
When HPC meets Big Data in the Cloud

Prof. Cho-Li Wang
The University of Hong Kong

Dec. 17, 2013 @Cloud-Asia

Big Data: The “4Vs" Model
• High Volume (amount of data)
• High Velocity (speed of data in and out)
• High Variety (range of data types and sources)
• High Values : Most Important

2.5 x 1018

2010: 800,000
petabytes (would
fill a stack of DVDs
reaching from the
earth to the
moon and back)

By 2020, that pile
of DVDs would
stretch half way to
Mars.

Google Trend: (12/2012)
Big Data vs. Data Analytics vs. Cloud Computing

Cloud
Computing

Big Data

12/2012

• McKinsey Global Institute (MGI) :
– Using big data, retailers could increase its operating margin by more than 60%.
– The U.S. could reduce its healthcare expenditure by 8%
– Government administrators in Europe could save more than €100 billion ($143

billion).

Google Trend: 12/2013
Big Data vs. Data Analytics vs. Cloud Computing

“Big Data” in 2013

Outline

• Part I: Multi-granularity Computation Migration

o "A Computation Migration Approach to Elasticity of Cloud

Computing“ (previous work)

• Part II: Big Data Computing on Future Maycore Chips

o Crocodiles: Cloud Runtime with Object Coherence On Dynamic tILES

for future 1000-core tiled processors” (ongoing)

Part I

Multi-granularity
Computation
Migration

Source: Cho-Li Wang, King Tin Lam and Ricky Ma, "A Computation Migration
Approach to Elasticity of Cloud Computing", Network and Traffic Engineerin g in
Emerging Distribute d Computing Applicatio ns, IGI Global, pp. 145-178, July, 2012.

Big Data

Too Big To Move

Multi-granularity Computation Migration

7

WAVNet Desktop Cloud
G-JavaMPI

JESSICA2

Fine

Coarse

Small Large

SOD

Granularity

System scale
(Size of state)

(1) WAVNet: Live VM Migration over WAN
 A P2P Cloud with live VM migration over WAN

 “Virtualized LAN” over the Internet”

 High penetration via NAT hole punching
 Establish direct host-to-host connection
 Free from proxies, able to traverse most NATs

8

VM

VM

Key Members

Zheming Xu, Sheng Di, Weida Zhang, Luwei Cheng, and Cho-Li Wang, WAVNet: Wide-Area Network Virtualization
Technique for Virtual Private Cloud, 2011 International Conference on Parallel Processing (ICPP2011)

WAVNet: Live VM Migration over WAN
o Experiments at Pacific Rim Areas

9

北京高能物理所
IHEP, Beijing

深圳先进院 (SIAT)

香港大学 (HKU)

中央研究院
(Sinica, Taiwan)

静宜大学
(Providence University)

SDSC, San Diego

日本产业技术综合研究所
(AIST, Japan)

9

StoryTelling@Home on WAVNet

10

Web
Application

Glassfish

Streaming
Server

Derby
Database

VM (Xen)

Key functions: story upload, story search, and
listening online (streaming/downloading)

Prototyped by Eric Wu, Queena Fung

1111

Thread Migration

JESSICA2
JVM

A Multithreaded Java
Program

JESSICA2
JVM

JESSICA2
JVM

JESSICA2
JVM

JESSICA2
JVM

JESSICA2
JVM

Master Worker WorkerWorker

JIT Compiler
Mode

Portable Java Frame

Java
Enabled
Single
System
Image
Computing
Architecture

(2) JESSICA2 : Thread Migration on Clusters

Thread Migration
on Cluster

History and Roadmap of JESSICA Project
• JESSICA V1.0 (1996-1999)

– Execution mode: Interpreter Mode
– JVM kernel modification (Kaffe JVM)
– Global heap: built on top of TreadMarks (Lazy Release

Consistency + homeless)
• JESSICA V2.0 (2000-2006)

– Execution mode: JIT-Compiler Mode
– JVM kernel modification
– Lazy release consistency + migrating-home protocol

• JESSICA V3.0 (2008~2010)
– Built above JVM (via JVMTI)
– Support Large Object Space

• JESSICA v.4 (2010~)
– Japonica : Automatic loop parallization and

speculative execution on GPU and multicore CPU.
Handle dynamic loops with runtime
dependency checking

12

King Tin LAM,

Ricky MaKinson Chan

Chenggang Zhang

Past Members

Download JESSICA2:
http://i.cs.hku.hk/~clwang/projects/JESSICA2.html

(3) Stack Migration: “Stack-on-Demand” (SOD)

Mobile node

Program
Counter

Method Area

Heap Area

Stack frame A

Method
Area

Heap
Area
Rebuilt

Stack frame A

Stack frame A

Method

Cloud node

objects

Local variables

Local variables

Local variables

Stack frame B

Object (Pre-)fetching

Program
Counter

Program
Counter

14

(a) “Remote Method
Call”

(b) Thread migration (c) “Task Roaming” or
“Workflow”

With such flexible or composable execution paths, SOD
enables agile and elastic exploitation of distributed
resources (storage) Exploit Data Locality in Big Data
Computing !

SoD enabled the “Software Defined” Execution Model

SOD : Face Detection on Cloud

apps capture time
(ms)

transfer time
(ms)

restore time
(ms)

total migration
latency (ms)

FaceDetect 103 155 7 265

15

exception
Stack frame 3

Stack frame 2

Stack frame 1

Stack frame 4

Stack frame 4

OpenCV

Migration from mobile devices to cloud node

Chen
Polin

Francis

Roy
Zoe

Wenzhang

Anthony

Tianche

Sun Ninghui

SOD: “Mobile Spider” on iPhone

16

Stack frame is then
migrated to iPhone.

A search task
is created.

User
sends a
request

The task searches for photos
available in the specific directory

Search
results are
returned

HTML files
with photo

links is
returned

Bandwidth
(kbps)

Capture
time (ms)

Transfer
time (ms)

Restore
time (ms)

Migration
time (ms)

50 14 1674 40 1729
128 13 1194 50 1040
384 14 728 29 772
764 14 672 31 717

Size of class file and state data = 8255 bytes
A photo sharing
Cloud service

(with Wi-Fi connection)

Migration from
cloud node to
mobile devices

Xen VM

JVM

Xen-aware host OS

guest OS

Xen VM

JVM

guest OS

Desktop PC

Overloaded

Load
balancer

Cloud service
provider

Thread
migration

(JESSICA2)

Internet

Live migration

Load
balancer

comm.

JVM

Stack-on-demand (SOD)

Mobile
client

iOS

Stack
segments

Partial
Heap

Method
Area

Code

Small
footprint

Stacks Heap

JVM process

Method
Area

Code

… …

Multi-thread
Java process

trigger live
migration

duplicate VM instances
for scaling

eXCloud : Integrated
Solution for Multi-

granularity Migration

Ricky K. K. Ma, King Tin Lam, Cho-Li Wang, "eXCloud: Transparent Runtime Support for Scaling Mobile Applications," 2011 IEEE
International Conference on Cloud and Service Computing (CSC2011) (Best Paper Award)

18

63 VMs on 11 hosts

“JESSICA on Cloud”: VM Migration + Thread Migration

19

Comparison of Migration Overhead

SOD has the smallest migration overhead : ranges from 13ms to
194ms under Gigabit Ethernet

Frame (SOD): Thread : Process : VM = 1 : 3 : 10 : 150

Sys

App

SOD on Xen
(Stack mig.)

JESSICA2 on Xen
(Thread mig.)

G-JavaMPI on Xen
(Process mig.)

JDK on Xen
(VM live mig.)

Exec. time (sec) MO
(ms)

Exec. time (sec) MO
(ms)

Exec. time (sec) MO
(ms)

Exec. time (sec) MO
(ms)

w/ mig w/o mig w/ mig w/o mig w/ mig w/o mig w/ mig w/o mig

Fib 12.77 12.69 83 47.31 47.21 96 16.45 12.68 3770 13.37 12.28 1090

NQ 7.72 7.67 49 37.49 37.30 193 7.93 7.63 299 8.36 7.15 1210

TSP 3.59 3.58 13 19.54 19.44 96 3.67 3.59 84 4.76 3.54 1220

FFT 10.79 10.60 194 253.63 250.19 3436 15.13 10.75 4379 12.94 10.15 2790

Migration overhead (MO)
= execution time w/ migration – execution time w/o migration

Part II
Big Data Computing on Future
Maycore Chips

Crocodiles: Cloud Runtime with
Object Coherence On Dynamic tILES
for future 1000-core tiled processors”
(1/2013-12/2015, HK GRF)

The 1000-Core Era

• Experts predict that by the end of the decade we could have as many

as 1000 cores on a single die (S. Borkar, “Thousand core chips: a

technology perspective”)

• International Technology Roadmap for Semiconductors

(ITRS) 2011 forecast:
o By 2015: 450 cores

o By 2020: 1500 cores

• Why 1000-core chip ?
o Densely packed servers cluster Cloud Data Center in a Chip

o Space efficiency + Power Efficiency (Greener)

Tiled Manycore Architectures

All adopted tile-based architecture: Cores are connected through a 2D
network-on-a-chip

Tilera Tile-Gx100 (100 64-bit cores)
Adapteva’s Parallella: 64 cores for $199

Intel Knights Landing processor (2014/15)Intel’s 48-core Single-chip Cloud
Computer (SCC)

Tiled Manycore Architectures

 New Challenges
1. “Off-chip Memory Wall” Problem
2. “Coherency Wall” Problem
3. “Power Wall” Problem

 Moving towards a parallelism with 1,000 cores
requires a fairly radical rethinking of how to
design system software.

• What we have done:
 Developed a scalable OS-assisted shared virtual

memory (SVM) system on a multikernel OS (Barrelfish)
on the Intel Single-chip Cloud Computer (SCC) which
represents a likely future norm of many-core non-
cache-coherent NUMA (NCC-NUMA) processor.

 A “zone-based” dynamic voltage and frequency scaling
(DVFS) method for power saving

The Software Crisis in 1000-core Era

24

(1) “Off-chip Memory Wall” Problem
o DRAM performance (latency) improved slowly over the past 40 years.

(a) Gap of DRAM Density & Speed (b) DRAM Latency Not Improved

Memory density has doubled nearly every two years,
while performance has improved slowly Eliminating
most of the benefits of processor improvement

Source: Shekhar Borkar, Andrew A. Chien, ”The Future of Microprocessors”, Communications of ACM,
Vol. 54 No. 5, Pages 67-77 , May 2011.

(1) “Off-chip Memory Wall” Problem
• Smaller per-core DRAM bandwidth

o Intel SCC : only 4 DDR3 memory controllers not scale with the
increasing core density

o 3D stacked memory (TSV technology) helps ?

26

DRAM

DRAMDRAM

DRAM

New Design Strategies (Memory-Wall)

27

Data locality (working set) getting more critical!
• Stop multitasking

o Context switching breaks data locality
o Space Sharing instead of Time Sharing

• “NoVM” : (or Space-sharing VM)
o No support of VM because of weaker cores (1.0-1.5 GHz)
o “Space Sharing” as we have many cores.

• Others
o Maximize the use of on-chip memory (e.g., MPB in SCC)
o Compiler or runtime techniques to improve data reuse (or

increase arithmetic intensity) temporal locality becomes
more critical

(2): “Coherency Wall” Problem

• Overhead of enforcing cache coherency across 1,000 cores at
hardware level will put a hard limit on scalability:

1. Die space overhead:

• Cache directory; read/write log increase
• 200% overhead for storing the 1000 presence-bits 128-

byte directory vs. 64-byte cache line
2. Performance overhead:

• 20% more traffic per miss than a system with caches
but not coherence (e.g., locate other copies at hierarchical
directories; issue invalidations to ALL sharers)

3. Not always needed:

• Only 10% of the application memory references
actually require cache coherence tracking (Nilsson, 2003)

Why On‐Chip Cache Coherence is Here to Stay
http://research.cs.wisc.edu/multifacet/papers/cacm2012_coherence_nearfinal.pdf

(2): “Coherency Wall” Problem

4. Verification complexity and extensibility:

• Multiple copies AND multiple paths through
network require to avoid deadlock, livelock,
starvation due to subtle races and many transient states.

5. Energy overhead:

• Unnecessary data movement and replication
consumes extra energy consumption on network and
cache resources (Kurian ISCA13);

• Snoop-related cache activities can contribute up to 40%
of the total cache power (Ekman 2002, Loghi 2005)

Intel’s SCC and Teraflops Research Chip decided to give up coherent
caches. (History repeats itself : NCC-NUMA in 1990s: Cray T3D/ T3E)

New Design Strategies (“Coherency Wall”)

• Software-managed cache
coherence
o Leverage programmable

on-chip memory (e.g., MPB
on Intel SCC)

• Scope consistency (ScC) :
minimizing on-chip
network and off-chip
DRAM traffic

• Migrating-home ScC
Protocol (MH-ScC)
improve data locality

Before Home
Migration

Migrating
phase

After Home migration

Simulation results obtained in a 8-node cluster (SOR program)

With home migration,
each phase took much
less execution time.

Without home migration

(3) “Power Wall” Problem

• Computation costs much less energy than
moving data to and from the computation units

On-die network energy
consumption per bit

0.06pJ/bit (2020)

10% of the operands move over the
network (10 hops at 0.06pJ/bit) 35
watts of power over 50% of the
processor’s power budget.

• Bill Dally, Chief Scientist of nVIDIA
o 1 pJ for an integer operation
o 20 pJ for a floating-point operation
o 26 pJ to move an operand over 1mm of wire to

local memory
o 1 nJ to read an operand from on-chip memory

located at the far end of a chip
o 16 nJ to read an operand from off-chip DRAM

1000x

1600x picojoule (pJ) = 10−12  J
nanojoule (nJ) = 10−9 J

New Design Strategies (“Power Wall”)

32

• Stop moving so much data around
o Data Locality (Working Set) still critical!
o Distance-aware cache placement and home migration
o Migrating “code & state” instead of data

• Relatively easier in shared memory manycore
systems.

• MIT EM2 support hardware thread migration
o Adopt multikernel operating system (e.g., Barrelfish)

• Message passing among kernels to avoid un-
necessary NoC traffic

• Barrelfish : “Compact message cheaper than many
cache lines-- even on a cache-coherent machine.”

Crocodiles: Cloud Runtime with Object Coherence On
Dynamic tILES for future 1000-core tiled processors”
(HK GRF: 01/2013-12/2015)

D
R

A
M

 C
on

tr
ol

le
r

PCI-E

ZONE 2

ZONE 1

ZONE 3

ZONE 4

PCI-E

G
b

E

DRAM Controller

DRAM Controller

GbE

GbE

P
C

I-
E

D
R

A
M

 C
on

tr
ol

le
r

G
b

E
P

C
I-

E

……

Core’s Private DRAM

Global Shared DRAM

Message Passing Buffer

OS Kernel

System-wide Physical Memory

Core N: Private
DRAM

Core 1: Private
DRAM

core L1$

Messaging
Passing

Buffer (MPB)

Router

L2$

RAMRAM

RAMRAM

R
A

M
R

A
M

R
A

M
R

A
M

Multi-kernel OS

Kilo-core

Current Platform: INTEL 48-core SCC processor

Routers (R), memory controllers (MC), mesh interface units (MIU), cache
controllers (CC), front side bus (FSB). 45 nm CMOS technology, 1.3 billion
transistors.

16 KB MPB

• Condensing a data center into a single many-core chip
– “Zoning” (Spatial Partition)
– Multiple isolated zones Better performance isolation
– Mimic multitenant Cloud computing without time-

sharing VMs avoid context switching

(1) Cloud-on-Chip (CoC) Paradigm

Zone 1
(Memory- and I/O

intensive)

Zone 3
(Network
Intensive)

Zone 4 (Message Passing)

Resource-aware
Task Scheduling

Network/IO
Interface

DRAM

G
b

E

P
C

I-E

DRAM

Zone 2
(Memory-
intensive)

“Data Center on a Chip”

(2) Dynamic Zoning

• “Dynamic Zone Scaling”:
o Partitioning varies over time.
o On-demand scaling of resources (e.g., # of cores, DRAM,..)

for each zone.
o Fit well with the domain-based power management (e.g.,

Intel SCC)

Time

S
p

ace

(3) Software-Managed Cache Coherence:
JumpSCC
• Leverage programmable

on-chip memory (e.g.,
MPB on Intel SCC)

• Scope Consistency (ScC)
: minimizing on-chip
network and off-chip
DRAM traffic
o Existing systems using

ScC: Jiajia (1998),
Nautilus (1998), HKU
JUMP (1999), HKU
LOTS (2004), Godson-
T (2009).

JumpSCC: Hybrid Modes of Memory Sharing

• Data can be shared in a different way.
o Selectable on per-page basis

• Two modes available:
1. Shared Physical Memory (SPM)

• Intel SMC’s way
• All data kept as golden pages in shared DRAM
• Set MPBT to bypass L2 cache.
• Use write-through.
• Use CL1INVMB and flush WCB to ensure consistency

2. Distributed Shared Memory (DSM)
• For each user core, it will copy the golden page to a cached copy

in private DRAM upon page faults (due to memory protected).
• Use twin-and-diff technique to avoid false sharing between

multiple writers.

38

A New Memory Type

• Message Passing Buffer Type (MPBT)

• MPBT (or PMB) is a bit in page table entry

o We can map a chunk in off-chip DRAM as MPBT

o We can map a chunk in on-chip MPB as non-MPBT

o We can modify it at runtime

• MPBT tag only takes effect upon

o L1$ write miss (where to write: WCB or L2$)

o L1$ read miss (where to read: MEM or L2$)

o CL1INVMB (invalidate MPBT-tagged lines in L1$)

39

PMB (MPBT)

SCC Cache Behavior - Normal

40

address
translation

page table
(4KB pages)

32-bit virtual address

$L1

$L2

mesh interface unit
LUT

pages)

LUT
(16MB
pages)

normal

on cache miss, or WT

34-bit system address

32-bit physical address

on cache miss, or WT

PMB (MPBT)

SCC Cache Behavior - UnCached

41

address
translation

page table
(4KB pages)

32-bit virtual address

$L1

$L2

mesh interface unit
LUT

pages)

LUT
(16MB
pages)

normal

on cache miss, or WT

34-bit system address

32-bit physical addressUC

on cache miss, or WT

PMB (MPBT)

SCC Cache Behavior - MPBT

42

address
translation

page table

pages)

page table
(4KB

pages)

32-bit virtual address

$L1

$L2

mesh interface unit
LUT

pages)

LUT
(16MB
pages)

normal

on cache miss, or WT

34-bit system address

32-bit physical addressUC

WCB (32B)

on WCB fill, or
next write to another cache line

on cache miss, or WT

CL1INVMB

Alleviate the Memory Wall Problem
• Minimize DRAM access by exploiting the MPB space to store

data (programmer-hinted or profiler-guided)
• Now we have two datapaths:

1. DRAM → L2 → L1
2. DRAM → MPB → L1

• Example uses of MPB:
o Used to reduce cache pollution

• For sequential data access (data without reuse), manually
allocate buffer in MPB and copy the data from off-die DRAM to
MPB; then L2 cache won’t evict any cache lines and keep the
hottest data set.

o Used to cache data of “warm temperature”
• Warm data (long reuse distance) is secondary to hot data (short

one);
• Data of reuse distance > L2 capacity can still be read

within on-chip speed if read from MPB rather than from DRAM.
43

Copy →
Load →

Key:

Barrelfish OS

jump_init(int* argc, char***argv)

jump_malloc(size_t s)
jump_free(void* p)

jump_lock(int lock)
jump_unlock(int lock)
jump_barrier(void)

User
Interfaces

Mem pmap

Bench
logs, perf.
countersInit

spawn

Comm

Sync

IDC

lock
semaphore

jump_wtime()
uint64_t perf_ctr_value(int ctr_id)

send_msg_start(uint8_t to, struct jia_msg** msg)
send_msg_end(struct jia_msg* msg)
msg_wait_and_handle_next(void)
ack_recv_msg(void)

ImplementationModular Design

JumpSCC: System Design

• Built on top of Barrelfish OS as a user library

• Resemble traditional shared-memory programming

• Just a different set of malloc, lock, unlock (and barrier)

44

Global virtual address space (programmer’s view)

0
1
2

OS page table

mesh network

0
1
2

physical frames
(private memory)

physical frames
(private memory)

MC MC

… …

off-chip DRAMoff-chip DRAM

A B C D E F G

physical frames (shared memory)

H[D]

virtual
addresses

page control data
(library level)

A
B
C
D

SPM
SPM
DSM
DSM

invalid
RO

H[C]

C[C]

C[D]

H[B]H[A] H[E] H[F] H[G]

C[G]

C[F]

id mode state

E
F
G

SPM
DSM
DSM

RW
RO

id mode state

OS page table

key:
H[x] = home copy;
C[x] = cached copy

45

Page Remapping for Data Locality

• Programmer hint API:

o JIA_ATTR_FREQ_ACCESS: frequently accessed (read-write)

o JIA_ATTR_READONLY: frequently accessed (read-only)

o JIA_ATTR_SINGLE_WRITER: single writer

o JIA_ATTR_NOCACHE: non-cacheable (avoid cache pollution)

• System handling:

o JIA_ATTR_FREQ_ACCESS: copy golden page to private DRAM

o JIA_ATTR_READONLY: set to non-MPBT (make use of large L2 $)

o JIA_ATTR_SINGLE_WRITER:

• The writer sets to non-MPBT R/W; readers set to MPBT R/O.
• At sync pts, the writer flushes L2 cache by reading 256 KB data.

o JIA_ATTR_NOCACHE: set PTE to non-cacheable

46

Exploit L2 cache
(our protocol
ensures no
consistency issues)

Performance Benchmarking

• MalStone Benchmark
o Analysis of “drive-by exploits” in web site log files

• Graph 500 Benchmark
o Generation, compression and breadth-first search of large graphs

• Sorting (bucket-sort kernel)

• Miscellaneous compute kernels (skipped)

47

Malstone

48

0

1

2

3

4

5

6

7

8

9

1

2

4

8

16

32

64

128

256

512

1024

2048

1 2 4 8 16 32 48

R
at

io
 o

f S
P

M
/H

yb
ri

d

E
xe

cu
ti

on
 T

im
e

(s
ec

)

Core Count

SPM HYBRID SPM/HYBRID

Hybrid mode gives 6x
to 8x better

performance than
SPM mode.

• With the hybrid
memory model, the
pages mapped as
private page mode
(MPBT bit off) can
exploit L2 cache and
hence have augmented
the cache effect
enormously.

Graph 500
• On 48 cores, can reach 2.1x gain in hybrid mode over SPM;

o the BFS loop with certain data reuse (blacklist checks) contributes that.

49

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0

10

20

30

40

50

60
SP

M

H
yb

ri
d

SP
M

H
yb

ri
d

SP
M

H
yb

ri
d

SP
M

H
yb

ri
d

SP
M

H
yb

ri
d

SP
M

H
yb

ri
d

SP
M

H
yb

ri
d

1 2 4 8 16 32 48

G
ai

n

E
xe

cu
ti

on
 T

im
e

(s
ec

)

Core Count

step 3: BFS with blacklist check
step 2: graph construction
step 1: edge list generation

Scale = 16 (64K vertices)
edge factor = 16 (1M edges)

Graph 500: Scalability Analysis
• Step 3 (BFS) @ hybrid mode achieved 12x speedup.

• Step 3 @ SPM only 2.43x.

50

0.5

1

2

4

8

16

32

64

1 2 4 8 16 32 48

S
p

ee
d

u
p

 [
in

 lo
g2

 s
ca

le
]

Core Count

step1 (Hybrid)

step2 (Hybrid)

step3 (Hybrid)

step1 (SPM)

step2 (SPM)

step3 (SPM)

Step 3 (Hybrid): 12x

Step 1: Hybrid ≈ SPM

Step 2: Hybrid: SPM

Step 3 (SPM) : 2.43x.

Performance Counter Analysis

51

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

C
yc

le
s

SPM Hybrid

Vertices #: 64K
Edge #: 1M
Core #: 4
Black list size: 128KB

Fewer bus activities Fewer pipeline stallsLogarithmic
scale

Bucket Sort
• 12x better in hybrid mode than SPM alone

• Superlinear speedup observed in hybrid mode

o Augmented cache effect since L2$ not bypassed

52

0

2

4

6

8

10

12

14

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

1 2 4 8 16 32

G
ai

n

E
xe

cu
ti

on
 T

im
e

(s
ec

)
[l

og
2

sc
al

e]

Cores

SPM Hybrid SPM/Hybrid Ratio

0

50

100

150

200

250

300

350

400

1 2 4 8 16 32

S
p

ee
d

u
p

Cores

SPM

Hybrid

Performance Counter Analysis

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1E+10

1E+11

1E+12

ev
en

t c
ou

nt
s o

r c
lo
ck
 c
yc
le
s
[f
or
 (2

),
(7
),
(8
),
(9
)]

in
 lo
g
sc
al
e

1‐core 32‐core Hybrid 32‐core SPM 53

Hybrid mode saves many
read stalls and memory
bus traffic.

Zone-based DVFS Method for Power Saving

Energy normalized to values of 800M
The average energy saving is 35.68%, and the

average EDP reduction is 21.42%.

“Latency-aware Dynamic Voltage and Frequency Scaling on Many-core Architecture for Data-intensive
Applications”, CLOUDCOM-ASIA 2014

Significance of JumpSCC
• The first SVM for the Barrelfish OS
• Novel software CC system design:

o Exploit both private memory and shared memory efficiently
(selectively)

o Support two “coherence modes” (or memory models) concurrently on
a per-page basis

o Harness non-coherent L2 caches while others can’t

• Performance is 12% to 12 times better than Intel SMC.
• Three patents claimed:

1. A hybrid shared virtual memory system with adaptive page remapping for non-
cache-coherent many-core processors

2. A proactive scope consistency protocol tailored to many-core tiled processors
with programmable on-chip buffers

3. A location-aware k-way hash-based distributed on-chip page directory for tiled
CMPs

55

Conclusion

• GHz game is over Go for Manycore
o Processors parallelism is primary method of performance

improvement
• Coherency-, memory- and power-wall challenges in the

1000-core era are discussed.
• Software-managed Cache Coherence Support:

o Transfer the burden of cache coherence from hardware to software, while
preserving hardware support for remote cache accesses.

o On-chip programmable memory like MPB enable customizable or
programmable on-chip activities.

• Power efficiency is the key challenge (flops/watt)
“DON’T MOVE THE DATA!”

Thanks!

C.L. Wang’s webpage:
http://www.cs.hku.hk/~clwang/

For more information:

