When HPC meets Big Data in the Cloud
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Big Data: The “4Vs" Model

High Volume (amount of data)

High Velocity (speed of data in and out)

High Variety (range of data types and sources)
High Values : Most Important

- By 2015, nearly Everyday business
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Google Trend: (12/2012)
Big Data vs. Data Analytics vs. Cloud Computing
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 McKinsey Global Institute (MGI) :
— Using big data, retailers could increase its operating margin by more than 60%.
— The U.S. could reduce its healthcare expenditure by 8%

— Government administrators in Europe could save more than €100 billion ($143
billion).



Google Trend: 12/2013
Big Data vs. Data Analytics vs. Cloud Computing
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Outline

* Part I: Multi-granularity Computation Migration
"A Computation Migration Approach to Elasticity of Cloud
Computing“ (previous work)
e Part II: Big Data Computing on Future Maycore Chips
o Crocodiles: Cloud Runtime with Object Coherence On Dynamic tILES

for future 1000-core tiled processors” (ongoing)



Partl

Multi-granularity
Computation
Migration

Source: Cho-Li Wang, King Tin Lam and Ricky Ma, "A Computation Migration
Approach to Elasticity of Cloud Computing", Network and Traffic Engineering in
Emerging Distributed Computing Applications, IGI Global, pp. 145-178, July, 2012.
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Multi-granularity Computation Migration

Granularity Migration Technique (System) Target System Type (Area)
Cloud, cloudlet, mobile
— Frame level Stack-on-demand (SODEE) network (WAN/LAN)
— Thread level Thread migration (JESSICAZ) Cluster {LAN)
) Orocess level Process migration (G-JavaMPl) Grid (WAN/LAN)

Live YM migration (Xen) Cluster (LAN)

Cloud, p2p/desktop cloud
(WAN)

I wmm{

Wide-area live YM migration {WAWVNet)

Granularity

A

Coarse

WAVNet Desktop Cloud

Fine

~System scale
"~ (Size of state)

Small Large



(1) WAVNet: Live VM Migration over WAN

® A P2P Cloud with live VM migration over WAN
. “Virtualized LAN” over the Internet”

® High penetration via NAT hole punching
. Establish direct host-to-host connection

Free from proxies, able to traverse most NATs

Key Members
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Zheming Xu, Sheng Di, Weida Zhang, Luwei Cheng, and Cho-Li Wang, WAVNet: Wide-Area Network Virtualization
Technique for Virtual Private Cloud, 2011 International Conference on Parallel Processing (ICPP2011)



WAVNet: Live VM Migration over WAN

o Experiments at Pacific Rim Areas
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StoryTelling@Home on WAVNet

Key functions: story upload, story search, and
listening online (streaming/downloading)

wmeoe @ bitcoin

ACCEPTED HERE

whyhsis s Waiy | |k oy el | | sy puas puiis |

List of recent stories

List of the stories from yourself

Prototyped by Eric Wu, Queena Fung
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(2) JESSICA2 : Thread Migration on Clusters | Singe
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—
History and Roadmap of JESSICA Project

JESSICA V1.0 (1996-1999)
— Execution mode: Interpreter Mode
— JVM kernel modification (Kaffe JVM)

— Global heap: built on top of TreadMarks (Lazy Release
Consistency + homeless)

JESSICA V2.0 (2000-2006)
— Execution mode: JIT-Compiler Mode
— JVM kernel modification
— Lazy release consistency + migrating-home protocol

JESSICA V3.0 (2008~2010)

— Built above JVM (via JVMTI) =
— Support Large Object Space r m !;_! ! .
JESSICA V.4 (2010~) King; Tin .|_AM‘,L. Chenggang Zhang
— Japonica : Automatic loop parallization and A Sl T —A
speculative execution on GPU and multicore CPU.

Handle dynamic loops with runtime
dependency checking

Download JESSICA=2: Kinson Chan Ricky Ma
http://i.cs.hku.hk/~clwang/projects/JESSICA2.html 12



(3) Stack Migration: “Stack-on-Demand” (SOD)
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SoD enabled the “Software Defined” Execution Model

Node 1 Node 2 Node 1 Node 2 Node 3 Node 1 Node 2 Legends:
¢ [] stack frame 1
ts s [  Stack frame 2
1 1 1 Bl Stack frame 3
S N
[ Ieml o 1 i Stack with stack
2¢ 2¢ / 2 * frame 1,2, 3
3 1 2' ._ e —»  Migration
V- 3 I Execution
=] ol W
l N D In execution
Start and end
5 ‘ 4 4 TS ol fime
(a) (b) (c)
(a) “Remote Method (b) Thread migration (c) “Task Roaming” or
Call” “Workflow”

With such flexible or composable execution paths, SOD
enables agile and elastic exploitation of distributed
resources (storage) - Exploit Data Locality in Big Data
Computing !
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SOD : Face Detection on Cloud

ADDS capture time | transfer time restore time total migration
pp (ms) (ms) (ms) latency (ms)
FaceDetect 103 155 7 265

Stack frame 4

Stack frame 4

Stack frame 3

Stack frame 2

Stack frame 1

Migration from mobile devices to cloud node 15




SOD: “Mobile Spider” on iPhone

Bandwidth | Capture | Transfer | Restore | Migration - -
(kbps) timg (ms)|time (ms) |time (ms) timge (ms) I\/Illgratlon from
50 14 | 1674 | 40 1729 ?nz‘;ﬂ;'ggsigs
128 13 1194 50 1040
384 14 728 29 772
764 14 672 31 717 A photo sharing

Size of class file and state data = 8255 bytes
(with Wi-Fi connection)

Cloud service

A search task
IS created.

Web server

Stack frame is then

HTML files
with photo er

Search

: results are \4
The task searches for photos returned 6

available in the specific directory
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Ricky K. K. Ma, King Tin Lam, Cho-Li Wang, "eXCloud: Transparent Runtime Support for Scaling Mobile Applications," 2011 IEEE
International Conference on Cloud and Service Computing (CSC2011) (Best Paper Award)
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“JESSICA on Cloud”: VM Migration + Thread Migration
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Comparison of Migration Overhead
Migration overhead (MO)

= execution time w/ migration — execution time w/o migration

SOD on Xen JESSICA2 on Xen G-JavaMPI on Xen JDK on Xen
Sys|  (Stack mig.) (Thread mig.) (Process mig.) (VM live mig.)

Exec. time (sec) MO Exec. time (sec) MO Exec. time (sec) MO Exec. time (sec) MO
App ) | (ms) , | (ms) _ | (ms) . _ | (ms)

w/ mig | w/o mig w/ mig | w/o mig w/ mig | w/o mig w/ mig |w/o mig
Fib 12.77 | 12.69 | 83 | 47.31 | 47.21 | 96 16.45 12.68 | 3770 | 13.37 | 12.28 | 1090
NQ 7.72 7.67 49 | 3749 | 37.30 [ 193 | 7.93 7.63 299 | 8.36 7.15 | 1210
TSP 3.59 3.58 13 | 1954 | 1944 | 96 3.67 3.59 84 4.76 3.54 | 1220
FFT 10.79 | 10.60 | 194 | 253.63 | 250.19 (3436 | 15.13 10.75 | 4379 | 12.94 | 10.15 | 2790

SOD has the smallest migration overhead : ranges from 13ms to

194ms under Gigabit Ethernet

Frame (SOD): Thread : Process : VM =1:3:10 : 150

19




Part 11

Big Data Computing on Future
Maycore Chips

Crocodiles: Cloud Runtime with
Object Coherence On Dynamic tILES
for future 1000-core tiled processors’
(1/2013-12/2015, HK GRF)

9



The 1000-Core Era

* Experts predict that by the end of the decade we could have as many
as 1000 cores on a single die (S. Borkar, “Thousand core chips: a
technology perspective”)

* International Technology Roadmap for Semiconductors
(ITRS) 2011 forecast:

o By 2015: 450 cores

o By 2020: 1500 cores

* Why 1000-core chip ?
o Densely packed servers cluster - Cloud Data Center in a Chip

o Space efficiency + Power Efficiency (Greener)



B

Tiled Manycore Architectures

arcl\lf::eroct:ue # of cores Nﬁ%%k Collje/rzl ce Li$/core |L2$/core| L3$ :OZLT;;
Re:‘:::flr I();lip 831(1150 (2]5)6%132) No 5KB | 256KB | NA 3ﬂ§$§1§§d
Mlgz (‘:‘:)AC (sil::];’; = 2b lfgfs'ical) Yes NA NA NA NA

M(ZI(;;E;\;P 110 2D Mesh Sznf:iggd 8%32 NA NA 2
mS:ﬂe(-z%h;g) 48 (1.0 GHz) (2511)21:;7:) No | sx8 (1?15361\;;133) Nil 4
Tﬂe-;r;i)lce(r:oog) 1(();(;1(:)5 (zlz)ol\cd;sl;) Yes 64KB | 256KB (:116:::(31) 4
(F(:,‘z;d:?:;fl) 64 (L0GHz) | 2D Mesh Yes 32KB 1162:12;:1 Nil 4

All adopted tile-based architecture: Cores are connected through a 2D
network-on-a-chip
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Tileg Manycore Architectures
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The Software Crisis 1n 1000-core Era

d New Challenges

1. “Off-chip Memory Wall” Problem
2. “Coherency Wall” Problem
3. “Power Wall” Problem

d Moving towards a parallelism with 1,000 cores
requires a fairly radical rethinking of how to
design system software.

e What we have done:

d Developed a scalable OS-assisted shared virtual
memory (SVM) system on a multikernel OS (Barrelfish)
on the Intel Single-chip Cloud Computer (SCC) which
represents a likely future norm of many-core non-
cache-coherent NUMA (NCC-NUMA) processor.

0 A “zone-based” dynamic voltage and frequency scaling
(DVFS) method for power saving

24



(1) “Off-chip Memory Wall” Problem

o DRAM performance (latency) improved slowly over the past 40 years.

1,000

100,000

10,000

CPU

100

1,000

100

Relative

=
(==

10

CPU Clocks/DRAM Latency

=

1

1980 1980 2000 2010 1980 1990 2000 2010

(a) Gap of DRAM Density & Speed (b) DRAM Latency Not Improved

Memory density has doubled nearly every two years,
while performance has improved slowly - Eliminating
most of the benefits of processor improvement

Source: Shekhar Borkar, Andrew A. Chien, "The Future of Microprocessors”, Communications of ACM,
Vol. 54 No. 5, Pages 67-77 , May 2011.



(1) “Off-chip Memory Wall” Problem

e Smaller per-core DRAM bandwidth

o Intel SCC:only 4 DDR3 memory controllers 2 not scale with the
increasing core density
o 3D stacked memory (TSV technology) helps ?

DRAM

DRAM

DIMM
DIMM

DRAM DRAM

DIMM
DIMM
J

| SCC die

26



New Design Strategies (Memory-Wall)

Data locality (working set) getting more critical!
* Stop multitasking

o Context switching breaks data locality
o Space Sharing instead of Time Sharing

* “NoVM?” : (or Space-sharing VM)

o No support of VM because of weaker cores (1.0-1.5 GHz)

o “Space Sharing” as we have many cores.

e Others

o Maximize the use of on-chip memory (e.g., MPB in SCC)
o Compiler or runtime techniques to improve data reuse (or

increase arithmetic intensity) 2 temporal locality becomes
more critical

27
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(2): “Coherency Wall” Problem

Overhead of enforcing cache coherency across 1,000 cores at
hardware level will put a hard limit on scalability:

.. Die space overhead:

e Cache directory; read/write log increase

 200% overhead for storing the 1000 presence-bits 2>128-
byte directory vs. 64-byte cache line

». Performance overhead:

 20% more traffic per miss than a system with caches
but not coherence (e.g., locate other copies at hierarchical
directories; issue invalidations to ALL sharers)

3. Not always needed:

 Only 10% of the application memory references
actually require cache coherence tracking (Nilsson, 2003)

Why On-Chip Cache Coherence is Here to Stay
http://research.cs.wisc.edu/multifacet/papers/cacm2012_coherence_nearfinal.pdf
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(2): “Coherency Wall” Problem

4. Verification complexity and extensibility:

 Multiple copies AND multiple paths through
network - require to avoid deadlock, livelock,
starvation due to subtle races and many transient states.

5. Energy overhead:

 Unnecessary data movement and replication
consumes extra energy consumption on network and
cache resources (Kurian ISCA13);

* Snoop-related cache activities can contribute up to 40%
of the total cache power (Ekman 2002, Loghi 2005)

Intel’s SCC and Teraflops Research Chip decided to give up coherent
caches. (History repeats itself : NCC-NUMA in 1990s: Cray T3D/ T3E)



(“Coherency Wall” )

New Design Strategies

With home migration,

each phase took much
less execution time.

Software-managed cache
coherence
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(3) “Power Wall” Problem

* Computation costs much less energy than
moving data to and from the computation units

1,000

10% of the operands move over the On-die network energy per bit
network (10 hops at 0.06pJ/bit) > 35 w0 [N

watts of power = over 50% of the 5 L \\ o
processor’s power budget. =

0.1

] I. llllllllllllll Famam m

* Bill Dally, Chief Scientist of nVIDIA 0ol
1 pJ for an integer operation
o 20 pd for a floating-point operation On-die network energy
100X, 26 pJ to move an operand over 1mm of wire to consumption per bit
local memory
o 1nJ toread an operand from on-chip memory
160Q0X 1ocated at the far end of a chip
o 16 nJ to read an operand from off-chip DRAM

D.5u 0.18u B5nm 22nm gnm

picojoule (pJ) =1072 J
nanojoule (nJ) = 1079J
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New Design Strategies (“Power Wall”)

* Stop moving so much data around
o Data Locality (Working Set) still critical!
o Distance-aware cache placement and home migration
o Migrating “code & state” instead of data

* Relatively easier in shared memory manycore
systems.

« MIT EM?2 support hardware thread migration
o Adopt multikernel operating system (e.g., Barrelfish)

 Message passing among kernels to avoid un-
necessary NoC traffic

* Barrelfish : “Compact message cheaper than many

mmm#)\ cache lines-- even on a cache-coherent machine.”
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Crocodiles: Cloud Runtime with Object Coherence On
Dynamic tILES for future 1000-core tiled processors”
(HK GRF: 01/2013-12/2015)
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Routers (R), memory controllers (MC), mesh interface units (MIU), cache
controllers (CC), front side bus (FSB). 45 nm CMOS technology, 1.3 billion

transistors.



—

(1) Cloud-on-Chip (CoC) Paradigm

« Condensing a data center into a single many-core chip

—  “Zoning” (Spatial Partition)

— Multiple isolated zones - Better performance isolation

— Mimic multitenant Cloud computing without time-
sharing VMs - avoid context switching

Resource-aware
Task Scheduling

“Data Center on a Chip”

Zone 3 Network/IO

(Network Interface
Intensive




° “Dynamic Zone Scaling”:
o Partitioning varies over time.

o On-demand scaling of resources (e.g., # of cores, DRAM,..)
for each zone.
o Fit well with the domain-based power management (e.g.,

Intel SCC)
‘coccccee) (@
00000000
00000000
00000000
00000000
00000000
b

E -
B Router E Tile



(3) Software-Managed Cache Coherence:
JumpSCC

Leverage programmable
on-chip memory (e.g.,
MPB on Intel SCC)
Scope Consistency (ScC)
: minimizing on-chip
network and off-chip
DRAM traffic
o Existing systems using
ScC: Jiajia (1998),
Nautilus (1998), HKU
JUMP (1999), HKU
LOTS (2004), Godson-
T (2009).
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JumpSCC: Hybrid Modes of Memory Sharing

e Data can be shared in a different way. \"’
o Selectable on per-page basis \ l
wv W

* Two modes available: HUAWEI
1. Shared Physical Memory (SPM)
o Intel SMC’s way

All data kept as golden pages in shared DRAM
Set MPBT to bypass L2 cache.

Use write-through.

Use CL1INVMB and flush WCB to ensure consistency
2. Distributed Shared Memory (DSM)

» For each user core, it will copy the golden page to a cached copy
in private DRAM upon page faults %due to memory protected).

» Use twin-and-diff technique to avoid false sharing between
multiple writers.

38
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* Message Passing Buffer Type (MPBT)

* MPBT (or PMB) is a bit in page table entry
o We can map a chunk in off-chip DRAM as MPBT
o We can map a chunk in on-chip MPB as non-MPBT
o We can modify it at runtime

e MPBT tag only takes effect upon

o L1$ write miss (where to write: WCB or L2$)
o L1$ read miss (where to read: MEM or L2$)
o CL1INVMB (invalidate MPBT-tagged lines in L1$)
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SCC Cache Behavior - Normal

32-bit virtual address

address page table
translation (4KB pages)

normal
32-bit physical address
PAGE TABLE
) s

[ $L1

on cache miss, or W1

T

on cache mi#s, or W1

‘i' LUT
[ mesh interface unit (16MB

v

34-bit system address

PRESENT

WRITABLE
USER
WRITE -THROUGH
CACHE DISABLE
ACCESSED
DIRTY
AVAILABLE FOR SYSTEMS PROGRAMMER USE 1

NRRTNENBENRR SIS NBERT NS

PAGE FRAME ADDRESS 31.12 AVAIL

Y

PMB (MPBT)

X X 1 MPBT

Table 12. Memory Type Determined by PCD, PWT, and PMB
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SCC Cache Behavior - UnCached

32-bit virtual address

¥

address
translation

page table ]
(4KB pages)

UcC!| normal 32-bit physical address

$L1 ]

$L2 J

on cache mi#s, or W1

2R’

[

PRESENT

WRITABLE
USER
WRITE -THROUGH
CACHE DISABLE
ACCESSED
DIRTY
AVAILABLE FOR SYSTEMS PROGRAMMER USE 1

NRRTNENBENRR SIS NBERT NS

PAGE TANLE PAGE FRAME ADDRESS 31.12 AVAL
1Y
on cache miss, or WT
, PMB (MPBT)

EUT
mesh interface unit (16MB

v

34-bit system address

PCD PWT PMB Memory Type
0 0 WB

X X 1 MPBT

Table 12. Memory Type Determined by PCD, PWT, and PMB
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SCC Cache Behavior - MPBT

32-bit virtual address PRESENT
WRITABLE
USER
¢ WRITE-THROUGH
address ¢ pag E’EEE&%‘ .
[ translation (4KB\ DIRTY
pages) AVAILABLE FOR SYSTEMS PROGRAMMER USE 1
UC| normal 32-bit physical address T I T T T T T I T T T L LT
Y e E:('L}ngr PAGE FRAME ADDRESS 11.12 AVAIL : ;:- uw P
[ $L1 ](— CL1INVMB o1
L LY
on cache miss, or WT PMB (MPBT)
[ $L2 | WCB (32B) |
on cache miss, or WT on WCH L, or PCD | PWT | PMB Memory Type
= m= == == == : nextwrite to angther cache line 0 0 WB

0
ﬂ ¢ ¢ 0 1 0 WT
LUT 1 0 0 uc
[ mesh interface unit (16MB mn

v

34-bit system address
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Alleviate the Memory Wall Problem

* Minimize DRAM access by exploiting the MPB space to store

data (programmer-hinted or profiler-guided)

* Now we have two datapaths:
1. DRAM — L2 — 11

Key:
2. DRAM — MPB — L1 C
0
e Example uses of MPB: LoIa)(}i] :

o Used to reduce cache pollution

* For sequential data access (data without reuse), manually
allocate buffer in MPB and copy the data from off-die DRAM to
MPB; then L2 cache won’t evict any cache lines and keep the
hottest data set.

o Used to cache data of “warm temperature”

¢ Warm data (long reuse distance) is secondary to hot data (short
one);

 Data of reuse distance > L2 capacity can still be read
within on-chip speed if read from MPB rather than from DRAM.
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JumpSCC: System Design

Built on top of Barrelfish OS as a user library

* Resemble traditional shared-memory programming

* Just a different set of malloc, lock, unlock (and barrier)

N

, Jump_init(int* argc, char***argv) )
Sync o Bench | | J
och Jump_malloc(size_t s)
Init Conny Semaphore \jump_free(void* p) !
ni counters
IDC (jump_lock(int lock) h User
jJump_unlock(int lock) Interfaces
jump_barrier(void
Mem " pmap >  dure barcter R .
% Jump_wtime()
uint64_t perf_ctr_value(int ctr_id) | J
(. J
send_msg_start(uint8_t to, struct jia _msg** msg)
send_msg_end(struct jia msg* msqg)
BarrelﬁSh OS J: msg_wait_and_handle_next(void)
ack _recv_msg(void)
\ J \ J
) 4 ) 4
Modular Design Implementation

44



virtual
addresses

physical frames (shared memory)

—————
1 1
1 1
1 1
1 1
1
1
1
1
—————
1

-

1
1
——
1
1
1
1
—————
1
1
1
1
—————
1 1

_ 1
A,

1 1
———
1 1
1 1
1 1
1 1
P

1 1
1 1
1 1
1 1
P

1

1

1

1

P

1

1

1

1

H[D]

page control data

mode| state

(library level)

DSM |invalid
DSM RO

= _—»CIDJ<———-

1= = N B ,
2

T T

-- ~l~

mode

state

SPM

DSM

Q=

DSM

key:
H[x] = home copy;
C[x] = cached copy

mesh network
o ]
.+ +r °r 1 |
o ]
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Page Remapping for Data Locality

* Programmer hint API:
o JIA_ATTR_FREQ_ACCESS: frequently accessed (read-write)  —

Exploit L2 cache
o JIA_ATTR_READONLY: frequently accessed (read-only) L (our protocol
ensures no
o JIA_ATTR_SINGLE_WRITER: single writer consistency issues)

o JIA_ATTR_NOCACHE: non-cacheable (avoid cache pollution)

* System handling:
o JIA_ATTR_FREQ_ACCESS: copy golden page to private DRAM
o JIA_ ATTR_READONLY: set to non-MPBT (make use of large L2 $)

o JIA_ ATTR_SINGLE_WRITER:

e The writer sets to non-MPBT R/W; readers set to MPBT R/O.
» At sync pts, the writer flushes L2 cache by reading 256 KB data.

o JIA_ ATTR_NOCACHE: set PTE to non-cacheable
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Performance Benchmarking

e MalStone Benchmark

o Analysis of “drive-by exploits” in web site log files

e Graph 500 Benchmark

o Generation, compression and breadth-first search of large graphs

* Sorting (bucket-sort kernel)

* Miscellaneous compute kernels (skipped)
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Execution Time (sec)

Malstone

2048

1024 -
512 -
256 -
128 -
64 -
32

16 -

, T

P 2

Rl Y ——

L 4

T
N

Core Count

s SPM mmm HYBRID  =#=SPM/HYBRID

[iLLL

o N

(S)]
Ratio of SPM/Hybrid

Hybrid mode gives 6x
to 8x better

performance than

SPM mode.

e

o]

w

N

=

o

* With the hybrid
memory model, the
pages mapped as
private page mode
(MPBT bit off) can
exploit L2 cache and
hence have augmented
the cache effect
enormously.
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Graph 500

®* On 48 cores, can reach 2.1x gain in hybrid mode over SPM;

o the BFS loop with certain data reuse (blacklist checks) contributes that.

60 2.6

u step 3: BFS with blacklist check - 2.4
m step 2: graph construction L 5o

m step 1: edge list generation L,
/ - 1.8

- 1.6
- 14,
Scale = 16 (64K vertices) i
edge factor = 16 (1M edges)

(9}
o
]

AN
o
1

m

Ga

-1

Execution Time (sec)
N w
S o
l l

- 0.8
- 0.6
10 - - 0.4
- 0.2
. = = = = = = = [ ©
=Z §X E: EZ 5F B: 2%
an ani ani an! ani ani an!
1 2 4 8 16 32 48

Core Count 49



Graph 500: Scalability Analysis

* Step 3 (BFS) @ hybrid mode achieved 12x speedup.

* Step 3 @ SPM only 2.43x.

Speedup [in log2 scale]

64

32

16

/_ Step 1: Hybrid = SPM

—o—step1 (Hybrid)
I'ld): 12X  —m—step2 (Hybrid)

—#—step3 (Hybrid)
—>=step1 (SPM)

=#=step2 (SPM)
—0—step3 (SPM)

N (== Step 3 (SPM) : 2.43x.

\
\
\
\

AN

Step 2: Hybrid: SPM

1 2 4 8 16 32 48
Core Count
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Performance Counter Analysis

Logarithmic

scale
&1LO0E+10 .

Fewer bus activities Fewer pipeline stalls Vertices #: 64K

Edge #: 1M

Core #: 4

Black list size: 128KB
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Bucket Sort

—

12x better in hybrid mode than SPM alone

® Superlinear speedup observed in hybrid mode

= N AN ©

o Augmented cache effect since L2$ not bypassed

: I | A
_ /
_ / '

Cores

mmm SPM = Hybrid —#—SPM/Hybrid Ratio

14

12

10

8

Gain

Speedup
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200
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100

50

T =—e=SPM

+ -—#=Hybrid

52



event counts or clock cycles [for (2), (7), (8), (9)] in log scale

Performance Counter Analysis
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[ \ read stalls and memory
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Zone-based DVFS Method for Power Saving

mm 800M wmmm DVFS —@—%_improved

14 70
@ 12 60
MCPC g 1 o 1
5 08 - 0 3
@ 30 a
5 067 20 E
Phase E 04 10
Profiling s 02+ 0
0 10
Power $
Monitor 6“‘9
& ¢
_EE | Energy normalized to values of 800M
Fihernet The average energy saving is 35.68%, and the
average EDP reduction is 21.42%.
core21
coreld -
corel5 -
corel? -
core9 3
coreb )
core3 ]
coreQ
0 10 20 30 40 50 Time(S) 60 70 80 90 100 110 120

“Latency-aware Dynamic Voltage and Frequency Scaling on Many-core Architecture for Data-intensive
Applications”, CLOUDCOM-ASIA 2014



Significance of JumpSCC

* The first SVM for the Barrelfish OS
* Novel software CC system design:

o Exploit both private memory and shared memory efficiently
(selectively)

o Support two “coherence modes” (or memory models) concurrently on
a per-page basis

o Harness non-coherent L2 caches while others can’t

* Performance is 12% to 12 times better than Intel SMC.
* Three patents claimed:

1. A hybrid shared virtual memory system with adaptive page remapping for non-
cache-coherent many-core processors

. A proactive scope consistency protocol tailored to many-core tiled processors
with programmable on-chip buffers

5. Alocation-aware k-way hash-based distributed on-chip page directory for tiled

CMPs
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Conclusion

* GHz game is over-> Go for Manycore

o Processors parallelism is primary method of performance
improvement

* Coherency-, memory- and power-wall challenges in the
1000-core era are discussed.
* Software-managed Cache Coherence Support:

o Transfer the burden of cache coherence from hardware to software, while
preserving hardware support for remote cache accesses.

o On-chip programmable memory like MPB enable customizable or
programmable on-chip activities.

* Power efficiency is the key challenge (flops/watt) 2>
“DON’T MOVE THE DATAI!”



Thanks!

For more information:

C.L. Wang’s webpage:

htt

n://www.cs.hku.hk/~clwang/




