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Big Data: The “4Vs" Model
• High Volume (amount of data) 
• High Velocity (speed of data in and out)
• High Variety (range of data types and sources)
• High Values : Most Important

2.5 x 1018

2010: 800,000 
petabytes  (would 
fill a stack of DVDs 
reaching from the 
earth to the 
moon and back)

By 2020, that pile 
of DVDs would 
stretch half way to 
Mars.



Google Trend: (12/2012) 
Big Data vs. Data Analytics vs. Cloud Computing

Cloud 
Computing

Big Data

12/2012

• McKinsey Global Institute (MGI) :
– Using big data, retailers could increase its operating margin by more than 60%. 
– The U.S. could reduce its healthcare expenditure by 8%
– Government administrators in Europe could save more than €100 billion ($143 

billion).



Google Trend: 12/2013
Big Data vs. Data Analytics vs. Cloud Computing

“Big Data” in 2013



Outline

• Part I: Multi-granularity Computation Migration

o "A Computation Migration Approach to Elasticity of Cloud 

Computing“ (previous work)

• Part II: Big Data Computing on Future Maycore Chips

o Crocodiles: Cloud Runtime with Object Coherence On Dynamic tILES

for future 1000-core tiled processors” (ongoing)



Part I

Multi-granularity 
Computation 
Migration

Source: Cho-Li Wang, King Tin Lam and Ricky Ma, "A Computation Migration 
Approach to Elasticity of Cloud Computing", Network and Traffic Engineerin g in 
Emerging Distribute d Computing Applicatio ns, IGI Global,  pp. 145-178, July, 2012. 

Big Data

Too Big To Move



Multi-granularity Computation Migration
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(1) WAVNet: Live VM Migration over WAN 
 A P2P Cloud with live VM migration over WAN

 “Virtualized LAN” over the Internet”

 High penetration via NAT hole punching
 Establish direct host-to-host connection
 Free from proxies, able to traverse most NATs
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VM

VM

Key Members

Zheming Xu, Sheng Di, Weida Zhang, Luwei Cheng, and Cho-Li Wang, WAVNet: Wide-Area Network Virtualization 
Technique for Virtual Private Cloud, 2011 International Conference on Parallel Processing (ICPP2011)



WAVNet: Live VM Migration over WAN 
o Experiments at Pacific Rim Areas
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StoryTelling@Home on WAVNet
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Web 
Application

Glassfish

Streaming 
Server

Derby 
Database

VM (Xen)

Key functions: story upload, story search, and 
listening online (streaming/downloading)

Prototyped by Eric Wu, Queena Fung
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Thread Migration

JESSICA2
JVM

A Multithreaded Java 
Program

JESSICA2
JVM

JESSICA2
JVM

JESSICA2
JVM

JESSICA2
JVM

JESSICA2
JVM

Master Worker WorkerWorker

JIT Compiler 
Mode

Portable Java Frame

Java
Enabled
Single
System
Image
Computing
Architecture

(2) JESSICA2 : Thread Migration on Clusters

Thread Migration 
on Cluster



History and Roadmap of JESSICA Project
• JESSICA V1.0 (1996-1999)

– Execution mode: Interpreter Mode
– JVM kernel modification (Kaffe JVM)
– Global heap: built on top of TreadMarks (Lazy Release 

Consistency + homeless)
• JESSICA V2.0 (2000-2006)

– Execution mode: JIT-Compiler Mode
– JVM kernel modification
– Lazy release consistency + migrating-home protocol

• JESSICA V3.0 (2008~2010)
– Built above JVM (via JVMTI)
– Support Large Object Space 

• JESSICA v.4 (2010~)
– Japonica : Automatic  loop parallization and 

speculative  execution on GPU and multicore CPU. 
Handle dynamic loops with  runtime 
dependency checking
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King Tin LAM,

Ricky MaKinson Chan 

Chenggang Zhang 

Past Members

Download JESSICA2: 
http://i.cs.hku.hk/~clwang/projects/JESSICA2.html



(3) Stack Migration: “Stack-on-Demand” (SOD)

Mobile node

Program 
Counter

Method Area

Heap Area

Stack frame A

Method 
Area

Heap 
Area 
Rebuilt

Stack frame A

Stack frame A

Method

Cloud node

objects

Local variables

Local variables

Local variables

Stack frame B

Object (Pre-)fetching

Program 
Counter

Program 
Counter
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(a) “Remote Method 
Call”

(b) Thread migration (c) “Task Roaming” or 
“Workflow”

With such flexible or composable execution paths, SOD 
enables agile and elastic exploitation of distributed 
resources (storage)  Exploit Data Locality in Big Data 
Computing ! 

SoD enabled the “Software Defined” Execution Model



SOD : Face Detection on Cloud

apps capture time 
(ms)

transfer time 
(ms)

restore time 
(ms)

total migration 
latency (ms)

FaceDetect 103 155 7 265
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exception
Stack frame 3

Stack frame 2

Stack frame 1

Stack frame 4

Stack frame 4

OpenCV

Migration from mobile devices to cloud node

Chen
Polin

Francis

Roy
Zoe

Wenzhang

Anthony

Tianche

Sun Ninghui



SOD: “Mobile Spider” on iPhone
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Stack frame is then 
migrated to iPhone.

A search task 
is created.

User 
sends a 
request

The task searches for photos 
available in the specific directory

Search 
results are 
returned

HTML files 
with photo 

links is 
returned

Bandwidth 
(kbps)

Capture 
time (ms)

Transfer 
time (ms)

Restore 
time (ms)

Migration 
time (ms)

50 14 1674 40 1729 
128 13 1194 50 1040 
384 14 728 29 772 
764 14 672 31 717 

Size of class file and state data = 8255 bytes
A photo sharing 
Cloud service

(with Wi-Fi connection)

Migration from 
cloud node to 
mobile devices



Xen VM

JVM

Xen-aware host OS

guest OS

Xen VM

JVM

guest OS

Desktop PC

Overloaded

Load 
balancer

Cloud service 
provider

Thread 
migration

(JESSICA2)

Internet

Live migration

Load 
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comm.

JVM

Stack-on-demand (SOD)

Mobile 
client

iOS

Stack 
segments

Partial 
Heap

Method 
Area

Code

Small 
footprint

Stacks Heap

JVM process

Method 
Area

Code

… …

Multi-thread 
Java process

trigger live 
migration

duplicate VM instances 
for scaling

eXCloud : Integrated 
Solution for Multi-

granularity Migration

Ricky K. K. Ma, King Tin Lam, Cho-Li Wang, "eXCloud: Transparent Runtime Support for Scaling Mobile Applications," 2011 IEEE 
International Conference on Cloud and Service Computing (CSC2011)  (Best Paper Award)
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63 VMs on 11 hosts

“JESSICA on Cloud”: VM Migration + Thread Migration
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Comparison of Migration Overhead

SOD has the smallest migration overhead : ranges from 13ms to
194ms under Gigabit Ethernet

Frame (SOD): Thread : Process : VM = 1 : 3 : 10 : 150 

Sys

App

SOD on Xen
(Stack mig.)

JESSICA2 on Xen
(Thread mig.)

G-JavaMPI on Xen
(Process mig.)

JDK on Xen
(VM live mig.)

Exec. time (sec) MO
(ms)

Exec. time (sec) MO
(ms)

Exec. time (sec) MO
(ms)

Exec. time (sec) MO
(ms)

w/ mig w/o mig w/ mig w/o mig w/ mig w/o mig w/ mig w/o mig

Fib 12.77 12.69 83 47.31 47.21 96 16.45 12.68 3770 13.37 12.28 1090

NQ 7.72 7.67 49 37.49 37.30 193 7.93 7.63 299 8.36 7.15 1210

TSP 3.59 3.58 13 19.54 19.44 96 3.67 3.59 84 4.76 3.54 1220

FFT 10.79 10.60 194 253.63 250.19 3436 15.13 10.75 4379 12.94 10.15 2790

Migration overhead (MO) 
= execution time w/ migration – execution time w/o migration



Part II
Big Data Computing on Future 
Maycore Chips

Crocodiles: Cloud Runtime with 
Object Coherence On Dynamic tILES
for future 1000-core tiled processors” 
(1/2013-12/2015, HK GRF)



The 1000-Core Era

• Experts predict that by the end of the decade we could have as many 

as 1000 cores on a single die  (S. Borkar, “Thousand core chips: a 

technology perspective”)

• International Technology Roadmap for Semiconductors 

(ITRS) 2011 forecast: 
o By 2015: 450 cores

o By 2020: 1500 cores

• Why 1000-core chip ?
o Densely packed servers cluster  Cloud Data Center in a Chip

o Space efficiency + Power Efficiency (Greener)



Tiled Manycore Architectures 

All adopted tile-based architecture: Cores are connected through a 2D 
network-on-a-chip



Tilera Tile-Gx100 (100 64-bit cores) 
Adapteva’s Parallella: 64 cores for $199

Intel Knights Landing processor (2014/15)Intel’s 48-core Single-chip Cloud 
Computer (SCC) 

Tiled Manycore Architectures



 New Challenges
1. “Off-chip Memory Wall” Problem
2. “Coherency Wall” Problem
3. “Power Wall” Problem

 Moving towards a parallelism with 1,000 cores 
requires a fairly radical rethinking of how to 
design system software.

• What we have done:
 Developed a scalable OS-assisted shared virtual 

memory (SVM) system on a multikernel OS (Barrelfish) 
on the Intel Single-chip Cloud Computer (SCC) which 
represents a likely future norm of many-core non-
cache-coherent NUMA (NCC-NUMA) processor.

 A “zone-based” dynamic voltage and frequency scaling 
(DVFS) method for power saving

The Software Crisis in 1000-core Era

24



(1) “Off-chip Memory Wall” Problem
o DRAM performance (latency) improved slowly over the past 40 years.  

(a) Gap of DRAM Density & Speed (b) DRAM Latency Not Improved

Memory density has doubled nearly every two years, 
while performance has improved slowly  Eliminating 
most of the benefits of processor improvement

Source: Shekhar Borkar, Andrew A. Chien, ”The Future of Microprocessors”, Communications of ACM, 
Vol. 54 No. 5, Pages 67-77 , May 2011.



(1) “Off-chip Memory Wall” Problem
• Smaller per-core DRAM bandwidth

o Intel SCC : only 4  DDR3 memory controllers  not scale with the 
increasing core density 

o 3D stacked memory  (TSV technology) helps ?

26

DRAM

DRAMDRAM

DRAM



New Design Strategies (Memory-Wall)
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Data locality (working set)  getting more critical! 
• Stop multitasking

o Context switching breaks data locality 
o Space Sharing instead of Time Sharing 

• “NoVM” : (or Space-sharing VM)
o No support of VM because of weaker cores (1.0-1.5 GHz)
o “Space Sharing” as we have many cores.

• Others
o Maximize the use of on-chip memory (e.g., MPB in SCC)
o Compiler or runtime techniques to improve data reuse (or 

increase arithmetic intensity)  temporal locality becomes 
more critical



(2): “Coherency Wall” Problem

• Overhead of enforcing cache coherency across 1,000 cores at 
hardware level will put a hard limit on scalability: 

1. Die space overhead: 

• Cache directory; read/write log increase
• 200% overhead for storing the 1000 presence-bits 128-

byte directory vs. 64-byte cache line
2. Performance overhead: 

• 20% more traffic per miss than a system with caches 
but not coherence (e.g., locate other copies at hierarchical 
directories;  issue invalidations to ALL sharers)

3. Not always needed: 

• Only 10% of the application memory references 
actually require cache coherence tracking (Nilsson, 2003) 

Why On‐Chip Cache Coherence is Here to Stay 
http://research.cs.wisc.edu/multifacet/papers/cacm2012_coherence_nearfinal.pdf



(2): “Coherency Wall” Problem

4. Verification complexity and extensibility: 

• Multiple copies AND multiple paths through 
network require to avoid deadlock, livelock, 
starvation due to  subtle races and many transient states.

5. Energy overhead: 

• Unnecessary data movement and replication
consumes extra energy consumption on network and 
cache resources (Kurian ISCA13); 

• Snoop-related cache activities can contribute up to 40% 
of the total cache power (Ekman 2002, Loghi 2005)

Intel’s SCC and Teraflops Research Chip decided to give up coherent 
caches. (History repeats itself : NCC-NUMA  in 1990s: Cray T3D/ T3E)



New Design Strategies (“Coherency Wall” )

• Software-managed cache 
coherence
o Leverage programmable 

on-chip memory (e.g., MPB 
on Intel SCC)

• Scope consistency (ScC) : 
minimizing  on-chip 
network and  off-chip 
DRAM traffic

• Migrating-home ScC
Protocol (MH-ScC) 
improve data locality

Before Home 
Migration

Migrating 
phase

After Home migration

Simulation results obtained in a 8-node cluster (SOR program)

With home migration, 
each phase took much 
less execution time. 

Without home migration



(3) “Power Wall” Problem 

• Computation costs much less energy than 
moving data to and from the computation units

On-die network energy 
consumption per bit

0.06pJ/bit (2020)

10% of the operands move over the 
network (10 hops at 0.06pJ/bit)  35 
watts of power  over 50% of the 
processor’s power budget.

• Bill Dally, Chief Scientist of nVIDIA
o 1 pJ for an integer operation
o 20 pJ for a floating-point operation
o 26 pJ to move an operand over 1mm of wire to 

local memory
o 1 nJ to read an operand from on-chip memory

located at the far end of a chip 
o 16 nJ to read an operand from off-chip DRAM

1000x

1600x picojoule (pJ) = 10−12  J
nanojoule (nJ) = 10−9 J



New Design Strategies (“Power Wall”)
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• Stop moving so much data around
o Data Locality (Working Set) still critical! 
o Distance-aware  cache placement and  home migration
o Migrating “code & state” instead of data 

• Relatively easier in shared memory manycore
systems.

• MIT EM2 support hardware thread migration
o Adopt multikernel operating system  (e.g., Barrelfish) 

• Message passing among kernels to avoid un-
necessary NoC traffic

• Barrelfish : “Compact message cheaper than many 
cache lines-- even on a cache-coherent machine.”



Crocodiles: Cloud Runtime with Object Coherence On 
Dynamic tILES for future 1000-core tiled processors”
(HK GRF: 01/2013-12/2015)
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Current Platform: INTEL 48-core SCC processor

Routers (R), memory controllers (MC), mesh interface units (MIU), cache 
controllers (CC), front side bus (FSB). 45 nm CMOS technology, 1.3 billion 
transistors.

16 KB MPB



• Condensing a data center into a single many-core chip
– “Zoning” (Spatial Partition) 
– Multiple isolated zones  Better performance isolation
– Mimic multitenant Cloud computing without time-

sharing VMs  avoid context switching

(1) Cloud-on-Chip (CoC) Paradigm

Zone 1
(Memory- and I/O 

intensive)

Zone 3 
(Network 
Intensive)

Zone 4 (Message Passing)

Resource-aware 
Task Scheduling

Network/IO 
Interface

DRAM

G
b

E

P
C

I-E

DRAM

Zone 2 
(Memory-
intensive)

“Data Center on a Chip”



(2) Dynamic Zoning 

• “Dynamic Zone Scaling”: 
o Partitioning varies over time. 
o On-demand scaling of resources (e.g., # of cores, DRAM,..) 

for each zone. 
o Fit well with the domain-based power management (e.g., 

Intel SCC)

Time

S
p

ace



(3) Software-Managed Cache Coherence: 
JumpSCC
• Leverage programmable 

on-chip memory (e.g., 
MPB on Intel SCC)

• Scope Consistency (ScC) 
: minimizing  on-chip 
network and  off-chip 
DRAM traffic
o Existing systems using 

ScC: Jiajia (1998), 
Nautilus (1998), HKU 
JUMP (1999), HKU 
LOTS (2004), Godson-
T (2009).



JumpSCC: Hybrid Modes of Memory Sharing

• Data can be shared in a different way.
o Selectable on per-page basis 

• Two modes available:
1. Shared Physical Memory (SPM)

• Intel SMC’s way
• All data kept as golden pages in shared DRAM
• Set MPBT to bypass L2 cache.
• Use write-through.
• Use CL1INVMB and flush WCB to ensure consistency

2. Distributed Shared Memory (DSM)
• For each user core, it will copy the golden page to a cached copy 

in private DRAM upon page faults (due to memory protected).
• Use twin-and-diff technique to avoid false sharing between 

multiple writers.
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A New Memory Type

• Message Passing Buffer Type (MPBT)

• MPBT (or PMB) is a bit in page table entry

o We can map a chunk in off-chip DRAM as MPBT

o We can map a chunk in on-chip MPB as non-MPBT

o We can modify it at runtime

• MPBT tag only takes effect upon

o L1$ write miss (where to write: WCB or L2$)

o L1$ read miss (where to read: MEM or L2$)

o CL1INVMB (invalidate MPBT-tagged lines in L1$)
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PMB (MPBT)

SCC Cache Behavior - Normal
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address
translation

page table
(4KB pages)

32-bit virtual address

$L1

$L2

mesh interface unit
LUT

pages)

LUT
(16MB 
pages)

normal

on cache miss, or WT

34-bit system address 

32-bit physical address

on cache miss, or WT



PMB (MPBT)

SCC Cache Behavior - UnCached
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address
translation

page table
(4KB pages)

32-bit virtual address

$L1

$L2

mesh interface unit
LUT

pages)

LUT
(16MB 
pages)

normal

on cache miss, or WT

34-bit system address 

32-bit physical addressUC

on cache miss, or WT



PMB (MPBT)

SCC Cache Behavior - MPBT
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address
translation

page table

pages)

page table
(4KB 

pages)

32-bit virtual address

$L1

$L2

mesh interface unit
LUT

pages)

LUT
(16MB 
pages)

normal

on cache miss, or WT

34-bit system address 

32-bit physical addressUC

WCB (32B)

on WCB fill, or
next write to another cache line

on cache miss, or WT

CL1INVMB



Alleviate the Memory Wall Problem
• Minimize DRAM access by exploiting the MPB space to store 

data (programmer-hinted or profiler-guided)
• Now we have two datapaths:

1. DRAM → L2 → L1
2. DRAM → MPB → L1 

• Example uses of MPB:
o Used to reduce cache pollution

• For sequential data access (data without reuse), manually 
allocate buffer in MPB and copy the data from off-die DRAM to 
MPB; then L2 cache won’t evict any cache lines and keep the 
hottest data set.

o Used to cache data of “warm temperature”
• Warm data (long reuse distance) is secondary to hot data (short 

one);
• Data of reuse distance > L2 capacity can still be read 

within on-chip speed if read from MPB rather than from DRAM.
43

Copy →
Load →

Key:



Barrelfish OS

jump_init(int* argc, char***argv)

jump_malloc(size_t s)
jump_free(void* p)

jump_lock(int lock)
jump_unlock(int lock)
jump_barrier(void)

User 
Interfaces

Mem pmap

Bench
logs, perf. 
countersInit

spawn

Comm

Sync

IDC

lock 
semaphore

jump_wtime()
uint64_t perf_ctr_value(int ctr_id)

send_msg_start(uint8_t to, struct jia_msg** msg)
send_msg_end(struct jia_msg* msg)
msg_wait_and_handle_next(void)
ack_recv_msg(void)

ImplementationModular Design

JumpSCC: System Design

• Built on top of Barrelfish OS as a user library

• Resemble traditional shared-memory programming

• Just a different set of malloc, lock, unlock (and barrier)
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Global virtual address space (programmer’s view)

0
1
2

OS page table

mesh network

0
1
2

physical frames 
(private memory)

physical frames 
(private memory)

MC MC

… …

off-chip DRAMoff-chip DRAM

A B C D E F G

physical frames (shared memory)

H[D]

virtual 
addresses

page control data
(library level)

A
B
C
D

SPM
SPM
DSM
DSM

invalid
RO

H[C]

C[C]

C[D]

H[B]H[A] H[E] H[F] H[G]

C[G]

C[F]

id mode state

E
F
G

SPM
DSM
DSM

RW
RO

id mode state

OS page table

key:
H[x] = home copy;
C[x] = cached copy
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Page Remapping for Data Locality

• Programmer hint API:

o JIA_ATTR_FREQ_ACCESS: frequently accessed (read-write)

o JIA_ATTR_READONLY: frequently accessed (read-only)

o JIA_ATTR_SINGLE_WRITER: single writer

o JIA_ATTR_NOCACHE: non-cacheable (avoid cache pollution)

• System handling:

o JIA_ATTR_FREQ_ACCESS: copy golden page to private DRAM

o JIA_ATTR_READONLY: set to non-MPBT (make use of large L2 $)

o JIA_ATTR_SINGLE_WRITER: 

• The writer sets to non-MPBT R/W; readers set to MPBT R/O.
• At sync pts, the writer flushes L2 cache by reading 256 KB data.

o JIA_ATTR_NOCACHE: set PTE to non-cacheable
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Exploit L2 cache
(our protocol 
ensures no 
consistency issues)



Performance Benchmarking

• MalStone Benchmark
o Analysis of “drive-by exploits” in web site log files

• Graph 500 Benchmark
o Generation, compression and breadth-first search of large graphs 

• Sorting (bucket-sort kernel)

• Miscellaneous compute kernels (skipped)
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Malstone
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memory model, the 
pages mapped as 
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(MPBT bit off) can 
exploit L2 cache and 
hence have augmented 
the cache effect 
enormously.



Graph 500
• On 48 cores, can reach 2.1x gain in hybrid mode over SPM;

o the BFS loop with certain data reuse (blacklist checks) contributes that.
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Graph 500: Scalability Analysis
• Step 3 (BFS) @ hybrid mode achieved 12x speedup. 

• Step 3 @ SPM only 2.43x. 
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Performance Counter Analysis
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Bucket Sort
• 12x better in hybrid mode than SPM alone

• Superlinear speedup observed in hybrid mode

o Augmented cache effect since L2$ not bypassed
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Performance Counter Analysis
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Hybrid mode saves many 
read stalls and memory 
bus traffic.



Zone-based DVFS Method for Power Saving

Energy normalized to values of 800M
The average energy saving is 35.68%, and the 

average EDP reduction is 21.42%. 

“Latency-aware Dynamic Voltage and Frequency Scaling on Many-core Architecture for Data-intensive 
Applications”, CLOUDCOM-ASIA 2014



Significance of JumpSCC
• The first SVM for the Barrelfish OS
• Novel software CC system design:

o Exploit both private memory and shared memory efficiently 
(selectively)

o Support two “coherence modes” (or memory models) concurrently on 
a per-page basis

o Harness non-coherent L2 caches while others can’t

• Performance is 12% to 12 times better than Intel SMC.
• Three patents claimed:

1. A hybrid shared virtual memory system with adaptive page remapping for non-
cache-coherent many-core processors

2. A proactive scope consistency protocol tailored to many-core tiled processors 
with programmable on-chip buffers

3. A location-aware k-way hash-based distributed on-chip page directory for tiled 
CMPs
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Conclusion

• GHz game is over Go for Manycore
o Processors parallelism is primary method of performance 

improvement
• Coherency-, memory- and power-wall challenges in the 

1000-core era are discussed.
• Software-managed Cache Coherence Support:

o Transfer the burden of cache coherence from hardware to software, while 
preserving hardware support for remote cache accesses.

o On-chip programmable memory like MPB enable customizable or 
programmable on-chip activities.

• Power efficiency is  the key challenge (flops/watt) 
“DON’T MOVE THE DATA!” 



Thanks!

C.L. Wang’s webpage: 
http://www.cs.hku.hk/~clwang/

For more information:


