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Systems Research Group @HKU
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Our Motto: solving REAL problems with 
the use of REAL computing resources



“Self-Made” Gideon 300 cluster in 2002
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(Built in Oct. 2002)

• 300 Pentium4 PCs @355 Gflops; 
• Ranked #170 in TOP500 (11/2002), 

#3 in China. 
• The highest ranking in the TOP500 

list among all machines from Hong 
Kong academic institutions in history.
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CS Gideon-II & CC MDRP Clusters

HKU High-Performance Computing Lab. 
 Total # of cores: 3004 CPU + 5376 GPU cores
 RAM Size: 8.34 TB
 Disk storage: 130 TB
 Peak computing power: 27.05 TFlops
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GPU-Cluster (Nvidia M2050, “Tianhe-
1a”): 7.62 Tflops



Big Data: The "3Vs" Model
• High Volume (amount of data) 
• High Velocity (speed of data in and out)
• High Variety (range of data types and sources)

2.5 x 1018

2010: 800,000 
petabytes  (would 
fill a stack of DVDs 
reaching from the 
earth to the moon 
and back)

By 2020, that pile of 
DVDs would stretch 
half way to Mars.



Google Trend: 
Big Data vs. Data Analytics vs. Cloud Computing

Cloud 
Computing

Big Data

12/2012

• McKinsey Global Institute (MGI) :
– Using big data, retailers could increase its operating margin by more than 60%. 
– The U.S. could reduce its healthcare expenditure by 8%
– Government administrators in Europe could save more than €100 billion ($143 

billion).



2012 CIO Agenda Findings

(Big Data)

Success is contingent on anticipating the coming changes

2,335 CIOs from 37 industries across 45 countries



Outline

• Part I: Multi-granularity Computation Migration

• Part II: Heterogeneous Manycore Computing (CPUs+ 

GUPs)

• Part III: Big Data Computing on Future 1000-core Chips

• Part IV: From Data to Intelligence -- Context Reasoning



Part I
Multi-granularity 
Computation Migration



Multi-granularity Computation Migration
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WAVNet Desktop Cloud
G-JavaMPI

JESSICA2
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Coarse

Small Large

SOD

Granularity
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(Size of state)



WAVNet: Live VM Migration over WAN 
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 A P2P Cloud with Live VM Migration over WAN
 “Virtualized LAN” over the Internet”

 High penetration via NAT hole punching
 Establish direct host-to-host connection
 Free from proxies, able to traverse most NATs

VM

VM

Key Members

Zheming Xu, Sheng Di, Weida Zhang, Luwei Cheng, and Cho-Li Wang, WAVNet: Wide-Area Network Virtualization 
Technique for Virtual Private Cloud, 2011 International Conference on Parallel Processing (ICPP2011)
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o Experiments at Pacific Rim Areas
WAVNet: Live VM Migration over WAN 

北京高能物理所
IHEP, Beijing

深圳先进院 (SIAT)

香港大学 (HKU)

中央研究院
(Sinica, Taiwan)

静宜大学
(Providence University)

SDSC, San Diego

日本产业技术综合研究所
(AIST, Japan)
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Thread Migration

JESSICA2
JVM

A Multithreaded Java 
Program

JESSICA2
JVM

JESSICA2
JVM

JESSICA2
JVM

JESSICA2
JVM

JESSICA2
JVM

Master Worker WorkerWorker

JIT Compiler 
Mode

Portable Java Frame

Java
Enabled
Single
System
Image
Computing
Architecture

JESSICA2 Distributed JVM



History and Roadmap of JESSICA Project

• JESSICA V1.0 (1996-1999)
– Execution mode: Interpreter Mode
– JVM kernel modification (Kaffe JVM)
– Global heap: built on top of TreadMarks (Lazy Release 

Consistency + homeless)
• JESSICA V2.0 (2000-2006)

– Execution mode: JIT-Compiler Mode
– JVM kernel modification
– Lazy release consistency + migrating-home protocol

• JESSICA V3.0 (2008~2010)
– Built above JVM (via JVMTI)
– Support Large Object Space 

• JESSICA v.4 (2010~)
– Japonica : Automatic  loop parallization and 

speculative  execution on GPU and multicore CPU
– TrC-DC : a software transactional memory system on 

cluster with distributed clocks (not discussed)
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King Tin LAM,

Ricky MaKinson Chan 

Chenggang Zhang 

Past Members

J1 and J2 received a total of 1107 source code downloads 
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Elastic Execution Model via SOD
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(a) “Remote Method 
Call”

(b) Mimic thread 
migration

(c) “Task Roaming”: like a 
mobile agent roaming over 
the network or workflow

With such flexible or composable execution paths, SOD 
enables agile and elastic exploitation of distributed 
resources (storage), a Big Data Solution ! 

Lightweight, Portable, Adaptable



Xen VM

JVM

Xen-aware host OS

guest OS

Xen VM

JVM

guest OS

Desktop PC

Overloaded

Load 
balancer

Cloud service 
provider

Thread 
migration

(JESSICA2)

Internet

Live migration

Load 
balancer

comm.

JVM

Stack-on-demand (SOD)

Mobile 
client

iOS

Stack 
segments

Partial 
Heap

Method 
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Code

Small 
footprint

Stacks Heap

JVM process

Method 
Area

Code

… …

Multi-thread 
Java process

trigger live 
migration

duplicate VM instances 
for scaling

eXCloud : Integrated 
Solution for Multi-

granularity Migration

Ricky K. K. Ma, King Tin Lam, Cho-Li Wang, "eXCloud: Transparent Runtime Support for Scaling Mobile Applications," 2011 IEEE 
International Conference on Cloud and Service Computing (CSC2011),. (Best Paper Award)
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Comparison of Migration Overhead

SOD has the smallest migration overhead : ranges from 13ms to
194ms under Gigabit Ethernet

Frame (SOD): Thread : Process : VM = 1 : 3 : 10 : 150 

Sys

App

SOD on Xen
(Stack mig.)

JESSICA2 on Xen
(Thread mig.)

G-JavaMPI on Xen
(Process mig.)

JDK on Xen
(VM live mig.)

Exec. time (sec) MO
(ms)

Exec. time (sec) MO
(ms)

Exec. time (sec) MO
(ms)

Exec. time (sec) MO
(ms)

w/ mig w/o mig w/ mig w/o mig w/ mig w/o mig w/ mig w/o mig

Fib 12.77 12.69 83 47.31 47.21 96 16.45 12.68 3770 13.37 12.28 1090

NQ 7.72 7.67 49 37.49 37.30 193 7.93 7.63 299 8.36 7.15 1210

TSP 3.59 3.58 13 19.54 19.44 96 3.67 3.59 84 4.76 3.54 1220

FFT 10.79 10.60 194 253.63 250.19 3436 15.13 10.75 4379 12.94 10.15 2790

Migration overhead (MO) 
= execution time w/ migration – execution time w/o migration

"A Stack-On-Demand Execution Model for Elastic Computing", IEEE ICPP2010,  San 
Diego, California, USA, September 13-16, 2010.



Part II
Heterogeneous Manycore
Computing (CPUs+ GUPs)

JAPONICA : Java with Auto-
Parallelization ON GraphIcs
Coprocessing Architecture 



20Heterogeneous Manycore Architecture



A Variety of Coprocessors
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Vendor Model Launch 
Date

Fab. 
(nm)

#Accelerator 
Cores (Max.)

GPU 
Clock 
(MHz)

TDP 
(watts) Memory Bandwidth 

(GB/s)
Programming 

Model Remarks

Intel

Sandy 
Bridge 2011Q1 32

12 HD graphics 
3000 EUs (8 
threads/EU)

850 –
1350 95

L3: 8MB
Sys mem
(DDR3)

21

OpenCL
Bandwidth is system 

DDR3 memory 
bandwidthIvy 

Bridge 2012Q2 22
16 HD graphics 

4000 EUs (8 
threads/EU)

650 –
1150 77

L3: 8MB
Sys mem
(DDR3)

25.6

Xeon 
Phi 2012H2 22

57 x86 cores
(with a 512-bit 
vector unit)

600-
1100 300 8GB 

GDDR5 300
OpenMP#, 
OpenCL*, 

OpenACC%

Less sensitive to branch 
divergent workloads

AMD

Brazos 
2.0 2012Q2 40 80 Evergreen 

shader cores 488-680 18
L2: 1MB
Sys mem
(DDR3)

21
OpenCL, 
C++AMP

Trinity 2012Q2 32
128-384 
Northern 

Islands cores
723-800 17-100 

L2: 4MB
Sys mem
(DDR3)

25 APU

Nvidia
Fermi 2010Q1 40

512 Cuda
cores

(16 SMs)
1300 238

L1: 48KB
L2: 768KB

6GB
148

CUDA, OpenCL, 
OpenACC

Kepler 2012Q2 28 1536 Cuda
cores 1000 300 8GB 

GDDR5 320 3X Perf/Watt, Dynamic 
Parallelism, HyperQ

# Intel-specific OpenMP
*  Not yet officially confirmed



Intel Many Integrated Core Architecture (MIC)

Knights Ferry (2010)
32 cores, 1.2 GHz, 750 GFLOPS, 2 
GB GDDR5, ~300 W

22nm Knights Corner (2012)
50+ cores, 

Teraflops Research Chip (2007)
80 cores, 3.16GHz, 1.01 Tflops, 62W

Single-chip Cloud 
Computer (2009-) 48 cores

Larrabee (2006-2010)

'Knight's Corner' chips 
(branded as 'Xeon Phi')-
6/2012 -- 64 x86 cores 
(256 threads) + a 512-bit 
vector unit @2GHz, 1 
Teraflops

ring interconnect keeps 
the caches for each chip 
coherent 

The MIC chip has a superscalar x64 core 
(without the out-of-order execution 
of Xeons) and a 512-bit vector math 
unit that can do 16 floating point 
operations per clock with single precision 
math.



Design Challenge (1)

1. Copy input data from CPU 
memory to GPU memory (e.g., 
cudaMemcpy())

2. Load GPU program and execute,
caching data on chip for 
performance

3. Copy results from GPU memory to 
CPU memory

PCI Bus

Fermi GPU load/store DRAM peak 
bandwidth = 148 GB/s  

(MIC=300 GB, Kepler=320 GB)

Bottleneck: PCIe gen2 
peak bandwidth= 8 GB/s



Does PCIe 3.0 help? 

Informal testing results: No 
appreciable difference in 
performance between PCIe 3
x16 (16GB/sec) and PCIe 2
(8GB/sec)

Require much higher “flops per byte” – i.e., applications with “High 
Arithmetic Intensity” (HAI)



Soluion? : CPU-GPU mashups

Intel Ivy Bridge (22nm)

AMD "Trinity".

AMD’s new Accelerated 
Processing Units combine 
general-purpose x86 CPU 
cores with programmable 
vector processing engines on 
a single silicon die

Ivy Bridge GPU
incorporates a high 
bandwidth L3 cache that is 
shared by the entire shader
array.



Design Challenge (2): 
GPU Can’t Handle Dynamic Loops

26
26

Dynamic loops

for(i=0;  i<N; i++)
{

C[i] = A[i] + B[i];
}

for(i=0;  i<N; i++)
{

A[ w[i] ] = 3 * A[ r[i] ];
}

GPU = SIMD/Vector 
Data Dependency Issues (RAW, WAW) Solutions?

Static loops

Non-deterministic data dependencies 
inhibit exploitation of inherent parallelism; 
only DO-ALL loops or embarrassingly 
parallel workload gets admitted to GPUs.



Dynamic loops are common in scientific and 
engineering applications

27
Source: Z. Shen, Z. Li,  and P. Yew, "An Empirical Study on Array Subscripts and Data Dependencies" 



Thread Level Speculation (TLS)
• Execute hard-to-analyze codes speculatively (or

optimistically) in parallel.
o Assume no dependences and execute in parallel
o Track memory accesses and detect violations
o Squash and restart offending threads

…=a[4]…
…

a[5]=…

…=a[1]…
…

a[2]=…

…=a[8]…
…

a[9]=…

…=a[5]…
…

a[6]=…

i=k i=k+1 i=k+2 i=k+3for(i=0;i<n;i++)
…=a[b[i]]…

…
a[c[i]]=…

RAW

28



Thread Level Speculation (TLS)
• Execute hard-to-analyze codes speculatively (or

optimistically) in parallel.
o Assume no dependences and execute in parallel
o Track memory accesses and detect violations
o Squash and restart offending threads

…=a[4]…
…

a[5]=…

…=a[1]…
…

a[2]=…

…=a[8]…
…

a[9]=…

…=a[5]…
…

a[6]=…

i=k i=k+1 i=k+2 i=k+3for(i=0;i<n;i++)
…=a[b[i]]…

…
a[c[i]]=…

RAW
…=a[5]…

…
a[6]=…

29



GPU-TLS : Thread-level Speculation on GPU
• Incremental parallelization 

o sliding window style execution. 
• Efficient dependency checking schemes
• Deferred update

o Speculative updates are stored in the write buffer of each thread 
until the commit time.

• 3 phases of execution

Phase 
I

• Speculative execution

Phase 
II

• Dependency checking

Phase 
III

• Commit 

30

intra-thread RAW
valid inter-thread RAW in GPU

GPU: lock-step execution in the 
same warp (32 threads per warp).

true inter-thread RAW



JAPONICA : Profile-Guided Work Dispatching
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2880 cores

…

64  x86 cores

8 high-speed x86 
cores

Dynamic 
Profiling

High
Medium

Low/None

Highly parallel

Multi-core CPU

Massively parallelParallel

Many-core 
coprocessors

Scheduler

Dependency 
density

Inter-iteration dependence: 
-- Read-After-Write (RAW) 
-- Write-After-Read (WAR)
-- Write-After-Write (WAW)



JAPONICA :  System Architecture
Sequential Java Code 
with user annotation

JavaR
Static Dep. 

Analysis
Code 

Translation

Uncertain

Dependency Density 
Analysis

Intra-warp 
Dep. Check

Inter-warp 
Dep. Check

DO-ALL Parallelizer Speculator

GPUCPU
Communication

CPU-Multi 
threads

GPU-Many 
threads

GPU-TLS Privatization

Task Sharing

CPU queue:  low, high,  0

GPU queue:  low,  00 :  CPU multithreads + GPU

Low DD :  CPU+GPU-TLS

High DD :  CPU single core 

Profiling Results

CUDA kernels with GPU-TLS| 
Privatization & CPU Single-threadCUDA kernels & CPU Multi-threads 

No dependence
RAW WAW/WAR

32

Profiler (on GPU)

Program 
Dependence 
Graph (PDG)

one loop

Task Stealing
Task Scheduler : CPU-GPU Co-Scheduling

Assign the tasks 
among CPU & GPU 
according to their 
dependency 
density (DD)



GPU-TLS: Performance Evaluation

33 33



JAPONICA Evaluation: 
Bi-Conjugate Gradient (BICG)**

**from the Polybench



General Observations and Prediction

• Lowering clock rate but many more cores.
o Kepler 1 Ghz (3072) vs Fermi 1.3 Ghz (512)

• More power efficient (increasing perf/watt)
• Increasing bandwidth (> 300 GB/s, e.g., Kepler) 

o getting readier for data intensive workloads.
• More dynamic workflow:

o Kepler’s Dynamic Parallelism : GPU kernel can spawn new 
work onto the GPU 

• Intel MIC, using x86 cores, is stealing the limelight. 
o We foresee it will be a norm in the coprocessor world.
o Deliver similar flops (1 Tflops) but easier programming

35



Part III
Big Data Future 1000-core 
“General Purpose” Maycore
Chips



“General Purpose” Manycore

Tile-based architecture: Cores are connected through a 2D network-
on-a-chip



Tiled Manycore Architectures 

• The cores of the SCC are grouped into multiple domains 
in terms of frequency, voltage and memory access. 

38

Multiple cores per tile, connected by an on-die 
2D mesh network (network-on-chip).

DRAM

DRAMDRAM

DRAM



Design Challenge (1): 
“Off-chip Memory Wall” Problem

– DRAM performance (latency) improved slowly over the past 40 years.  

(a) Gap of DRAM Density & Speed (b) DRAM Latency Not Improved

Memory density has doubled nearly every two 
years, while performance has improved slowly (e.g. 
still 100+ of core clock cycles per memory access)



Design Challenge (2): “Coherency Wall” Problem

• Overhead of enforcing cache coherency across 1,000 cores 
at hardware level will put a hard limit on scalability

1. Performance overhead: Coherence uses 20% more traffic 
per miss than a system with caches but not coherence

2. Die space overhead: cache directory, read/write log 
increase 

3. Not always needed: Only around 10% of the application 
memory references actually require cache coherence 
tracking

4. Verification complexity and extensibility: require dealing 
with subtle races and many transient states

Intel’s SCC and Teraflops Research Chip decided to give up 
coherent caches.



Laser-Powered Chip in 2017??
HP Corona : 10-Teraflop Manycore Chip (expected 2017)

• 256 cores, each supporting up to four threads 

• Optical interconnect : a 20 TB/sec DWDM crossbar 

• Optically connected memory (OCM) @ 10 TB/sec 
o 80 GB/sec : 8-core Intel E5-2600 Xeons 
o 64 GB/sec :  SPARC64 VIIIfx CPU of K computer 
o 177 GB/sec : NVIDIA M2090, 

• Energy efficiency: 6.4 watts @ 10 GB/sec of data to DRAM, which 
is 25 x less than electrical interconnect (160 watts)

• MOESI directory cache coherency protocol

• Aim at big data applications
• Other projects: Intel’s Runnemede, MIT’s Angstrom, 

NVIDIA’s Echelon, and Sandia’s X-calibur.



Design Challenge (3): “Power Wall” Problem 
• Computation costs much less energy than moving data to and 

from the computation units
• As the energy cost of computation is reduced by voltage scaling, 

the cost of data movement starts to dominate.

On-die network energy 
consumption per bit

0.06pJ/bit (2020)

If only 10% of the operands move over the 
network, 10 hops in average, at 0.06pJ/bit, 
the network would consume 35 watts of 
power, > 50% of the power budget of the 
processor.

You cannot break the laws of physics -
and 7nm is the limit

• Bill Dally, Chief Scientist of nVIDIA
o 1 pJ for an integer operation
o 20 pJ for a floating-point operation
o 26 pJ to move an operand over 1mm of wire to 

local memory
o 1 nJ to read an operand from on-chip memory

located at the far end of a chip 
o 16 nJ to read an operand from off-chip DRAM

1000x

1600x
picojoule (pJ) = 10−12  J
nanojoule (nJ) = 10−9 J



Design Challenge (4): OS Scalability

Y. Cui, et al, Scaling OLTP Applications on Commodity Multi-Core Platforms, ISPASS10

O ine Transaction 
g

On Line Transaction 
Processing

Intel 8 core system
4G RAM, 500G HDD
Linux kernel 2.6.25

>2X Gap



• Physical memory allocation performance sorted by function. 
As more cores are added more processing time is spent 
contending for locks.

Lock Contention in Multicore System

Lock 
Contention



Linux Atomic Operations
• x86 LOCK prefix makes many read-modify-write 

instructions atomic.
• Most general instruction is cmpxchg, used to implement 

locks

45

x86: LOCK prefix 
“locks” the memory 
bus for the 
destination memory 
address to allow the 
processor has 
exclusive use of any 
shared data.



How often is ‘cmpxchg’ used in Linux 
kernel?

$ cat vmlinux.asm | grep cmpxchg
c01046de:       f0 0f b1 15 3c 99 30    lock cmpxchg %edx,0xc030993c
c0105591:       f0 0f b1 15 3c 99 30    lock cmpxchg %edx,0xc030993c
c01055d9:       f0 0f b1 15 3c 99 30    lock cmpxchg %edx,0xc030993c
c010b895:       f0 0f b1 11             lock cmpxchg %edx,(%ecx)
c010b949:       f0 0f b1 0b             lock cmpxchg %ecx,(%ebx)
c0129a9f:       f0 0f b1 0b             lock cmpxchg %ecx,(%ebx)
c0129acf:       f0 0f b1 0b             lock cmpxchg %ecx,(%ebx)
c012d377:       f0 0f b1 0e             lock cmpxchg %ecx,(%esi)
c012d41a:       f0 0f b1 0e             lock cmpxchg %ecx,(%esi)
c012d968:       f0 0f b1 16             lock cmpxchg %edx,(%esi)
c012e568:       f0 0f b1 2e             lock cmpxchg %ebp,(%esi)
c012e57a:       f0 0f b1 2e             lock cmpxchg %ebp,(%esi)
c012e58a:       f0 0f b1 2e             lock cmpxchg %ebp,(%esi)
c012e83f:       f0 0f b1 13             lock cmpxchg %edx,(%ebx)
c012e931:       f0 0f b1 0a             lock cmpxchg %ecx,(%edx)
c012ea94:       f0 0f b1 11             lock cmpxchg %edx,(%ecx)
c012ecf4:       f0 0f b1 13             lock cmpxchg %edx,(%ebx)
c012f08e:       f0 0f b1 4b 18          lock cmpxchg %ecx,0x18(%ebx)
c012f163:       f0 0f b1 11             lock cmpxchg %edx,(%ecx)
c013cb60:       f0 0f b1 0e             lock cmpxchg %ecx,(%esi)
c0148b3c:       f0 0f b1 29             lock cmpxchg %ebp,(%ecx)
c0150d0f:       f0 0f b1 3b             lock cmpxchg %edi,(%ebx)
c0150d87:       f0 0f b1 31             lock cmpxchg %esi,(%ecx)
c0199c5e:       f0 0f b1 0b             lock cmpxchg %ecx,(%ebx)
c024b06f:       f0 0f b1 0b             lock cmpxchg %ecx,(%ebx)
c024b2fe:       f0 0f b1 51 18          lock cmpxchg %edx,0x18(%ecx)
c024b321:       f0 0f b1 51 18          lock cmpxchg %edx,0x18(%ecx)
c024b34b:       f0 0f b1 4b 18          lock cmpxchg %ecx,0x18(%ebx)
c024b960:       f0 0f b1 53 18          lock cmpxchg %edx,0x18(%ebx)(more)

Referenced in 25 files 
total (2.6.31.13) !



Operating Systems for Many-core (1)
• MIT Factored Operation System (fOS): 2009

o Target 1,000 core multicore chip
o Space sharing replaces time sharing

• Berkeley Tessellation (2009)
o "Cell“ replace processes for performance isolation and 

QoS guarantees
• Microsoft: Barrelfish

o Multikernel design: Build OS as a distributed system 
over all cores. Message passing among cores.

• Berkeley ROS (2010)
o Space and time partitioning
o ‘many-core’ process (MCP) abstraction



• Space sharing 
replaces time 
sharing to increase 
scalability

• Mimic distributed 
Internet services

• fos’s system servers 
communicate via 
message passing

MIT fos: a Factored Operating System

“Internet on a Chip”



Operating Systems for Many-core (2)

• Microsoft Helios (2009)
o running on heterogeneous hardware, based on Singularity OS
o satellite kernels, remote message passing, affinity

• K42 (Since 1996): IBM, U of Toronto  
o microkernel architecture, object-oriented design, research purposes

• Corey (2008) : MIT & Fudan &Microsoft Research Asia
o exo-kernel, re-implementing OS data structures  (file descriptor table, 

mm_struct) and user APIs

• µKMC (2012-): : U. of Tokyo
o light-weight micro kernels on Intel MIC, starts from July 2012. 
o accelerator abstraction layer (AAL), inter-kernel communication layer (IKCL)

• Berkeley Akaros (2010-2013)
o Asymmetric OS structure to scale to thousands of cores. 
o per-core private memory, syscalls are ”context switch free”



鳄鱼 @ HKU (01/2013-12/2015)
• Crocodiles: Cloud Runtime with Object Coherence On Dynamic 

tILES for future 1000-core tiled processors”
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Challenges and Potential Solutions (1)

51

• Stop moving so much data around
o Data Locality/Working Set getting critical! 
o 3D stacked memory  (TSV technology) helps !
o Compiler or runtime techniques to improve data reuse  

and increase arithmetic intensity (next slide)
o Cache-aware design (temporal locality becomes more 

critical)
o Migrating “code & state” instead of data  Thread 

migration among cores (+ large 3D stacked memory !).

• Stop multitasking
o Context switching breaks data locality 
o No Time Sharing  Space Sharing 



Arithmetic Intensity

• Arithmetic intensity is defined as the number of operations 
performed per word of memory transferred

• It is important for Big Data applications to have high arithmetic 
intensity, otherwise the memory access latency will limit 
computational speedup

52

O( N )
O( log(N) )

O( 1 )

SpMV, BLAS1,2

Stencils (PDEs)

Lattice Methods

FFTs
Dense Linear Algebra

(BLAS3)
Particle Methods



Challenges and Potential Solutions (2)

• Software-managed cache 
coherence
o Leverage programmable 

on-chip memory (e.g., MPB 
on Intel SCC)

o Scope consistency (ScC) : 
minimizing  on-chip 
network and  off-chip 
DRAM traffic

o Migrating-home ScC
Protocol (MH-ScC) 
improve data locality

Before Home 
Migration

Migrating 
phase

After Home migration

Simulation results obtained in a 8-node cluster (SOR program)

With home migration, 
each phase took much 
less execution time. 

Without home migration



Challenges and Potential Solutions (3)
• Scalability (up to 1000 cores?)

o Adopt multikernel operating system  (e.g., Barrelfish) to 
reduce contentions on shared structures in OS kernel

o Shared memory message passing

• Barrelfish : “Compact message cheaper than many 
cache lines-- even on a cache-coherent machine.”

View state as replicated: 
Maintain state through 
replication rather than 
shared memory (improved 
locality)



Challenges and Potential 
Solutions (4)

• Dynamic Zoning for Elasticity of Demand
o “Zoning” (Spatial Partition)  Performance isolation
o “Dynamic Zoning”: on-demand scaling of resources (e.g., 

# of cores, DRAM,..)  for each zone. 
o Partitioning varies over time, mimic multi-tenant Cloud 

Architecture “Data center on a Chip”
o Fit well with the domain-based power management (e.g., 

Intel SCC)

Time

S
p

ace



Conclusion
• GHz game is over Go for Manycore

o World has gone to manycore to continue Moore’s Law
o “General-purpose” 100-core chip is available (e.g., Tilera

TILE-Gx), 1000-core chip is expected soon (2017?)
o Intel MIC to be used in China’s 100 petaflops machine?

• PCIe bottleneck problem? 
o CPU-GPU mashup (e.g., APU)

• Big data computing on 1000-core chip is tough
o Locality is critical (compute is “free”, avoid moving 

data around)
o Power efficiency is  the key challenge (flops/watt)
o Low AI problem: Data reuse techniques for high 

flops/byte



Conclusion(Cont’d)
• Scalability issues in all layers: 

o Hardware (NoC), OS, software cache coherency, 
programming model

• “DON’T MOVE THE DATA!” 
o Implication: moving code & state instead
o Try “Multi-granularity Computation Migration”

• Research in system software is hard.
o There are rarely clearly right or clearly wrong 

solutions. No “one-size-fits-all”  solution.
o Difficult to compare: No standard interfaces
o Pressures from academic publication volume 

or deliverables





Part IV
From Data to 
Intelligence -- Context 
Reasoning



Context Reasoning
• Data is only valuable when you 

can gain insights from it to make 
decisions

• Context Reasoning: 
o deducing new and relevant information to 

the use of application(s) and user(s) from 
the various sources of context-data.

• These tasks include: (1) context data pre-
processing, (2) sensor data fusion and 
(3) mapping lower level context 
into higher level context (which is 
also known as context inference).



Context Reasoning : Significant Places Detection

(a) Seven extracted places:
a: King George V Memorial Park
b: 7-Eleven convenience store
c: Pizza-Box store
d: Bus station
e: Flora Ho Sports Centre
f: Pokfulam Road Playground
g: a restaurant

From lower-level raw data to meaningful higher-level context



Ontology-based Context Modeling

62

 Data Exchange

 Semantics+reasoning

 Relational Data

• Ontologies provide a vocabulary of terms
• Meaning (semantics) of such terms is formally specified
• New terms can be formed by combining existing ones

• Focus on semantics and reasoning ! 

Resource Description Framework (RDF)



post-Hadoop era (取代GFS 和 MapReduce)

• Google Caffeine (2010)
o 主要为Google网络搜索引擎提供支持 (2010)
o 将索引放置在由Google的分布式数据库BigTable上

• Google Pregel (SIGMOD 2010)
o Large-scale graph processing (图形数据库)

• Google Dremel (VLDB 2010): 
o interactive ad-hoc query
o 可以在几秒的时间处理PB级的数据查询 (BigQuery)

• Google Percolator: 
o for incremental processing (Bigtable)

• Apache Giraph (Open Source)
o HDFS + Zookeeper Ontology?



ContextTorrent
semantically organize, search, and store various types of contexts and their 
semantic relationships using ontology-based semantic technologies
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Peer to Peer Communication

Ontology-based Context Modeler

RDF triple: (subject, predicate, object) 

<person:”Dexter”, hasAge, “25”>,

<person: “Tom”, hasLocation, (110.1, 20.3)>

<hk_weatherstation, hasPredictinon, “Sunny”>

Linux Kernel

Application Framework

Libraries Android Runtime

Applications

Dalvik Virtual 
Machine

Core LibrariesSurface 
Manager

OpenGL ES

SSL

Media
Framework

FreeType

SGL

SQLite

WebKit

libc

Activity
Manager

Window
Manager

View System Package 
Manager

Resource
Manager

Location
Manager

Home Contacts

Phone Browser

Context-aware applications

ContextTorrent

Native Context 
Wrapper

Smart 
Dialer

Geo-photo 
Share

Location 
Base Serive ...

Semantic 
Relationship Linker

Extended Context
Connector

Smart 
Shopping

Context-aware
PIM

Ontology-based 
Context Modeler

ODBMS (db4o, Perst): object-
orientation analogous to ontological 
representation

Dexter Hu, “ContextTorrent: a Context Provisioning Framework for 
Pervasive Applications“, Ph.D Thesis, March 2011.
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Evaluation
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Continuous Query
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BetterLife 2.0: Large-scale Social Intelligence 
Reasoning

66

66

Case-based Reasoning 
Engine (jCOLIBRI2)

Social Network 

Cloud

Case-based Reasoning

Dexter H. Hu, Yinfeng Wang, Cho-Li Wang, "BetterLife 2.0: Large-scale Social Intelligence in Cloud Computing“ (CloudCom 2010) 



WAVNet: Live VM Migration over WAN 
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ICMP RTT and HTTP throughput during VM live migration 
(x represents ICMP packet loss)

Ping RTT drops after migration
Freeze Time: 0.6s ~ 2.1s


