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Abstract—Energy-efficient design for green high performance
computing (HPC) is a formidable mission for today’s computer
scientists. Dynamic power management (DPM) is a key enabling
technology involved. While DPM can have various goals for
different application scenarios (e.g. enforcing an upper bound
on power consumption or optimizing energy usage under a
performance-loss constraint), existing DPM solutions are gen-
erally designed to meet only one goal and not adaptable to
changes in optimization objectives. This paper proposes a novel
flexible DPM approach based on a profile-guided dynamic
voltage/frequency scaling (DVFS) scheme to meet the different
goals. Our contributions include: (1) a new profiling method
for (distributed) shared-memory parallel applications to flexibly
determine the optimal frequency and voltage for different phases
of the execution; (2) a power model based on hardware per-
formance counters; and (3) a hierarchical domain-aware power
control design boosting the DPM system scalability for many-core
chips. We implement the approach into a working library dubbed
PoweRock and evaluate it on the Intel SCC port of the Barrelfish
operating system. Experimental results obtained from several
well-known benchmarks show that PoweRock attains significant
energy and energy-delay product (EDP) improvements (average:
37.1% and 25.5%; best-case: 64.0% and 65.4%, respectively)
over a static power scheme.

Index Terms—Dynamic power management, dynamic voltage
and frequency scaling, DVFS, power modeling, many-core pro-
cessors

I. INTRODUCTION

IN this computing era, it is not an overstatement to say
transistors are “free” but power is expensive [1]. The

top-ranked supercomputer, China’s Tianhe-2, consumes 17.81
MW (excluding the cooling system) or 156 GWh for a year,
which is equivalent to the average annual domestic electricity
consumption of a midsize town (over 312,800 persons) in
China. The other top ten supercomputers on the the latest
TOP500 List [2] are having similar power efficiencies ranging
around 1,900 to 2,700 Mflops/watt, implying the commonplace
“huge power” concerns in the current HPC landscape. It is
a pressing research challenge to boost energy efficiency of
HPC or cloud computing data centers for curbing the ever-
increasing running expenditure and environmental impact.

To ease the tension between high performance and low
energy, the concepts of supercomputing and green computing
are closely intertwined nowadays. Dynamic power manage-
ment (DPM), encompassing a set of control strategies aimed
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at adapting the power/performance of a system to its workload,
is an important vehicle for green supercomputing. DPM refers
to selective shutdown or slowdown of idle or underutilized
system components. Clock gating and power gating are canon-
ical techniques for idle power saving. Dynamic voltage and
frequency scaling (DVFS), including the so-called multiple
energy gears [3] and dynamic overclocking [4], extends the
dynamic power efficiency by scavenging opportunistic energy
benefits during active program runs (e.g. tuning down the clock
of the CPU during long memory access or I/O events).

A DPM policy can be defined with different goals. Some
DPM schemes aim to maximize the performance or throughput
within a fixed power budget. This is known as power capping
[5]–[8], which is useful for financial or thermal management.
There are others aimed at minimizing the power consumption
under a maximal performance loss constraint [9], among which
a few performance-savvy schemes are doing this under tight
constraints of vanishingly small performance loss [10]. For
quantitative analysis of tradeoffs between speed and energy,
various energy efficiency metrics like the most widely used
energy-delay product (EDP) (a.k.a. energy-performance ratio)
[11] have been proposed for evaluating DPM schemes.

To the best of our knowledge, there is however not yet a
DPM solution capable of flexibly meeting different goals. For
example, the solution proposed by Ioannou et al. [9] for saving
as much energy as possible below a threshold of maximum
performance loss, without a top-to-bottom overhaul, cannot be
used to cap the power instead. A universal DPM design and
implementation with selectable policies for varying application
needs is an important research gap to fill. For instance, an
enterprise can deploy the same application with different DPM
policies to data centers with different electricity costs—high-
performance policies for low-cost areas and power capping
policies for high-cost ones—to cost-effectively meet service
demands. With such flexible per-application DPM infrastruc-
ture, changes in optimization goal can be easily entertained by
redeploying the application with a new DPM option.

To make this approach viable, rigorous power-performance
models are required to support DPM policy adaptation. There
is rich literature on multiprocessor power modeling [11]–[17].
These works however either did not establish analytical power
models or missed out some key elements determining the chip
power in their models. Accurate power modeling for emerging
many-core CPUs is also lacking. When using DVFS to scale
the power, the biggest challenge is not about deciding if the
power state (frequency/voltage pair, a.k.a. energy gear) should
be scaled up or down, but about how much the scaling should
be made (in other words, which state is regarded the optimal).
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Prior work employs “trial-and-error” online profiling [9] or
offline training with lots of experiments [3], [11] to estimate
optimal power states for a certain goal of power-performance
tradeoff. However, once the goal is changed, these profiling
approaches and DPM implementations designed for the orig-
inal purposes will cease working.

These concerns lead us to develop the Power Optimization
Controller Kit (PoweRock) [pronounced “power rock”]—a
new DPM solution to solve the power/performance modeling,
profiling and DVFS scheduling problems tailored to tiled
many-core processor architectures such as the Intel SCC [18].
We propose a new power model based on the memory access
and synchronization patterns of the program. Our power model
advances the state of the art by taking the program execution
pattern and voltage/frequency (V/f , henceforth) settings into
account. With this model, we can accurately estimate the total
chip power consumption and execution time in different V/f
settings for programs with different patterns. Hence, we are
able to quickly and precisely determine the optimal power
level(s) for executing the program (or phases of the program).
Based on the power model, this work also designed and
implemented a hierarchical domain-aware DPM framework for
tiled many-core chips with multiple clock/voltage domains.

In summary, the contributions of this work include:
• a performance/power prediction model considering both
V/f states and program execution patterns to accomplish
accurate and flexible power management;

• a novel profiler design to facilitate the model for phase-
based power management of parallel applications follow-
ing a shared-memory programming style;

• a flexible DPM solution tailored to tiled many-core ar-
chitectures (we can optimize the V/f setting for a given
DPM goal using the power and performance model, and
update the optimal setting easily for a changed goal);

• a working implementation of a profile-guided DVFS con-
troller and power management library (for the Barrelfish
multikernel operating system [19] on the Intel SCC),
and thorough experimental evaluation using several well-
known benchmarks to show significant energy saving or
EDP improvement (up to 65%) of our solution.

The rest of the paper is organized as follows. We explain
the power and performance model in Section II. Section III
presents our profile-guided DVFS scheme for flexible power
management. We describe the design and system implemen-
tation of our PoweRock library in Section IV. Section V and
Section VI detail the evaluation methodology and experimen-
tal results of our implemented models respectively. Finally,
Section VIII concludes the paper.

II. POWER MODELING

A. Power Model

Many-core architectures to date usually have much more
complex hardware design than uniprocessor or multicore
chips. Apart from the plenty of cores, non-trivial network-
on-chip (NoC), multiple memory controllers, multilevel on-
chip caches and programmable buffers, fine-grained DVFS
regulator units, etc. are present. The total chip power equals the

consumptions by every component. For simplicity, our model
focuses on the main power contributor—the CPU cores—and
the NoC. First of all, the power of a single core i (denoted as
Pi) is formulated as (2) where k is a constant coefficient.

Pi = Pi,dyn(vi, fi) + Pi,sta (1)

Pi,dyn(vi, fi) = k ·Ai · fi · vi2 (2)

Pi consists of two parts—static power (Pi,sta) and dynamic
power (Pi,dyn). Static power depends on the voltage and the
CPU’s thermal design power (TDP) whereas the dynamic core
power is proportional to frequency (fi), squared supply voltage
(vi2) and the (program-level) activity factor (Ai). The activity
factor generally has a functional relationship with the program
execution patterns (to be explained). To simplify the power
model, we assume the static core power Pi,sta and the activity
factor Ai for a certain program are both constant. So we can
estimate the power of a core when a trunk of program is
executed with any V/f settings.

For current many-core chip designs like Intel’s SCC, dy-
namic power state tuning of the NoC is generally unsupported.
So it is a fair assumption that the network power, denoted by
Pnoc, is a constant. Let N be the number of cores. The formula
for the total chip power (denoted by P ) can be expressed as

P =
N−1∑
i=0

(Pi) + Pnoc

=
N−1∑
i=0

(Pi,dyn(v, f)) +
N−1∑
i=0

(Pi,sta) + Pnoc

=
N−1∑
i=0

(k ·Ai · fi · v2i ) + (
N−1∑
i=0

(Pi,sta) + Pnoc).

(3)

Prior works [14], [20], [21] revealed that power dissipation
is strongly correlated to #instructions per cycle (IPC). Thus
we assume the activity factor Ai of core i is a function of
IPC at a specific power setting (V/f pair). As k is a constant,
k · Ai is also a function of IPC (denoted as g(IPCi)). Let
Ps =

∑N−1
i=0 (Pi,sta) + Pnoc, then (3) is rewritten as

P =

N−1∑
i=1

(g(IPCi) · fi · v2i ) + Ps. (4)

The next and important part of the power modeling is to
parameterize g() and Ps.

B. Parameterization of the Power Model

Here we describe how to parameterize the model (i.e.
specify g() and Ps) with a case study—the Intel SCC platform
[22]. Intel SCC is a 48-core experimental many-core chip
with fine-grained DVFS mechanism [18]. The IPC pattern of
each core can be derived by reading the performance monitor
counters (PMCs) provided by the CPU chip. The instantaneous
chip power can be measured by reading the power sensors
provided by the SCC board. Thus the energy consumption is
obtainable by integrating the instantaneous power over time.

To derive g() and Ps, we conduct microbenchmarking using
two primitive compute kernels, INT and FP, which perform
arithmetic computations on an array of integer and floating-
point variables respectively. We run the programs with various
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TABLE I
MICROBENCHMARK SETTING FOR POWER MODELING

Frequency/Voltage (MHz/V)
800/1.1 533/0.9 400/0.8 320/0.8 267/0.8
229/0.8 200/0.8 178/0.8 160/0.8 145/0.8
133/0.8 123/0.8 114/0.8 107/0.8 100/0.8

 20

 30

 40

 50

 60

 70

 80

 90

 0  100  200  300  400  500  600  700  800  900  1000

M
ea

su
re

d 
ch

ip
 p

ow
er

 (
W

)

f*v2 (MHz*V2)

Result of macro benchmarks for power modeling

INT4
INT1K
INT4K

INT16K
INT64K

INT256K
INT1024K

FP4
FP1K
FP4K

FP16K
FP64K

FP256K
FP1024K

Fig. 1. Microbenchmarking results for parameterizing the power model

problem sizes (array length) to produce various IPC patterns.
They are launched with 15 V/f settings (as shown in Table I)
and seven problem sizes (4, 1K, 4K, 8K, 64K, 256K and
1024K), giving 2×15×7=210 data points plotted as Fig. 1.

As we cannot measure the individual power of each core
directly, we exploit a trick to simplify the chip power function
for specifying g and Ps by launching the same program on
all the 48 cores of the SCC and setting the V/f levels of all
cores to be the same. Hence, the activity factors of all per-core
program instances are the same, denoted by g(IPC). So the
chip power P can be formulated as

P = N · g(IPC) · f · v2 + Ps. (5)

Fig. 1 shows the microbenchmarking results. The x-axis
and y-axis represent f · v2 (unit: MHzV2) and the chip power
P respectively. We can observe that the power consumption
of the chip is linearly related to f · v2. For each program,
we use a linear function Y = αX + β for curve-fitting their
data points, where X denotes f · v2, Y denotes P , α and β
denote the fitting values of N · g(IPC) and Ps respectively.
The regression analysis results are showed in Table II.

In Table II, the power for each program is linearly related
to f · v2 with almost the same Ps (i.e. β). We can hence take
the average of coefficients β as the static chip power:

Ps ≈ 16.185. (6)

On the other hand, to get the specified analytic function of
g(IPC), we use a function to fit the values of α with respect
to IPC. The values of α with respect to IPC are plotted in
Fig. 2. Finally, using the least-squares regression algorithm,
we get the parameterized function of N · g(IPC) with R2

coefficient = 0.812, expressed as (7).

N · g(IPC) = 0.068 · IPC0.09 (7)

TABLE II
RESULT OF LINEAR REGRESSION ANALYSIS FOR THE POWER MODEL

Test casea IPC@800MHz α β
INT4 0.9130 0.072 16.14
INT1K 0.7335 0.068 16.39
INT4K 0.7281 0.068 16.17
INT16K 0.4310 0.060 16.07
INT64K 0.4222 0.060 16.09
INT256K 0.0642 0.047 16.45
INT1024K 0.0640 0.047 16.41
FP4 0.1239 0.053 16.37
FP1K 0.5883 0.061 15.86
FP4K 0.2382 0.062 15.91
FP16K 0.2380 0.062 15.91
FP64K 0.0309 0.051 16.30
FP256K 0.0309 0.051 16.33
FP1024K 0.0310 0.051 16.19

Average β 16.185
aTest case name is made up of program name and problem size.
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Since N equals 48 for the SCC case, we can derive g(IPCi)
for each core i, as in (8).

k ·Ai = g(IPCi) = 1.417e−3 · IPCi
0.09 (8)

In (8), IPC equals #instructions per clock at a profiling fre-
quency of 800MHz. We substitute the parameters of g(IPCi)
and Ps into (4), giving the chip power model for Intel’s SCC
as follows:

P =

N∑
i−0

1.417e−3 · IPCi
0.09 · fi · vi2 + 16.185. (9)

The units of the variables are: watts (W) for P , MHz for
fi, and volts (V) for vi. With this chip power model, we can
predict the SCC chip power in any power states for various
program execution patterns, as shown in Fig. 3. As we never
see an IPC value larger than two instructions/cycle, we present
the figure with IPC ranging from 0 to 2.

III. MODEL-DRIVEN FLEXIBLE DPM APPROACH

A. Phase-based Profiling and Profile-guided DVFS

In this work, we target applications following a lock-based
shared-memory programming model. Non-coherent shared-
memory machines like Intel’s SCC or a cluster can rely on
some shared virtual memory (SVM) solutions to virtualize
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Chip power vs. frequency and IPC
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Fig. 3. The estimated chip power of Intel SCC with respect to frequency
settings (i.e. power states) and IPC (i.e. program execution patterns)
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Fig. 4. Phases partitioned by barrier and lock operations (Pcomp: computation
phase, Pbar : barrier phase, Plock: lock phase)

a coherent shared memory space to stay conformable to
this assumption. For ease of study and execution profiling,
we exploit a parallel program’s pattern of synchronization
among multiple cores to split its runtime up into logical
segments known as phases. In a (distributed) shared-memory
programming environment, the parallel program execution is
generally partitioned by lock and barrier operations, which are
the likely turning points across which the program may vary
in computational or memory-access patterns. Therefore, we
define a phase as an execution window delimited by locks
or barriers, including the busy-waiting time interval in the
locks/barriers.

Fig. 4 illustrates our phase definition with two processes
running on two cores. They synchronize via two barriers and
one lock in the program. The runtime of each core is divided
into multiple phases as shown. In general, we have three basic
types of phases: Pcomp, Pbar and Plock (the red, green and blue
portions), which denote the local computation time, barrier
time and lock time respectively. A Pcomp phase—usually the
useful computation portion of the program—happens between
two busy-waiting phases (Pbar or Plock). According to this
definition, in the case of Fig. 4, we could partition core0’s
execution time into seven phases, including four Pcomp’s (p0,
p2, p4, p6), two Pbar’s (p1, p5) and one Plock (p3).

There are two benefits with this phase partitioning scheme.
First, it respects the shared-memory programming model
naturally. Second, this allows profiler calls and DPM func-
tions to be hooked onto or implemented into the internal of
synchronization routines of the parallel programming library,
making the concerns of power management transparent to the
application level. In this work, we provide our own parallel
programming library—Rhymes SVM [23] for developing and
running parallel programs on the SCC platform. The imple-
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Fig. 5. Processing flow of profile-guided DVFS for flexible DPM

mentation of lock and barrier functions contains calls to the
PoweRock profiler and DPM API.

Fig. 5 shows the processing flow of our profile-guided power
management scheme. For a given program, an offline profiling
run (step 1) is used to derive its phased execution pattern.
During the profiling run, our custom-made profiler, triggered
by calls from barrier and lock routines of the programming
library, records those relevant performance monitor counters
(PMCs) of the CPU, e.g. IPC and bus utilization, along
with other runtime information. The profiling data, including
the PMC values, phase type and phase time, are dumped
and parsed (step 2) to generate an execution profile for the
program—a sequence of phases with per-phase execution
pattern information like IPC. Meanwhile, we measure the
instantaneous chip power during the execution. The next and
key step (step 3) is to compile the power control profile
(PCP) which contains the optimal voltage and frequency for
each phase towards the given DPM goal quantified by some
corresponding indexes like the power capping upper bound,
the maximum performance loss or the least EDP target. In
this step, we need the power model (in Section II) and the
performance model (to be explained) to predict the power and
runtime in different V/f settings. Finally, the derived PCP can
be applied to production runs (step 4), which are guided for
the targeted power efficiency.

B. Performance Model

The total execution time of a program is generally made up
of computation, memory access, I/O and synchronization. The
computation part is localized to the processor cache while the
others involve the use of the front-side bus. In other words,
the sum of CPU computation time (tcpu) and bus-related
processing time (tbus) approximates to the total execution time
on a single core.

Suppose a phase pi gives runtime t0 (seconds) and bus
utilization BU (percentage of the bus cycles over the total
execution cycles read from the PMCs) when running at fre-
quency f0 (MHz). We can predict the runtime t of phase pi
at a different frequency f as follows:

t(f,BU) = tcpu + tbus = (1−BU) · t0 ·
f0
f

+BU · t0. (10)

With this performance model, we can estimate the execution
time of each phase in different power settings, and hence the
performance degradation (the ratio of t/t0) due to V/f scaling
in the 2D space of frequency versus bus utilization, as shown
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Performance degradation (runtime increase) vs. frequency and 
 bus utilization (compare to max frequency of 800MHz)
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Fig. 6. Estimation of the performance degradation (runtime increase) vs. fre-
quency and bus utilization (compared with maximum frequency of 800MHz)

in Fig. 6. The x- and y-axis represent the frequency in the
range of 100 to 800MHz (the spectrum of Intel SCC) and
the bus utilization in the range from 0 to 1, respectively. The
z-axis indicates the performance degradation in the condition
of f0 set to 800MHz. Agreeing with our intuition, we can
observe that the smaller the bus utilization ratio, the larger the
performance impact of tuning down the frequency.

C. Power Efficiency Optimization Using the Models

By leveraging the power and performance models, we can
estimate the consumed power consumption and execution time
for each phase in different V/f settings. Then we can choose
an optimal power state1 for each phase towards the DPM goal.
To summarize, the process can be outlined as follows:
• For each program or each phase (denoted as pi) executed

in a static power state (f0), besides the execution time,
we get two metrics related to power and performance,
instructions per cycle (IPC) and bus utilization (BU ),
derivable from the PMCs of the underlying CPU core.

• We estimate the power consumption and execution time
in any power state f using the power-performance model.

• Towards an optimization goal (e.g. minimal EDP or
minimal energy), we search for an optimal power state.
As the power states available in the hardware are usually
limited, the complexity of the search could be ignored.

For instance, assuming the DPM goal is to minimize the
EDP, we can predict the EDP of each phase in a certain power
setting using the adapted power-performance model as in (11).

EDP (f) = Energy(f) ·Runtime(f)
= (t(f,BU) · P (f, IPC)) · t(f,BU)
= P (f, IPC) · t(f,BU)2

(11)

Then we can determine the optimal power setting for each
phase to meet the minimal EDP target.

The most powerful aspect of our model is its ability to
determine the optimal frequency setting (hence the power
state) for any program or phase, given the IPC and BU pattern
(uncovered by our profiler). As shown in Fig. 7(a), we plot
the variation of the optimal frequency (z-axis) towards the

1Assuming we always use the least supplied voltage for a certain frequency,
it suffices to use the frequency alone to represent the power state in the paper.
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Fig. 7. Optimal frequency settings for different program patterns in 2D space

minimal-EDP optimization goal, with respect to the two di-
mensions (x- and y-axis) representing the program patterns—
instructions per cycle (ranging from 0 to 2, the maximum
observed in our experiments) and bus utilization (ranging from
0 to 1). Likewise, Fig. 7(b) presents the optimal frequency
towards the minimal-energy optimization goal.

This optimization method does not consider the V/f scaling
latency. If the power level before the phase is different from
the predicted optimal one for the phase, we have to scale
the power level first, probably introducing non-negligible
voltage/frequency switching time and extra power dissipation.
So methods without considering such latency could make
inaccurate DVFS schedules. Our DPM scheme has been made
latency-aware when determining the optimal power levels (via
the methodology detailed in our earlier publication [24]).

IV. POWEROCK: DESIGN AND IMPLEMENTATION

In view of the potential of the multikernel approach to scal-
able OS design, PoweRock was designed and implemented on
the Barrelfish OS [19]. As another support tool for Barrelfish,
we developed the Rhymes Shared Virtual Memory (SVM)
system [23], which leverages software virtualization to restore
cache coherence on the SCC machine with non-coherent
memory architecture. The PoweRock APIs are intended for
use by the SVM layer instead of the application layer for not
compromising the programmability for power saving.

Fig. 8(a) shows the system architecture of PoweRock. There
is a runtime instance of PoweRock spawned on each core for
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handling the calls from the Rhymes library and determining
the optimal power state for the local CPU core. On many-
core systems, per-core DVFS is a costly design, so cores
are generally grouped into frequency and/or voltage domains
where V/f scaling can only happen in domain-level granu-
larity. Each PoweRock instance has a rank and domain-level
role, both defined upon OS bootstrap. The rank is the instance
identifier (like core id); the role differentiates if the instance is
the domain master. By synchronizing the locally optimal V/f
settings with other instances in the same domain, a master
instance determines an optimal V/f level for the domain, and
performs the V/f scaling action. PoweRock is composed of
four major functional components—OPS, PPM, DVFSC and
RPRS—which are detailed as follows.

A. Offline Profiling Subsystem (OPS)

The OPS refers to the subsystem encompassing the profiler
and power monitor designed for execution profiling and power
measurement before applications get deployed to production.
Similar to the work of Magklis et al. [25], we need a
profiling run to generate the power control profile (PCP) for
each application. In the profiling run, the profiler makes use
of kernel-level PoweRock system calls to retrieve IPC and
bus utilization (BU) statistics from the hardware performance
monitor counters while the power monitor obtains the chip
power readings from the BMC unit. The outputs are com-
bined to generate the PCP for the application. In our current
implementation, the PCP will be transformed to a C header
file to be included by the application in production runs.

We trigger the profiler by modifying the barrier and lock
routines in the Rhymes SVM library. The beginnings and the
ends of barrier and lock routines are augmented with code
to record the timestamp and PMC readings. The timestamp is
read from a wall-clock of 125MHz on the SCC board [22]. We
implement a kernel-level module to monitor the PMCs of the
CPU cores. For P54C architecture [26], three counters—local
time stamp counter (TSC), instruction executed and clocks
while a bus cycle is in progress—are useful for deriving
IPC and BU of each phase. Although the patterns within a
phase may keep varying in some ways, we use the average to
represent the overall pattern of the phase.

As shared-memory parallel programs usually follow a
SPMD model (single program, multiple data), the execution
patterns of all processes are alike. However, if the application
follows a master/slave design pattern, it is common that the
execution pattern of the master process (presumably running
on core0) is somehow different from that of the slave processes
running on the rest of cores. Thus, the PCP includes the
profiles of the “master core” and one of the other “slave cores”.

B. Profile-guided Power Manager (PPM)

When the execution enters or exits a barrier/lock, it means
a new phase begins (refer to Section III-A). At this moment,
the Rhymes library calls the PoweRock API. Then the PPM
handles this event and determines the DVFS action for the
coming phase by referencing the power control profile attached
to the application. Due to program dynamics, the actual phase

TABLE III
POWEROCK API FOR DVFS CONTROL

API Functions and Descriptions
Parameter specification:
• Fdiv (input) - the requested value for the frequency divider
• Vlevel (input) - the requested value for the voltage level
• new_Fdiv (output) - the returned value of the new frequency divider
• new_Vlevel (output) - the returned value of the new voltage level
pwr_local_power_request(Fdiv,new_Fdiv,new_Vlevel)
A non-blocking function for the caller core to make a power request to the
low-level power management system. The voltage setting is assumed to
be the least voltage value. But the exact V/f of a domain will be decided
by the domain master by negotiation among all the cores in the domain.
pwr_local_frequency_request(Fdiv,new_Fdiv)
A non-blocking function that explicitly scales the frequency of the cores
in the local frequency domain. The function takes effect only if called by
frequency domain masters.
pwr_local_voltage_request(Vlevel,new_Vlevel)
A conditional blocking function that explicitly sets the voltage level of the
local voltage domain. The function takes effect only if called by voltage
domain masters. In scale-down cases, the function is non-blocking; in
scale-up cases, it blocks until the voltage reaches the expected level.

pattern of the production run may not be equivalent to that
of the profiling run. So the PPM should be able to tolerate
phase pattern discrepancies. This is the key problem the PPM
has to resolve. For an SVM-based application, the sequence of
barrier phases (Pbar) is generally fixed. In our current design,
we take the barrier phases as the reference points to tolerate the
phase pattern difference between the profile and the runtime
execution. The next step the PPM does is to request a power
state transition to the optimal V/f setting in the profile. For a
phase which does not fit the profile, we request a conservative
frequency of 400MHz without voltage change. The request is
then sent to the DVFS controller.

C. DVFS Controller (DVFSC)

The DVFSC provides an interface for other components
to adaptively configure the power settings of CPU cores. It
adopts a domain-aware design tailored to the common DVFS
design of most multicore or many-core chips with multiple
clock/voltage domains. As shown in Fig. 10, each two-core tile
forms a frequency domain, and the 48 cores of the SCC chip
are partitioned into six four-tile voltage domains. As shown in
Fig. 8(b), we design a three-layer hierarchical DVFS controller
for this type of many-core chips. Each core plays a role of stub
core (SCore). One core in each voltage (or frequency) domain
is chosen as the domain master called VMaster (or FMaster).
The DVFSC is accessible from the user space through the
PoweRock API functions listed in Table III.

D. Real-time Power Request Synchronizer (RPRS)

As V/f switching is done in the granularity of a domain, the
RPRS is designed to synchronize different power requests in
the same domain. Fig. 8(c) describes the RPRS workflow for
a stub core when it receives a power request. If the stub core
is not a FMaster, RPRS is responsible for issuing the power
request to its FMaster in the domain. If it is the case, the
FMaster computes the domain-wide optimal frequency setting
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Fig. 9. Format of the inter-core power request message

and sets it, provided that the current voltage is high enough to
support the new frequency. If the current voltage is not high
enough, we have to scale up the voltage first. The workflow
of voltage scaling is similar to frequency scaling. Meanwhile,
if the VMaster finds that the current voltage appears too high
for the current frequency settings in the voltage domain, it
will scale down the voltage for power saving. The domain-
wide power setting adopts an “arithmetic mean” policy just
as Ioannou et al. [9] did. That means the power of a domain
is set as the arithmetic mean of the frequencies or voltages
requested by all the cores in the domain.

To synchronize power requests as soon as possible without
waiting for the system to schedule, RPRS implements a
real-time, interrupt-based, on-chip communication mechanism
leveraging the on-die message passing buffer (MPB) and inter-
processor-interrupt (IPI) provided by the SCC hardware. Each
power request is packed as a 48-bit message and written to the
local MPB of the destination core. Fig. 9 shows the message
format. The 8-bit magic number is used to distinguish power
requests from other MPB messages. The op-code denotes the
request’s operation type—frequency scaling or voltage scaling.
The curt-f and curt-v (req-f and req-v) fields denote the current
(requested) voltage and frequency settings of the source core.

V. EVALUATION METHODOLOGY

A. Experimental Setting

To evaluate our PoweRock system implementing the power
model and profile-guided DVFS scheme, we port several well-

known benchmarks to our Rhymes SVM. We use gcc version
4.4.3 to compile programs with the O3 optimization level.
The execution performance (runtime), power consumption,
energy and EDP of the benchmark executions are inspected for
experimental comparison. During the experiments, the clock
frequencies of the network-on-chip (NoC) and memory con-
trollers (MCs) are both fixed at 800MHz. As the temperature
of the SCC board is kept around 40 ◦C, we do not consider the
temperature’s impact on the chip power in this paper. In our
experiments, energy consumption by a program is the product
of runtime and the average chip power during the execution.
EDP is the product of energy and runtime. The efficiency of
our DPM solution is evaluated by setting the optimization goal
towards the least EDP and comparing with a static power case
(800MHz/1.1V for all cores) in which DVFS is disabled.

We evaluate our approach using seven benchmarks with
their problem sizes described in Table IV. Graph 500 [27]
and Malstone [28] are data-intensive (or memory-bound)
computing benchmarks. LU and SOR are ported from the
SPLASH2 benchmark suite [29] whereas IS and EP are from
the NPB suite [30]. Genome is a genetic analysis program
that we develop. By comparing two arrays representing DNA
sequences, the program logic is to locate a disease gene pattern
on a human. All programs were run on 48 cores of the SCC.

B. Power Measurement

To avoid overhead introduced by power measurement, we
measure the power consumption of the SCC outside the chip.
We view the chip as a “black box” and read the current
and voltage values from the board management controller
(BMC) using the management console PC (MCPC) during the
application run. As shown in Fig. 10, the BMC is connected
via Ethernet to the MCPC, from which the power values are
read. PCIE bus connects the SCC to the MCPC. The phase
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TABLE IV
BENCHMARKS FOR EVALUATION AND THEIR PARAMETERS

Benchmark Problem Size
Graph 500 Scale: 18 (262144 vertices); Edgefactor: 16 (4194304 edges)
Malstone 300000 records
LU 1024× 1024 matrix 16× 16 block
SOR 2048× 1024 matrix
IS Class A
EP Class A
Genome Human DNA length: 67.1MB; disease gene length: 8KB
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Fig. 10. The chip power measurement setting for Intel SCC

profiling information is obtained from the PCIE connection.
The power states of the chip will be recorded into a log
file on the MCPC. Although the maximum power sampling
rate is only about 3.3 samples per second, it suffices for
our evaluation. The average power is estimated by taking
arithmetic mean of all sampled power values. In this paper,
we use energy consumption and energy-delay product (EDP),
both are widely adopted, to evaluate our DPM approach.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

A. Evaluation of the Power Model

To evaluate our power model, we compare the estimated
chip powers using our model and the power model proposed
by Sadri et al. [14]. Sadri et al. proposed a single-core power
modeling approach for Intel SCC. Their model also considered
the CPU frequency and program execution pattern but not the
supplied voltage. They split the core power Pi into idle and
active parts, Pi = Pi,idle + Pi,active, and propose the fitting
functions for them as (12) and (13).

Pi,idle = p+ q · fi (12)

Pi,active = (a+b×CPIc)×fi+(a′+b′×CPIc
′
)×fi+d (13)

In (12) and (13), p, q, a, b, c, d, a′, b′ and c′ are constant
coefficients, while fi (unit: GHz) is the clock frequency of core
i. They use CPI (clock per instruction)—the multiplicative
inverse of IPC—to represent the program pattern and measure
the power of a single core in different frequency and program
pattern settings. Based on the measurements, they use a least-
square optimization algorithm to find the coefficients of the
fitting power function, giving the core power model as (14).

Pi = (0.38−0.24·CPI0.085+0.22·CPI0.02)·fi+0.41 (14)

According to their modeling approach, we can assume the
power consumed by the rest of the chip, apart from the
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cores, equals the chip power when no core is active. By the
measurement in their paper, we figure out this idle power is
about 34.0W. So the chip power (P ) can be estimated by
summing the power of every core and this 34.0W as in (15).

P =

N−1∑
i=0

Pi + 34.0 (15)

We conduct the following experiment to compare our power
model with Sadri’s one. As we can only get measured power
of the entire chip, the comparison between the models is also
at chip level. We obtain the real and estimated chip powers
as follows. First, we run Graph500 on 48 cores at static
800MHz/1.1V, and profile each core’s PMCs for CPI (or IPC)
during the execution. The actual chip power is monitored using
the mechanism provided by the Intel SCC platform [22]. Then
the estimated chip powers are derived from the profiled CPI
(or IPC) using our model (9) and Sadri’s model (15).

The measured chip power and the modeled ones are plotted
as Fig. 11. Comparing with the measured power, our modeled
power is obviously closer to it than Sadri’s one. During the
Graph 500 execution, the chip power changes due to varying
execution pattern. But the estimated power given by Sadri’s
model seems invariant despite the pattern variation.

There exist several periods (in the first 12s, and around
50s, 70s, 85s, 105s) during which our model shows more
apparent deviations from the real power. This can be explained
as follows. In the beginning 12 seconds, we can see both
the models give big errors in the estimated powers. This
is because this part of execution (performing data-race-free
buffer allocation and edge list generation) was taken as a
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Fig. 13. Comparison with Sadri’s model with its y-axis scale zoomed in

single phase (no locks in between for phase partitioning).
The modeled power was taken as the average power of this
phase while the actual patterns keep varying in this time range.
After 17s passed, the estimated power becomes more accurate
when the program becomes more fully-loaded. For the other
four places (i.e. 50s, 70s, 85s and 105s), we find the clue
by analyzing the IPC pattern of the execution. We plot the
instantaneous IPC variation in Fig. 12 which shows that the
IPCs of both master and slave cores are relatively high and
all around 0.3 instructions/sec at all the four places. Referring
back to Fig. 2, we do not have enough samples with IPC
around 0.3 to specify g(IPC). So we attribute the deviations
to insufficient sampling for best-fitting the curve in Fig. 2 (not
a design problem of our model). Our power model is still very
accurate for low IPC range in the SCC case study.

As mentioned before, Sadri’s modeled power was just “too
stable”. But zooming in on its power-time curve, we observe
some interesting facts. Fig. 13 shows our modeled power and
Sadri’s modeled power measured in the left and right y-tics
respectively. The scale on the right is zoomed in by 7.5 times.
Then we can see the variation patterns or trends of both curves
are actually very similar and fit the measured power well.
The only difference is the granularity. This observation implies
two concerns. On one hand, it is definitely necessary to take
the program pattern into account. As we can see in Fig. 11,
even in a static power setting, the instantaneous chip power
keeps changing in fairly large range. But both models can fit
the trend of changes well, implying IPC is a good metric to
characterize the program execution pattern. On the other hand,
our power modeling approach is more accurate when modeling
the chip power of many-core chips. Measuring through Sadri’s
approach, the single-core power does not include the static
power, but they still take the measured single-core powers as
if they were the sums of the static power and dynamic power
(idle power and active power). This may be the reason why
their model is found not accurate enough.

B. Evaluation of the Profile-guided DVFS Implementation

This part of evaluation is done by comparing application
benchmarking results obtained from our profile-guided DVFS
model and the baseline static power model. Table V presents
the runtime, average power and the counts of phases with
different types for each benchmark executed at 800MHz for

TABLE V
RUNTIME STATISTICS OF THE BENCHMARKS (#PHASES IS CORE0’S)

Benchmark Runtime (s) Avg power (W) #Pcomp #Pbar #Plock

Graph500 28.09 62.90 137 34 102
Malstone 62.15 70.02 4 3 0
LU 8.90 66.71 135 134 0
SOR 21.22 64.82 5 4 0
IS 45.79 68.62 26 25 0
EP 13.11 88.82 15 2 12
Genome 158.37 99.45 5 4 0
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all the 48 cores. Although the V/f settings are kept the
same, Table V shows that the average powers consumed by
the benchmarks are very different (mainly due to their dif-
ferent memory access patterns). Actually, the more compute-
intensive the benchmark program, the larger the average
power. For example, EP and Genome are the most compute-
intensive and consume the largest average powers.

Fig. 14 presents the energy/EDP improvement of different
programs with our profile-guided DPM enabled. The en-
ergy/EDP values are normalized to the static power values
(800MHz/1.1V). Most of the cases gain energy or EDP benefit.
The average energy saving and EDP reduction are 25.5%
and 37.1% respectively. SOR makes the best case—up to
64.0% energy and 65.4% EDP saved. Some cases like EP and
Genome, which are the most CPU-intensive, do not gain any
energy or EDP benefit; enabling profile-guided DVFS imposes
adverse effect on them instead. The reason behind this is
related to DVFS scaling overheads. EP is by nature a highly
CPU-bound program, so scaling down the clock frequency
just means seriously penalizing the runtime, hence augmenting
the energy consumption or EDP. For Genome running at the
specified problem size (see Table IV), the program behavior
is also highly compute-intensive since the whole 8KB-long
disease gene array can be totally cached in L1 most of the
time during comparison with the human DNA data.

1) Analysis: For further understanding of the experimental
results, we present in Fig. 15 the program patterns in terms of
average bus utilization and IPC. Larger bus utilization implies
more off-core activities including memory access whereas
larger IPC means that instructions execute faster and consume
more power. To wipe out the impact of “busy waiting” on the
program pattern, we also present the average values without
the Pbar and Plock phases.

From Fig. 15, we can see that Graph 500, Malstone, LU,
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Figure 13  Average bus utilization, IPC and optimal frequency of benchmarks (BW0 means core0’s 
information  with the Pbar and Plock busy waiting phases; NBW0 means core0’s informtion WITHOUT the 

Pbar and Plock) 

For further understanding of the experimental results, in Figure 14 we present the 
program patterns in terms of average bus utilization and IPC. Larger bus utilization 
implies more off-chip activities including memory accessing. And larger IPC means that 
instructions execute faster and consume more power. As we adopt the profiles of the 
master core and one slave core (core0 and core1) as the whole profile of the program. To 
wipe off the impact of busy waiting to the program pattern, we also present the average 
values without Pbar and Plock phases. In the figure, BW0 means core0’s information with 
the Pbar and Plock busy waiting phases; NBW0 means core0’s information without the Pbar 
and Plock .  

From the figure, we can find that Graph 500, Malstone, LU, SOR, and IS are much 
more memory intensive. All these four benchmarks achieve much energy efficiency under 
our DPM scheme (see Figure 13 ). Both of EP and Genome have low bus utilization and 
high IPC, suggesting they are highly compute-intensive. As we know, it is not so easy to 
achieve energy efficiency in compute-intensive applications. We can also find the average 
optimal frequencies for these two benchmarks are almost the highest frequency. 

5.3 Flexiblity for Different DPM Goals 
In order to evaluate our scheme for flexible DPM with different DPM goals, we 

apply four different DPM goals in the experiment of Graph 500. 
• MAX_PERF: This goal is to get the maximum runtime performance without 
consideration of power. We set the CPU frequency of Intel SCC to the highest 
frequency value of 800MHz. 
• NO_PERF_LOST: This goal is to save power as possible with no or little 
performance lost. To achieve this goal, we assign the highest frequency to all Pcomp 
phases, while assign the lowest frequency to all Pbar and Plock phases (phases in busy 
waiting). 
• LEAST_ENERGY: This goal is to archive the least energy consumption of the 
execution of applications. We determine the optimal power level towards the goal of 
the least energy for all Pcomp phases using the power and performance models 
presented in Section 2.  

• BW0 (BW1) refers core0’s (core1’s) data
with busy waiting phases, i.e. Pbar’s and
Plock’s;

• NBW0 (NBW1) refers core0’s (core1’s) data
without busy waiting phases.

Fig. 15. Average bus utilization, IPC and optimal frequency of benchmark programs
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SOR, and IS are memory-intensive because of their high
“Avg-bus” values. All these four programs reported substantial
energy saving under our DPM scheme (see Fig. 14). Both EP
and Genome have low bus utilization and high IPC, implying
they are highly CPU-bound and leave little opportunity for
energy saving. In line with this conjecture, the average optimal
frequencies for them are almost the highest frequency.

C. Evaluation of the Flexibility of the DPM System

To evaluate our flexible DPM solution with different goals,
we devise four DPM policies with different goals:
• Min-T: aims at the minimum runtime or best performance

without considering power consumption; all cores are set
to run in the highest power state of 800MHz/1.1V.

• No-T+: aims to save as much power as possible with no
or little performance loss. To achieve this goal, we assign
the highest frequency to all Pcomp phases and the lowest
frequency to all Pbar and Plock phases.

• Min-E: aims at the least energy consumption. Optimal
power levels are tuned towards the goal of minimizing
energy for all Pcomp phases using our models.

• Min-EDP: aims at the least EDP for the execution;
optimal power levels are chosen for minimizing the EDP.

For each policy, we record the runtime and chip power
of each execution of Graph 500. As shown in Fig. 16, our
DPM system is capable of meeting the expected DPM goals
flexibly—when the goal is adjusted, the system won’t give

noticeable drops in energy-performance indexes. Min-T gets
the best performance as expected, but at the cost of the highest
average power. No-T+ achieves good energy saving (32.9%)
and EDP reduction (29.3%) with a slight slowdown (5.4%).
Min-E gives the least energy consumption in all the cases
(48.9% compared to min-T), yet thwarting the performance
most seriously. Min-EDP achieves the least EDP with much
less performance loss than min-E.

D. Overhead and Scalability Analysis

Using PoweRock may introduce performance overheads to
the application. There are three major time costs with it: C1)
the cost of context switching between user space and kernel
space when DPM routines are called; C2) slowdown of domain
masters which are being interrupted by power requests for
making DVFS decisions; C3) V/f scaling latency of which
the voltage switching time dominates. These costs determine
the scalability of PoweRock. To measure the overhead of our
system, experimental comparison between static power mode
and profile-guided DVFS mode is performed. However, for
the DVFS mode, we cannot really change the V/f setting or
else the execution performance will be affected by frequency
scaling. We choose to skip writing the frequency/voltage
control registers. As a result, the measured overhead does not
include C3, but the rest like C1 and C2 can be revealed.

Fig. 17 shows the results obtained from LU and Graph 500.
We choose them for overhead analysis as they have up to 300
phases triggering lots of DPM actions for measurement. To
assess the scalability, experiments are run on 1, 2, 4, 8, 16, 32
and 48 cores. The results show that our DPM implementation
incurs almost imperceptible runtime overhead (all below 1%),
and does not affect the scalability of the programs.

Memory overhead of PoweRock can also be said negligible.
The system needs extra memory space mainly for storing the
power control profiles. In our current design, we need to keep
track of phase id, phase type and optimal power level for each
phase—at least 4×3 bytes per phase is needed. The number of
phases in the cases we tested did not exceed 300. Each master
core and slave core require keeping 3,600 bytes at most.
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Fig. 17. Performance overhead analysis for our DPM solution

VII. RELATED WORK

A. Power Modeling for Multicore/Many-core Processors

Chip power modeling [11]–[15] is a challenging problem,
particularly when processor chip designs are going many-core.
A few prior works [16], [17] tried to characterize the power-
performance behavior of the SCC processor in different power
settings. For instance, Bartolini et al. [17] evaluated the impact
of DVFS on the speed and power usage of MPI programs.
However, these studies only presented power/performance
results in different power settings rather than proposing any
analytical power model for prediction purposes.

A handful of previous works [13]–[15] did build up analytic
power models but sadly omitted some key elements for model-
ing the power consumption. Sadri et al. [14] proposed a power
model to estimate the per-core power for thermal management
on the SCC. However, they did not take voltage into account
in their model. Cichowski et al. [15] also proposed a power
model for the SCC, but they did not consider the impact of
program pattern on the chip power consumption. Li et al. [13]
presented a power model for multicore systems. Their model
used IPS (instructions per second) rather than IPC to represent
the activity factor when the frequency changes. Although IPS
implies consideration of frequency in some ways, their model
did not consider the voltage setting as was the case of Sadri’s.
After a thorough survey, our power model takes an all-round
design considering all the key elements like clock frequency,
supplied voltage and power-related patterns of the program
execution (tracked via monitoring performance counters).

B. Power Management on Multicore/Many-core Systems

There is rich literature on power management for multicore
or many-core systems [5]–[10]. Most of the previous works
focused on power capping [5]–[8] or energy saving under a
performance loss constraint [9], [10]. Pack & Cap [5], is a

control technique designed to make optimal DVFS and thread
packing control decisions for maximizing performance within
a power budget. They built a classifier to accurately select
the optimal power settings and pack threads with the same
power-performance characteristics. Ma et al. [8] presented a
scalable power control solution for many-core microprocessors
that is specifically designed to handle realistic workloads. They
focused on distributing the chip power budget to each core
by a three-layer controller in order to optimize the overall
performance. Kappiah et al. [10] made use of the slack time
in MPI programs for reducing the frequency on nodes that are
not in the critical path. Their scaling of frequency was based on
the heuristic information of the program without considering
the power consumption while scaling performance.

Our work, on the other hand, focuses on the flexibility of the
DPM framework for different optimization goals (configurable
at deployment time). Freeh et al. [3] and Ioannou et al. [9]
were pursuing a line of research most relevant to ours, but
they targeted MPI programs while we aimed at programmer-
friendly shared-memory paradigms. Freeh et al. [3] presented
a framework for executing a single MPI application in several
V/f settings. Their basic idea is to divide a program into
phases each of which is assigned a prescribed frequency.
Our profiling method is quite similar to Freeh’s, but our
profiling is more lightweight and universal for most parallel
applications. Freeh et al. used a brute force to explore the best
per-phase V/f settings by multiple experimental runs. Our
design enables us to easily choose the optimal V/f setting by
one-off calculation. The DPM scheme proposed by Ioannou
et al. [9] tried to minimize energy consumption within a
performance window for the Intel SCC. They employed a
trial-and-error approach to estimating the optimal power states
and imposed limits on frequency scale-downs by setting an
empirical performance threshold. This method is prone to
exclusion of some perfect power-saving opportunities during
the trial period.

VIII. CONCLUSION

Entering a many-core computing era, effective power man-
agement solutions have a vital role in reshaping today’s power-
hungry supercomputing. Advances in DPM/DVFS technolo-
gies should address several new challenges. First, they should
be designed (scalable) for many-core processors since the
state-of-the-art supercomputers can have much of the system
power (over 60% in the case of Tianhe-2) dissipated in the
abundance of compute cores. Second, an accurate and all-
round chip power-performance model should be available for
predicting the optimal power states for different parts of
a program execution with varying compute/communication
patterns. With this foundation, we can build a flexible DPM
solution that has separation of mechanism and policy of power
control, accommodating variable or reconfigurable DPM goals.
This paper reports our latest research efforts making a com-
plete solution—PoweRock—to cope with these challenges. We
proposed new and practical prediction model linking power
states (voltage/frequency settings) with performance charac-
teristics (IPC and bus utilization). By using the models and a



IEEE SYSTEMS JOURNAL, VOL. XX, NO. Y, ZZZ 2015 12

lightweight profiling approach, PoweRock can rapidly derive
a power control profile containing per-phase optimal V/f
settings for (virtual) shared memory applications. We designed
a hierarchical domain-aware DVFS scheduling framework
tailored to many-core architectures with multiple voltage/clock
domains, and apply the concept to implement a scalable DVFS
controller at the kernel level. Finally, we build a profile-guided
power manager driving the DVFS controller, and ship with
a user-space PoweRock API for easing the development of
green applications or middleware systems. We implement and
evaluate PoweRock on the Barrelfish operating system for
Intel’s SCC many-core processor. Experimental benchmarking
results show that our solution models the power accurately
across changes in DPM goals and gains up to 65% energy or
EDP benefit over the static power scheme.
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