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Abstract—General-purpose GPUs have been prevalent for a
decade. Nevertheless, GPU programming remains an onerous job
practically exclusive to veteran developers who must know both
domain-specific knowledge and GPU architecture well. Although
current parallelizing compilers that automatically parallelize and
offload sizable loops onto the GPU have helped in unfettering the
power of the GPU with minimal programming effort, there are
still a family of loops that carry statically non-deterministic data
dependencies and cannot be parallelized. To tackle this issue,
we propose two lightweight dependency checking schemes that
are very different from existing conservative compilers to assist
parallelizing loops with non-deterministic data dependencies. Our
schemes feature linear work complexity for memory operations,
lower memory consumption compared to previous work, and
minimal false positives by leveraging the lockstep execution on the
GPU’s SIMD lanes. Experiments done using microbenchmarking
and real-life applications on the latest advanced AMD discrete
GPUs show that our schemes can achieve 2.2× speedup over
existing solutions in dependency-free cases while only taking
about 20% of time compared to existing solutions in the case
with statically unproven loop-carried dependencies.

Index Terms—GPGPU; Dependency Checking; Loop Paral-
lelization; Code Generation;

I. INTRODUCTION

The many-core computing revolution has begun to impact
not only supercomputers but also almost every sort of com-
puting devices including our smartphones. Unleashing the
full potential of many-core computing to sustain computa-
tional performance will require fundamental advances in both
computer architecture and programming models. With the
breakdown of Dennardian scaling, we can expect processors
are going towards more asymmetric coupled cores in the dark
silicon era. This has been evidenced by the skyrocketing use
of heterogeneous computing architectures; of these, GPUs
(graphics processing units) are taking over CPUs as regards
the many-core role of a computer, thanks to their higher power
efficiency and cost effectiveness [4], [16], [19].

Parallel programming on GPUs is however intrinsically so
complex that it is not easy for even veteran programmers
to master it. To unburden programmers from onerous pro-
gramming work and to accelerate existing code with minimal
porting efforts, auto-parallelization emerges as a promising
approach, albeit far from a panacea. The polyhedral model [31]
is a powerful abstraction for analyzing and transforming loops
of affine iterations and data domain to exploit statically proven
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Fig. 1. Different cases of intra-warp data dependency: (1) r p in thread y
is able to read the value written by w p in thread x (x < y), which was
reported as a dependency violation by previous research, but is actually not
(2) Intra-warp data dependency violation

parallelism. Polyhedral compilation considers sequential loops
as polyhedra, mapping iteration domains and data domains
to multicore or many-core processor domains, and transforms
them into multithreaded code (e.g. OpenCL, CUDA, OpenMP)
[7], [12], [27]. While polyhedral compilers are widely used
for loop parallelization, they rely on static analysis which
has well-known limitations on the sorts of loops that can be
analyzed and parallelized.

Loops with non-affine loop bounds or subscripts are com-
mon in many applications, and it is difficult to detect data
dependencies at compile time for code that uses indirect
addressing, pointers, recursion, or indirect function calls. In
reality, a large portion of such loops are actually parallelizable
[34]. However, due to the hardship of determining data depen-
dencies at compile time, existing techniques regard all loops
with statically non-deterministic data dependencies as non-
parallelizable and let them run sequentially. This conservative
approach would be overkill for a great many potentially
parallelizable loops. To tackle this issue, we attempt to offload
loops with non-deterministic data dependencies to GPUs.
With lightweight data dependency checking runtime support
implemented as a safety net, the GPU can be used to accelerate
those statically unproven loops as well to exploit potentially
huge parallelism inherent in a lot of applications.

Designing such a dependency checking scheme is challeng-
ing since a large amount of states need to be maintained
in memory. They may compete with application data for
the relatively scarce memory resource on the GPU. Even
though prior research work achieves checking inter-iteration



data dependency at runtime, the incurred overhead limits the
scalability. Paragon [22] proposes a scheme for running loops
speculatively on the GPU. It detects whether data dependency
violation happens during the speculative execution phase.
However, it is suboptimal in three aspects. First, Paragon
may result in false positive cases like the one depicted in
Fig. 1, which may limit the scope of loops to be offloaded.
Second, its memory overhead is significant as it records all
accesses to the read/write sets. Since GPU memory is far less
than host memory, it may fail to run big loops. Third, it has
limited scalability as it needs quadratic step complexity to
determine whether a dependency occurs or not by comparing
the read set and write set pairwisely. GPU-TLS [32] reduces
false positive cases by exploiting the GPU’s lockstep execution
model. It uses a deferred update strategy, caching all read and
write addresses in global memory. Also, written address-value
pairs are cached in shared memory, which easily becomes the
bottleneck of stream multiprocessor occupancy [2], potentially
serializing workgroup execution. As both of the works use
read/write sets, for programs that are hard to determine the
number of write operations per iteration, they need costly
profiling procedures to configure the sizes of read/write sets,
limiting their practicality. Using a Bloom filter-like approach
to tracking read/write sets may help reduce memory consump-
tion, but the associated hashing algorithms can give more false
positives of dependency. It would be inefficient when ported in
software to commodity GPUs which consist of many compute
cores and a relaxed memory model.

This paper makes the following contributions to address
these issues:

• We propose two lightweight dependency checking
schemes that work without using read and write sets,
reducing O(n2) step complexity to linear, where n is
the number of memory operations in a GPU thread. Our
schemes are of high scalability even compared with the
blindly parallelized version1 of the loop.

• Our schemes feature more precise data dependency de-
tection on the GPU. The first scheme trims a large portion
of false positives, while the second is free from all false
positives and false negatives in dependency checking.

• Both of our schemes support early termination of the
entire kernel when a dependency is detected. This saves
a significant amount of speculative execution time when
the kernel execution takes long.

• Each scheme has its own advantages. Our first scheme,
namely two-pass inspector-executor, runs faster in gen-
eral; it requires fewer memory operations but more static
analysis to generate code. Another scheme dubbed Warp-
Intrinsic Speculative Execution (WISE) has a wider range
of use cases. It executes the parallel code of the loop and
detects data dependencies on the fly.

The rest of the paper is organized as follows. Section II gives
a summarized background of this work. Section III and Section
IV present our two-pass and WISE schemes respectively.

1Its generated kernel code is regarded unsafe and may give incorrect output.

A complexity analysis on the various schemes follows in
Section V. In Section VI, we evaluate the performance of
the schemes through experiments. Section VII reviews related
work. Finally, Section VIII concludes this paper.

II. BACKGROUND

OpenCL (Open Computing Language) [3] is one of the
most widely used programming frameworks for general-
purpose GPU computing. Various compute device vendors
(e.g. NVIDIA, AMD, Intel) provide OpenCL implementations.
The GPU programming model requires the programmer to
explicitly exploit data-level parallelism. From a programmer’s
perspective, a GPU consists of multiple stream multiprocessors
(SMs), or compute units in OpenCL terms. A special program
called kernel is run on the GPU, which separates the solution
space into blocks, namely workgroups2. The kernel is launched
from the host side via a command queue, with a NDRange pa-
rameter which contains a n-dimensional array of workgroups
specified by programmer.

There are two-level work schedulers on the GPU. Hardware
workgroup scheduler (CTA scheduler) assigns those work-
groups to stream multiprocessor in a many-to-one manner. The
number of workgroups could be assigned to an SM simulta-
neously is limited by three factors of SM: the max number of
threads, shared memory, registers. When a workgroup finishes
execution, the workgroup scheduler will continue assigning
another pending workgroup to the vacant SM. The second level
of work scheduler is the warp-scheduler. Warp is the basic unit
of execution flow of a stream multiprocessor, consisting of 64
threads (AMD) or 32 threads (NVIDIA), where instructions
are executed in lockstep on the SIMD lanes of the GPU.
The warp-scheduler employs switched execution of warps in
order to hide memory access latency and to boost pipelining
of instructions.

GPUs adopt a relaxed memory consistency model for scal-
ability sakes, therefore it is necessary to take care of the visi-
bility issue when programming on it. A typical GPU memory
subsystem is organized in a hierarchy of the following: (1) per-
thread registers; (2) per-SM L1 caches and shared memory
(a.k.a. local memory in OpenCL); (3) a unified L2 cache
shared by all SMs; and (4) the off-chip global memory.

III. TWO-PASS EAGER DEPENDENCY CHECKING

Our two-pass eager dependency checking scheme follows
an inspector-executor model. The entire execution consists of
two phases: the inspector run and executor run. During the
inspector run, we use two passes to check for all possible
dependencies in a loop. The first pass checks for Write-
After-Write (WAW) dependencies, followed by the second pass
checking for Read-After-Write (RAW) and Write-After-Read
(WAR) dependencies. We design a low-overhead intra-warp
timestamping mechanism (Section III-A), based on which we
can avoid reporting false positives of detected dependencies.

2Known as thread blocks and cooperative thread arrays (CTAs) in CUDA
and PTX terminology respectively
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Fig. 2. Inaccuracy of recording global timestamp: (1) It is expected that every
logging or memory operation is done atomically. One is led to think of using
the timestamp to check for dependency violation based on the occurrence
order. (2) But in reality, if threads x and y are in different warps, transactional
logging and memory operations do not exist since any warp could be switched
off anytime. Detecting dependency violation in this way leads to both false
positives and false negatives.

Details of our dependency checking algorithm using the times-
tamp will follow in Section III-B.

A. Intra-Warp Timestamp Recording

To record a timestamp on the GPU for ordering memory
operations is challenging due to the relaxed memory consis-
tency model adopted by the GPU’s memory/cache hierarchy.
Although the clock64 register that carries the current cycle
number could be considered a timestamp, it does not imply
the order of memory operations being issued would follow the
order of visiting this register. Consider the case as shown in
Fig. 2. Since the hardware schedulers are transparent to the
programmer, the actual order of reads and writes to location x
made by different threads cannot be recorded easily. Applying
fine-grained locks may solve the problem, however at a cost of
inducing significant runtime overheads and risks of deadlock.
Software transactional memory is not a good solution either; it
is as hard as performing dependency checking. Therefore, as a
tradeoff between cost and efficiency, we design an intra-warp
timestamp to facilitate memory operation ordering.

We have two design goals for our intra-warp timestamp.
First, we expect the timestamp is maintained incrementally for
each memory operation within a warp. Second, the timestamp
should be consistent, regardless of how many times we run the
GPU kernel with the same read/write pattern. Design such a
timestamp is challenging for a number of reasons. First of all,
GPGPU programming, conforming to the SPMD (Single Pro-
gram Multiple Data) model, actually allows divergent control
flows or branch-divergent threads. As shown in Fig. 3, threads
x and y follow different control flows, and run on different
lanes of same SIMD engine. The GPU kernel compiler inserts
reconvergence instructions after each time a divergent branch
finishes execution in some alternate manner. At any point that

Listing 1
INTRA-WARP TIMESTAMPING

__local volatile int timestamp[WORKGROUP_SIZE /
WARPSIZE];

warpId = flattened NDRange index / WARPSIZE;
++timestamp[warpId];
// increment timestamp per memory operation
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Fig. 3. Timestamp synchronization under divergent control flow: the order of
green block (A) and red block (B) is unpredictable. Thus, timestamp at the
reconvergence point tsync = max(tr, tg), where tr is the latest timestamp of
the red block (B) and tg is the latest timestamp of the green block (A).

threads reconverge, the timestamp must equal the maximum
one among the threads in a warp in order to meet our first
design goal. Since the execution order of if branch and else
branch depends on the branch prediction instructions generated
by the compiler, it may vary across compilers with various
branching features.

One may be surprised at our solution that lies in adding
a deliberate data race on shared memory. Our timestamp
recording mechanism leverages the lockstep execution within
a warp. We declare a 32-bit integer variable for each warp and
allocate it in on-chip shared memory for low-latency access.
It is visible to all threads in the warp by declaring it with
the volatile modifier, which instructs the compiler not
to cache it in registers since it may be modified by more
than one threads [9]. Listing 1 shows our ideas. Although
the timestamp variable is incremented by all threads in
the warp, it is exactly incremented by one only. It is obvious
that this timestamp design complies with our two goals. After
the control flows reconverge, the timestamp variable equals
the maximum one of all threads in the warp. Note that our
timestamping technique would not cause shared memory bank
conflicts [1], [2] because threads in a warp access the same
32-bit word at the same time.

B. Dependency Checking

According to OpenCL memory consistency model, mem-
ory has load / store consistency within a thread. Therefore,
data dependencies happened within an iteration need not be
checked when mapped to a GPU thread. Our method uses the
kernel of the parallelized loop as input, which can be gen-
erated manually or automatically by parallelizing compilers.
We refer to the arrays that may contain data dependencies
at runtime as shared arrays. Non-affine expressions with
subscripts accessing shared arrays, leading to statically non-
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Fig. 4. Data structures used in our schemes

deterministic memory accesses, are called index expressions.
In the two-pass scheme, two OpenCL kernels, known as
inspector kernels, are generated to inspect each shared array a
for different types of data dependencies. The first one checks
for WAW dependencies, and the second for RAW and WAR
dependencies.

Data Structures. We use a shadow array S whose size equals
that of the largest shared array. Each address of a shared array
a to be checked is mapped to one element in the shadow array
S, i.e. 64-bit for tracking a memory address. Each element of
S array is a 64-bit integer struct consisting of two parts. In
the first part (upper 32 bits), the rightmost 24 bits are used to
record thread id, since the maximum flattened global work size
is typically 224, and the leftmost 8 bits record the timestamp
when the corresponding element is accessed. The second part
(the next 32 bits) is used to record the earliest time a thread
accessed the tracked place, and is composed of a 6-bit intra-
warp id (iwid) and a timestamp value (minTs). (See Fig. 4a).
The shadow array might be reused as we may check shared
arrays step by step. Both inspector kernels contain a global
variable called raceflag, which is initialized to false, and
denotes whether a dependency is detected.

Inspector Kernel Generation. The overall inspector kernel
generation rule is shown in Fig. 5. We show exp1 as a write
access to array a, and exp3 as a read access. Specifically, if
either of exp1 and exp3 is non-affine expression regarding
to iteration domain variables, then array a is a shared array
and all expressions mentioned are index expressions. Inspector
kernels are generated using a simplified variant of data flow
analysis. We collect all variables involved in the index ex-
pressions into a set V . From the parallelized loop kernel, we
traverse the control flow diagram generated by the abstract
syntax tree (AST) to maintain V in a backward manner.
When a variable in V is written, we add all variables on
the right side of the assignment statement into V . Finally, we
eliminate those statements without variables in V in a forward
manner. In essence, this effectively prunes away most of the
compute-intensive code (similar to dead code elimination used
in compilers), producing a streamlined kernel version that
enables a lightweight dependency checking phase considering
memory operations alone.

WAW Checks. At the beginning, we initialize all elements
of the shadow array S to represent that the corresponding
addresses have never been accessed. When a write access
is at place p of a shared array a, we combine timestamp

. . .
a[exp1] = exp2

. . . = . . . op a[exp3] op . . .

. . .

Parallelized Loop Kernel

fillBuffer(S, 0)
raceFlag = false
// maintain timestamp in each memory access
// WS : WARPSIZE
kernel {

tid = get NDRange index
t = combine(timestamp, tid)
v = atomic_xchg(&S[exp1], t)
if (first time access)

record iwid and minTs
(prevtimestamp, prevtid) = decombine(v)
if (inSameWarp(prevtid, tid)) {

if (tid mod WS < prevtid mod WS or
prevtimestamp = timestamp)
*raceFlag = true

} else *raceFlag = true
}

WAW checking for array a

if (raceFlag) return;
// maintain timestamp in each memory access
kernel {

tid = get NDRange index
localId = tid mod WS
(wtime, writeTid) = S[exp3]
wLocalId = writeTid mod WS
if (not inSameWarp(writeTid, tid))

*raceFlag = true
else if (localId < iwid and timestamp > minTs)

*raceFlag = true
else if (wLocalId<localId and wtime>timestamp)

*raceFlag = true
else if (iwid<localId<wLocalId and

mTs<timestamp<wTime)
*raceFlag = true

}

RAW/WAR checking for array a

Fig. 5. Dependency checking code generation

and the current flattened NDRange thread ID (tid) into one
register variable by bit operation. Then an atomic_xchg is
performed on S[p], which sets the current value and returns the
previous value in that place atomically. We extract the previous
value to get the corresponding tid. The result of a write
operation check could be one of the following three cases.
(1) The previous value equals the initial value; this implies
the current write operation is the first-time access to place
p. Current NDRange index and timestamp are assigned to
S[p]. To find all RAW/WAR violations in the second pass,
we record intra-warp id and timestamp to last 32-bit S[p].
Note that once written, the last 32-bit of shadow array element
would not be modified. (2) The previous warp id is the same
as the current warp id; we therefore compare id within a warp
(local warp id). If the former one is less than or equal to
the current local warp id, the dependency would not cause a



violation. Otherwise, the race flag is set to indicate an intra-
warp WAW dependency violation. (3) The previous warp id
is not equal to the current warp id. This implies an inter-warp
WAW dependency. As a result, the race flag is set to be true.
Setting the race flag to true need not be atomic since it can
only switch from false to true.

RAW/WAR Checks. Provided that no WAW dependency is
detected in a, the second inspector kernel responsible for
RAW/WAR checks is carried out. This time, the shadow array
S contains values from WAW checking pass. Each element
of S stores a quaternion, namely (timestamp, tid, iwid,
minTs), which could be fetched through only one 64-bit
read operation. The timestamp marks the last time that the
tracked place was written by thread tid. iwid and minTs
are intra-warp id and timestamp at the first time the tracked
place was written. All memory operations are time-stamped
during the second inspector kernel run. But our scheme need
not record read locations. Instead, we check S to confirm
whether the current read location has been written by other
warps during the time we read p. If the memory location is
written by other warps, RAW or WAR dependency exists since
the order of warp is agnostic. If not, we further check intra-
warp RAW or WAR cases. Three cases would cause an intra-
warp dependency violation: (1) if current intra-warp thread id
(localId) is less than that of the thread id first written in p
(iwid), and current timestamp is greater than the first written
timestamp minTs, there is an intra-warp WAR dependency
violation. (2) If current thread id is greater that of the thread
written in p and current timestamp is less than the written time,
an intra-warp RAW dependency violation is reported. (3) If the
thread id and the timestamp of read operation is between the
first time and the last time written to a certain place, it is
regarded as an intra-warp dependency violation. Although the
summarized logs recorded in the WAW phase might still result
in false positive cases during RAW/WAR checks, they belong
to very extreme cases.

IV. WARP-INTRINSIC SPECULATIVE EXECUTION (WISE)

While the two-pass eager dependency checking scheme fits
many application scenarios, it has a drawback that shadows its
usefulness for certain kinds of compute-intensive applications.
If the index expression comes from “heavy computation”
that is impossible to eliminate by dataflow analysis, then the
scheme could degrade the execution by multiple times for
repeating the same compute-intensive part. Listing 2 shows
an example where there is one shared array array and one
index array ind. The result of the index array is computed
by calling some function that involves heavy computations,
which cannot be eliminated through static analysis. To cope
with this problem, we design another scheme, dubbed Warp-
Intrinsic Speculative Execution (WISE), which detects data
dependencies in a speculative and on-the-fly manner. The
idea may look similar to Thread-Level Speculation (TLS),
which is widely used in multicore CPU design and usually
supported at hardware level (e.g. as a variant of the cache
coherence protocol [25]) or software level (e.g. working as

Listing 2
INDEX ARRAY SUBJECT TO HEAVY COMPUTATION

for (int i = 0; i < n; i++)
{

ind[i] = heavyComputation();
array[ind[i]] = i;

}

SpecWrite P

warp

Write P
Read P

0 .. WS - 1 localwid

…
…

…

Write P
Read P

SpecRead P

warp
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current
instruction

tidtid
✓
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Fig. 6. Illustrating speculative read and write semantics (Algorithm 1 and
2) graphically: memory operations under shaded area are regarded intra-warp
dependency violations.

a C++ template [20]). On a multicore CPU, these pieces of
work use sophisticated synchronization techniques to realize
misspeculation recovery. However, the impact of misspecula-
tions could be considerable more serious on the GPU, and
the recovery can incur more significant overheads due to
the relaxed memory model and the obstacle of performing
inter-SM orchestration. It comes to our knowledge that recent
research on speculative loop execution on GPUs [22], [29],
[32] do not attempt to recover from misspeculation. Instead,
when a misspeculation (i.e. dependency violation) occurs, the
result coming from the loop-parallelized kernel is discarded.
The loop that speculated wrongly turns back to the CPU even-
tually. Despite the speedups achieved over the sequential loop
execution on the GPU, their solutions suffer from quadratic
time and space complexity [22], [32], false positives of data
dependency [22], and even correctness issues [29]. In contrast,
our WISE scheme, employing implicit timestamps guaranteed
by lockstep execution in the warp, features precise dependency
checking that is free of false positives (we call WISE an fp-
free scheme) and on-the-fly detection that allows early kernel
termination once a dependency gets detected. As a result,
WISE is very lightweight in view of its linear work complexity
as the number of memory operations to be tracked scales.

The data structure we used in WISE is shown in Fig.
4b. Different from our two-pass approach, we need another
shadow array (the read copy) in this case for recording
addresses of read operations to shared arrays. In total, we
need 64 bits (two 32-bit integers) for tracking each address
used in the program. Algorithm 1 and Algorithm 2 show
the speculative read and speculative write operations used in
WISE respectively. The code generation of a WISE-augmented
program is very simple as the dependency checking is enabled
by simple substitutions of memory operations that contain
statically non-deterministic data dependencies with speculative
ones. Therefore, WISE it is more suitable for parallelizing
loops with a complicated control flow.

Speculative Write. The procedure shown in Algorithm 1



Algorithm 1 Speculative write to address a

1: function SPECWRITE(a, value)
2: tid = get NDRange Index
3: cur_wid = tid / WARP_SIZE
4: cur_localwid = tid % WARP_SIZE
5: prev_tid = atom_xchg(writeShadowa, tid)
6: prev_wid = prev_tid / WARP_SIZE
7: prev_localwid = prev_tid % WARP_SIZE
8: if hasWritten(prev_tid) then
9: if prev_wid 6= cur_wid then

10: return inter-warp WAW data dependency
11: else
12: if cur_localwid < prev_localwid then
13: return intra-warp WAW dependency
14: r_tid = atom_or(readShadowa, 0)
15: calculate r_wid, r_localwid from r_tid
16: if hasRead(r_tid) then
17: if r_wid 6= cur_wid then
18: return inter-warp RAW or WAR dependency
19: else
20: if cur_localwid < r_localwid then
21: return intra-warp RAW dependency
22: [a] = value

checks both the write shadow and read shadow. It first checks
for inter-warp WAW dependencies (line 9), followed by intra-
warp WAW dependencies (line 12). If the address being
written has not been touched by any thread in other warp,
it goes on further checking for intra-warp RAW / WAR
dependencies (line 16 to 21). Line 14 reads the read shadow,
using atomic_or to force bypassing the L1 cache, from
which we know the read information of the address. Line 17
to 18 checks for inter-warp RAW or WAR dependencies. If the
currently checked address is read by other warp, it reports an
inter-warp dependency violation; otherwise it checks for intra-
warp RAW or WAR dependencies (see Fig. 6). The unshaded
area of Fig. 6 represents memory operations that caused benign
data dependencies (false positive cases in Paragon) while the
shaded area denotes real dependency violations. Finally, it
updates the value of the given address.

Speculative Read. Similar to speculative write, the specu-
lative read as shown in Algorithm 2 works for the situation
depicted in Fig. 6. It checks the write shadow of the cor-
responding address first (line 5). If it is not written before,
we return the value of the address. Otherwise, it checks for
inter-warp RAW / WAR dependencies (line 8 to 9), and then
checks for intra-warp WAR dependencies (line 10 to 11). If no
dependency violation is detected, it updates the read shadow
to be the maximum of its old value and current thread id; this
guarantees a monotonically increasing read shadow. Finally, it
returns the value of the required address.

Race Flag Propagation. We design a race flag propagation
strategy to support early termination of the whole kernel once
a dependency is detected. Although on NVIDIA GPUs, it is
possible to use trap instruction [9] to terminate the whole
grid of the executing kernel. However, this method could be
broken in three ways: (1) it cannot work on GPUs from other
vendors (worsened cross-compatibility); (2) it would mask

Algorithm 2 Speculative read to address a

1: function SPECREAD(a)
2: tid = get NDRange Index
3: cur_wid = tid / WARP_SIZE
4: cur_localwid = tid % WARP_SIZE
5: w_tid = atom_or(writeShadowa, 0)
6: if hasWritten(w tid) then
7: calculate w_wid, w_localwid from w_tid
8: if w_wid 6= cur_wid then
9: return inter-warp RAW or WAR dependency

10: if cur_localwid < w_localwid then
11: return intra-warp WAR dependency
12: readShadowa = atom_max(readShadowa,tid)
13: return [a]

actual errors that occur within the GPU, raising obstacles
to debugging; (3) its behavior depends on the device driver.
Therefore, we design a higher-level mechanism to support
universal and graceful termination. We keep a local “race” flag
in each workgroup, declared using the volatile modifier,
and we check its value before a speculative operation is
performed. At the time that a dependency is detected from
a thread, the thread sets both the global and local flags of
that workgroup, and then returns. Therefore, the threads in the
same workgroup could see the local race flag before the next
speculative operation. Moreover, it checks the value of global
flag at the beginning of thread execution. If the global race
flag is true, the thread itself and all the following workgroups
would return. When the former portion of workgroups have
detected dependencies while the later assigned workgroups
do not start, this technique can make those later assigned
workgroups terminate at the time they are assigned to SMs.
The race flag propagation technique is especially useful for
WISE, and is applied to the two-pass approach as well.

V. ANALYSIS AND COMPARISON

In this section, we present a theoretical analysis, mainly
on time and space complexity, to compare our schemes with
previous work including Paragon [22] and GPU-TLS [32].
Paragon is a CPU-GPU cooperative framework that spec-
ulatively executes programs on the GPU. If a dependency
gets detected, Paragon will discard the parallelized result and
re-execute the task on the CPU. Its dependency checking
algorithm consists of three phases. The speculation phase is
run first, producing the execution results as well as collecting
the read and write sets. The second phase compares the
read set and write set recorded, entry by entry, through a
speculative execution phase. The third phase determines the
dependency using information collected from the first two
phases. GPU-TLS is our previous work which also specu-
latively executes loops. It makes use of the on-chip shared
memory as a scratchpad for logging and caching deferred
update entries. Global memory is used to record read and
write sets. With the intra-warp value forwarding technique, it
would not report false positives of dependency violation. After
the speculative execution, the dependency checking phase of
GPU-TLS compares read and write sets in a manner similar



TABLE I
MEMORY COMSUMPTION COMPARISON

GPU-TLS Paragon 2-pass WISE
O(tmaxi{wi}+

∑
i si) O(tmaxi{wi}+

∑
i si) O(maxi{si}) O(

∑
i si)

to what Paragon does. Finally, GPU-TLS commits the result
sequentially as for cached address-value pairs to host memory.
It employs some spin-locks tailored to GPUs [23], [26] to keep
the commit order. However, the lock has an issue that when
many workgroups are running on the GPU concurrently, its
efficiency drops significantly [26].

Memory Complexity. We denote the write time on array
a in an iteration as wa, the size of shared array a as sa,
and the number of threads as t. The comparison of memory
consumption is shown in Table I. The space complexity of our
work does not depend on the write time per iteration. Hence,
it is expected to scale better in programs with large memory
footprints. Our counterparts, Paragon and GPU-TLS, share a
common problem: when the count of memory operations per
thread varies significantly (i.e. unbalanced memory workload
per thread), they waste lots of extra memory to allocate
read/write (r/w) sets according to the maximum number of
r/w per thread. Worse still, both schemes may need a profiling
phase to determine the r/w set sizes when the number of r/w’s
in some threads is not determined statically.

Time Complexity. The second phase of Paragon constitutes
a dominant part of the step complexity, requiring O(xy)
to identify intra-iteration dependency, where x and y are
the counts of read and write operations respectively. The
third phase performs an atomic summation or a summing
reduction. Regarding GPU-TLS, its time complexity is not
superior either. The dependency checking phase of GPU-
TLS is of O(t) step complexity and of O(tmaxi{wi}) work
complexity, where t is the number of parallel threads. In
contrast, our schemes are of linear work complexity with
respect to memory operations, i.e. resulting in an additional
constant of computations as memory operations scale. Hence,
our schemes are expected to scale better.

Concerns on Atomic Operations. While we extensively use
atomic operations in our schemes, our race flag propagation
technique ensures that the contentious performance issue with
using atomic operations would not happen. Atomic operation
is actually improving with the development of hardware [21].
Existing research [10] even shows that several parallel algo-
rithms such as prefix scan and reduction could be accelerated
when using atomic operations appropriately in recent GPUs.

VI. EXPERIMENTAL EVALUATION

A. Testing Environment Setup

The experimental platform consist of an AMD A10 7850K
CPU and an AMD R9 290X GPU with 4GB GDDR5
global memory. The discrete GPU has 2816 stream processors
clocked at 1040MHz in 44 compute units (SMs). The PC is
installed with AMD APP SDK 3.0 [24]. The CPU and GPU
communicate over the PCI express bus 3.0 (x16) with 8GB/sec
bandwidth. We use Microsoft C/C++ Optimizing Compiler

Listing 3
OUR SYNTHETIC LOOP USED IN MICROBENCHMARKING

for (int i = 0; i < N; i++) {
double temp = 0.0;
for (int j = 0; j < M; j++) {

temp = a[r[i]];
a[w[i]] = dumb_computation(temp);

}
}

(version 18.00.40629) for x86 to compile our host code. For
stability reasons, the programs are compiled with -O0 and
-cl-opt-disable options. We collect host-side timings
which include data transfer time for fairness to judge speedup
over the CPU.

B. Evaluation Methodology

First, we design a microbenchmark that can manually adjust
the dependency type and size, as shown in Listing 3. The
outer loop is parallelized as a GPU kernel. We perform our
experiments to verify three aspects: (1) scalability vs. the loop
size (by varing N ); (2) scalability vs. the number of memory
accesses per iteration (by varing M ); (3) agility of detection
against the dependency density [28]. Adjusting the values in
array r and w, dependencies can be added to the loop. The mi-
crobenchmarking experiments are described in Section VI-C.
Second, we evaluate our schemes using the loops extracted
from various real-life scientific computing applications. We
compare the speedup of our schemes with our closest work,
Paragon [22]. This part of experimental evaluation is described
in Section VI-D. We do not compare with GPU-TLS [32] in
this part as its progressive approach that resolves Write-After-
Write dependencies by commits with sequential semantics
kept would not gain advantages in this evaluation. Actually,
GPU-TLS leaves RAW / WAR dependencies unresolved, so
head-to-head comparison with it is not insightful.

C. Microbenchmarking

In the first two experiments, we mainly focus on the per-
formance when no dependency case not actually exists. Two
variants of Paragon (paragon-atomic and paragon-reduce) are
used to compare with our schemes 2pass, 2pass-fp, wise, wise-
fp. The suffix -fp means the schemes may report all false
positive cases as Paragon does. The kernel corresponding to a
blindly parallelized loop serves as the baseline for comparison;
we refer to it as unsafe since it merely executes the loop in
parallel on the GPU, ignoring all data dependency issues. We
record the sequential (Ts) and parallel execution time (Tp)
and calculate the speedups as Ts/Tp. In the third experiment,
we test the detection time in dependency-existent cases. wise
w/o local flag is the variant that we turned off race flag
propagation. We do not include -fp cases here, and we do not
test paragon-reduce any more as it performs always slower
than paragon-atomic.

1) Scalability vs. Loop Size: We set M = 5 as it is common
to see a kernel with that number of read/write operations per
thread. To know the scalability of each scheme, we vary the
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Fig. 7. Performance of the microbenchmark

loop size and take the speedup over single-threaded CPU exe-
cution. Array r and w in the microbenchmark are configured
to ensure the loop is dependency-free. Therefore, all of the
three mechanisms need to finish the whole execution on the
GPU. The results are shown in Fig. 7a. In this experiment,
both variants of Paragon achieve less speedup than all variants
of our schemes. wise is slower than wise-fp for about 32%
on average since detecting intra-warp false positives needs
another atomic operation and more complicated control flow.
On the contrary, 2pass and 2pass-fp achieve almost the same
speedup. This implies the overhead incurred by false positive
detection in 2pass is trivial (less than 5%). For loop sizes
larger than 262,144, the performance of 2pass and wise is
similar because they share the same work complexity, but for
loop sizes smaller than 131,072, 2pass scales the best.

2) Scalability vs. Memory Accesses: We test the scalability
against the number of memory accesses M per GPU thread.
The loop size is fixed as 32,768, which is a size to obtain
good speedup for data-parallel applications on the GPU. Fig.
7b shows that along the increment of memory accesses per
iteration, the speedups given by the two Paragon schemes
remain stalled (even noted a slowdown in Paragon-reduce
when M = 45). This is because of Paragon’s O(n2) time
complexity for completing its read/write set comparison and
calculation phase. Further, as shown in Fig. 8, Paragon’s
memory fetches are about five times more than wise, and 3.4
times more than 2pass. The write size of Paragon is also much
larger than that of both our schemes. Since memory operation
needs hundreds of cycles on the GPU, “frugal” or judicious
use of memory operations is always the key to performance. In
contrast, our schemes achieved speedup curves similar to the
baseline (unsafe) case, thanks to our sustained scalability of
memory access. Among our schemes, wise achieves the least
speedup for it uses the largest number of memory operations
with regard to M .

3) Agility of Dependency Detection: We have tested our
microbenchmark with a dependency-free configuration. This
time we vary the dependency density (dd) and compare the
detection time of different schemes. The loop size is fixed as a
relatively large number 1,048,576 for more obvious detection
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Fig. 8. Fetch and write sizes vs. #memory accesses in the microbenchmark

time comparison. As shown in Fig. 7c, unlike all of our
schemes, the execution time of Paragon remains constantly
high since it has no ability to terminate early. The experiment
also shows that when scaling from dd = 10−6 to dd = 10−4,
the detection time of wise keeps dropping by 56% compared
with wise w/o local flag. This proves the usefulness of the race
flag propagation technique. After that, it is stabilized around a
level with small fluctuations, approximately using only 28% of
Paragon’s detection time when dependency density is greater
than 0.004%. Finally, 2pass obtains the shortest execution
time to determine if a loop carries dependency. It takes only
17.6% of Paragon’s time, and 50% of wise’s time when
dd > 2× 10−5.

D. Application Benchmarking

In this part of experiments, we study the performance
of our schemes and Paragon using seven real-life scientific
applications. The loops of the first six contain no dependency
at runtime, but this cannot be determined statically. The last
one cannot be parallelized actually, thus early dependency
detection and falling back to the CPU will minimize the loss
of speedup. We show the results in Fig. 9. For most of the
applications, 2pass achieves the greatest speedup, wise ranks
the second, and both win over Paragon in all cases.

1) Computational Fluid Dynamics (CFD): CFD [30] con-
tains a loop over a number of edges; each edge is associated
with two nodes. To calculate the force between each pair of
nodes, the loop reads an edge and acquires the associated



nodes, but the data dependencies involved cannot be statically
determined. Our test result shows that 2pass achieves the best
speedup (29% over Paragon and 20% over wise).

2) Molecular Dynamics (MD): In MD [30], a two-level
loop is used to compute the forces between every pair
of molecules. Molecules are paired up via an array called
partners. Accesses to the input and output arrays X and Y
are conditionally dependent upon the values in the partners
array. Therefore, parallel reads and writes to the arrays may
contain statically non-deterministic dependencies, but only
WAW dependencies could occur in the loop. In this exper-
iment, 2pass obtains 55% and 10% higher speedups than
Paragon and wise do respectively.

3) Inverse Permutation Vector (IPVEC): Ipvec [22] con-
tains a loop that rearranges all elements of the input vector
based on another index vector and puts the results in the output
vector. This access pattern is common in parallel computing,
and works as an integral part of many algorithms. We use
a vector of 65,536 elements as input. Since the loop entails
lots of memory operations but no computation, the speedup
obtained on the GPU is not significant. With high throughput
of PCIe 3.0 bus and latest GDDR5 memory, Ipvec still obtains
a speedup of around 2×. This time, 2pass performs only 1%
faster than wise and 16% faster than Paragon.

4) Forward Elimination with Level Scheduling (FWD):
FWD [22] is a two-level loop using forward elimination to
solve linear equations. It operates on sparse matrices stored in
CSR (compressed sparse row) format and update the matrices
in-place. Thus, its parallelism is statically undecidable for ex-
isting parallelizing compilers. Testing shows that our schemes
achieve at least 26% higher speedup than Paragon does.

5) Sparse Matrix-Vector Multiplication (SpMv): The sparse
matrix in SpMv [5] is again stored in CSR format. We adapt
the naive spmv_csr_scalar_kernel to a nested loop
whose outer loop is parallelizable. We modify the loop slightly
to write the result back to the original row of the matrix, so
statically non-deterministic reads and writes are done on the
matrix. Experiment with a 3,0002 sparse array of 10% non-
zero randomly distributed elements shows that wise and 2pass
perform 75% and 110% faster than Paragon respectively.

6) Breadth-first search (BFS): A parallelizable BFS loop,
adapted from bfs in Rodinia benchmark [8], is used for this
experiment. Each GPU thread id corresponds to an iteration
of the BFS loop. However, existing auto-parallelization tools
fail to parallelize this loop due to its non-affine memory
accesses for extending the frontier and marking the visited
flag. Testing with the graph-65536 dataset provided by Rodinia
shows that our schemes outperform Paragon by 30%. For a
degree-unbalanced graph, i.e. a graph subject to power-law
distribution (a common case for social networks), Paragon will
need even more space to record memory addresses.

7) 0-1 knapsack (KNAP): 0-1 knapsack is a two-level loop
containing statically non-deterministic dependencies across the
inner and outer loops. It implements a dynamic programming
algorithm that has heavy dependencies on the outer loop. We
simulate a case that the outer loop is parallelized mistakenly,
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in which we show that both of our schemes hand it over to
CPU earlier than Paragon does, resulting in less slowdown than
that of Paragon. The input has 5,000 items and the weight of
the knapsack is 600. Eventually we use the CPU to finish the
program, yet our mechanisms incur less overhead since our
dependency checking can be terminated early.

VII. RELATED WORK

We summarize two areas of related work as follows.
Data Dependency Detection in Loop Parallelization. Meth-

ods of data dependency detection in loop parallelization can
be classified into two categories. The first category [14], [15],
[17] is offline profiling for data dependencies to assist paral-
lelization. Once classified as parallelizable, the loop is always
parallelizable, regardless the program state or input. The time
and space overheads for classifying loops and reporting places,
where dependencies occur, are not an issue. However, for cases
in which input or other program states have impacts on loop
parallelism, online profiling [11], [22], [29], [32] is required.
It runs the underlying loop to detect dependency violations at
runtime, using various techniques that minimize the profiling
overheads. Our schemes fall into the second category.

Data Race Detection. Data race detection on GPUs to assist
debugging and verification is gaining research attention in
recent years. GPUVerify [6] is a tool for statically checking
intra-workgroup data races in CUDA or OpenCL kernels.
GRace [33] finds static analysis not sufficient and goes for
detecting data races at runtime (while retaining traditional
compile-time detection techniques). However, it could only
perform detection on the GPU’s shared memory because
it needs to scan and compare addresses stored in a warp
table, leading to both quadratic time and space complexity,
which are unacceptable when extended to global memory.
HAccRG [13] proposes hardware techniques for the GPU to
reduce the data race detection overhead. Their work could
perform detection on shared memory and global memory, but
the feature is not supported by current commodity GPUs.
Although data race detection is quite similar to checking inter-
iteration dependency violation in concepts, it could make false
reports as not all data races are actual dependency violations.
Transactional memory (TM) provides an alternative approach



that avoids data race in parallel execution [18]. However,
hardware TM has limitations on the sizes of read/write sets.
Porting software TM systems to many-core GPUs does not fit
either due to the prohibitively high time and space overheads.

VIII. CONCLUSION

In this paper, we propose two lightweight dependency
checking schemes to help parallelize loops with statically
non-deterministic data dependencies. With intra-warp times-
tamp support, our first scheme (2pass) checks for WAW and
RAW/WAR dependencies step by step. It is a lightweight ap-
proach that prunes away compute-intensive code through basic
data flow analysis and inspects statically non-deterministic
memory accesses only. The second scheme (wise), which
checks dependencies on the fly and executes speculatively,
is more apt for programs with rather unpredictable memory
access patterns. Further, wise is able to terminate kernel
execution sooner compared to previous schemes based on
speculative execution. Both of our schemes reduce false pos-
itives by leveraging lockstep execution of the GPU’s SIMD
engine. Theoretical and experimental analyses show that our
schemes scale well, achieving higher speedups while shrinking
memory complexity and work complexity compared with
previous work.
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