choosing a server node in the DWS system and routing the request to the selected 
node on the client [14, 15]. Although these approaches make clients share the load of 
the Web server, they cannot guarantee good load balancing at the server side because 
of clients’ ignorance of server nodes’ load status. Smart client [21], designed by 
Yoshikawa et al, solves this problem by transmitting server nodes status to clients 
through a Java applet. The continuous communication between each applet and server 
node, however, may generate excessive additional network traffic.  

Server-based approaches used in full-mirroring DWS systems are mainly 
DNS-based [8,10,19]. A summary of these approaches is provided in [5]. Due to 
caching in intermediate DNS servers and clients’ browsers, a high degree of load 
balance is not easily achievable [8,9]. It is also possible for requests to continue to go 
to a server node even the node is already overloaded. To address this problem, 
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Cardellini et al proposed a load balancing strategy for geographically DWS systems 
[6]. In their system, a DNS server assigns clients’ requests to a selected server node 
first. If a server node is overloaded, it can redirect some of its requests to an 
appropriate peer node. SWEB [1] integrates Round Robin DNS with redirection. It 
takes the CPU load, disk I/O channels and interconnection network bandwidth into 
consideration when distributing HTTP requests to the server nodes.  

Mourad et al. proposed a simple document distribution scheme in their 
non-duplication DWS system [13]. Each server node only holds part of the Web site’s 
documents and periodically reports its load to a monitoring coordinator. If a server 
node is overloaded, some of its content is migrated to another server with less load 
based on analysis of the access pattern. The author claimed that this system can 
support data replication by replicating some of the highly accessed content that is on 
an overloaded server, but they did not provide concrete information on how this was 
done. 

Another non-duplication DWS, DCWS, is proposed by Baker and Moon [4]. They 
make use of a graph-based Web document-partitioning algorithm in their document 
distribution scheme. Each document resides on its home server and can be migrated 
to a co-op server for load balancing reason. To redirect client requests from the home 
server to the co-op server, all hyperlinks pointing to the document need to be 
modified, which may require substantial computation. Since one hyperlink can only 
refer to one document, this system cannot support document replication. 

In the partial-duplication DC-Apache system [11], each document has a home 
server that keeps its original copy. When the document becomes popular, however, it 
is replicated instead of being migrated to co-op servers. Each time the replicas of a 
document or their locations change, the document’s home server regenerates all the 
hyperlinks pointing to this document based on global load information to order to 
maintain load balancing. Although such dynamic document distribution scheme can 
adapt to user access patterns quickly, it generates much traffic in transferring 
documents among the nodes, and much computation in updating the hyperlinks. 

Unlike DC-Apache, RobustWeb [15] is a partial-duplicated DWS system featuring 
a static document distribution scheme. The sets of replicas are determined on the 
basis of past access records and placed on the server nodes beforehand. If a document 
has several replicas, each replica carries a number indicating its probability of being 
accessed. Front-end redirection servers choose a server node for a request according 
to this probability. Instead of moving documents like we do in this paper, in 
RobustWeb, only the redirection probability is computed periodically. RobustWeb 
aims to equalize the average access rate for each server over a long time, for example, 
one day. 

Chen et al. extended RobustWeb’s work theoretically [7]. They showed that if 
memory constraints are present, achieving the optimal load balancing through 0-1 
document placement is NP-hard. They also presented several greedy approaches, but 
these approaches do not consider the traffic requirement, making their work not 
suitable for practical DWS systems.  

Ng at el. [16] included a prefetching feature in their EWS system, a 
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partial-duplication DWS. In this system, documents that are always accessed together 
are grouped and placed on the same server node. Only the first request of a session 
has to go through the redirection server, thus cutting down on the redirection 
overhead. A revised document placement algorithm of the one used in RobustWeb is 
used to maintain load balance. Our work can be considered a derivative from theirs 
by taking storage constraints and communication cost into account. The algorithms 
we propose here can be used in EWS. 

6. Conclusion and Future Work 

In this paper, we study the rules used in a document distributed scheme for 
determining document replicas and their placement in a DWS system. We proved that 
the placement optimization problem is NP-hard for homogeneous DWS systems. We 
presented several heuristics and studied their performance via simulation. The results 
showed that the heuristics can balance the load among the server nodes during 
run-time of the DWS system, and traffic due to movements of the documents is 
negligible.  

Our next step is to incorporate geographical information into our document 
distribution schemes so that they would duplicate a document at a location where the 
document is most wanted, which is expected to reduce access latencies substantially.  
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