
System Software Challenges for Big
Data Computing
Cho-Li Wang
The University of Hong Kong

Systems Research Group @HKU

2

Our Motto: solving REAL problems with
the use of REAL computing resources

“Self-Made” Gideon 300 cluster in 2002

3

(Built in Oct. 2002)

• 300 Pentium4 PCs @355 Gflops;
• Ranked #170 in TOP500 (11/2002),

#3 in China.
• The highest ranking in the TOP500

list among all machines from Hong
Kong academic institutions in history.

4
CS Gideon-II & CC MDRP Clusters

HKU High-Performance Computing Lab.
 Total # of cores: 3004 CPU + 5376 GPU cores
 RAM Size: 8.34 TB
 Disk storage: 130 TB
 Peak computing power: 27.05 TFlops

0

5

10

15

20

25

30

35

2007.7 2009 2010 2011.1

2007.7

2009

2010

2011.12.6T 3.1T

31.45TFlops (X12 in 3.5 years)

20T

GPU-Cluster (Nvidia M2050, “Tianhe-
1a”): 7.62 Tflops

Big Data: The "3Vs" Model
• High Volume (amount of data)
• High Velocity (speed of data in and out)
• High Variety (range of data types and sources)

2.5 x 1018

2010: 800,000
petabytes (would
fill a stack of DVDs
reaching from the
earth to the moon
and back)

By 2020, that pile of
DVDs would stretch
half way to Mars.

Google Trend:
Big Data vs. Data Analytics vs. Cloud Computing

Cloud
Computing

Big Data

12/2012

• McKinsey Global Institute (MGI) :
– Using big data, retailers could increase its operating margin by more than 60%.
– The U.S. could reduce its healthcare expenditure by 8%
– Government administrators in Europe could save more than €100 billion ($143

billion).

2012 CIO Agenda Findings

(Big Data)

Success is contingent on anticipating the coming changes

2,335 CIOs from 37 industries across 45 countries

Outline

• Part I: Multi-granularity Computation Migration

• Part II: Heterogeneous Manycore Computing (CPUs+

GUPs)

• Part III: Big Data Computing on Future 1000-core Chips

• Part IV: From Data to Intelligence -- Context Reasoning

Part I
Multi-granularity
Computation Migration

Multi-granularity Computation Migration

10

WAVNet Desktop Cloud
G-JavaMPI

JESSICA2

Fine

Coarse

Small Large

SOD

Granularity

System scale
(Size of state)

WAVNet: Live VM Migration over WAN

11

 A P2P Cloud with Live VM Migration over WAN
 “Virtualized LAN” over the Internet”

 High penetration via NAT hole punching
 Establish direct host-to-host connection
 Free from proxies, able to traverse most NATs

VM

VM

Key Members

Zheming Xu, Sheng Di, Weida Zhang, Luwei Cheng, and Cho-Li Wang, WAVNet: Wide-Area Network Virtualization
Technique for Virtual Private Cloud, 2011 International Conference on Parallel Processing (ICPP2011)

12

o Experiments at Pacific Rim Areas
WAVNet: Live VM Migration over WAN

北京高能物理所
IHEP, Beijing

深圳先进院 (SIAT)

香港大学 (HKU)

中央研究院
(Sinica, Taiwan)

静宜大学
(Providence University)

SDSC, San Diego

日本产业技术综合研究所
(AIST, Japan)

12

1313

Thread Migration

JESSICA2
JVM

A Multithreaded Java
Program

JESSICA2
JVM

JESSICA2
JVM

JESSICA2
JVM

JESSICA2
JVM

JESSICA2
JVM

Master Worker WorkerWorker

JIT Compiler
Mode

Portable Java Frame

Java
Enabled
Single
System
Image
Computing
Architecture

JESSICA2 Distributed JVM

History and Roadmap of JESSICA Project

• JESSICA V1.0 (1996-1999)
– Execution mode: Interpreter Mode
– JVM kernel modification (Kaffe JVM)
– Global heap: built on top of TreadMarks (Lazy Release

Consistency + homeless)
• JESSICA V2.0 (2000-2006)

– Execution mode: JIT-Compiler Mode
– JVM kernel modification
– Lazy release consistency + migrating-home protocol

• JESSICA V3.0 (2008~2010)
– Built above JVM (via JVMTI)
– Support Large Object Space

• JESSICA v.4 (2010~)
– Japonica : Automatic loop parallization and

speculative execution on GPU and multicore CPU
– TrC-DC : a software transactional memory system on

cluster with distributed clocks (not discussed)

14

King Tin LAM,

Ricky MaKinson Chan

Chenggang Zhang

Past Members

J1 and J2 received a total of 1107 source code downloads

Mobile node

Program
Counter

Method Area

Heap Area

Stack frame A

Method
Area

Heap
Area
Rebuilt

Stack frame A

Stack frame A

Method

Cloud node

objects

Local variables

Local variables

Local variables

Stack frame B

Object (Pre-)fetching

Program
Counter

Program
Counter

Stack-on-Demand (SOD)

Elastic Execution Model via SOD

16

(a) “Remote Method
Call”

(b) Mimic thread
migration

(c) “Task Roaming”: like a
mobile agent roaming over
the network or workflow

With such flexible or composable execution paths, SOD
enables agile and elastic exploitation of distributed
resources (storage), a Big Data Solution !

Lightweight, Portable, Adaptable

Xen VM

JVM

Xen-aware host OS

guest OS

Xen VM

JVM

guest OS

Desktop PC

Overloaded

Load
balancer

Cloud service
provider

Thread
migration

(JESSICA2)

Internet

Live migration

Load
balancer

comm.

JVM

Stack-on-demand (SOD)

Mobile
client

iOS

Stack
segments

Partial
Heap

Method
Area

Code

Small
footprint

Stacks Heap

JVM process

Method
Area

Code

… …

Multi-thread
Java process

trigger live
migration

duplicate VM instances
for scaling

eXCloud : Integrated
Solution for Multi-

granularity Migration

Ricky K. K. Ma, King Tin Lam, Cho-Li Wang, "eXCloud: Transparent Runtime Support for Scaling Mobile Applications," 2011 IEEE
International Conference on Cloud and Service Computing (CSC2011),. (Best Paper Award)

18

Comparison of Migration Overhead

SOD has the smallest migration overhead : ranges from 13ms to
194ms under Gigabit Ethernet

Frame (SOD): Thread : Process : VM = 1 : 3 : 10 : 150

Sys

App

SOD on Xen
(Stack mig.)

JESSICA2 on Xen
(Thread mig.)

G-JavaMPI on Xen
(Process mig.)

JDK on Xen
(VM live mig.)

Exec. time (sec) MO
(ms)

Exec. time (sec) MO
(ms)

Exec. time (sec) MO
(ms)

Exec. time (sec) MO
(ms)

w/ mig w/o mig w/ mig w/o mig w/ mig w/o mig w/ mig w/o mig

Fib 12.77 12.69 83 47.31 47.21 96 16.45 12.68 3770 13.37 12.28 1090

NQ 7.72 7.67 49 37.49 37.30 193 7.93 7.63 299 8.36 7.15 1210

TSP 3.59 3.58 13 19.54 19.44 96 3.67 3.59 84 4.76 3.54 1220

FFT 10.79 10.60 194 253.63 250.19 3436 15.13 10.75 4379 12.94 10.15 2790

Migration overhead (MO)
= execution time w/ migration – execution time w/o migration

"A Stack-On-Demand Execution Model for Elastic Computing", IEEE ICPP2010, San
Diego, California, USA, September 13-16, 2010.

Part II
Heterogeneous Manycore
Computing (CPUs+ GUPs)

JAPONICA : Java with Auto-
Parallelization ON GraphIcs
Coprocessing Architecture

20Heterogeneous Manycore Architecture

A Variety of Coprocessors

21

Vendor Model Launch
Date

Fab.
(nm)

#Accelerator
Cores (Max.)

GPU
Clock
(MHz)

TDP
(watts) Memory Bandwidth

(GB/s)
Programming

Model Remarks

Intel

Sandy
Bridge 2011Q1 32

12 HD graphics
3000 EUs (8
threads/EU)

850 –
1350 95

L3: 8MB
Sys mem
(DDR3)

21

OpenCL
Bandwidth is system

DDR3 memory
bandwidthIvy

Bridge 2012Q2 22
16 HD graphics

4000 EUs (8
threads/EU)

650 –
1150 77

L3: 8MB
Sys mem
(DDR3)

25.6

Xeon
Phi 2012H2 22

57 x86 cores
(with a 512-bit
vector unit)

600-
1100 300 8GB

GDDR5 300
OpenMP#,
OpenCL*,

OpenACC%

Less sensitive to branch
divergent workloads

AMD

Brazos
2.0 2012Q2 40 80 Evergreen

shader cores 488-680 18
L2: 1MB
Sys mem
(DDR3)

21
OpenCL,
C++AMP

Trinity 2012Q2 32
128-384
Northern

Islands cores
723-800 17-100

L2: 4MB
Sys mem
(DDR3)

25 APU

Nvidia
Fermi 2010Q1 40

512 Cuda
cores

(16 SMs)
1300 238

L1: 48KB
L2: 768KB

6GB
148

CUDA, OpenCL,
OpenACC

Kepler 2012Q2 28 1536 Cuda
cores 1000 300 8GB

GDDR5 320 3X Perf/Watt, Dynamic
Parallelism, HyperQ

Intel-specific OpenMP
* Not yet officially confirmed

Intel Many Integrated Core Architecture (MIC)

Knights Ferry (2010)
32 cores, 1.2 GHz, 750 GFLOPS, 2
GB GDDR5, ~300 W

22nm Knights Corner (2012)
50+ cores,

Teraflops Research Chip (2007)
80 cores, 3.16GHz, 1.01 Tflops, 62W

Single-chip Cloud
Computer (2009-) 48 cores

Larrabee (2006-2010)

'Knight's Corner' chips
(branded as 'Xeon Phi')-
6/2012 -- 64 x86 cores
(256 threads) + a 512-bit
vector unit @2GHz, 1
Teraflops

ring interconnect keeps
the caches for each chip
coherent

The MIC chip has a superscalar x64 core
(without the out-of-order execution
of Xeons) and a 512-bit vector math
unit that can do 16 floating point
operations per clock with single precision
math.

Design Challenge (1)

1. Copy input data from CPU
memory to GPU memory (e.g.,
cudaMemcpy())

2. Load GPU program and execute,
caching data on chip for
performance

3. Copy results from GPU memory to
CPU memory

PCI Bus

Fermi GPU load/store DRAM peak
bandwidth = 148 GB/s

(MIC=300 GB, Kepler=320 GB)

Bottleneck: PCIe gen2
peak bandwidth= 8 GB/s

Does PCIe 3.0 help?

Informal testing results: No
appreciable difference in
performance between PCIe 3
x16 (16GB/sec) and PCIe 2
(8GB/sec)

Require much higher “flops per byte” – i.e., applications with “High
Arithmetic Intensity” (HAI)

Soluion? : CPU-GPU mashups

Intel Ivy Bridge (22nm)

AMD "Trinity".

AMD’s new Accelerated
Processing Units combine
general-purpose x86 CPU
cores with programmable
vector processing engines on
a single silicon die

Ivy Bridge GPU
incorporates a high
bandwidth L3 cache that is
shared by the entire shader
array.

Design Challenge (2):
GPU Can’t Handle Dynamic Loops

26
26

Dynamic loops

for(i=0; i<N; i++)
{

C[i] = A[i] + B[i];
}

for(i=0; i<N; i++)
{

A[w[i]] = 3 * A[r[i]];
}

GPU = SIMD/Vector
Data Dependency Issues (RAW, WAW) Solutions?

Static loops

Non-deterministic data dependencies
inhibit exploitation of inherent parallelism;
only DO-ALL loops or embarrassingly
parallel workload gets admitted to GPUs.

Dynamic loops are common in scientific and
engineering applications

27
Source: Z. Shen, Z. Li, and P. Yew, "An Empirical Study on Array Subscripts and Data Dependencies"

Thread Level Speculation (TLS)
• Execute hard-to-analyze codes speculatively (or

optimistically) in parallel.
o Assume no dependences and execute in parallel
o Track memory accesses and detect violations
o Squash and restart offending threads

…=a[4]…
…

a[5]=…

…=a[1]…
…

a[2]=…

…=a[8]…
…

a[9]=…

…=a[5]…
…

a[6]=…

i=k i=k+1 i=k+2 i=k+3for(i=0;i<n;i++)
…=a[b[i]]…

…
a[c[i]]=…

RAW

28

Thread Level Speculation (TLS)
• Execute hard-to-analyze codes speculatively (or

optimistically) in parallel.
o Assume no dependences and execute in parallel
o Track memory accesses and detect violations
o Squash and restart offending threads

…=a[4]…
…

a[5]=…

…=a[1]…
…

a[2]=…

…=a[8]…
…

a[9]=…

…=a[5]…
…

a[6]=…

i=k i=k+1 i=k+2 i=k+3for(i=0;i<n;i++)
…=a[b[i]]…

…
a[c[i]]=…

RAW
…=a[5]…

…
a[6]=…

29

GPU-TLS : Thread-level Speculation on GPU
• Incremental parallelization

o sliding window style execution.
• Efficient dependency checking schemes
• Deferred update

o Speculative updates are stored in the write buffer of each thread
until the commit time.

• 3 phases of execution

Phase
I

• Speculative execution

Phase
II

• Dependency checking

Phase
III

• Commit

30

intra-thread RAW
valid inter-thread RAW in GPU

GPU: lock-step execution in the
same warp (32 threads per warp).

true inter-thread RAW

JAPONICA : Profile-Guided Work Dispatching

31

2880 cores

…

64 x86 cores

8 high-speed x86
cores

Dynamic
Profiling

High
Medium

Low/None

Highly parallel

Multi-core CPU

Massively parallelParallel

Many-core
coprocessors

Scheduler

Dependency
density

Inter-iteration dependence:
-- Read-After-Write (RAW)
-- Write-After-Read (WAR)
-- Write-After-Write (WAW)

JAPONICA : System Architecture
Sequential Java Code
with user annotation

JavaR
Static Dep.

Analysis
Code

Translation

Uncertain

Dependency Density
Analysis

Intra-warp
Dep. Check

Inter-warp
Dep. Check

DO-ALL Parallelizer Speculator

GPUCPU
Communication

CPU-Multi
threads

GPU-Many
threads

GPU-TLS Privatization

Task Sharing

CPU queue: low, high, 0

GPU queue: low, 00 : CPU multithreads + GPU

Low DD : CPU+GPU-TLS

High DD : CPU single core

Profiling Results

CUDA kernels with GPU-TLS|
Privatization & CPU Single-threadCUDA kernels & CPU Multi-threads

No dependence
RAW WAW/WAR

32

Profiler (on GPU)

Program
Dependence
Graph (PDG)

one loop

Task Stealing
Task Scheduler : CPU-GPU Co-Scheduling

Assign the tasks
among CPU & GPU
according to their
dependency
density (DD)

GPU-TLS: Performance Evaluation

33 33

JAPONICA Evaluation:
Bi-Conjugate Gradient (BICG)**

**from the Polybench

General Observations and Prediction

• Lowering clock rate but many more cores.
o Kepler 1 Ghz (3072) vs Fermi 1.3 Ghz (512)

• More power efficient (increasing perf/watt)
• Increasing bandwidth (> 300 GB/s, e.g., Kepler)

o getting readier for data intensive workloads.
• More dynamic workflow:

o Kepler’s Dynamic Parallelism : GPU kernel can spawn new
work onto the GPU

• Intel MIC, using x86 cores, is stealing the limelight.
o We foresee it will be a norm in the coprocessor world.
o Deliver similar flops (1 Tflops) but easier programming

35

Part III
Big Data Future 1000-core
“General Purpose” Maycore
Chips

“General Purpose” Manycore

Tile-based architecture: Cores are connected through a 2D network-
on-a-chip

Tiled Manycore Architectures

• The cores of the SCC are grouped into multiple domains
in terms of frequency, voltage and memory access.

38

Multiple cores per tile, connected by an on-die
2D mesh network (network-on-chip).

DRAM

DRAMDRAM

DRAM

Design Challenge (1):
“Off-chip Memory Wall” Problem

– DRAM performance (latency) improved slowly over the past 40 years.

(a) Gap of DRAM Density & Speed (b) DRAM Latency Not Improved

Memory density has doubled nearly every two
years, while performance has improved slowly (e.g.
still 100+ of core clock cycles per memory access)

Design Challenge (2): “Coherency Wall” Problem

• Overhead of enforcing cache coherency across 1,000 cores
at hardware level will put a hard limit on scalability

1. Performance overhead: Coherence uses 20% more traffic
per miss than a system with caches but not coherence

2. Die space overhead: cache directory, read/write log
increase

3. Not always needed: Only around 10% of the application
memory references actually require cache coherence
tracking

4. Verification complexity and extensibility: require dealing
with subtle races and many transient states

Intel’s SCC and Teraflops Research Chip decided to give up
coherent caches.

Laser-Powered Chip in 2017??
HP Corona : 10-Teraflop Manycore Chip (expected 2017)

• 256 cores, each supporting up to four threads

• Optical interconnect : a 20 TB/sec DWDM crossbar

• Optically connected memory (OCM) @ 10 TB/sec
o 80 GB/sec : 8-core Intel E5-2600 Xeons
o 64 GB/sec : SPARC64 VIIIfx CPU of K computer
o 177 GB/sec : NVIDIA M2090,

• Energy efficiency: 6.4 watts @ 10 GB/sec of data to DRAM, which
is 25 x less than electrical interconnect (160 watts)

• MOESI directory cache coherency protocol

• Aim at big data applications
• Other projects: Intel’s Runnemede, MIT’s Angstrom,

NVIDIA’s Echelon, and Sandia’s X-calibur.

Design Challenge (3): “Power Wall” Problem
• Computation costs much less energy than moving data to and

from the computation units
• As the energy cost of computation is reduced by voltage scaling,

the cost of data movement starts to dominate.

On-die network energy
consumption per bit

0.06pJ/bit (2020)

If only 10% of the operands move over the
network, 10 hops in average, at 0.06pJ/bit,
the network would consume 35 watts of
power, > 50% of the power budget of the
processor.

You cannot break the laws of physics -
and 7nm is the limit

• Bill Dally, Chief Scientist of nVIDIA
o 1 pJ for an integer operation
o 20 pJ for a floating-point operation
o 26 pJ to move an operand over 1mm of wire to

local memory
o 1 nJ to read an operand from on-chip memory

located at the far end of a chip
o 16 nJ to read an operand from off-chip DRAM

1000x

1600x
picojoule (pJ) = 10−12  J
nanojoule (nJ) = 10−9 J

Design Challenge (4): OS Scalability

Y. Cui, et al, Scaling OLTP Applications on Commodity Multi-Core Platforms, ISPASS10

O ine Transaction
g

On Line Transaction
Processing

Intel 8 core system
4G RAM, 500G HDD
Linux kernel 2.6.25

>2X Gap

• Physical memory allocation performance sorted by function.
As more cores are added more processing time is spent
contending for locks.

Lock Contention in Multicore System

Lock
Contention

Linux Atomic Operations
• x86 LOCK prefix makes many read-modify-write

instructions atomic.
• Most general instruction is cmpxchg, used to implement

locks

45

x86: LOCK prefix
“locks” the memory
bus for the
destination memory
address to allow the
processor has
exclusive use of any
shared data.

How often is ‘cmpxchg’ used in Linux
kernel?

$ cat vmlinux.asm | grep cmpxchg
c01046de: f0 0f b1 15 3c 99 30 lock cmpxchg %edx,0xc030993c
c0105591: f0 0f b1 15 3c 99 30 lock cmpxchg %edx,0xc030993c
c01055d9: f0 0f b1 15 3c 99 30 lock cmpxchg %edx,0xc030993c
c010b895: f0 0f b1 11 lock cmpxchg %edx,(%ecx)
c010b949: f0 0f b1 0b lock cmpxchg %ecx,(%ebx)
c0129a9f: f0 0f b1 0b lock cmpxchg %ecx,(%ebx)
c0129acf: f0 0f b1 0b lock cmpxchg %ecx,(%ebx)
c012d377: f0 0f b1 0e lock cmpxchg %ecx,(%esi)
c012d41a: f0 0f b1 0e lock cmpxchg %ecx,(%esi)
c012d968: f0 0f b1 16 lock cmpxchg %edx,(%esi)
c012e568: f0 0f b1 2e lock cmpxchg %ebp,(%esi)
c012e57a: f0 0f b1 2e lock cmpxchg %ebp,(%esi)
c012e58a: f0 0f b1 2e lock cmpxchg %ebp,(%esi)
c012e83f: f0 0f b1 13 lock cmpxchg %edx,(%ebx)
c012e931: f0 0f b1 0a lock cmpxchg %ecx,(%edx)
c012ea94: f0 0f b1 11 lock cmpxchg %edx,(%ecx)
c012ecf4: f0 0f b1 13 lock cmpxchg %edx,(%ebx)
c012f08e: f0 0f b1 4b 18 lock cmpxchg %ecx,0x18(%ebx)
c012f163: f0 0f b1 11 lock cmpxchg %edx,(%ecx)
c013cb60: f0 0f b1 0e lock cmpxchg %ecx,(%esi)
c0148b3c: f0 0f b1 29 lock cmpxchg %ebp,(%ecx)
c0150d0f: f0 0f b1 3b lock cmpxchg %edi,(%ebx)
c0150d87: f0 0f b1 31 lock cmpxchg %esi,(%ecx)
c0199c5e: f0 0f b1 0b lock cmpxchg %ecx,(%ebx)
c024b06f: f0 0f b1 0b lock cmpxchg %ecx,(%ebx)
c024b2fe: f0 0f b1 51 18 lock cmpxchg %edx,0x18(%ecx)
c024b321: f0 0f b1 51 18 lock cmpxchg %edx,0x18(%ecx)
c024b34b: f0 0f b1 4b 18 lock cmpxchg %ecx,0x18(%ebx)
c024b960: f0 0f b1 53 18 lock cmpxchg %edx,0x18(%ebx)(more)

Referenced in 25 files
total (2.6.31.13) !

Operating Systems for Many-core (1)
• MIT Factored Operation System (fOS): 2009

o Target 1,000 core multicore chip
o Space sharing replaces time sharing

• Berkeley Tessellation (2009)
o "Cell“ replace processes for performance isolation and

QoS guarantees
• Microsoft: Barrelfish

o Multikernel design: Build OS as a distributed system
over all cores. Message passing among cores.

• Berkeley ROS (2010)
o Space and time partitioning
o ‘many-core’ process (MCP) abstraction

• Space sharing
replaces time
sharing to increase
scalability

• Mimic distributed
Internet services

• fos’s system servers
communicate via
message passing

MIT fos: a Factored Operating System

“Internet on a Chip”

Operating Systems for Many-core (2)

• Microsoft Helios (2009)
o running on heterogeneous hardware, based on Singularity OS
o satellite kernels, remote message passing, affinity

• K42 (Since 1996): IBM, U of Toronto
o microkernel architecture, object-oriented design, research purposes

• Corey (2008) : MIT & Fudan &Microsoft Research Asia
o exo-kernel, re-implementing OS data structures (file descriptor table,

mm_struct) and user APIs

• µKMC (2012-): : U. of Tokyo
o light-weight micro kernels on Intel MIC, starts from July 2012.
o accelerator abstraction layer (AAL), inter-kernel communication layer (IKCL)

• Berkeley Akaros (2010-2013)
o Asymmetric OS structure to scale to thousands of cores.
o per-core private memory, syscalls are ”context switch free”

鳄鱼 @ HKU (01/2013-12/2015)
• Crocodiles: Cloud Runtime with Object Coherence On Dynamic

tILES for future 1000-core tiled processors”

50

M
em

or
y

C
on

tr
ol

le
r

PCI-E

ZONE 2

ZONE 1

ZONE 3

ZONE 4

PCI-E

G
bE

DRAM Controller

Memory Controller

GbE

GbE
P

C
I-

E

M
em

or
y

C
on

tr
ol

le
r

G
bE

P
C

I-
E

RAM

RAM

RAM

RAM

Challenges and Potential Solutions (1)

51

• Stop moving so much data around
o Data Locality/Working Set getting critical!
o 3D stacked memory (TSV technology) helps !
o Compiler or runtime techniques to improve data reuse

and increase arithmetic intensity (next slide)
o Cache-aware design (temporal locality becomes more

critical)
o Migrating “code & state” instead of data  Thread

migration among cores (+ large 3D stacked memory !).

• Stop multitasking
o Context switching breaks data locality
o No Time Sharing  Space Sharing

Arithmetic Intensity

• Arithmetic intensity is defined as the number of operations
performed per word of memory transferred

• It is important for Big Data applications to have high arithmetic
intensity, otherwise the memory access latency will limit
computational speedup

52

O(N)
O(log(N))

O(1)

SpMV, BLAS1,2

Stencils (PDEs)

Lattice Methods

FFTs
Dense Linear Algebra

(BLAS3)
Particle Methods

Challenges and Potential Solutions (2)

• Software-managed cache
coherence
o Leverage programmable

on-chip memory (e.g., MPB
on Intel SCC)

o Scope consistency (ScC) :
minimizing on-chip
network and off-chip
DRAM traffic

o Migrating-home ScC
Protocol (MH-ScC) 
improve data locality

Before Home
Migration

Migrating
phase

After Home migration

Simulation results obtained in a 8-node cluster (SOR program)

With home migration,
each phase took much
less execution time.

Without home migration

Challenges and Potential Solutions (3)
• Scalability (up to 1000 cores?)

o Adopt multikernel operating system (e.g., Barrelfish) to
reduce contentions on shared structures in OS kernel

o Shared memory message passing

• Barrelfish : “Compact message cheaper than many
cache lines-- even on a cache-coherent machine.”

View state as replicated:
Maintain state through
replication rather than
shared memory (improved
locality)

Challenges and Potential
Solutions (4)

• Dynamic Zoning for Elasticity of Demand
o “Zoning” (Spatial Partition)  Performance isolation
o “Dynamic Zoning”: on-demand scaling of resources (e.g.,

of cores, DRAM,..) for each zone.
o Partitioning varies over time, mimic multi-tenant Cloud

Architecture “Data center on a Chip”
o Fit well with the domain-based power management (e.g.,

Intel SCC)

Time

S
p

ace

Conclusion
• GHz game is over Go for Manycore

o World has gone to manycore to continue Moore’s Law
o “General-purpose” 100-core chip is available (e.g., Tilera

TILE-Gx), 1000-core chip is expected soon (2017?)
o Intel MIC to be used in China’s 100 petaflops machine?

• PCIe bottleneck problem?
o CPU-GPU mashup (e.g., APU)

• Big data computing on 1000-core chip is tough
o Locality is critical (compute is “free”, avoid moving

data around)
o Power efficiency is the key challenge (flops/watt)
o Low AI problem: Data reuse techniques for high

flops/byte

Conclusion(Cont’d)
• Scalability issues in all layers:

o Hardware (NoC), OS, software cache coherency,
programming model

• “DON’T MOVE THE DATA!”
o Implication: moving code & state instead
o Try “Multi-granularity Computation Migration”

• Research in system software is hard.
o There are rarely clearly right or clearly wrong

solutions. No “one-size-fits-all” solution.
o Difficult to compare: No standard interfaces
o Pressures from academic publication volume

or deliverables

Part IV
From Data to
Intelligence -- Context
Reasoning

Context Reasoning
• Data is only valuable when you

can gain insights from it to make
decisions

• Context Reasoning:
o deducing new and relevant information to

the use of application(s) and user(s) from
the various sources of context-data.

• These tasks include: (1) context data pre-
processing, (2) sensor data fusion and
(3) mapping lower level context
into higher level context (which is
also known as context inference).

Context Reasoning : Significant Places Detection

(a) Seven extracted places:
a: King George V Memorial Park
b: 7-Eleven convenience store
c: Pizza-Box store
d: Bus station
e: Flora Ho Sports Centre
f: Pokfulam Road Playground
g: a restaurant

From lower-level raw data to meaningful higher-level context

Ontology-based Context Modeling

62

 Data Exchange

 Semantics+reasoning

 Relational Data

• Ontologies provide a vocabulary of terms
• Meaning (semantics) of such terms is formally specified
• New terms can be formed by combining existing ones

• Focus on semantics and reasoning !

Resource Description Framework (RDF)

post-Hadoop era (取代GFS 和 MapReduce)

• Google Caffeine (2010)
o 主要为Google网络搜索引擎提供支持 (2010)
o 将索引放置在由Google的分布式数据库BigTable上

• Google Pregel (SIGMOD 2010)
o Large-scale graph processing (图形数据库)

• Google Dremel (VLDB 2010):
o interactive ad-hoc query
o 可以在几秒的时间处理PB级的数据查询 (BigQuery)

• Google Percolator:
o for incremental processing (Bigtable)

• Apache Giraph (Open Source)
o HDFS + Zookeeper Ontology?

ContextTorrent
semantically organize, search, and store various types of contexts and their
semantic relationships using ontology-based semantic technologies

2013/1/16 64 of 26

Peer to Peer Communication

Ontology-based Context Modeler

RDF triple: (subject, predicate, object)

<person:”Dexter”, hasAge, “25”>,

<person: “Tom”, hasLocation, (110.1, 20.3)>

<hk_weatherstation, hasPredictinon, “Sunny”>

Linux Kernel

Application Framework

Libraries Android Runtime

Applications

Dalvik Virtual
Machine

Core LibrariesSurface
Manager

OpenGL ES

SSL

Media
Framework

FreeType

SGL

SQLite

WebKit

libc

Activity
Manager

Window
Manager

View System Package
Manager

Resource
Manager

Location
Manager

Home Contacts

Phone Browser

Context-aware applications

ContextTorrent

Native Context
Wrapper

Smart
Dialer

Geo-photo
Share

Location
Base Serive ...

Semantic
Relationship Linker

Extended Context
Connector

Smart
Shopping

Context-aware
PIM

Ontology-based
Context Modeler

ODBMS (db4o, Perst): object-
orientation analogous to ontological
representation

Dexter Hu, “ContextTorrent: a Context Provisioning Framework for
Pervasive Applications“, Ph.D Thesis, March 2011.

2013/1/16 65 of 26

Evaluation

700 1000 1300 1600 1900 2200 2500
0

0.5

1

1.5

2

2.5

x 106

Number of context entities

S
to

ra
ge

 s
iz

e
in

 b
yt

e

SQLite
db4o
Perst

700 1000 1300 1600 1900 2200 2500
0

0.5

1

1.5

2

2.5

3

3.5

4
x 104

Number of queries

Q
ue

ry
 ti

m
e

in
 m

s

SQLite
db4o
Perst

Continuous Query

700 1000 1300 1600 1900 2200 2500
0

5

10

15

20

25

30

Number of context entities

Q
ue

ry
 ti

m
e

in
 m

s

SQLite
db4o
Perst

Storage Consumption

Randomly Query

Breakdown

Perst

Perst

Perst

BetterLife 2.0: Large-scale Social Intelligence
Reasoning

66

66

Case-based Reasoning
Engine (jCOLIBRI2)

Social Network

Cloud

Case-based Reasoning

Dexter H. Hu, Yinfeng Wang, Cho-Li Wang, "BetterLife 2.0: Large-scale Social Intelligence in Cloud Computing“ (CloudCom 2010)

WAVNet: Live VM Migration over WAN

67

ICMP RTT and HTTP throughput during VM live migration
(x represents ICMP packet loss)

Ping RTT drops after migration
Freeze Time: 0.6s ~ 2.1s

