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ABSTRACT

Thread migration is to support the movement of
threads across machine boundaries in a distributed comput-
ing environment. It can improve load balancing and the ex-
ecution efficiency of multithreaded programs. In this paper,
we introduce a new approach that employs the technique
of Just-in-Time (JIT) recompilation to support transparent
thread migration. With JIT recompilation, the native thread
execution mode is preserved, and much of the space and
time overheads of previous solutions based on code instru-
mentation can be eliminated. The new thread migration
system is integrated into the JESSICA2 distributed JVM.
The measured results show that our approach is beneficial
to the overall system in supporting the transparent execu-
tion of Java applications on clusters.
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1 Introduction

Java is increasingly popular in high-performance comput-
ing circles due to its portability and built-in support for
multithreaded programming. In most situations, however,
a multithreaded Java program runs with virtual parallelism
in a single machine. An attractive direction is to extend
the Java execution environment—i.e., the Java Virtual Ma-
chine (JVM)—to take advantage of the multiplicity of pro-
cessing nodes in a cluster or the like. The ideal is to have
a group of JVMs running on distributed cluster nodes to
work together as a single, virtual JVM to support true par-
allel execution of a multithreaded Java application. With
true parallelism, threads in an application can be executed
in different nodes in the cluster simultaneously to achieve
better overall efficiency. We call such an execution envi-
ronment a distributed JVM (DJVM) [1, 4, 8]. Other than
providing parallel execution support to threads, the DJVM
maintains a virtual shared memory space to contain the ob-
jects that need to be accessed by the executing threads. This
paper focuses on the parallel execution support.

The best form of support for parallel execution of
Java threads should include low-cost, efficient movements

of threads during runtime. Therefore, one of the desired
features of a DJVM is to support transparent thread migra-
tion. A thread is a fine-grained computation unit with a
lightweight context. Thread migration is the movement of
thread contexts across machines. Being transparent, the mi-
gration is done without the involvement of the application
programmer. Thread migration enables mobility of execut-
ing threads, which is needed to achieve fault tolerance and
load balancing.

In this paper, we propose a new transparent thread
migration system that makes use of a Just-in-Time (JIT)
compiler. Unlike previous solutions based on bytecode or
JVM-level instrumentation, we use a JIT compiler to re-
compile the Java methods in the stack context to aid the ex-
traction and restoration of the thread context at migration
time. Such actions are called for only when a migration is
requested by some policy module. In this way, we achieve
both high-speed native thread execution without redundant
code and thread mobility.

The rest of the paper is organized as follows. Sec-
tion 2 discusses the related work. In Section 3, we give an
overview of the design of our approach to thread migration
based on JIT recompilation. Section 4 presents the detailed
steps of the migration process, from extraction of context
to resuming the execution of the thread in the other node.
Section 5 gives the experimental results of our prototype
system. Section 6 concludes the paper.

2 Related work

JavaGoX [6] and Brakes [7] use static bytecode instrumen-
tation to realize transparent Java thread migration. The ben-
efit of such an approach is that they can be more portable
than JVM-level approaches. However, this approach usu-
ally introduces much more overheads than the JVM-level
approaches because the use of higher level bytecode for the
instrumentation.

Sumatra [5] extends the JVM interpreter to enable
capturing and restoring of Java thread context during mi-
gration. The interpreter-based thread migration mecha-
nism, however, has poorer execution performance when
compared to an approach based on the JIT compiler, such
as our system.



JESSICA [4] provides a single-system image view for
multithreaded Java applications on clusters. It implements
thread migration based on the interpreter of the Kaffe Open
JVM (Version 0.9.1). The improved version, JESSICA2,
is able to support JIT compilation using Version 1.0.6 of
the Kaffe Open JVM. Using JESSICA2 as the base, our
previous research [9] modified the JIT compiler to support
lightweight thread migration. The approach was to apply
native code instrumentation when a method is first trans-
lated into native code. This approach is superior to the
bytecode instrumentation as it can make use of the JVM’s
kernel functions to handle the capturing and restoration of
thread contexts. Nevertheless, the instrumented native code
will run longer and take up more space than the original
code, even when migration is never triggered.

3 The approach

A Just-in-Time (JIT) compiler is a dynamic compiler in the
JVM that translates Java methods into native code when
the methods are first called. As the JIT-enabled JVM runs
the native code generated by the JIT compiler, the thread
context is native, i.e., in a machine-dependent form. The
Program Counter (PC) will be a real instruction pointer of
the underlying hardware. The thread stack will be a native
thread stack. Also, hardware machine registers will be used
to hold the values of the variables. We call such a context a
Raw Thread Context(RTC).

To implement thread migration in the JIT compiler-
based JVM, a brute-force approach would move everything
in the hardware machine context of the migrated thread
from the source JVM to the destination JVM. Unless the
two JVMs are running on homogeneous machines having
an identical virtual address space and classes are loaded
at same locations, the brute-force approach will not work.
These constraints would make such an approach not prac-
tical [2].

We aim at an design with which a thread context can
be portable. A portable context can be used to resume a
thread’s execution in any kind of node. As Java bytecode is
portable, we therefore set out to construct a context that is
in bytecode, which we callbytecode-oriented thread con-
text (BTC). The BTC therefore has the same portability as
any bytecode. The BTC consists of the identification of the
Java thread, and a sequence of frames. Each frame con-
tains the class name, the method signature, bytecode PC,
operand stack pointer, operand stack variables, and the lo-
cal variables encoded in a JVM-independent format.

Our design eliminates the machine-dependent hard-
ware context during the migration operation. A context at
the bytecode level is usually several times smaller than the
equivalent at the hardware level, thus saving some com-
munication cost during thread migration. Java objects and
methods are represented by their symbolic names in the
BTC. This makes easy the relocation of Java objects and
methods when the execution of a thread is restored at the
destination JVM.

At the point when a migration is to be carried out, our
approach is to transform the RTC of the thread in question
into an equivalent BTC. The BTC will then be transferred
to the destination node where it will converted back to an
RTC. In both steps, we need to make sure that the two types
of thread context remain equivalent in semantics. For this
to be possible, certain difficulties have to be overcome.

From RTC to BTC, which is when a thread is sus-
pended for migration, the native PC in the RTC may not be
pointing at the first instruction of the native code block that
was compiled from a bytecode instruction. Also, the values
of some local variables in the RTC may be kept in machine
registers; as the BTC does not have the equivalent register
set, the transformation needs to copy the latest values of the
local variables in the registers to some equivalent variable
definitions in the BTC.

Another difficulty is that to identify and then copy a
value needs the knowledge of the variable type. The type
information of the local variables can be known at compi-
lation time. But the types of the stack variables can only be
known at runtime. During the execution of a Java thread,
the stack operands are dynamically pushed onto or popped
from the thread stack. For the same stack slot, the type of
its variable varies from time to time. For example, the byte-
code instruction “f2d”(convert float to double) would pop
off a float from the operand stack and push adoubleonto
the stack.

From BTC to RTC, which is when the thread is to be
resumed at the destination JVM, the transformation needs
to restore the calling sequences of the frames in the BTC.
The native PC in each frame needs to be set according to the
bytecode PC in the BTC. Also, registers should be allocated
and their values restored at the restoration point based on
the architecture of the destination node.

To solve the above problems, we adopt a novel mech-
anism calledJust-in-Time recompilation. When the JVM
thread scheduler stops a Java thread, it analyzes the thread’s
native frames. The JIT compiler in the JVM is “re-run” to
compile those methods that created these frames. During
the recompilation, the information such as the correspond-
ing bytecode PC, the variable types and the register alloca-
tion pattern, will be determined. Code stubs will be gener-
ated by the scheduler to be used to gather the BTC a mo-
ment later when the thread is resumed temporarily at this
node. Later on when the Java thread context is restored in
the destination JVM, another phase of compilation will be
performed using the captured frames. A dynamic register
patching technique will be used to re-establish the register
allocation for each frame in the thread context. Dynamic
register patching is to use the JIT compiler to generate the
code stub that moves the values defined in the input BTC
context into the machine registers based on the information
available at the restoration point. In essence, the capturing
and restoration of thread context use the JIT compiler dur-
ing a thread migration operation to reconstruct the “symbol
table”.



4 Transparent Java thread migration using
JIT recompilation

This section elaborates on the detailed steps involved in a
thread migration act using our approach. Note that the nor-
mal execution of Java threads will not run any redundant
code. It is only when there is a migration request would
JIT recompilation be invoked by the thread scheduler. The
recompilation will analyze the RTC in the thread stack and
generate the migration supporting code. The thread will
trap into this migration supporting code when it is executed
again, which will extract the BTC and send it to the desti-
nation JVM.

In the JESSICA2 system, no matter where a thread
has moved to, the Java objects needed by the thread are ac-
cessible through a distributed shared heap, a built-in object-
based DSM-like service available in each JVM [8].

Figure 1 gives an overview of the steps of the JIT re-
compilation. A source JVM initiates a migration, and a
destination JVM accepts the migrated thread. The shade-
less boxes are operations in the source JVM; the shaded
boxes are operations in the destination JVM.

4.1 RTC-to-BTC transformation

The JIT recompilation consists of seven steps: the stack
walk, frame segmentation, bytecode PC positioning, break-
point selection, type derivation, translation, and native code
patching.

4.1.1 Stack walk

This is to traverse the native stack of the thread to be mi-
grated and gather the information of each frame into a
linked list of frames. The information includes theframe
pointer (FP), thestack pointer(SP), the saved native PC,
and the address of the PC. During the walk, all the native
frames including those used by the JVM internal functions
or the signal handlers will be gathered.

4.1.2 Frame segmentation

This step identifies the frames created by pure Java meth-
ods, which we callJava-frames. The other frames created
by the JVM internal functions or Java native methods are
C-frames. The topmost consecutive Java-frames will be
selected for migration since they have the corresponding
BTC.

The identification of Java-frames is done by match-
ing the native PC against the code ranges stored in the
Java method cache created by the JVM. When the native
PC is found in a Java method’s native code range, the Java
method is identified. After the consecutive Java-frames are
identified, a filter function will be applied to mark those to
be migrated. The filter allows only a subset of the frames to
be migrated. For example, only the frames created by the

methods that contain computation loops will be chosen, so
that only the heavy computations will be migrated to other
nodes for execution.

4.1.3 Bytecode PC positioning

The third step is to position the bytecode PC in the selected
Java-frames according to the saved native PC. Only when
the bytecode PC is known can we get the other information
such as the operand stack size and the variable types in the
operand stack.

When the Java bytecode is compiled into native code,
there is no simple one-to-one mapping of a bytecode in-
struction to a native code instruction. One bytecode in-
struction may correspond to a few native code instructions
that form a native code block. When the JIT compiler per-
forms code optimization, the mapping becomes many-to-
many. This makes it difficult to directly extract the byte-
code PC.

One approach to solve the problem is to save the map-
ping when the method is first compiled by the JIT compiler.
This could consume much memory because all Java meth-
ods compiled would need the storage even if they will not
be involved in a migration act. When a thread is stopped
at a certain point, it is unlikely that it hits the entrance of
the native code block to which the current PC belongs. Our
approach is to re-run the code generation of the JIT com-
piler on the method to arrive at the same offset as the saved
native PC.

4.1.4 Breakpoint selection

Because the native PC may not hit the boundary of a na-
tive code block compiled from a bytecode instruction or
bytecode block, the RTC may not have corresponding BTC
at the stopped native PC. In this case we need to delay the
RTC-to-BTC transformation to the first native code instruc-
tion following the current native PC that has the matching
of RTC to BTC. The transformation will be carried out by
setting a breakpoint at the next eligible position. In normal
cases, the native PC that maps to the immediately following
bytecode PC will be the breakpoint target. But there may be
more than one target position in some cases. For the com-
pound branch bytecode instructions,TABLESWITCHand
LOOKUPSWITCH, which behave like theswitch statement
in C, there may be many jump targets. All these target byte-
code PCs will be collected. Afterwards, the type derivation
and migration supporting native code will be generated at
these breakpoints just identified.

4.1.5 Type derivation

We derive the type information at the breakpoints by sim-
ulating the simplified bytecode verification on the Java
method. The bytecode verification is used in JVM to en-
sure the code integrity before executing the code [3]. In
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Figure 1. Transparent Java thread migration using JIT recompilation.

this step, no real verification on the type consistency will
be carried out since the method has been verified to be cor-
rect before. Instead only the type information and stack
operation will be updated along with the verification. Ac-
cording to the JVM specification [3], at any given point in
the program, the operand stack is always of the same size
and contains the same types of values no matter what code
path is taken to reach it. Therefore we can follow any path
in this process and the type result is still valid for the current
execution path in the stopped method. Once a breakpoint
target is reached, the type information of the local and stack
variables will be saved.

4.1.6 Translation

In this step, we run the JIT compilation code generator to
generate the new native code for the current method. For all
the locations that are not marked as breakpoints, the same
native code will be generated as the original compiled re-
sult. Special migration supporting code will be inserted at
the breakpoints. This special code contains native instruc-
tions that save the bytecode PC, the Java stack pointer, the
operand types and values into the thread’s private area cre-
ated for migration’s sake. Except for the bottom frame, na-
tive instructions will be generated to simulate the epilogue
of the current method. The instructions will unwind the
thread stack and return the control to the caller. The bot-
tom frame will return control to a migration handler which
will then pack up the thread context and send to the desti-
nation JVM.

4.1.7 Native code patching

After the new code with breakpoints have been generated,
the thread’s native stack will be patched so that when the
thread is scheduled to run again, its execution will be based
on the new native code for each frame.

Recall that we have collected the addresses of the re-
turn address in each frame during the stack walk. The na-
tive code patching step then replaces all the native return

addresses in the stack frames with the corresponding new
native PC. Hence, when the thread is re-scheduled to run
again, the execution will go through the new generated na-
tive code. Eventually when the thread reaches one of the
breakpoints, the migration handler will execute. The BTC
will be collected by the handler and sent to the destination
JVM.

4.2 BTC-to-RTC transformation

The restoration of the thread is done through the BTC-to-
RTC transformation. We have constructed a sequence of
stack frames with the return addresses and the frame point-
ers properly linked together to simulate the method invoca-
tion. The local variable inside the frames will be initialized
to the values according to the input thread context.

The recompilation of the frames in the destination
JVM will be carried out. The bytecode PC in each frame
of the BTC will be translated into the corresponding native
PC, which will be the restoration point of the frame. Dur-
ing the recompilation, a dynamic register patching function
will generate a small code stub using the register-variable
mapping information at the restored point of each frame.
When the thread is scheduled to run later, for each restored
frame, the execution will switch to the code stub to recover
the registers for this frame. The last instruction in the code
stub will be a branching instruction to jump to the restored
point of the method for the frame.

4.3 Migration latency hiding

When there is a migration to be carried out, the issue of
overhead would come into the picture, which is due to the
various steps or our recompilation technique. At the desti-
nation JVM, the Java classes needed by the migrated thread
have to be loaded from the local disk or the network. From
our previous experience [9], the class loading step could
easily be the dominant overhead in the entire process.

We observe that at the source JVM, once the frames
in the thread context have been selected, we know which



Java classes should be loaded in the destination JVM. As
shown in Figure 1, the dashed arrow indicates a signal to
start loading the class files in the destination JVM. With
that signal, the destination JVM can preload all the class
files into its method area while the recompilation is still
progressing at the source JVM. As a result, a good part
of the latency of migration is hidden through this parallel
operation.

5 Results

5.1 Experiment setting

We use our JESSICA2 DVJM system, into which we in-
stall our new thread migration mechanism. JESSICA2 is
developed based on the Kaffe open JVM 1.0.6 [10]. JES-
SICA2 runs on the HKU Gideon 300 Linux cluster, which
consists of up to 300 2GHz Pentium-4 nodes, each running
the Linux kernel 2.4.22; the nodes are connected by a Fast
Ethernet switch.

We compare our current approach with our previous
approach based on dynamic native code instrumentation
which has proved to be more light weight and efficient
than other static bytecode instrumentation approaches [9].
We are also interested in how much latency can be hidden
through preloading of class files at the destination JVM.

We run four multithreaded Java benchmark applica-
tions: theπ calculation (CPI), Successive Over-Relaxation
(SOR), All-pair Shortest Path (ASP), and N-Body simula-
tion (NBody). The program CPI calculates an approxima-
tion of π by evaluating the integral. SOR does red-black
successive over-relaxation on a 2-D matrix. ASP calcu-
lates the shortest path between any pair of nodes in a graph
using a parallel version of Floyd’s algorithm. The NBody
follows the algorithm of Barnes & Hut to simulate the mo-
tion of particles in a 2D space due to gravitational forces
over a fixed amount of time steps.

We first observe that, when there is no migration, our
approach incurs zero time and space overhead on top of
normal execution. The dynamic native code instrumenta-
tion approach has the largest time overhead of about 16%
when running the SOR program. The space overhead due
to the extra instrumentation code of the same approach in
the NBody program reaches to about 13%.

5.2 Migration latency

We evaluate the time overhead (migration latency) of the
migration operation using two nodes, one serving as the
source and the other one the destination JVM. This latency
is measured from the time of stack capturing in the source
JVM to the time when the thread has finished its stack
restoration on the destination JVM.

As shown in Figure 2, the latency hiding technique
(JITR + Preload) proves to be effective for all the four
benchmark programs. Comparing with the dynamic native
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Figure 2. Java thread migration latency.

code instrumentation approach (DNCI), our new approach
has slightly larger overheads. It will, however, be a small
price to pay if migration is not excessively frequent, since
there will be zero overhead for normal execution using our
approach.

5.3 Initial placement vs. dynamic thread mi-
gration

The ultimate question is whether dynamic thread migration
can in fact improve the overall execution time of an appli-
cation. We run a Java application server simulation bench-
mark for this test, using different numbers of cluster nodes.
We compare the throughput of initial placement versus that
of dynamic thread migration. Initial placement is to place a
thread in some chosen node when the thread is first created,
and the thread will stay there until it terminates. Both ini-
tial placement and dynamic thread migration requires our
thread migration mechanism.

The benchmark simulates a pure Java application
server that accepts external requests to run different appli-
cations. Each request is handled by one Java thread. The
Java thread then executes the requested application and re-
turns the result to the server. The execution time of the
application is randomly assigned.
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tithreaded Java application server test.



The throughput is defined as the number of requests
performed per given time unit. As shown in Figure 3, com-
parison, spreading the threads over more nodes does result
in improved execution performance. The speedups average
to between 30–40%. Dynamic thread migration can help
to further improve the throughput of initial placement by
10%–20% for all the configurations. The reason is that with
initial thread placement only, the random workload of the
requested application could still cause imbalances among
the nodes; dynamic thread migration can correct those im-
balances.

6 Conclusion

This paper presents an efficient transparent Java thread mi-
gration system using the technique of JIT recompilation.
Dynamic thread migration can be used to improve load bal-
ancing; it can also be used to support fault tolerance if cou-
pled with a mechanism to detect impending node failures.
Our design introduces a portable interface, the bytecode-
oriented thread context, for the movement of Java thread
contexts, thus allowing threads to be migrated to heteroge-
neous nodes. Our solution preserves the high-performance
JIT compilation and its benefits in the presence of thread
migration.

The idea of using JIT recompilation demonstrates a
new use of JIT compilers. It can be generalized to support
many other useful applications such as debugging, profil-
ing, etc. One key advantage of recompilation is that the
system does not have to provide space to store the compila-
tion information in advance. Further optimizations on the
technique are possible such as to preload selected classes
at much earlier times in order to completely eliminate the
class loading overhead.
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