
Power and Performance Analysis of the Graph 500
Benchmark on the Single-chip Cloud Computer

Zhiquan Lai∗, King Tin Lam†, Cho-Li Wang†, Jinshu Su‡∗
∗College of Computer, National University of Defense Technology, Changsha, China
†Department of Computer Science, The University of Hong Kong, Hong Kong, China
‡National Key Laboratory of Parallel and Distributed Processing (PDL), Changsha, China

{zqlai, sjs}@nudt.edu.cn, {ktlam, clwang}@cs.hku.hk

Abstract—Data-intensive applications are playing increasingly
important role in HPC systems and data centers. Graph 500
benchmark (Graph500) is a widely used data-intensive bench-
mark for evaluating the performance of computing systems.
On the other hand, Energy efficiency is quickly becoming a
first-order design constraint of these systems. In this paper, we
introduce a data-level paralleled implementation of Graph500
on a typical DVFS-featured many-core architecture, Intel Single-
chip Cloud Computer (SCC). The parallelism, which follows a
shared virtual programming model, is exploited by the shared
physical memory (SPM) on SCC. We thoroughly evaluate the
power and performance characteristics of Graph500 on various
scale of cores at different power states. The experimental results
provide valuable insight for designing an energy-efficient many-
core system for data-intensive applications.

Keywords—power; performance; Graph 500; many-core; Intel
SCC

I. INTRODUCTION

In the past few years, data-intensive applications are play-
ing increasingly important role in HPC systems and data
centers. Graph 500 benchmark (Graph500) [1], which per-
forms breadth-first search (BFS) on a large-scale graph, is
a widely used data-intensive benchmark for evaluating the
performance of computing systems. There is rich literature
on parallelization (and optimization) for Graph500 [2]–[4].
On the other hand, Energy efficiency is quickly becoming
a first-order design constraint of HPC systems and data
centers. The top-ranked supercomputer, China’s Tianhe-2 [5],
consumes 17.81 MW (excluding the cooling system), which
is equivalent to the domestic power consumption of a midsize
town (over 312,800 persons) in China. Energy consumption
is as important as system performance [6]. Dynamic voltage
and frequency scaling (DVFS) is an widely used technique to
achieve a power-performance tradeoff.

Many-core architectures boost the performance of the HPC
systems, meanwhile consuming the great portion of the system
power. Intel Single-chip Cloud Computer (SCC) [7] is a
typical DVFS-featured many-core architecture. However, as
we known, SCC still has not been fully evaluated for power
and performance of Graph500.

In this paper, we introduce a data-level paralleled implemen-
tation of Graph500 on SCC. The parallelism, which follows a

shared virtual programming model, is exploited by the shared
physical memory (SPM) on SCC. We thoroughly evaluate
the power and performance characteristics of Graph500 on
various scale of cores at different power states. The experi-
mental results provide some useful hints for energy-efficient
programming and system design.

The remainder of this paper is organized as follows. Sec-
tion II describes the parallel Graph500 on SCC. Section III
discusses the evaluation methodology. The power and perfor-
mance characteristics are presented in Section IV. Finally, we
conclude the paper in Section V.

II. GRAPH500 ON INTEL SCC

A. Graph500

Researchers observed that data-intensive supercomputing
applications are of growing importance to representing current
HPC workloads, but existing benchmarks did not provide
useful information for evaluating supercomputing systems
for data-intensive applications. In order to guide the design
of hardware architectures and software systems to support
data-intensive applications, the Graph500 was proposed and
developed [1]. The workflow of Graph500 is described in
Algorithm 1. Its kernel workload is performing breadth-first
searches (BFSes) over a large-scale graph.

In the original Graph500, only step 2 and step 4.2 (i.e. kernel
1 and kernel 2) are timed and included in the performance
information. However, the whole benchmark could also be
considered as the representative application. Thus, we inspect
the power and performance characteristics of both the whole
benchmark and the two kernels.

B. SPM-based Implementation on SCC

Intel SCC [7] is a many-core architecture integrated 48
P54C CPU cores. Each core has local 16KB L1 cache.
However, Intel SCC does not provide hardware cache coher-
ence among the 48 cores. Shared physical memory (SPM)
is a coherence mechanism managed by software. SPM is a
centralized approach bearing much similarity to traditional
shared-memory systems (SMP or multi-core) except that the

Algorithm 1: Algorithm of Graph500
Input:
SCALE: the vertices scale, 2SCALE vertices
EDGE: the edge factor, EDGE · 2SCALE edges

1 begin
2 Step 1: Generate the edge list.
3 Step 2: Construct a graph from the edge list. kernel 1
4 Step 3: Randomly sample 64 unique search keys.
5 Step 4: for each search key do
6 Step 4.1: Compute the parent array. kernel 2
7 Step 4.2: Verify the parent array.

8 Step 5: Compute and output performance information.

cache coherence of the shared memory now becomes software-
managed. SPM-mapped shared pages are located in the shared
DRAM of SCC and synchronized based on release consis-
tency. We have featured SPM mode in our Rhymes (Runtime
with HYbrid MEmory Sharing) [8] library on Barrelfish op-
erating system.

The Graph500 is ported into Rhymes environment and set as
SPM mode. The parallel programming model exploits the data-
level parallelism and follows the traditional SPMD pattern
(single program, multiple data). The master core is responsible
for dividing the task to other slave cores and collect the results
from slave cores.

III. EVALUATION METHODOLOGY

The problem size of Graph500 is set as follows: SCALE
= 18 (262,144 vertices) and EDGE factor = 16 (4,194,304
edges). We use gcc version 4.4.3 to compile programs with
the O3 optimization level. During the experiments, the clock
frequencies of the network-on-chip (NoC) and memory con-
trollers (MCs) are both fixed at 800MHz.

To avoid overhead introduced by power measurement, we
measure the power consumption of the SCC outside the chip.
As shown in Fig. 1, we view the chip as a “black box” and read
the current and voltage values from the board management
controller (BMC) using the management console PC (MCPC)
during the application run. As shown in Fig. 1, the BMC is
connected via Ethernet to the MCPC, from which the power
values are read. PCIE bus connects the SCC to the MCPC. The
power states of the chip will be recorded into a log file on the
MCPC. Although the maximum power sampling rate is only
about 3.3 samples per second, it suffices for our evaluation.
The average power of an execution is estimated by taking
arithmetic mean of all sampled power values.

The CPU cores of SCC are set up using DVFS mech-
anism at four different power states (voltage/frequency
setting), 800MHz/1.1V, 533MHz/0.9V, 400MHz/0.8V and
320MHz/0.8V. For each power state, we launch the benchmark
on 1, 2, 4, 8, 16, 32 and 48 cores to inspect the power and

BMC

Ethernet

PCIE

MCPC

Power
Monitor

Perf.
MonitorPerf. Info.

Chip Power Readings

Intel SCC Chip

0
1

0
1

0

1

0

1

Z=0
Z=1

0
1

0
1

0

1
0

1

(0,0) (0,5)

(0,3) (5,3)

x

y

Voltage
Domain

Frequency
Domain

Fig. 1. Power domains of Intel SCC and power measurement setting

performance characteristics.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

As an example, Fig. 2 presents the instantaneous power
when Graph500 executes on 48 cores at 800MHz/1.1V. Pcore

denotes the power of CPU cores and network on-chip, while
Pddr for DDR3 memory and Pmc for four memory controllers.
Then P is the sum of Pcore, Pddr and Pmc. From the figure,
we can find that the Pcore and Pddr is dynamically changing,
while Pmc is nearly static.

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300 350

Po
w

er
 (

W
at

t)

Time (s)

P
Pcore
Pddr
Pmc

Fig. 2. The power characteristic of Intel SCC when Graph500 executes at
800MHz/1.1V on 48 cores

A. Performance Characteristics

In order to evaluate the scalability performance of our
Graph500 implementation, we present the comparison of run-
time performance in Fig. 4, including the performance of two
kernels of Graph500. For kernel 2, we present the average
execution time of the 64 BFSes.

From the Fig. 4, we can find that, for fixed number of CPU
cores, the execution time usually increases in lower power
state. Likewise, for the same power state, the performance
increases with the number of cores. Compared with 1 core,
execution on 48 cores achieves average 1.69x, 4.10x and 3.99x
maximal speedup for the whole benchmark, kernel 1 and ker-
nel 2 respectively. However, sometimes, the whole benchmark
(in Fig.4(a)) cannot achieve the best runtime performance on
48 cores. For example, at 800MHz/1.1V and 320MHz/0.8, the
whole Graph500 on 48 cores is a little slower than 32 cores.
This might be due to the performance overhead of the SPM or

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120

1 2 4 8 163248 1 2 4 8 163248 1 2 4 8 163248 1 2 4 8 163248

Po
w

er
 (

W
at

t)

#core

Pcore.avg
Pddr.avg
Pmc.avg

320MHz400MHz533MHz800MHz

(a) Measured power

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120

1 2 4 8 163248 1 2 4 8 163248 1 2 4 8 163248 1 2 4 8 163248

Po
w

er
 (

W
at

t)

#core

Pcore.avg
Pddr.avg
Pmc.avg

320MHz400MHz533MHz800MHz

(b) Estimated power excluding the standby dynamic power

Fig. 3. Power comparison of Graph500 at different power states on different number of cores

that the problem size is not large enough. This phenomena is
also observed in kernel 1 and kernel 2. The whole benchmark
achieves the best speedup (up to 1.72x) at 400MHz on 48
cores, while 4.65x for kernel 1 at 320MHz on 32 cores and
4.23x for kernel 2 at 400MHz on 32 cores.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100

1 2 4 8 16 32 48

R
un

tim
e

(s
)

#core

 800MHz
 533MHz

 400MHz
 320MHz

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

1 2 4 8 16 32 48

R
un

tim
e

(s
)

#core

 800MHz
 533MHz
 400MHz
 320MHz

 0

 1

 2

 3

 4

 5

 6

1 2 4 8 16 32 48

R
un

tim
e

(s
)

#core

 800MHz
 533MHz
 400MHz
 320MHz

Fig. 4. Performance comparison of Graph500 at different power states on
different number of cores. From up to down, (a) Execution time of the whole
Graph500; (b) Execution time of kernel 1; (c) The average execution time of
kernel 2

B. Power Characteristics

Fig. 3 presents the power characteristics of Graph500 on
different number of cores at different power states. Fig. 3(a) is
the measured power. We present the average power during the
execution of Pcore, Pddr and Pmc. However, someone would
say that the power of non-activated cores (or standby cores)

should not counted in the comparison. Thus we estimate the
per-core dynamic power of standby cores and exclude these
power for comparison1, as shown in Fig. 3(b).

In both Fig. 3(a) and Fig. 3(b), the power at 800MHz is
the most representative. The whole power P almost linearly
increases with the number of cores as higher power state
consumes more power. For the same number of core, e.g.
48 cores, lower power state achieves smaller P while some
portion of the power (e.g. Pddr and Pmc) keep the same as
they are not affected by the DVFS. The highest P could reach
up to 110 Watts at 800MHz on 48 cores.

C. Energy and EDP Characteristics

Energy consumption and energy delay product (EDP) is two
important power efficiency metrics [10]. Fig. 5 presents the
comparison of energy, while Fig. 6 presents the comparison
of EDP.

In Fig. 5(a), if we consider the standby power as the
system power, we always get the less energy on more cores
for the same power state (800MHz is an exception). This is
because the standby power is even larger than these three
power states. Thus excluding the standby dynamic power is
more meaningful and reasonable. Fig. 5(b) presents the energy
comparison after excluding the standby dynamic power. For
fixed number of core, the best power state for the least energy
is different. For example, 400MHz/0.8V is the best for 32
and 48 cores while 533MHz for 8 and 16 cores. For fixed
power state, the best number of cores for the least energy is
also different. Lower power state always has larger number
of cores for the best result. 32 cores is the best for 320MHz,
while four cores for 800MHz. Execution on 8 cores at 533MHz
achieves the least energy, 46.48% saving compared with the
largest energy on 1 core at 320MHz.

1As the standby cores are initialized to 533MHz/1.1, we firstly measure the
Pcore at this power state (it’s about 66.95 Watts). Then we set all the CPU
cores to the lowest power state (100MHz/0.8V) which is safe and supported
by Intel SCC [9]. The Pcore is about 23.75 Watts. Thus for each core, the
reducible dynamic standby power is (66.95-23.75)/48 = 0.90 Watts.

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

1 2 4 8 16 32 48

En
er

gy
 (

J)

#core

 800MHz
 533MHz
 400MHz
 320MHz

(a) Energy with measured P

 20000

 22500

 25000

 27500

 30000

 32500

 35000

 37500

 40000

 42500

1 2 4 8 16 32 48

En
er

gy
 (

J)

#core

 800MHz
 533MHz
 400MHz
 320MHz

(b) Energy with estimated P excluding the standby dynamic power

Fig. 5. Energy comparison of Graph500 at different power states on different number of cores

 1e+007

 2e+007

 3e+007

 4e+007

 5e+007

 6e+007

 7e+007

 8e+007

 9e+007

 1e+008

1 2 4 8 16 32 48

ED
P

(J
s)

#core

 800MHz
 533MHz
 400MHz
 320MHz

(a) EDP with measured P

 5e+006

 1e+007

 1.5e+007

 2e+007

 2.5e+007

 3e+007

 3.5e+007

 4e+007

 4.5e+007

1 2 4 8 16 32 48

ED
P

(J
s)

#core

 800MHz
 533MHz
 400MHz
 320MHz

(b) EDP with estimated P excluding the standby dynamic power

Fig. 6. EDP comparison of Graph500 at different power states on different number of cores

For EDP, the situation is a little different because in this case
the execution time is more weighted. As shown in Fig. 6(b),
the best power state for the least EDP is 533MHz for 32 and
48 cores. While the best number of cores is still 32 cores for
320MHz but eight cores for 800MHz. Execution on 8 cores
at 800MHz achieves the least EDP, 79.71% saving compared
with the largest EDP on 1 core at 320MHz. Thus, we can say
that the optimal power state or number of cores are decided
by the optimization goals, e.g. the least energy or EDP.

V. CONCLUSION

In this paper, we present a data-level paralleled implemen-
tation of Graph500 on Intel SCC. The parallelism follows a
shared virtual programming model exploiting the shared physi-
cal memory (SPM) on SCC. We thoroughly evaluate the power
and performance characteristics of Graph500 on various scale
of cores at different power states. The experimental results
show that the kernels of Graph500 could achieve up to 4.65
times performance speedup. Appropriate scale of cores and
voltage/frequency setting could achieve up to 46.48% energy
saving and up to 79.71% EDP reduction. We believe that
the work provides valuable insight for designing an energy-
efficient many-core system for data-intensive applications.

ACKNOWLEDGMENT

This work is supported by Hong Kong RGC grant HKU
716712E, Program for Changjiang Scholars and Innovative
Research Team in University (PCSIRT, No. IRT1012) and
Aid Program for Science and Technology Innovative Research
Team in Higher Educational Institutions of Hunan Province
(No. 11JJ7003). Special thanks go to Intel China Center of
Parallel Computing (ICCPC) and Beijing Soft Tech Technolo-
gies Co., Ltd. for providing us with support services of the
SCC platform in their Wuxi data center.

REFERENCES

[1] “Graph 500 benchmark.” [Online]. Available: http://www.graph500.org
[2] F. Checconi and F. Petrini, “Massive data analytics: the graph 500 on

IBM Blue Gene/Q,” IBM J. Res. Dev., vol. 57, no. 1, pp. 111–121, 2013.
[3] T. Gao, Y. Lu, and G. Suo, “Using MIC to accelerate a typical data-

intensive application: The breadth-first search,” in Proc. the 27th Int.
Parallel and Distributed Processing Symposium Workshops & PhD
Forum (IPDPSW), 2013, pp. 1117–1125.

[4] J. Jose, S. Potluri, K. Tomko, and D. Panda, Designing Scalable
Graph500 Benchmark with Hybrid MPI+OpenSHMEM Programming
Models, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2013, vol. 7905, ch. 9, pp. 109–124.

[5] “Top500 list - June 2014.” [Online]. Available: http://www.top500.org/
lists/2014/06/

http://www.graph500.org
http://www.top500.org/lists/2014/06/
http://www.top500.org/lists/2014/06/

[6] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubi-
atowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel,
and K. Yelick, “A view of the parallel computing landscape,” Commun.
ACM, vol. 52, no. 10, pp. 56–67, 2009.

[7] “SCC external architecture specification (EAS) (revision 0.94),” Intel
Labs, Tech. Rep., 2010.

[8] K. T. Lam, J. Shi, D. Hung, C.-L. Wang, Y. Yan, and W. Zhu, “Rhymes:
A shared virtual memory system for non-coherent tiled many-core
architectures,” in Proc. 20th IEEE Int. Conf. Parallel and Distributed
Syst. (ICPADS’14), 2014, (in press).

[9] Z. Lai, K. T. Lam, C.-L. Wang, J. Su, Y. Yan, and W. Zhu, “Latency-
aware dynamic voltage and frequency scaling on many-core architectures
for data-intensive applications,” in Proc. Int. Conf. Cloud Computing and
Big Data (CloudCom-Asia’13), 2013, pp. 78–83.

[10] V. W. Freeh, D. K. Lowenthal, F. Pan, N. Kappiah, R. Springer, B. L.
Rountree, and M. E. Femal, “Analyzing the energy-time trade-off in
high-performance computing applications,” IEEE Trans. Parallel Distrib.
Syst., vol. 18, no. 6, pp. 835–848, 2007.

	Introduction
	Graph500 on Intel SCC
	Graph500
	SPM-based Implementation on SCC

	Evaluation Methodology
	Experimental Results and Analysis
	Performance Characteristics
	Power Characteristics
	Energy and EDP Characteristics

	Conclusion
	References

