A COMPONENT-BASED SOFTWARE SYSTEM WITH

FUNCTIONALITY ADAPTATION FOR MOBILE
COMPUTING

BELARAMANI NALINI MOTI

M. PHIL. THESIS

THE UNIVERSTY OF HONG KONG
2002

A COMPONENT-BASED SOFTWARE SYSTEM WITH
FUNCTIONALITY ADAPTATION FOR M OBILE
COMPUTING

by

Bdaramani Naini Mati

B.Eng. HK.

A thess submitted in partid fulfillment of the requirements for

the Degree of Master of Philosophy
a The Universty of Hong Kong.

August 2002

Abstract of thesis entitled

A COMPONENT-BASED SOFTWARE SYSTEM WITH
FUNCTIONALITY ADAPTATION FOR MOBILE COMPUTING

Submitted by

Bdaramani Ndini Mati

for the degree of Magter of Philosophy
a The University of Hong Kong
in August 2002

All things are affected by change. This is epecidly true for mobile computing environments.
Everything, from devices used, resources available, network bandwidths to user contexts, can
change dradticdly at run-time. It therefore becomes imperative for software systems and
applications to be able to adapt to these changes in order to provide a suitable and rdaively

gtable working environment for users.

Various techniques of adaptation have been researched, for ingtance changing the quality of
data accessed, or changing routing information dynamicaly. These each addresses a certain
aspect of change affecting the computing environment. However, dynamicaly changing how
an gpplication caries out its functionaity — functiondity adeptation — has not been
aufficiently explored in the context of mobile computing. Techniques do exist, however, with
limited flexibility and adaptive capability.

My work is motivated by the desire to devise a flexible and intuitive functionality adaptation
technique, which can adapt to many different types of change affecting a mobile computing
environment. The basis of this dissertation is dynamic component composition. Software
and gpplications are made up of components which are assembled at run-time as they are
required. There may be severa components carrying out the same task. Which component is
used for that particular task depends on the run-time execution environment. Under different
run-time conditions, different components are used. Each of these components may have
different runtime characteristics and adapt the execution of the task a hand, thereby
achieving functiondity adaptation. A new component modd, the facet mode, has been
designed in order to redlize the above technique.

The fundamental philosophy of the facet mode is the separation of functiondity from data
and use interface (Ul). Applications can be broken up into facets dong the lines of

functiondities. Every facet provides a certain functionaity. There may be more than one
facet achieving the same functiondlity. At run-time, the appropriate facet is brought in and
executed. This enables gpplications to be linked by functiondities, rather than by exact
components. Functiondity adaptation, in this approach, is achieved by choosing the
appropriate component from severd components with the same functiondity. The adaptation
mechanism is, in fact, trangparent to the programmer.

This thesis classfies into categories the different types of adaptabilities that mobile systems
exhibit, and the different types of techniques employed to achieve them. It defines
functiondity adgptation and argues tha dynamic component compostion is a flexible
mechanism to achieve it. Findly, it looks into the details of the facet component modd —a
component model especiadly designed br dynamic component composition in the context of
mobile computing — and illugtrates its feasibility and applicability through the implementation
of the Sparkle software system.

ToKiran, Mom & Dad
for their unfatering support.

Declar ation

| declare that this thess represents my own work, except where due acknowledgement is
made, and that it has not been previoudy included in a thesis, dissertation or report submitted
to this University or to any other ingtitution for a degree, diploma or other qudifications.

Bdaramani Ndini Mati

Acknowledgements

| must thank, first and foremost, my supervisor Dr. Cho-Li Wang, without whose guidance
and patience, this dissertation would not be possble. His enthusasm was one of my man
motivations for pursuing this dissertation. | am dso grateful to my other supervisor, Dr.
Francis Lau, who a various points of my research enabled me to step back and re-evduate
where | was heading.

I mugt thank my project mates, Chow Yuk and Vivien Kwan. Working with them, made
research fun. Their advice in al the discussions we had has played an important role for the

realization of thisthesis.

Research would have been very daunting if it not were for my officemates, Cathy Luo, Fang
Wei-Jan, Fdix Cheung, Reynold Cheng, Zhuo Ling, and Dave Towey, who livened things up

with their chatter, wit, and entertaining tales.

| must thank the technical staff and the administrative staff of the Department of Computer
Science and Information Systems, who were extremely helpful and made sure everything
went smoothly.

| must say, | have been blessed with lovely friends. | redly appreciate Vivian Mak's and
Henry Cho's heart-felt concern for my well being. Every meeting with them is aways filled
with laughter at top-volume. | mug thank Ah Lam for aways being there whenever | have
had any problems, from ingtaling Linux to deciding where to go for hiking.

| thank Manoj Mahboobani for actudly helping me proof read my initid draft without having
any idea about what was going on and Baggy Sartepe for ligening to my usdess chatter,
showing me the lighter side of things and helping me conquer bugs with alaugh.

| am deeply indebted to my closest friends and my pillars of support, Sunita Budhrani and
Sdbrina Kriplani. Life has a more entertaining and “livdly” dimension with them around.

The best thing about them is that they go through the torture of standing my whims and fusses
every day without saying aword, such as being forced to proof read my whole dissertation.

My sgter, Kiran, is where my strength lies. She has been beside me through thick and thin,
heard my endless chatter about computers at wee hours in the night, pretending to understand
every single hit of it. She has made me laugh and made me mad. Taking to her just makes dl

my frustrations disgppear. | don't think | would be the person | am without her.

And, of course, | thank my parents for being there for me, giving me al the comforts | need,

and showering me with their love and care.

Finally, | thank the Lord Almighty, by whose grace | am where | am now.

Table of Contents

Declaration
Acknowledgements
Table of Contents
List of Figures
List of Tables

CHAPTER 1 | NTRODUCTION

CHAPTER 2 M 0BILE COMPUTING & ADAPTATION

2.1 Mobile Computing
2.1.1 The Emerging Trend
2.1.2 What is Mobile Computing?
2.1.3 New Environment, New Features
2.1.4 Infrastructura Requirements

2.2 The Need for Functionality Adaptation
2.2.1 Characterized by Variation and Change
2.2.2 Adaptation and Adaptability
2.2.3 Functionality Adaptation

2.3 SImmary

CHAPTER 3 COMPONENT-BASED TECHNOLOGY
3.1 What is a component?
3.2 Component-based development
3.3 Current Component Technologies
3.3.1 Microsoft's Component Object Model (COM)
3.3.2 OMG's Common Object Request Boker Architecture (CORBA)

© N OO o o O

12
12
13
18
21

23
23
25
26
27
28

3.3.3 Sun's JavaBeans

3.34 Sun's Enterprise JavaBeans
3.35 .NET Assemblies

3.3.6 General Discussion

3.4 ummary

CHAPTER 4 THE SPARKLE M OBILE COMPUTING BNVIRONMENT
4.1 Current Software Digtribution Approach
4.2 Dynamic Component Composition
4.3 The Soarkle Mobile Computing Environment
4.3.1 Overview
4.3.2 Interaction Scenario
4.3.3 Functionality Adaptation
4.4 Facet Model
4.4.1 Functionality
4.4.2 Facets
4.4.3 Facet Requests
4.4.4 Facet Dependencies
445 Containers
4.4.6 Comparison Among the Component Modds
45 Related Work
4.6 SUmmary

CHAPTER 5 THE SPARKLE CLIENT SYSTEM
5.1 Client System Overview
5.2 Client System Entities
5.2.1 Centrd Manager
5.2.2 Discovery Manager
5.2.3 Network Handler
5.2.4 Facet Loader
5.2.5 Facet Cache
5.2.6 Lightweight Mobile Code System
5.2.7 Resource Manager
5.3 Discarding a facet

29
30
31
32
34

35
35
37
39
40
41

SR N N

47
48
50
52

57
57
62
62
63
64
65
66
67
68
69

5.4 Discusson 71

5.5 ummary 72
CHAPTER 6 PROGRAMMING FOR THE FACET MODEL 75
6.1 Facet-based Programming 75

6.1.1 Facets 76

6.1.1.1 Shadow 76

6.1.1.2 Code Segment 77

6.1.1.3 Dynamic Resource Requirement 80

6.1.1.4 Packaging the facet 82

6.1.2 Facet Requests and Invocation 82

6.1.3 Containers 84

6.2 Object-oriented Programming and Facet-Based programming 87

6.2.1 Object-Oriented vs. Facet-Basad Programming 87

6.2.2 Developing a Facet-Basad program 88

6.3 Ummary 91
CHAPTER 7 TESTING AND EVALUATION 93
7.1 Motivation 93

7.2 Testbed 94

7.3 Experiment 1 - Timing Analysis 95

7.4 Experiment 2 - Performance analysis 97

7.5 Experiment 3 - Image Processing Application 101

7.6 Evduation 104

7.7 ummary 105
CHAPTER 8 OVERALL DIsScussiON 107
8.1 Web- Services vs Facet Modd 108

8.2 Trangparency of Adaptation 110

8.3 The Facet Model and Adaptability 112

8.4 Context Awareness 113

8.5 Deficiencies of the Facet Modd 114

8.6 Applicahility of the Facet Model 115

-Vi-

8.7 Security Issue
8.8 Sparkle Architecture
8.9 ummary

CHAPTER 9 CONCLUSION
9.1 Summary and Contributions
9.2 Future Work

BIBLIOGRAPHY

- Vii -

116
117
118

121
121

List of Figures

4.1

4.2
4.3

51
52
5.3
5.4
55
5.6
5.7
5.8
5.9

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

Overview of the Sparkle Architecture
Different Execution Trees of Facet x

Structure of the Container

Architecturd Overview of the Client System

Actions Carried Out by the Centrd Manager

Interface of the Network Handler

Sample SOAP Reguest Sent to the Proxy

Sample SOAP Response Received by the Client

The FacetlL oader class

FacetCeche Class

All Cdlsto Facetlmplementation go through a Facet Object
Facet Class

Part of the Shadow Providing General Information of the Facet
Part of the Shadow Providing Resource Information of the Facet
Part of the Shadow Providing Dependency Informetion of the Facet
The Facetinterface Class

The Facetlmplementation Class

Example of a GaussanBlur Facet Implementation

Specifying the Memory Usage by a Formula

Specifying the Dynamic Memory Usage by a Lookup Table
Contents of the Jar file of the Gaussan Blur Facet

Contents of the Manifest of the Jar File

Adding criteriato a FacetRequest

Invoking a Facet

The FacetContainer Class

- Viii -

4C

48
4¢

6.14 Defining the Functiondity of a Container
6.15 Invoking a Root Facet
6.16 Exampleof aUl linking to the Root Facet
6.17 Execution of the Ul follows facet mode
6.18 Accessing the Storage Area of the Container
7.1 Timing Breakdown of Requests for Facets of Different Sizes
7.2 Results of the Benchmark with Different Types of References and Sizes
of Hegp on the iPAQ
7.3 Results of the Benchmark with Different Types of References and Sizes
of HesponaPC
7.4 Effect of Caching on Performance
75 Facets of the Image Processing Application. (Gray ovals represent
root acets)
7.6 Timing Analysis of Retrieving Various Facets from the Network
7.7 Comparison of Response Times for Facets locally retrieved and
remotely acquired.
7.8 Screen Shots of the Image Processing Application
79 Applying Various Functiondities on an Image
List of Tables
4.1 Comparison of Different Component Modds
6.1 Difference between OOP and FBP
7.1 Hardware Configuration used for Testing

100

101
101

102
102

103
103

51
8¢

Chapter 1

| ntroduction

“BEverything isin congtant flux.” — Heraclitus (c¢.540-480 B.C)

Nothing could be more true than the fact that dl things are flowing — everything is under
constant change. Even in the field of computing, we are witnessing great changes right befare
our eyes. When it first began, computing was limited to huge machines operated by scientists
in research laboratories. At present, computing covers a lot more devices, such as PCs,
laptops, and are used by a lot more people, even by those who don't have any technica
background.

With the millennium, there is an advent of a new computing environment. Computing is no
longer limited to a “computer” per se. You see more and more different types of devices, such
as pesond digitd assgtants (PDA’s) and mobile phones, taking advantage of wireess

networks to connect to the Internet to provide some sort of services to the user.

The trend towards mobile computing should not be ignored. Like every other computing
paradigm, mobile computing has its features and limitations. However, what sets it apart
from the other paradigms is the amount of change it is affected by. Everything, from devices
used, to resources available, to network bandwidths, to user context, can change dragticaly at
run-time. From a camputing environment's perspective, we could say that things in mobile
computing flow more quickly and in more directions than traditiond computing

environments.

It, therefore, becomes imperative for software systems and applications to be able to adapt to
changes, in order to provide a suitable and relatively stable working environment for users.
Various adaptation techniques have been previoudy explored — from lower-level techniques
of dynamicdly changing routing information, to changing fiddity (i.e qudity) of data
However, dynamicaly changing how an application carries out its functiondity, functionality

adaptation, has not been sufficiently explored, in the context of mobile computing.
Techniques do exist; however, with limited flexibility and adaptive capability.

My work is motivated by the desire to devise a flexible and intuitive functionality adaptation
technique, which can adapt to a lot of different types of change affecting a maobile computing
environment. The focus of my work is dynamic component composition. The basic
philosophy is as follows Software and applications are made up of components. The
components are assembled at runtime as they are required. Which components are used to
achieve a certain functiondity depend on the arrent execution environment. Under different
run-time conditions, different components will be used, hence achieving functiondity
adaptation. These components are brought, either from dedicated servers or from near-by
peers. They are then linked to the run-time system and executed. Once the components are
used, they are unlinked from the runtime system and thrown away, achieving memory
efficiency.

A prototype architecture — the Sparkle architecture, was built to demondrate the feasbility
and applicadlity of the above proposed technique. A new component model — the facet
model, was designed from scratch with innate support for dynamic component composition.
The facet modd is, in fact, of greast sgnificance since it is the means for applications to
achieve functionality adaptation.

The fundamenta philosophy of the facet modd is the separation of functiondity from data
and user interface (Ul). Applications can be seen as a means by which users perform tasks.
An gpplication usudly provides severd functiondities which users can invoke to fulfill their
tasks. It is argued that functiondity that an application provides changes more often than the
data implementation and data layout. In addition, the Ul can be conddered just as a means to
access functiondity. Often, the Ul changes more often than the essentid functiondity of an

goplication.

Facets are pure functiond units. Applications can be broken up into facets dong the lines of
functiondities. Every facet provides certain functionality. There may be more than one facet
which fulfills the same functiondity. As mentioned earlier, & runtime, the appropriate facet
is brought in and executed. Hence, it can be seen tha applications are linked by
functionalities, rather than by exact @mponents. Functionality adaptation, in this approach,
is achieved by choosing the appropriate component among different ones which have the
same functiondity. This choice is made by the underlying Sparkle system and the various

network entities. The adaptation mechanism is trangparent to the programmer.

The main advantage of having this transparency is that it makes it a lot esser to build
applications. Programming with support for adaptation for a huge variety of devices available
can become a burden for programmers. Moreover, applications only possess a loca view of
the whole system. The resource manager has a globa picture and thus is more suitable to do
resource dlocation and adaptation. Providing programmers with trangparency for important
system functions is not something new. Frameworks for Enterprise JavaBeans, CORBA and
.Net give programmers transparency for persistence, transaction, etc. Transparency for
adaptation can be seen as the next step in the same direction.

This thesis describes dynamic component composition and its use in achieving functionality

adaptation in the context of mobile environments. It is organized as follows.

Chapter 2 looks into the mobile computing paradigm. It discusses its features and
requirements. It also looks into the types of change affecting the environment, and the
adaptation techniques which have been employed in order to respond to these changes. The
main role of Chapter 2 is tha it differentiales between adaptability and adaptation, and
categorizes different types of adeptability and adgptation techniques. It discusses
functionality adaptation in detail and points out the flaws of some of the current functiondity
adaptation techniques.

The focus of Chapter 3 is components. It looks into component-based technology in generd,
and looks into common current component models. It provides the background needed for

understanding components, and dynamic component composition.

Chapter 4 describes the gpproach we have adopted in the Sparkle Mobile Computing
Environment. It introduces the concept of dynamic component compostion. It compares
dynamic component composition with the traditionad monalithic approach of distributing
software and demonstrates how dynamic component composition is more suitable in a mobile
computing environment and for functiondity adaptation. This chapter aso describes the
overdl architecture of the Sparkle sysem and the facet modd — the component model we
have devised for dynamic component compostion. It describes the basic motivation and
design philosophy of the facet modd and finaly compares the facet model with the other
component technologies.

Chapter 5 describes the Sparkle client system which was built to support dynamic
composition of facets. It looks into the condituent entities of the client system and how they
have been redlized in implementation.

Chapter 6 describes facets in greater detail. It provides a programmer’s view of facet-based
development. It describes how facets and their related abstractions should be implemented.
Most importantly, it highlights the difference between facet-based development and object
oriented development.

Chapter 7 reports the experiments carried out on the Sparkle system in order to demongtrate
the feadhility of the facet modd. The experiments aimed to demondrate the ability of the
client system to support dynamic facet composition, to establish factors which affect the
performance of the client and lagtly, to show the feashility of building a red-world
application built by facets.

Chapter 8 takes a step back and looks at the overal picture. It addresses issues such as web

services and the transparency of the facet modd. It also looks into the deficiencies of the facet
model and the Sparkle architecture.

Chapter 9 concludes the whole dissertation and points out avenues for future work.
In short, this dissertation makes the following contributions to research in fidd of Computer
Science:
= |t provides a classfication of the different types of adaptabilities mobile sysems and
gpplications exhibit and aso another of the adaptation techniques employed.

= |tintroduces functionality adaptation and its importance to mobile computing.

= |t proposes dynamic component composition as a means of achieving functionaity
adaptation.

= Mogt importantly, it defines the facet component model, designed for dynamic
component composition.

= |t illugrates the facet modd’s feasbility and gpplicability in a mobile environment
viathe Sparkle architecture.

Chapter 2

Mobile Computing & Adaptation

There is an indisputable trend today towards mobile computing. Fuelled by the plethora of
amdl, light-weight devices and the advances in network connectivity, especidly in the
wireless domain, one can eadily predict that this is just the beginning of a whole new mode of
computing. This new model brings with itsalf, new features and places new requirements on
software systems and infrastructures. What makes computing in the new mode so difficult is
its inherent and incessant change. The purpose of this chapter is two-fold. It ams to provide
a brief introduction to the field of mobile computing and it explores the various dimensions of

change which affect mobile environments.

This chapter is divided into two sections. The first section provides a brief overview of the
mobile computing arena. It is not meant to be a comprehensive discussion of dl the issues
involved but it does provide an indght to the fidd. It first introduces mobile computing
including its definition. It then discusses the typica features of the mobile computing
environment and the requirements these features put on the infrastructure for support.

The second section sarts off by exploring the kinds of change which affect mobile
environments. It then differentistes between adaptation and adaptability, providing
definitions, clasdfications and examples of both. Findly, it concludes that functiondity
adaptation in the context of mobile computing is not very well researched and that there exigts
aneed for a system which has flexible and comprehensive support for it.

2.1 MOBILE COMPUTING

2.1.1 TheEmerging Trend

Computing is no longer limited to a “computer” per se. Increasingly, many different types of
devices are taking advantage of wireless networks and the Internet to provide services to the
user. It has become commonplace to see cdlular phones which dlow web browsing and
emal reception with wirdess connectivity, persond digitd assstants (PDAsS) with scaled-
down versons of applications, digitd video cameras with Bluetooth connectivity. Public
places such as coffee shops and corridors of mgor commercia buildings have set up wirdess
networks for patrons to use.

All this indicates the advent of the new modd of computing. With the increesing availability
of smdl, light-weight and portable devices together with the advances in wireless technology,
users are demanding mobile devices to provide them with more convenience and
functionality. Users want to be able to access information and carry out tasks as they are
moving from place to place regardless of the device they are usng, may it be their PDAS,
mobile phones, or even perhaps their watches.

Not only that, gpplications should be able to take advantage of facilities and information in
the surrounding environment to provide relevant services. For example, a usr may be
working on a document on his PDA in a coffee shop. He should be able to use a printer
available in the coffee shop directly, without having to go through the setup procedures. The
mobile computing infrastructure should enable the discovery of nearby devices, services, etc.,
and provide links to them. In short, users want a seamless computing environment in which
their device or their location is not a mgor concern when compared to the task they want to
achieve.

2.1.2 What is Mobile Computing?

Mabile computing no doubt implies mobility. In this context, mobility can be seen in two
dimensons One dimengion is device mohility - a user carrying out his tasks on a device while
moving about, teking advantage of wirdess connections. The other dimenson is user
mobility — alowing users to move from one device to another and ill being able to carry out

their tasks, access their information and continue where they left off. Device mobility, thus,

implies change of spatid coordinates, whereas user mobility implies change of computing
device. At a software level, mohility can denote the movement of data and or the movement
of code. To a certain extent, dta mobility and code mobility are some techniques which can

be employed to achieve user and device mobility.

What exactly, then, is mobile computing? Defining mobile computing is just as difficult as
defining traditiond computing. With the plethora of devices, technologies and applications
employed, it is difficult to assign the definition of mobile computing to a single dass of
devices or gpplications. Chlamtac and Redi [14] have defined a mobile computing device
smply as a “ computing device which can communicate through a wireless channd”. Mobile
computing can be seen as the use of mobile devices and not-so-mobile devices, taking
advantage of wiredess means, to create a seamless computing environment enabling access of
information, computation and co-operation.

Many times the term “mobile computing” is used in conjunction with “pervasve computing”
or “ubiquitous computing’. Pervasive (or ubiquitous) computing aims to cregte an
environment in which computing is so naturdized that people do not redize they are usng
computerd66]. This is achieved by deploying a lot of smart devices in working and living
spaces that coordinate with one ancther in order to provide an intuitively personalized and
congantly available system to users. These devices ae smdl, may be mobile or norrmobile
and embedded in gadgets such as appliances, cars, badges, etc., communicating through wired
or wirdess means. No doubt, pervasve computing and mobile computing have a lot in
common. The difference lies in the focus of the two fields. Mobile computing has its focus
on providing mobility especidly by wirdess means. Pervasve computing aims to fill the
living environment with smart devices. Both fields complement each other to a certain extent.
As mobile devices become smdler, and as the use of wirdess technologies become more
pervasive, the distinction between the two will become blurred.

2.1.3 New Environment, New Features

The mobile computing environment brings about new styles and scenarios. Users are moving
in, about and out of the network, using different devices at different times, carrying out tasks
or accessing information. The devices may be communicating with servers on the Internet or
communicating with one another — forming peer groups, sharing lesources, or services. It is
evident that the mobile computing environment is very different from the traditiond
networked environment.

The essentid features and demands, which set the mobile computing environment apart,
include:

0 Device Heterogeneity
Instead of mainly PCs, computing is carried out on a wide range of devices, from lgptops
to PDAs, from mobile phones to pagers. Many of these devices are low-cogt, small size,
low weight devices. Each of them has very varied capabilities including display size,
memory Size, processing power, etc.

o Device Resource Limitations
Miniaturization of devices is one of the propelling factors for the trend towards mobile
computing. The compactness of the devices makes them limited in terms of memory,
processing capabilities and, especidly, power. No doubt, advances in technology will
increase the amount of resources on a device. However, compared with a desktop PC,
these resources will dways be limited.

0 Network Bandwidth Limitations and Instability

Wirdess networking is the foundation of mobile computing. Without wirdess networks,
mobility cannot redly be achieved. At present, the wirdess technologies include
Bluetooth, Generd Packet Radio Service (GPRS), IEEE 802.11a |EEE 802.11b, IEEE
802.11g and severd others under devdopment. The bandwidth available for wirdess
network is, no doubt, limited when compared to wired networks. At present, the largest
posshle bandwidth (54Mbps) is provided by IEEE 802.11a However, many devices
could be usng 1-2Mbps of Bluetooth connections, or a 114 kbps GPRS connection.
Also, the frequency spectrum in which communication is carried out is shared. This
could lead to interference in communication. In addition, connectivity is affected by
network coverage. Some aieas may have very wesk coverage or no coverage a all. In
short, we have a limited bandwidth network affected by interference, random range of
coverage and network failures, leading to a very unstable network environment.

o High Mobility
Users are provided with unrestricted mobility and connectivity, encompassing both user
and device mohbility. They can cary out their task while moving from one location to the
other, as well as switching from one device to another. For example, a user is carrying
out a video conference on his way home. He may be using the digital display in his car for
the conference. While waking from his car to his home, he switches the conference to his

PDA. Once heis a home, in his room, he continues the video conference on his persond

computer. This smple scenario exemplifies the highly mobile characteristic of the
computing environment.

Context Awareness

Applications are able to take advantage of the context of the user, including location, the
device being used, time, preferences and nearby services, to provide customized and
relevant services to the user. Let's consder the two examples discussed earlier. In the
coffee shop example, the gpplication is able to discover nearby services, and take
advantage of them, such as the printing service offered by printer in the coffee shop,
enabling the user to print his document. Applications are able to adapt to the input and
output capabilities of the device being used. In the video conferencing scenario, the
output adapts from the dgita display of the car, to perhgps a monochrome display of the
PDA, and findly to the full-fledged color display of the PC.

Proximity Interactions

Computing is not longer carried out in an isolated manner in which the only interactions
are those with servers. In fact, a mgor part of the interactions will be carried out with
devices which are in close vicinity — forming peer to peer networks for co-operation,
accessing services, sharing resources and information. Continuing with the video
conferencing scenario, when the user waks into his room with his PDA, the PDA
automaticaly detects and joins in the peer-to-peer network aready exigting in the room.
It discovers the PC in the network, and negotiates for the transfer of the gpplication. It

would need to share information in order to ensure a sSmooth trangition of the application.

2.1.4 Infrastructural Requirements

Current computing infrastructure and architecturd modds are inadequate to provide for the

new features of mobile computing. It cals for a change in software systems, network systems,

in gpplications and, in facet, in the whole architecture. Software systems rely on the

underlying architecture for support. Therefore it must provide certain basic services in order

to redize a truly seamless mobile environment. Some of these requirements are discussed
below.

0 Location Tracking

Users are congtantly moving. The system must be able to determine the location of users.

Some systems utilize specid hardware to detect the location, such as an infrared

transceiver system [87], while others may use a commercidly available Globa
Postioning System (GPS), which works only outdoors. Castro et d. [10] propose a
method to infer the location of a dient in an indoor wirdess LAN environment from
sgnd qudity measures. Once the location of a device is determined, this information is
usualy stored on location servers present in the network where it can be queried.

Data Ddivery and Synchronization

Users access their data from various locations and devices. The changes they make on
the data from one device must be reflected when they change their device or location. In
other words, they must be presented with a consistent view of their data. Work is being
carried out on digtributed information storage and retrieval systems, such as, Chord [79]
and Freenet [16]. These utilize mapping adgorithms - given an identifier, they will
determine the node responsible for storing that identifier's value, which could be a data
vaue or a document. Coda [74], a file system for mobile clients, supports disconnected
operations and utilizes operations-based update propagation to save network traffic. In
addtion, frequently accessed data is often cached on the device. Disconnection and client
mohility make maintaining cache consstency a problem [7]. The industry aso recognizes
the need for data consistency and have come up with SyncML [81], which is an open
industry standard based on XML, for universal synchronization of remote data and

persond information across multiple networks, platforms and devices.

Mobile Networking

Mobile hogts will, no doubt, be using wirdess channds to connect to the Internet. The
network topology can be constantly changing as the device moves from cdl to cdl.

Moreover, the radio frequency spectrum, which is used for communication, will probably
be shared with the other devices in the vicinity. A lot of research is being caried out to
ded with the network access issues of mobile computing which includes research in
protocds, packet scheduling, channd dlocation, admission control and bandwidth
management [4, 37, 46, 84]. For example, MobilelP [41] maintains addressing of mobile
nodes while maintaining compatibility with exigting Internet protocols

Ad-hoc Networking

Devices communicate with those in close proximity, usudly by forming ad-hoc networks
among each other. An ad-hoc network is a collection of wireless mobile hosts, forming a
temporary network without the aid of any edtablished infrastructure or centraized
administration [45]. In such an environment, due to range limits or other factors, one

device may need to seek the help of another in forwarding a packet to its degtination.

-10 -

Royer and Toh [73] provide a review of current routing agorithms for ad-hoc networking
in wirdess environments. The various agorithms can be classified under two categories.
table-driven and sourceinitited dgorithms. Table-driven agorithms require each node
to maintain one or more tables storing routing information, thereby dways maintaining a
consstent network view. Sourceinitiated routing agorithms creste routes only when
desired by the source node, i.e. they probe a route only when a message needs to be sent.
Mog of the time, devices rey on information from neighboring hasts, but some systems
aso use geographica podtions to help routing decisions [55]. However, geographic
position based routing schemes have very limited use in indoor networks with closdy
located nodes.

Context Determination and Dissamination

Mobile applications, many times, depend on the context in which they are running. They
rely on, (1) locdly available data, such as memory, the available bandwidth, and dso on
(2) information regarding the surrounding environment such as printing services available
nearby. Determination of some context information needs infrastructural support, such as
locating nearby objects and services and the end-to-end bandwidth available. Huang et
a. [39] argue that information is, many times, not useful a the time and place it is
generated. Rather, it must be represented later where it can be acted upon. In that sense,
the infragtructure will have a mgor role in the timdy and relevant ddivery of context
information. Research on context determinaion and dissemination is 4ill in its early
stages [13]. Most research focus on location determination, network bandwidth
availability, nearby service discovery and device resource usage [13, 35]. As the fidd
becomes more mature, we shal see determination of a lot more contextua parameters,

and a more integrated infrastructural support for context delivery.

SQupport for Adaptation

As one can see from above, what makes mobile computing difficult is the inherent
characterigtic of variation and incessant change. Everything - device resources, network
conditions and contexts, are constantly changing. Any application, middleware or system
targeted to such an environment needs to be able to detect and dynamically adapt to these
changes. Applications will rely on infrastructure for adaptation. In some cases, the
infrastructure itself needs to adapt some of its components, for example routing
mechanisms, transmission protocols, etc. [37, 45]. More on this will be discussed in the

next section.

-11 -

2.2 THENEED FORFUNCTIONALITY ADAPTATION

2.2.1 Characterized by Variation and Change

The mobile computing environment is characterized by variation. It is marked by the use of a
wide range of devices and technologies. There is no universa device, network characteristic
or configuration. In addition to this variation, environments are constantly afflicted by change
— a device may run out of power, or use a different device, or move to a location with lower
bandwidth. Thus, applications and systems targeted for such a dynamic environment should
cater for the incessant variation. They have to be able to detect run-time changes and adapt to
them appropriately.

Such variation and change can be broadly classfied dong the following axes:

o Device and Run-time Resources

There is a huge plethora of devices which can be used for mobile computing and that
range of devices will keep on widening. As mentioned in the previous sections, these
devices have different processng powers, memory sSzes, display capabilities, input
devices, output devices, etc. Applications need to cater for this variation in device
configuration. More importantly, the amount of resources keeps changing at run-time,
such as available memory and energy. With the limited amount of resources these
devices have, any change would have a pronounced effect. Application and systems must
gracefully adapt to the change.

o Nework Infrastructure
Devices connect to the network through various networking technologies - wireless
LANSs, Bluetooth and GPRS, each with different bandwidths, access protocols, and error
rates. In addition, as mobile hosts move from one location to another, network
characterigtics change. Bandwidths may change if the host moves into an area with low
network coverage. A device may aso move into an area of whose network it has no prior

knowledge. It will, no doubt, have to learn at run-time.
0O User Preferences and Environmental Factors

Not only do the device and network affect applications, they aso need to take into

account user preferences and environmental considerations to provide appropriate,

-12 -

intuitive and customized services to the user. These condderations include time, location,
nearby devices, nearby people, etc.

Often, when reading literature on mobile computing, one comes across the terms “context”
and “context-awareness’. Any factor which affects an application’'s behavior can be
considered as part of the context. Chen and Kotz [13] have divided contexts into 4 categories

= Computing context, such as network connectivity, communication bandwidth, nearby

resources, etc.

= User context, such as user profiles, location, socid stuation, etc.

= Physical context, such as lightning, noise conditions, temperature, etc.

= Time context, such as time of a day, week, month, season, etc.

In other words, nobile computing can be seen as being affected by a congtant change in
context. Applications and systems need to adapt to contextud changes i.e. they need to be
context-aware. For the clarity of our discusson, in this chapter, we categorize these
contextual changes into four types
= Device Resources. These include factors internd to the device, such as the working
memory available, the processing power, the energy, etc
= Network Properties These are changes in the network characteristics, such as the
network bandwidth, network type, protocol, etc.
= Environmental Context. This includes factors in the surrounding environment, such
as location, entities available nearby, time, etc.
= Usx Preferences. These are specific choices which the user has made to decide the
execution of a particular application.

2.2.2 Adaptation and Adaptability

Adaptation is fundamenta to mobile computing. It is currently the focus of extensve
recarch. Some of the techniques being explored include data adaptation, energy-aware
adaptation and rate adaptation. The word adaptation is so widdly used that it has come to
mean two different concepts, which are discussed below.

We want gpplications to be able to change a runtime, say, to adapt the amount of memory

avaldble they use, the network bandwidth they take up, or maybe, when running out of
power, switching to low-power mode. They should be able to detect changes in the

-13-

environment and respond to them appropriately. This is the “end result” we want applications
to achieve.

On the other hand, applications can employ various ways to respond to the change — “the
means’. By changing the qudity of the data accessed, say, a poor qudity image, both
network bandwidth and memory can be saved. In other words, you are adapting the data

qudity, in order to achievetwo “ends’.

There is a dight, but sgnificant, difference between the two concepts. one is the end and one
is the means. Mog literature use the term “adaptation” to mean both (i.e. using data qudity
adaptation to achieve network adaptation and memory adaptation). However, for the sake of
clarity of the discussion, we differentiate between them.

= Adaptability — the ability to change a run-time characterigtic in response to a trigger.
It is the “end” we want to achieve. If a piece of software supports network
adaptability, that means that it can adapt its network behavior according to different
network environments.

= Adaptation — the action taken to achieve adaptability by change of a certain property,
parameter or metric. It is the “means’. If an application changes the qudity of the
data it accesses according to the network characteridtic, it is employing data
adaptability.

Hence, adaptation is used to achieve adaptability. For the example above, we can say that we
use data adaptation to achieve memory and network adaptability.

Adaptive applications and sysems have adaptability. They can change their runtime
characterigtics in response to an externa trigger or change. These rurrtime characteristics can
be considered in severd dimensions which include:

= Memory adaptability. The ability to adapt to the changes in run-time memory
available. Every device has different amounts of memory and processing power
avalable An application should have the ahility to provide the same functiondity in
a resourcerich PC and in a resourcecongrained PDA environment. Moreover, with
severd applications running a the same time, it is possible that one application may
find itself suddenly out of memory. In that §uation, it should gracefully adapt to
perhaps a more memory efficient mode.

-14 -

= Energy adaptability. The ahility of an application, or system, to adapt its energy
usage. Power is one of the most limited resources in a mobile environment.
Applications and systems should be able to run in a more energy efficient manner, in
situaions of limited power supply.

= Nework adaptability. The ability of systems to change their network behaviors in
response to changes in the network infrastructure. They should be &ble to reduce their
bandwidth requirements, accept a greater degree of packet loss or be able to connect
to a new network environment as the need arises.

= Device adaptability. The ability to adapt to device configurations. Users move from
one device to another. Applications will need to follow the users. The devices may
have different input and output capabilities. For example, a PDA may use a pen-based
input, whereas a laptop uses a keyboard. They may have different processing powers.
It involves more than just changing the device drivers. The presentation format, the
Ul and perhgps the gpplication logic dso need to adgpt to the new configuration.

Applications need to provide a seamless trangition from one device to another.

= Context adaptability. The ability to adapt to various externd fectors. This
encompasses everything else that can affect an application, including location, time,
user preference, presence of nearby entities, etc.

There are many techniques, both hardware and software, which are currently used to achieve
the various forms of adaptability. Many times, change in one metric can affect two or more
dimensions of adaptability. As seen from above, by being able to change the qudity of data
accessed through the network, one can achieve both network and memory adaptability.

Adaptability embodies two mechanisms. One, to detect the changes in the factors of interest,
such as the network environment and the amount of resources, etc. Usudly there is an entity,
such as a resource manager or a network manager, which detects the change. This entity can
be located in the mobile hogt, in the network, or even on servers. The second mechanism is to
respond appropriately to the change. A lot of factors come into play when deciding how to
respond, such as what metric to change and where to carry out the change. Often, you have to
take into account severd conflicting criteria. For example, when sending data over a
network, using a higher bit rate may drain more power resources than sending the same piece
of datausing alower bit rate. Tradeoffs need to be made.

-15-

Very often, some sort of adaptation is employed as a response to the change. Adaptation can
be seen as a means of achieving adaptability. According to our definition discussed above,
adaptation implies change of a certan metric or parameter. Adaptaion changes a certan
parameter and the effect of that change leads to adaptability. We can roughly categorize
adaptation into five categories according to the metric or the factor changed.

o Data Adaptation
Moabile applications usudly need to access data for information or for entertainment, such
as emails, stock quotes, web pages, mult-media, etc. Data adaptation involves changing
the data in some manner, such as changing the quality of the data accessed, transforming
data to a more gppropriate form, accessing a different set of data atogether, etc. Thisis
the basis of many of the transcoding and content adaptation techniques. There are severd
projects which use proxy-based data adaptation to change the qudity, or fidelity, of the
data accessed, on the fly according to the client resource available, or according to the
network environment [24, 12, 34]. For example, in Odyssey [23], the server has severd
pre-generated versons of the data with different fiddlity levels, and the agppropriate one is

chosen at runtime according to the resources, or even energy, available.

0 Network Level Adaptation

This involves the change of network level parameters. This can be done in many ways,
for example, by using different protocols, adapting routing information, changing the rate
of transmission, network level QoS management, etc. There is a lot of research in this
area covering a wide spectrum of adaptation techniques, which lead to netwak
adaptability and even energy adaptability. A few examples include dynamicaly changing
data rates to match channel conditions [37], deploying filters to an intermediate proxy to
filter or delay dl but the most essentid data [91], usng an adaptive communication
protocol for energy conservation [36], changing routing information according to location
of the client device [41] or even according to the energy available in the nodes [54].

0 Energy Adaptation
This involves using techniques which change the anount of energy consumed, either by
turning the power off or moving to an less energy-consuming state. Many of techniques
are hardware related, such as dynamic voltage scaling of the CPU [67], adapting hard disk
spin policies, etc. Simunic et a [77] have devised a dynamic power management policy
which can be used on smal devices, Iaptops and wirdess LAN cards. Xu et d. [89],

-16 -

cary out power adaptation in ad-hoc wireless networks by turning off unnecessary nodes
without affect the routing capability.

0 Migration Adaptation
This involves changing the location of execution, for example, by moving to another
machine with more resources. This is often used in the fidds of distributed computing
and mobile agents, whereas in the field of mobile computing, it is dill rare or under
devdopment. Adaptive digtributed gpplications and mobile agents migrate to nodes,
which fulfill the resource requirements, if they redize that the current node does not have
sufficient resources for their execution [18,33]. Migration adaptation can be advantageous
in a mobile environment, for example, migrating from a PDA to a nearby laptop in order
to speedup execution.

o Functionality Adaptation

This involves changing the way an application carries out its functiondity. Applications
in a mohile environment can be seen as fulfilling certain tasks [5]. Functiondity
adaptation implies carrying out the same task but in a different manner, either by using a
different mechanism, different agorithm, a different QoS characterigtic, or by switching
to another execution mode, etc. It involves changing the execution of the task. For
example, if a device does not have sufficient computation power, an gpplication can use a
smaller key for encryption. More details on functionaity adaptation will be discussed in
Section 2.2.3.

There may be techniques used to achieve adaptability which do not fal into any of the above
categories. As time goes by and more techniques are discovered and employed, the
categorization has to be broadened and rdined.

Notice that we have not included context adaptation as one of the adaptation techniques. As
mentioned earlier, adaptation implies change of a cetain parameter. Hence, context
adaptation would mean that we change the externa contexts in a certain way. Up to the
current moment, to the best of our knowledge, such a technique has not been applied.
Context adaptability, on the other hand, means responding to contextua changes.

-17 -

2.2.3 Functionality Adaptation

Functiondity adaptation is probably the most versatile and the least explored of the five
adaptation categories. In a mobile environment, user interaction can be seen as users
performing certain tasks [5]. Thus, applications provide a means to carry out a group of tasks,
i.e. an application provides a set of functiondlities which a user can execute to fulfill his task.
Functionality adaptation involves changing the way the task is carried out in order to respond
to the changes in the mobile execution environment or context.

The other adaptation techniques involve changing lower level factors, such as the network
transmission parameters, data qudity or the power utilization. They do not redly change
how the assgned task is executed. Functiondity adaptation involves changing the execution
of the application. It is a software level adaptation technique and some of the ways it can be
carried out include:
= udng different sequence of actions or different agorithms,
= using code enhanced for certain platforms,
= changing the memory usage and processing time balance (i.e. usng less memory but
more processing time to carry out a task), or
= partitioning the task so that it is partially executed on a server rather than completely
locally.

Let's consder a smple example of an emal application. When checking mail, the application
downloads dl the new messages, including the body and attachments if it is running in a
device which has sufficient resources, such as a laptop. However, if it is running on a
resource-limited, network-constrained device, such as a mobile phone, it downloads only the
headers of the messages - the sender and the subject fidds. When the user wants to read a
message, only then does it download the body of the message. To a user, this difference in
the actions taken is trangoarent. The application achieves functiondity adaptation by using
different sequences of actions to fulfill itstask or, in other words, its functionality.

At a lower levd, it can be said that functiondity adaptetion involves using different chunks of
code for execution under different environments. Mechanisms for achieving this include,
among others.
= ugng different parts of the application code, i.e. different subroutines, or modules in
different scenarios. Which part of the code is used is decided by the gpplication
itself, or by the underlying middleware.

-18 -

= udng completely different gpplication code i.e dynamicdly replacing a module or a
chunk by a more appropriate one. This requires that the software architecture and
runtime infrastructure support replacement.

= delegating the execution of the code to some other entity (this could involve code
migration). There could be active delegation, i.e. the gpplication code decides which
part to delegate and to whom. Or, it could involve passive tHegation — the underlying
system decides what and where to delegate to.

Functiondity adaptation is, in fact, a very powerful tool. If implemented appropriately, it can
be a comprehensive technique which has the potentia for enhancing an application’s or a
system’s adaptability to a very wide range of factors, including network bandwidth, device
resource availability, and environmental context. For example, in a network-constrained
environment, it can delay the download of the body of an email until the message is actualy
accesed. Depending on the device display capabilities and memory available, different codes
are used for viewing email.

Unfortunatdly, research in functiondity adaptation in the context of mobile computing is
rather limited and the mechanisms used are rather redtricted. In Odyssey [23, 62], for
example, the system noatifies the application when there is a change in the resource of interest.
The application responds by accessing a different fidelity of data, which may need a different
decoding mechanism dtogether. Functiondity adaptation, in this case, involves adapting the
gpplication so that it can process different levels of data fiddity. Data adaptation and
functionaity adaptation go hand-inrhand in this case. You cannot change the data fiddlity if
the targeted application does not have the appropriate code to process it.

Ancther example is the architecture proposed by Kunz and Black [51]. In a client-proxy-
sarver scenanio, the gpplication logic is dynamicaly split between the mobile client and the
proxy in order to adapt to the dynamic wireless environment. This is referred to as application
apportioning. Applications register certain information with the run-time system about when
to carry out partitioning, for example, execute a certain code on the proxy if the bandwidth is
smaller than a vdue. At the appropriate time, the application logic is moved by using object

migration mechanisms.
The main difficulty with the above gpproaches is that the adaptation policy is ingrained in the

gpplication code. The programmer has to decide the adaptation policy a design time and
hence, it cannot be dynamically extended. This leads to three mgor drawbacks.

-19 -

O Burden on Application Programmer
The programmer has to decide when © adapt and how to adapt. He has to incorporate the
different versons of the same functionality into the application. Not only that, he has to
determine the adaptation policy a desgn time, i.e when to use which verson of the
functiondity. This places a burden on the programmer, who has to design for al possble

scenarios.

o Bigger Application Sze
Since dl the different functiondity versons are packed into the gpplication, an adaptive
gpplication has a bigger sze when compared to a hon-adaptive one. With memory being a

limited resource in a mobile device, such a feature goes againgt adaptive programs.

0 Limited Adaptive Capability
The different adaptation versons are determined at design time. As mobile environments
evolve, incorporating new types of devices, technologies, etc, the adaptive nature of such
gpplications become outdated. The adaptation cannot be dynamicaly changed, or
extended. For every new range of devices or technologies introduced, the application may
have to be rewritten or rendaled. This is not feasible in a fast-paced arena such as
mobile computing.

Functiondlity adaptation, no doubt, is essentid and important in a mobile computing
environment. A mechanism for achieving functionality adaptation needs to be developed
which can overcome the above problems. Such a mechanism
= should not increase the gpplication size considerably,
= jt should be able to incorporate features of new technologies without having to go
through the trouble of rewriting or reinstaling the whole gpplication and
= it should reduce the burden on the gpplication programmer.

You may notice a similarity between functionality adaptation and dynamicdly reconfigurable
software systems [48, 49, 75]. The difference lies in their purpose and targeted execution
environment. Functionality adaptation occurs in programs targeting the mobile computing
environment. “Reconfiguration” is carried out in response to changes in the runtime
environment or context. The main purpose for reconfiguration is adaptation. (nh the other
hand, configurable systems wusudly ae long running server-sde applications.
“Reconfiguration”, in this case, is carried out for software upgrading, that is, for software
extenson. Methods for achieving functiondity adaptation may be able to learn from some of
the techniques used in dynamic reconfiguration.

-20 -

2.3 SUMMARY

In this chapter, we see that mobile computing is an emerging trend. Mobile computing can
be seen as the use of mobile devices, taking advantage of wireess means, to cregte a seamless
computing environment, enabling access of information, computation and co-operation.
Mobile computing is different from pervasive computing, in the sense that it puts its focus on

mohility rether than on filling the living environment with smat devices.

What sets the mobile computing environment apart from other environments is its device
heterogeneity, device resource limitations, network limitations and instability, high mohility,
need for context-awareness, and the proliferation of proximity interactions. To redize the
ultimate mobile environment, infrastructura support for locetion tracking, data ddivery and
synchronization, mobile networking, ad-hoc networking, context determination and
dissemination, and adaptation are needed.

The dfficulty of mobile computing lies in its highly dynamic environment. Every aspect is
affected by change and variation, including resources, networks properties and context.
Systems and applications need to take into account these changes and respond to them
accordingly. In this chapter, we have differentiated between adaptation and adaptability.

= Adaptability is the ability to change a runtime characteristic in response to a trigger.
It is the ability to detect a change in the externd environment and respond to that
change.

= Adaptation is the action taken to achieve adaptability by change of a certain property,
parameter or metric. The change of a single property often affects more than one run-

time characteristic.

We looked at severd types of adaptahility including resource, energy, network, device and
context adaptability. We dso explored the different adaptation techniques currently
employed to achieve adgptability including data adaptation, network level adgptetion, energy
adaptation, migration adaptation and functionality adaptation.

Out of the five adaptation techniques, functiondity adaptetion provides a comprehensive
mechanism which has the most impact on the adaptability of a software. However, current
research in functiondity adaptation, in the context of mobile computing, is limited and is
lacking. The maor drawback of some of these techniques is that they put a lot of burden on

-21-

the programmer who has to decide the adaptation policy at design time and hence, cannot be
dynamicdly extended. There is a need of a functionality adaptation technique which can
overcome the drawbacks.

-22 -

Chapter 3

Component-Based Technology

Component-based software development has received interest from both the commercid and
academic sectors in recent years. Components allow the commoditization of software.
Software systems can be built by integrating already existing software components rather than
from scratch. From the development point of view, software components enable greater code

reuse, reduce development time, enhance maintainability and thus reduce development costs.

Often an anadogy between software components and hardware components in integrated
circuits is brought up. Just as how a modem can be made by assembling different IC
components and wiring them together, similarly, software systems can be built by wiring
together different software components. Software components, hence, have become
commercia-off the shelf (COTS) products[9, 82].

This chapter provides a brief overview of current component-based technology. We first
define what a component is. Then we describe the stages involved in carrying out
component-based development. The rest of the chapter looks into current leading component
modd s including CORBA, JavaBeans, Enterprise JavaBeans and .Net Assemblies.

3.1 WHAT ISA COMPONENT?

Before we can continue our discussion, we must first define what a component exactly is. At
present there are many smilar but no sngle definition of component. For example,
Szyperski provides the following definition of a component in his book [82].

“A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can be deployed
independently and is subject to composition by third parties.”

-23-

Smilary, D’ Souza and Wills [21] define a component as follows.

“ A component is a coherent package of software that can be independently developed
and delivered as a unit, and that offers interfaces by which it @n be connected, unchanged,
with other components to compose a larger system.”

Even though the definitions are different, they agree that a component has the following three
characterigtics.
= A component is independent. Independence does not mean that acomponent does not

depend on other components. It just implies that the dependencies are genera enough
for severd different providers to satisfy [6].

= A component provides functionality via well-defined interfaces. Each component can
have multiple interfaces, each representing a service the component offers. These
interfaces are of contractual nature with well-specified input and outputs, so that the
sarvices of the component can be used. They emphasize the black-box nature of a

component.

= Components can be used for compogtion. This is the most important characteristic.
For components to be composable, they must come with clear pecifications of what
they require and what they provide They must specify what the deployment
environment will need to provide for the execution of the component, for example,
the required interfaces of other components i.e. the dependencies. They aso must
specify a complete listing of the services provided including any error conditions that
may occur.

Another characteristic of a component, which is often implied, is that a component has no
persigent gtate [82]. It cannot be distinguished from copies of its own. A component can be
activated and loaded into a system. Different ingtances of a component may be available at
the run-time, however there is only a single copy of the component in a system.

-24 -

3.2 COMPONENT-BASED DEVELOPMENT

As mentioned earlier, components can be composed to create software systems. Granularity
of the components is determined by the pogrammer. Components connect to each other by
invoking one another’s interfaces. Interfaces are the means by which components connect. A
component provides an interface to a functiondity, and the client calls that interface to access
the functiondlity.

Interface specifications can be considered as contracts between clients of the interface and
implementations of the interface. They become the mediating link between providers and
clients which may be ignorant of each other. The contracts usualy include the syntactic
definition of the interface, the preconditions and the post-conditions of the operation — the
functiona requirements. Non-functiona requirements such as the performance, the resource
requirements, etc, should theoretically be part of the contract. However in many commonly -
used component models, they are often |eft out.

Component-based development can be divided into four phases [8, 74].

= Component Qualification — determining which existing components are fit for use in
the new system context, keeping in mind both functiond and the non-functiona
requirements.

= Component Adaptation — fine-tuning the component so that it fulfills the requirements
of the new system. The degree to which a component can be adapted depends on the
individual component.

= Assnbling Components — integrating the components so as to form a software
system from the disparate components.

= System Evolution — adding, removing or replacing a component so as to upgrade the
system, add new functionality, etc.

One must keep in mind the difference between the run-time and the static characteristics of
software. Component-based development, no doubt, crestes a modularized datic software
gructure. The software code is divided into components which are connected to form the
sysdem. However, the run-time characteristic may be very different. In some systems, the
component boundaries are indigtinguishable a runtime, or even load-time, hence cresting a
big monoalithic chunk of software. On the other end of the spectrum, some systems enable
components to be looked up and hooked a runtime, cresting a dynamic component
infrastructure, alowing components to be replaced a run-time. Dynamic component

-25-

composition falls under the latter category of component systems. Most systems fdl in
between the two extremes. Software is built from components. All the condituent
components are packaged and distributed as part of the application, even though they may be
linked a runtime. From the gpplication user's point of view, software is ill distributed as a
monolithic chunk. For dynamic component composition, however, software is distributed

component by component.

The benefits of component-based technology include reusability, understandability, reduced
development costs and dynamic extensibility. However, the feature, which is of most
importance to mobile computing, is its adaptability. Component systems possess the
capability to change configurations by adding, replacing or removing the condituent
components, adapting the software as desired.

3.3 CURRENT COMPONENT TECHNOLOGIES

In this section, we look a some of the current component technologies, namely COM [17],
CORBA [64], JavaBeans [78], Enterprise JavaBeans [72], and .Net Assemblies [59]. Most
of the components cannot run on their own and need to execute insde another process which
is often called a container. Some, however, can run by themsdves and provide mechanisms
for other processes to access their services. Not al components need to be located localy a
the client. Some components may be located on servers. Technologies such as DCOM [17]
and CORBA, provide the wiring required to connect up distributed components.

Essentidly, most of the commonly used components can be divided into four categories [74]
which are-
= Inprocess client components. These components run inside containers, or
gpplications, such as ActiveX, which are based on COM, JavaBeans, and .NET
Aszmblies
= Sandalone client components. These components can run on their own, exposing
their services to other programs through interfaces, for example, OLE Automation
(which isagain based on COM) and .NET Assemblies.
= Sandalone server components. These components run on a server machine, which
can be accessed through remote procedure calls or other networking communication.
Leading technologies indude DCOM and CORBA

-26 -

" Inprocess server components. These run inside containers such as transaction servers
on the server machine. Leading technologies incdlude MTS [58] and Enterprise
JavaBeans

In many the component models, the terms “component” and “object” are used
interchangeably. It is true that components can be implemented by object-oriented
technology. However, the terms are not equivdent. A component is a unit of composition
and does not have persisent state. An object, on the other hand, is a unit of ingantiation and
has a date that can be persstent. A component may be redized by traditional procedures,
assembly language or by using objects. A component may contain multiple classes, but a
class is definitely confined to a single component. The main difference lies in the roles of
components and objects. The role of components is to capture the static properties of an
architecture whereas the role of objects is to capture the g/namic nature of systems built out
of components [83]. A component can be considered as a ddtic entity, while an object is a
dynamic entity, only accessible at run-time. In the discussion below, we have tried as much as

possible not to interchange the two terms.

3.3.1 Microsoft’'s Component Object Modd (COM)

Microsoft's Component Object Model (COM) is a software architecture that dlows
gpplications to be built from binary software components. COM alows components to
interact as long as they stick to the binary standard specified by Microsoft. Distributed COM
(DCOM) is an extenson to COM which alows network-based component interaction. COM
and DCOM, in fact, lay the foundation of many other Microsoft technologies such as object
linking and embeddng (OLE), dynamic link libraries (DLL), ActiveX, COM+ and MTS.

A COM component is an executable block of machine code which implements a set of
interfaces through which clients can access its services. Interfaces form the only points of
contact between the clients and the component. Every component implements an 1Unknown
interface which is used to gain access to other interfaces of the component. Interfaces are
specified using Microsoft Interface Definition Language (MIDL). Once the interface is
defined, it cannot be changed, i.e. interfaces are immutable.

Both interfaces and components are given globaly unique identifiers, Interface ID (1ID) and
Class ID(CLSID) respectively. A client dynamicdly locates components by querying the
registry with the class identifier, CLSID, of the required component A new ingtance of the

-27 -

component is crested and returned to the client. The dient will then query the ingtance to
acquire a reference to the required interface, through which it can access the functiondity it
needs.

An important agpect in COM s that, instances of components have no identity. A client can
request for a component of a particular type (i.e. CSLID), but not a particular ingtance. Every
time a client requests for a component, a new ingtance is returned.

Components run either in the same process as the client, or in a different process which may
be on the loca computer or in another computer across the network. In the case that it is
located in a different process, the client is given a proxy object is through which it can
connect to the component. The location of the component is transparent to the client. DCOM
handles dl the details of marshdling and unmarshaling when the components are located in

different computers.

ActiveX controls are essentidly COM components which implement specid interfaces and
may incorporate a user interface. They can only be used with OLE containers, for examples
Internet Explorer and Visua Studio, which are aware of ActiveX controls. If an ActiveX
control is embedded in a web page, Internet Explorer will download the control and then
execute it in the same process. In Visud Studio, they can be used to add functiondity to an
gpplication visudly. This visud propety is smilar to JavaBeans. Please refer to Section
333

3.3.2 OMG’s Common Object Request Broker Architecture (CORBA)

CORBA is a digributed object architecture which dlows application components to

interoperate across networks regardless of the language in which they were written or the
platform on which they are deployed [11].

The main abdraction in CORBA is a CORBA object. CORBA objects can be consdered as

application components which provide services through specific interfaces. Interfaces serve
as contracts between clients of the services and the objects.

Firgly, an object’s interface is defined in OMG IDL — Interface Definition Language. When
the IDL is compiled, it will generate a skeleton and a stub. The skeleton code is compiled
with the object’s implementation and the stub code is compiled with the client code. Both

-28 -

dients and objects are inddled over an ORB — Object Request Broker. They may be
ingtdled on the same machine or on different machines, each with an ORB.

Every CORBA object has an object reference which identifies its ingtance. A client will
access an object through its IDL interface by specifying its object reference. A client obtains
object references either by receiving them as output parameters on invocations on other
objects for which they have references, such as the Naming and Trading Service, or by de-
gringification of a “sringified” object reference. The invocation of the service goes to the
locd ORB via the IDL sub. The locd ORB will route the invocation to the remote ORB,
which will pass it on to the object implementation via the skeleton. The location of the object
and the detalls of the routing is completely transparent to the client.

Since the dient needs to be daticdly linked to the stub of the objects, it is inflexible.
CORBA provides a Dynamic Invocation Interface which dlows clients to discover new
objects, interfaces and interact with them at run-time even if they are not linked to their stubs.

In CORBA 3, a new abdraction caled the CORBA component was introduced together with
the CORBA Component Modd (CCM). CORBA components are smply specid CORBA
objects which have been programmed to a specid style of interfacee. CORBA components
are server-sde objects which are ingdled in a CORBA container. The contaner provides
services such as persstence, transactions, security and notification, so that the CORBA
component programmer can focus solely on business logic. CORBA components are
compatible with Enterprise JavaBeans (see section 3.3.4).

CORBA objects can implement only one IDL inteface A CORBA component can bear
more than one interface, each with its own object reference. These multiple references are
known as facets. Clients of the component can navigate from one interface to another at run-
time. Usudly, components are distributed as a .car file which contains an XML component
description together with the component executable. However, severd components may be

packaged together as assemblies (.aar files), which are used as units of distribution.

3.3.3 Sun’sJavaBeans

A JavaBean is a reusable software component that can be visudly manipulated in builder
tools to dlow programmers to manipulate functiondity in a smple and visud way.

JavaBeans exhibit four properties customizability, introspection, events and persistence.

-29 -

JavaBeans have accessor and mutator methods which can be used to customize the properties
of a bean. Beans can dso look into other beans to discover ther variables, methods and
events. Interaction between beans usudly tekes place through events. Beans are usudly

stateful. Hence provide mechanisms to save and restore their state.

Beans are essentidly Java class files which follow certain conventions. They extend the Bean
class and are seridizable. Access to al properties is provided by methods which begin with
get and set. Beans are usudly packaged in JAR files and are identified by their class names.
Developers use visud tools, such as bean box, to compose the components and make
applications or applets. The applications are digtributed to the client as a whole, together with
al their condituent beans. JavaBeans can be considered as development components rather
than deployable components.

3.34 sun’sEnterprise JavaBeans

Enterprise JavaBeans (EJB) is an architecture for server-side components making it esser to
build middle-tier, server-sde busness gpplications. An enterprise bean is a server-side
software component, which is made of one or more Java objects, and exposes a single
component inteface. Enterprise beans are deployed in an EJB container, which in turn is
located on an EJB server. The container provides a run-time environment for the component
to execute in and provides a st of common services to the beans running in it, such as
transaction management, security, resource management and life cycle management,
persistence, remote accessibility and location trangparency etc.

There are two types of enterprise beans — session beans and entity beans. Session beans
implement the business logic of an application. They live only as long as the lifetime of the
cdling client. Sessons beans can be sateful. Especidly in the case that the implemented
business process spans multiple requests, the bean needs to retain the state on behaf of the
client. In other cases, sesson beans are daeless. Entity beans, on the other hand, mode
permanent data They are long laging and can serve multiple clients a one time, unlike
session beans for which an instance can only be used by one client.

An enterprise bean exposes a single interface which exposes methods for clients to invoke.
When a dient tries to use a method in an enterprise bean, the invocation is actualy
intercepted by an EJB object and then delegated to the bean. The EJB object is a part of the
container. It is network aware and acts as a glue between the client and the bean. A developer

-30-

will create a remote interface which is specific to a particular bean, and the EJB container will
auto-generate the EJB objects. A client needs to obtain a reference to an EJB object before it
can use the bean. It achieves that by querying the home object. Home objects are responsible
for creating EJB objects, finding existing EJB objects and removing them. Home objects are
aso part of the container. They are generated by the container from bean-specific home
interfaces provided by bean developers. The enterprise bean, the EB object, and the home
object, are located in the container.

In order to use a bean, a client first has to look up the home object of the required bean. This
is done by querying the Java Naming and Directory Interface (JNDI) for the nickname of the
bean. Then the client uses the home object to create an EJB object in the container on the
server. The client then uses the reference to the EJB object to cdl the methods on it, which of
course are ddegated to the actud enterprise bean. Once the dient is done with the bean, it
needs to remove the EJB object, i.e. destroy it from the container. RMI-IIOP or CORBA is
used for network communication.

Enterprise beans are didributed as Ejb-jar files. Other than the enterprise bean classes, the
remote interface and the home interface, the Ejb-jar dso contains an XML deployment
descriptor which specifies the component’s service requirements, such as transaction,
persstence, eic. The Ejb-jar dso indudes Bean-Specific Properties files which the bean can
reed a runtime to customize how the bean functions. The Ejb-jar files are then deployed on
an EJB sarver such as the BEA Webl ogic server.

3.35 .NET Asseemblies

.NET Assemblies are the primary building blocks of an application for Microsoft's .NET
Framework. An assembly is a collection of functionality that is built, versoned and deployed
as a dngle implementation unit. An assembly can be consdered as a DLL or a COM

component targeted for NET Framework’s Common Language Runtime (CLR).

The main difference between a .NET assembly and a COM component is tha an assembly is
sf-describing. It contains a manifest, which contains the assembly metadata including the
naming and versioning information, dependencies, and type information, in addition to code.
Due to this reason, registration, separate IDL files, type libraries or proxy/stubs are not
required to access a component. Assemblies are mainly identified by their name. They do
not need to register themselves with the operating system, unlike COM components

-31-

There are two types of assemblies — private assemblies and shared assemblies. Private
assemblies are meant © be only for a single application. They stored in the gpplication folder
or subdirectory in which they will be only visble for that gpplication. This makes naming the
assembly easy since private assemblies have no specific naming requirements except to be
unique to the gpplication. Shared assemblies on the other hand are assemblies that can be
shared among several gpplications. They are given a shared name which follows grict
naming conventions since the assemblies must be uniquely identifisble across the entire
system. They ae inddled in a centrdized repository cdled the Globd Assembly Cache,

which is essentidly a folder in the file system.

At run-time, the client indicates the name and the verson number of the required assembly, it
is looked up from the gpplication directory or from the globa assembly cache.

3.3.6 General Discussion

It can be seen from above how the theoretical component model has been redlized in different
ways with different foci and features. COM, CORBA and .NET Assamblies are language
independent, whereas JavaBeans, EJBs, CORBA components and .NET Assemblies can boast
platform independence.

For some of the modes, the linking of components is rather static. It is programmatically
decided which component is to be used. For example, for COM, JavaBeans and EJBs,
classnames are used to locate the required components. Assemblies use assembly names as
well which are programmatically specified within an application. Thus, an agpplication is
bounded to a particular implementation of functionality. It can only use tha particular
component. This reduces the amount of adaptability an application can have. COM, however,
does possess a little more flexibility than JavaBeans and EJBs, snce each component can
implement more han one interface. A client can move from one interface to another during
run-time. For CORBA, components are looked up via their object references. Different
objects, which implement the same interface, will have different object references. Clients
obtain an object reference from the Naming and Trading Service at run-time.

In the above models, the components are not mobile. An application can access a component
which is located locdly, or a component located on a remote server. The remote component

does not move to the client. The component framework provides the wiring for the client to

-32-

access the remote component, such as the ORB in CORBA, DCOM and EJBs. In most cases,
a proxy is sent to the client a run-time through which a client can access te remote
component’s services. However, for CORBA, the stub needs to be compiled into the client

goplication.

Java applets on the other hand, move to the client device when they are needed, and are
dynamicdly linked. They dso follow certain syntactic congraints. However, applets are not
composable, i.e. you cannot put two applets together to make a larger applet, and hence they
do not quaify as components.

As for ActiveX controls, they are essentidly COM objects which can be used for
composition. However, an ActiveX control can be embedded in a web page and it will be
downloaded to the client when the client accesses the web page and executed. In this sense,
they seem very smilar to our facet model i.e. downloaded when required. However, one @
the main difference is that ActiveX controls, even though they are dynamicaly linked to the
gpplicetion, they are not dynamically composed. When you download an ActiveX contral,
you download the whole control, as one chunk. As for facets, every constituent facet is
downloaded separatdly. In addition, the facet model alow for adaptation to the client device.
For ActiveX, the control used is decided at design time, hence limiting the flexibility.

CORBA and EB ae actudly didributed object techndogies which can be used to redize a
disgtributed component model. When a client agpplication retrieves a reference to a CORBA
object, then client is communicating with a specific object instance. If a client stores some
data in that object, it can retrieve back some or al of the data later. This is because every
CORBA object has an “identity” which can store some “state’. In DCOM, however, objects
do not have a dtate or identity. If a client obtains a reference to a remote object and stores
data into thet object, later when it attempts to retrieve the same object, it cannot. This

highlights the difference between the two approaches to distributed components [3].

It can be seen that for the above discussed component modes, the contract between
components is very syntactic in nature. It only includes the functiond aspects. Components
connect to each other through interfaces or component names. Often interface definition
languages (IDLs) are used to define the interface of the component. What functiondity a
component provides is implied by its implementation or by the description supplied by the
provider. Non-functiona criteria, such as performance, resource requirements, etc, are
usualy not included in the contract.

-33-

3.4 SUMMARY

This chapter provides background on component-based technology. A software component
has four characteristics

= [|tisindependent.

= |t provides functionality viawell-defined interfaces.

= |tisaunit of composition.

= |t has no persistent state.

Interface specifications can be considered as contracts between clients and providers of a
component. Theoreticaly, interface specifications should include both functiona and non-
functional requirements, but in practice, they often only include the former.

The dynamic characteristics of component systems lie between two extremes. On one hand,
component boundaries are indistinguishable at both runtime and load time. On the other
hand, components retain their boundaries dl through out, even during execution. Dynamic
component composition falls under the latter category. The advantage of component systems
is that they possess the capability to change configurations by adding, replacing or removing

the congtituent components.

We looked at five current component technologies including COM, CORBA, JavaBeans,
Enterprise JavaBeans and .NET assemblies. Each of them has a different focus and can boast
different advantages. Some of them support only loca components, such as JavaBeans and
.NET Assemblies. Others provide wiring to remote components as well, such as COM,
CORBA and Enterprise JavaBeans. However, components in these models, do not move.
Their location, once ingtdled, is fixed.

-34-

Chapter 4

The Sparkle M obile Computing Environment

In the earlier chapters, we saw how mobile computing differs from traditiona didtributed
computing. The most fundamental requirement for software is to be able to adapt to the
heterogeneity and the fluctuating conditions of the environment. Current software and
software distribution models are found to be lacking in this respect.

In this chapter, we look at the current software distribution model, the monalithic approach,
and explain why it is not suitable in a mobile computing environment. We then propose an
approach, which utilizes dynamic component composition, and discuss its appropriateness to
mobile computing. After that, we describe the infrastructure of Sparkle Mobile System which
makes use of dynamic component composition to achieve functiondity adaptation in a

dynamic and flexible way.

We then describe the component model employed in the Sparkle System. The components
are cdled facets, because they resemble facets of a diamond. Numerous small facets put
together make up a sparkling diamond. In the same way, many componerts put together can
make up a powerful mobile application. Findly, we look & some research carried out on

component modelsin mobile environments.

4.1 CURRENT SOFTWARE DISTRIBUTION APPROACH

At present, the most common way of obtaining software is by purchasing an ingdlation CD
from a software shop, or by downloading application files from the Internet and running the
ingdlation program. The whole gpplication is ingtdled in the device and can be invoked for
use. Thisisthe monoalithic approach — gpplications are distributed as monalithic chunks. You
have to ingdl the whole gpplication or nothing a al. You have to ingtdl the whole piece of

-35-

software, even if you normaly use, say, one tenth of the functiondity provided in tha
software.

One of the main drawbacks of the monalithic approach is that it puts a limit on the amount of
functiondity that can be placed on a mobile device Applicaions provide users with
functions. The more functions an application has, the bigger its size or memory requirements
will be. In mobile environments, where devices with limited resources are prevaent, norma
gpplications are too big to be inddled. Ingtead, programmers need to provide smaller, scaled-
down versions of the applications with less functiondity, in order to fit into the resource
congraints of the targeted device. In other words, to fit programs into devices, developers
build applications with smdler sizes, which, in turn, limit the functiondity provided by the
applications.

In addition, applications are usudly tailored for a specific platform. It is not possible, though,
to write different versons for dl the possble configuraions in a mobile environment.
Moreover, once an application is made for a certain device, it runs as it is designed.
Conseguently, the gpplications are designed for the most limited configurations of the target
device, for example, the least memory available. It usudly is not able to take advantage of the
extramemory available if it is running in a device with more memory.

Some gpplications are adaptive. However, the adaptability is usudly hard-coded into the
gpplication, which can only accommodate a limited set of configurations, or devices. To be
able to adapt to another new configuration or platform, developers need to rewrite the
application again, and redistribute it. Such an approach will not be able to cope with the ever-
increasing range of heterogeneity of mobile devices.

Also, once an gpplicaion is made and indaled, there is limited support for extending the
functiondity offered by it, unless you reingtal the gpplication. The exception to this are plug-
ins. But, plug-ins provide limited functiondity extenson. There is a tendency of applicaion
developers to bundle an overly rich sat of functiondity in a single piece of software. Again,
the more functions an application has, the bigger the sze, the less suitable it is for small
devices. Microsoft Word is a good example. It offers a lot of functions to users other than
just text editing, sich as drawing graphs, editing formulas, macros. The functiondity offered
increases with every new version of the software. However, most users only use a subset of
the functiondity, but developers have to include dl the functiondity together for the sake of
completeness. Thus, applications have an unnecessary bulk to them.

-36 -

In fact, what would be more suitable in a mobile context is being able to extend the
gpplication after ingtalation. Applications are written s0 that they can be ingtdled with only
the basc functiondity, and are extended according to the user's usage requirements.
Basicdly, applications only contain functiondlities which users require rather than including
al the unnecessary ones, thereby reducing the size of the gpplication and making it suiteble to
be ingdled on smdl devices.

4.2 DYNAMIC COMPONENT COMPOSI TION

As seen from above, current software distribution mechanisms fdl short when applied in a
mobile computing context. The monalithic approach puts a limit in the amount of
functiondity which can be placed in a device and cannot flexibly adapt to different device
configurations. Thus, a flexible way to digribute software, which overcomes the
shortcomings of the current moddl, is needed.

Our gpproach utilizes dynamic component composition. Instead of distributing an application
as one big monadlithic chunk, an gpplication is broken up into smal components. A device is
ingaled with a minimal st of initidizing components. When the application is run, as
components are needed, they are brought in from the network, linked to the runtime system
and executed. These components can be brought in from dedicated servers or from near-by
peers. Once the components are used, they are unlinked from the run-time system and thrown
away. The gpplication is, thus, dynamicaly composed from components & run-time.

The basic philosophy of this gpproach can be summarized as the get-use-throw gpproach —
you get a component when needed, use it and then throw it when it is done If you need it
again, you get it again. Even though the philosophy may seem smple it has severd
advantages over the other approaches.

= The functionality a device can provide is not limited by its configuration
Components are brought in when they are needed and discarded after use. These
components are small when compared to full-fledged applicaions. Being dble to
discard a component is of utmost importance for computing in smal devices.
Whatever is unwanted, can be thrown away, freeing up resources and memory for
components, which are currently running, or to bring in other components. This
enables devices to run programs which, if distributed as one whole chunk, would not

-37-

fit in the device A device can run a program with more functiondities withaut
worrying about the size of the application.

Extensive support for functionality adaptation

Since components are brought in a run-time, the application can dynamicaly adapt
to the device's run-time environment. For example, there are two components which
carry out the same thing, each with different run-time characteristics. The one which
is mogt suitable for the run-time conditions of the device is brought in and executed.
In a memory-congtrained environment, a component which uses less memory, but
perhaps requires more computation may be used. In addition, since the application is
“assembled” a run-time, this makes it dynamicaly adaptable. Applications can eesily
adapt to new requirements and configurations. All it takes is updating the
corresponding components and bringing in the newer components insteed of the older

ones.

Increased scope for peer-to-peer co-operation

Many of the current peer-to-peer technologies focus on data and file sharing, such as
Napster [60], Gnutella [28]. Instead of stering only data, clients can share
components, essentially forming a component pool. Clients can get components from
nearby peers, ingead of getting them from far-away servers. For instance, if severd
users are having a meeting and they al need to access a certain gpplicaion on their
PDAs, they can get the components from each other. In addition, if one of them does
not have enough resources to run a component, it can delegate the execution of that
component to the peer.

Support for user mohility

All functiondity is brought in from the network at run-time and it adapts dynamicaly
to the client device being used. Hence, applications are not restricted to a particular
device or even to a particular location. Users can access their gpplications from any
device anywhere. When a user moves from one device to ancther, the same
functiondities can be brought in, with components suitable for the new device.

Enhanced migration adaptation

If aclient device does not have enough resources to run a component, it can delegate
the execution of that component to a peer or a server, as a last resort. Instead of
migrating the whole application, it only needs to migraie the execution of one

component. In a mobile environment, it is probably more suitable to delegate a Sngle

-38 -

component rather than the whole application. Not only that, the delegated device
uses components which is more suitable for its run-time conditions rather than the
origind components. This basicaly enhances migration adgptation with functiondity
adaptation.

4.3 THE SPARKLE M 0BILE COMPUTING ENVIRONMENT

The Sparkle Project aims to provide an Internet-enabled infrastructure for mobile computing
which supports dynamic component composition. Applications can be seen as a means by
which users perform tasks [5]. An application usualy provides severd functiondities which
users can invoke to fulfill their tasks. Applications can be broken up into components adong
the lines of functiondities. Every component provides certain functionality. There may be
more than one component which fulfills the same functiondity. As mentioned earlier, a run-
time, the appropriate component is brought in and executed. Hence, it can be seen that
applications are linked by functionalities, rather than by exact components Consequently,
when you run an application in different environments, to carry out the same task, the actua

components used may be different.

In our modd, clients send requests for the components to the network, and are returned with
the appropricte component. Since gpplications are linked by functiondlity rather than by
exact components, the requests specify functiondity requirements rather than component
identifiers. They dso include non-functional requirements such as run-time resource
information and context, S0 as to determine which component would be most suitable for the
client. From the client’s viewpoint, there is a lot of rdliance on the network. The network
stores the components and also possesses intelligence to match the gopropriate component for
the client.

Therefore, the network architecture plays an important role in this model. In this section, we
provide an overview of the whole architecture, the network entities involved and their roles in

achieving dynamic component composition. Components in our sysem are cdled facets'.

1 The components were named “facets’ because they are similar to facets of a diamond. Many small facets put
together make up a dazzling diamond. In the same way, even though each facet may be small, when put together
with other facets, they can create a very powerful application. That's why the project was named “ Sparkle’, to
symbolize a sparkling diamond made of facets.

-39 -

Every component has a manifest which describes what functiondity it fulfills and its runtime
behavior, such as the amount of memory it requires or the network bandwidth, etc.

4 ;r"‘r i‘ | Service Providers
=l
e
g, | iﬂ:_’.: Facet Sarvers
ra;efﬁtwiva_ltff'i’“‘.‘
2 Co-operative
i e | Execution
et - Surrogate
proxies ; P 1

L5 m ; o
f |) S

" Facet-Query

~ Delegation/”

L

;f Mobile ¢
____" "
_D@ Clients

Peer-to-Peer Interaction

Figure 4.1 Overview of the Sparkle Architecture

4.3.1 Overview

The sparkle architecture consists of several entities which are listed below.
» Client Devices
Client devices provide a platform for the applications to run. Since agpplications
are made of components, the client devices responsible for retrieving and
executing the constituent components. They discover nearby peers and proxy
server from which to request for components. They aso incorporate caching
mechanisms for performance improvement. In case a client does not have
sufficient resources to run a component, as a last resort, it can decide to delegate

the execution to a peer or an execution surrogate.

* Face servers
Facet servers host facets, i.e. components. They provide a permanent storage

area for facds on the network. You can compare them to web servers which host
web pages and cgi-programs.

- 40 -

* Intelligent Proxies
The proxies are the main intelligence of the network. They receive requests from
clients, match the requirements with description of the components and return the
most appropriate components to the clients. The proxies dso incorporate
techniques to improve performance such as prefetching and co-operative

caching.

= Execution Surrogate
Execution surrogates are dedicated servers which run sers components. If a
device does not have sufficient resources to run the next component, it can
delegate the execution of that component to an execution surrogete.

4.3.2 Interaction Scenario

Every component fulfills a certain functiondlity. It is associated with a manifest which
contains a description of its resource requirements, run-time behavior, context conditions, etc.
An agpplication, while running, needs components. It will request for a component which
fulfills the required functiondity, i.e. functional requirement. The resource manager in the
client system adds to the request, the non-functiona requirements such as the memory
availability, processing power, user preference, and loca time, if appropriate.

Under normd cases, the request is sent to the proxy. The proxy possesses the overal view —
it knows what facets are available in the servers and it knows the requirements of the device.
It matches the requirements of the client with the properties of the available facets, carries ait
some usage pattern analysis and determines which facet would be most suitable for the client
touse. It then returns the facet to the client.

If connection to the proxy is not available, the client device can send requests to nearby peers
to see if they have afacet with the required functiondity available.

4.3.3 Functionality Adaptation

Dynamic component composition provides a flexible mechanism for achieving functiondity
adaptation. Functiondity adaptation is made possible by three factors.

-41 -

* The component moddl, which separates gpplications neatly into components, dlows
them to be composed at runtime, and to discard components which are no longer
used.

= The resource managers in client devices, which maintain information about the
physica resources, network connectivity and the context of the devices. This
information is included in a component request and is the bass on which matching
occurs.

= The proxies, which carry out matching between the request and facets. They are the
main active entities for adaptation.

Functiondlity adaptation, in this gpproach, is achieved by choosing the appropriate component
among different ones which have the same functiondity. This can be compared to Odyssey
[23, 62] which achieves data adaptation by choosng among data with different fiddity levels.
Hence, instead of choosing among different versons of data, we choose among different
versons of functiondity.

The main advantage of this approach, when compared to the approaches discussed in the
previous section, is that it is very flexible and dynamic. Developers only need to specify
which functiondities they require in an application, and provide different versons of them.
The adaptation mechanism is transparent to the programmer, unlike 2K and DACIA. Which

component comes in depends on the system and the matching mechanism of the proxy.

Also, in our model, the resource manager is contacted first to find out how much resource is
available and then a component is chosen accordingly. In other models, a component is
brought in, and then the dlocation of the required resources to run that component is
negotiated. In addition, since applications are linked by functiondities, rather than specific
components, as new technologies or devices emerge, developers only need to write newer
vesons of the affected functiondities. The proxies will automaticaly match these
components to suitable clients under the appropriate conditions. Rewriting or reingtdlation of

the whole program is not required.

Since the components are thrown away from the runtime after use, even the biggest of
programs can be used in a smdl device, depending on the size and run-time behavior of each
component. In short, this approach overcomes al the drawbacks in current functiondity
adaptation techniques, as mentioned in Chapter 2.

_42 -

4.4 FACET M ODEL

In this section, we describe the facet component modd. The main purpose of the facets is to
support dynamic component composition. Separation of functiondlity from data and user
interface (UI) is the fundamenta philosophy of the facet moddl. Applications alow users to
carry out certain tasks. They can be seen as providing functiondity to carry out these tasks.
These functiondities are embodied in facets. Facets are pure functiona units. They provide a
means to carry out the tasks, independent of the data or user interface (Ul).

Many distributed systems use objects as a unifying abstraction for both data and functiondity.
Functionality is often bound with the pecific data implementation it can act on. Grimm et
a. [30,31,32] find such an approach flawed for pervasive and mobile environments. They
argue that application functiondity changes more frequently than data implementation and
data layout. In addition, it is preferable to store and communicate passive data rather than
active objects. A clean separation between data and functiondity alows them to be managed
and to evolve independently. Facets provide pure functiondity. They take in inputs, carry
out their functionality resulting in the corresponding outputs.

The user interface is just a means to access functionadlity. It is highly dependent on externa

factors such as display capabilities of the device and user preferences, rather than on the
application or task at hand. Different Ul can be used to access the same functiondity or tasks.
In fact, the Ul changes more often than the essentiad functiondity of an application. When a
new verson of an application is released, the Ul is often completely revamped wheress the
basc functionality remains the same, except for a few additions and bug fixes. Since Ul

changes from device to device, verson to version, it is desrable to keep it separate from

functiondity. As they are not bound to each other, this enables developers to change the Ul
without changing the functiondity and vice versa, ataining a more intuitive and flexible
software modd.

In the following sub-sections, we provide an overview of the facet mode — describing what
condtitutes a facet, how facets depend on each other to support execution and how they are
requested from the proxy. We dso discuss the container abstraction in which the facets
execute.

-43 -

4.4.1 Functionality

Before we can go into the details of the facet, we must clarify what a functiondity is. As
mentioned earlier, gpplications provide sets of functiondities to the user. These
functiondities are independent of the user interface. A functionality can be conddered as a
sngle wel-defined task in an application. The task could be as small as a matrix
multiplication, or as bhig as blurring a whole image. It is mainly up to the programmer to
decide what an application’s congtituent functionalities are or how “big” they are.

A more concrete definition of functiondity is as follows. Given a st of inputs, the
functiondity determines what changes are made and the outputs atained. Essentidly
functionality can be seen as a contract defining what should be done. The contract includes

= The st of input parameters, i.e. the number and types of the parameters.

= The st of output parameters, i.e. the number and types of the outputs.

= Description of what is carried out i.e. what are valid outputs for a set of inputs.

= Pre-conditions, if any, for example, the ranges of input parameters supported

= Post-conditions, if any, for examples, which values are nullified, error conditions.

= Sideeffects, if any, for examples 1/O, or changesto state in the container.

Basicdly, the contract defines the functiondity to be achieved, but not how it should be
achieved. Implementations can use different agorithms, each with different performance
characteristics or resource requirements. As long as they dtick to the contract, they can be
consdered as achieving the same functiondity. As a consequence, functionality defines the
interface for interaction and is independent of the implementation.

To make things smpler, every functiondity is assigned a globdly unique identifier, the
functiondity id (funclD). Thus, a functiondity id (funclD) uniquely identifies the contract
which incorporates the factors mentioned above.

4.4.2 Facets

Facets are entities which implement the functionalities. They contain code components which
follow the contract of their corresponding functiondity. In our moded, a facet implements
only one single functiondity. In other words, a facet cannot provide two or more

functiondlities.

Due to this limitation and the nature of functionalities, facets have the following two features

= They have asingle publicly callable method.
Every facet implements only one functiondity. A functiondlity carries out a single
task, which is accessed through a single interface with a defined set of input
parameters and output parameters. Basicdly, afacet only has a single access point.

= They have no residual state

What this means is that the functiondity provided by a facet is independent of any
previous invocetions. During execution, a facet has a ate which is determined by
the values of the variables a that particular ingtant of time. Once the execution of the
facet is finished, these variables are ether discarded or are reset, so that they do not
affect execution of the next invocation of the facet. A facet cannot keep any date
beyond a single invocation. Thus, every invocation sees the facet as a “fresh” facet,
without residues of previous invocation.

The above is of mgor consegquence to the whole software model. These features of facets
meke them throwable — a facet can be discarded from the run-time as soon as it is used.
Let's say a facet does have some residua date, for example, it contains some detic variables
which need to be maintained, and the result of the execution depends on these variables. In
other words, every invocation to a facet depends on the previous state and will change it in
some way when it finishes. In that case, that state between the two invocations must be
maintained. And since this state is stored internaly in the facet, it cannot be discarded.
However, if a facet has no residud state, there is no need to maintain the state of the facet at
the end of its execution. It can be discarded as soon as its invocation is over. If it is needed
again, the same facet, or even perhaps another facet which implements the same functiondity,
can berdoaded. This results in amore flexible and memory efficient software model.

Every application does require a certain amount of sate, i.e. data, or information, be
maintained throughout the execution. Facets cannot be used to keep state which extend
beyond one invocation. Therefore, gpplication state is maintained in the container.

Consider the example of a facet which retrieves emails from an email server. This facet
would require the user name, the password and the rver from which to download the mails
from. And after it retrieves the emails, it either stores them in the container or passes them on
to the invoker. An “improper” or “dateful” facet, on the other hand, can be one which stores

the user name, password and server name, interndly on the first invocation and then for the

- 45 -

other invocations, does not require any inputs but rather uses the stored values. Or a
“dateful” facet stores the emails internally after execution and just passes a pointer to them to
the invoker (i.e. the email data is kept indde the facet). In this case, the facet cannot be
discared after execution. If it is, then dl the email data is lost. This goes againg the nation of
having throwable facets.

A facet can be uniqudy identified by its facet id. Since a facet implements a certain
functiondity, it is associated with a functiondity id (funcID), implying that it satisfies dl the
conditions of the contract specified for that functionality.

Externdly, afacet is not completely a black box. It congsts of two parts:

= Shadow. This describes the properties of the facet. It includes information about the
facet for example the facet id, vendor and versoning information, the funclD of the
functionality it achieves, its resource requirements (such as the size of the working
memory) and its dependencies. More on dependencies will be addressed later.
Basicdly, the shadow provides the metainformation about the facet. It is represented
in human and machine readable form, XML, and thus can be accessed by developers,
users and mechines alike.

= Code Segment. This is body of the executable code which achieves the functiondity.
We utilize the objectoriented approach in our modd. The code segment can consist
of severa classes. However, there is only one class which contains the publicly
cdlable method corresponding to the functionality contract. The code segment is
essentialy ablack box which exposes only one interface to access its service.

4.4.3 Facet Requests

There may be severa facets implementing the same functionality. These facets are cdled
compatible facets Each of them could have different run-time characteristics, resource
usages, etc. In other words, even though the facets may have the same funclD, they may
have different properties. These properties are included in the shadow, and are taken into
consideration when deciding which facet to use.

Whenever a facet is needed, the facet specification is filled in a facet request and sent to the
proxy. The facet specification consgsts of the funclD of the functionality required and other

criteria which the application developer may want to include such as the vendor, or version

- 46 -

information. The client system will add relevant context information such as the resaurces
available, to the request before sending it to the proxy. The proxy essentialy compares the
criteria specified in request with the shadows of dl the facets available and finds a facet
which satisfies dl the criteria and is suitable to run under the specified resource condraints. It
then sends the facet to the client. The matching mechanism of the proxy is out of the scope of
this thess. Please refer to the Magter of Philosophy Thesis by Vivien Kwan [52] for more
information regarding the proxy.

4.4.4 Facet Dependencies

In order to achieve its functiondity, a facet may cal upon other facets. While executing, a
facet could request for another facet. As mentioned earlier, the facet requests are in terms of
functionalities, i.e. funclD, rather than for specific facets. In other words, a facet may depend
on other functiondities. For example, an implementation of the gaussan blur functiondity
may depend on amatrix multiplication functionality.

Please note that functiondities themsdaves have no dependencies, it is the facets which have
dependencies. Functiondlities are independent of implementation. They are like empty boxes
and hence do not depend on anything se. It is the facets, which fill in these boxes i.e.
implement them, that may require the services of other functiondlities.

Different implementation of a functionadity may have different dependencies. Not every
compatible facet has the same dependencies. One may require 2 other functiondlities.
Ancther may not have any dependencies a dl and achieves the whole functiondity internaly.

Since the facets are actually composed and linked a runtime, every time a cetan
functiondlity is required, it is possible to get a different facet. Which facet is used depends on
the run-time resource and context characteristics. And that facet, in turn, may have different

dependencies. In essence, which facets are executed only can be determined at run-time.

To illugtrate the above, let's say we have a facet x which depends on 2 functiondities A and
B. Each of facets i, j, k fulfill functiondity A and facets p, q, r fulfill functiondity B. A and
B are cdled the dependencies of x. Facet dependencies are the functionalities a particular
facet depends on.

- 47 -

At runtime, when we are executing facet x and it requests for functionality A, which of the
facets i, j, k is brought in depends on the run-time characteristics and matching mechanism of
the proxy. At one instance, it could be i. At another time it could be k. Even though i, j, k are
compatible, they may have different dependencies. Again, which facets are cdled can only
be known during execution. It cannot be predetermined. In addition, facet x may require A
severd times. The pictorid representation of which fcets are actudly executed a run-time, is
cdled the facet execution tree.

Figure 4.2 Different Execution Trees of Facet x

When a user invokes a certain functiondity, it spans a whole tree of facet execution. The
facet at the root of the tree is cled the root facet. It is the facet in the whole execution tree,
which is closest to the user interaction.

The facets, which are under execution at a particular instant in time, are called active facets.
A facet is brought in and loaded when it is required. When it is under execution, it is active.
As soon as its finishes execution, it becomes inactive. Inactive facets can be discarded to
make room to bring in other facets. For instance, considering the execution tree in Figure 4.2,
Facet x cdls k which in turn calls m which cdls eand f. After mis over, it cdls n. At that
instant, facets X, kand n are active, and facets m, e and f are inactive. They are not needed

and thus, can be removed from memory.

445 Containers

Facets themsdves do not keep any state and do not interact with the user. They only provide
a certain functionality. However, most gpplications require maintenance of some sort of gate
and a user interface (Ul). Facets are used by developers to build applications. They have a
programming interface with which to communicate with each other. However, they cannot

directly interact with the user. Thisis where the container comesin.

- 48 -

The container is an abstraction tha provides an application-like feding to the user. Users
invoke the container to bring up an interface for user interaction, which in turn will request

for the gppropriate functionalities based on the user’ sinpuit.

Application
Functionalities

P [Faeei Spoe 1]
— ‘storage —

—— Area i
)) Fare oo B
w1 |, Bow See Container

Figure 4.3 Structure of the Container

A container provides a place for facets to run in. Each container is associated with a
particular gpplication and contains a set of functiondities which the application can offer.
These functiondities are stored in the container as facet specifications. Facet specifications
contain the funclDs of the congtituent functiondities and some additional criteria. When a
particular functionality is required, the corresponding facet specification is sent as a request to
the proxy, bringing in an appropriate facet and its dependencies, in turn sarting off the
execution of awhole tree of facets. Essentidly these facet specifications can be considered as
root facet specifications of the functiondities the application provides.

The container dso incorporates a pluggable user interface. For different devices, there can be
different Ul code. The Ul provides a means for users to access the functionaities offered by
the container. It contains links to the set of functiondities in the container. When the user
carries out a certain action, the Ul will invoke the corresponding functiondity by passing the
facet specification to the underlying system to retrieve it and its execution tree from the
network. Different Ul code may link to different subsets of the functionaities, depending on
the devel oper.

A container is much more than a bridge between the user and the facets. The main purpose of
the dtorage area is to store execution state and data which is important for the execution of an
gpplication. These could be in the form of variables or objects. Since facets cannot be used to
maintain any application state, this sate information is maintained in the storage area.

The container dso plays an important role in mohility. It keeps track of the state information,
for examples, the execution datus of the facets and shared data, and some relevant

- 49 -

information for restoring the execution. In short, we can say that the container is responsible
for storing information about the execution dtate, in order to be able to restore it when the
execution moves to another device Exactly how tha execution dtate is maintained and
restored is out of the scope of this thesis. Please refer to the Masters of Philosophy thesis by
Y. Chow [15] for more details regarding execution migration.

4.4.6 Comparison Among the Component Models

We have looked a some of the current component technology and the facet model. In this
section we discuss how some of the issues affecting the different technologies and compare
our facet modd with them.

For the current component models, the components are either distributed together with the
corresponding application to the client, or are located in remote servers. For the first case,
again, we face the problem of limits placed on functionality an application can provide due to
size congtraints. The later case however, can be consdered as services on the network. They
are manly heavy-duty server side components for gpplications which follow the client-server
model.

Only in the facet model, the components are distributed individualy to the client a run-time,
when they are required. This highlights the mohility of the components in the facet modd.
Facets move to the client a runtime, whereas in the other models, the components are
dationary. The only movement is perhgps a proxy moving to the client device enabling it to
talk to the remote component.

In most of the component modds, the components are dynamically linked. The types of
dynamic linking can be broadly classfied into two types, (1) interfacebased and (2) object-
based. For interface-based linking, components will link to each other via their interfaces.
They will look for a particular interface id rather than a particular component. Which
component is actualy implementing that interface, does not matter. For object-based linking,
applications look for particular components. They specify the exact name of the component
or its instance. Object-based linking again can be classfied into two types. One, the object or
ingance to be usad is decided at design-time, and second, the object to be used is dynamically
determined. For the first type, the name or identity of the component is actualy built into the
program, such as in COM, JavaBeans, EJBs and .Net Assembliess. CORBA fdls under the
second category of object-based linking. Even though it connects to a component viaa

-50 -

.Net

COM CORBA JavaBeans EJB . Facets
Assemblies
_— Reusable
. . Reusable D'Sm.bUtEd components for Reusat_)le Building blocks Functionality
Motivation software object) serverside 2 .
: : visual of applications adaptation
components interaction components
development
COMPONENT PROPERTIES
Language Independent Independent Java Java Independent Java
Platform Mainly Windows Independent Independent Independent Independent* Independent
Distribution Executable, .
Format Exe or DLL Car, or Aar Jar Ejb-Jar Exe or DLL Jar
Component . Deployment Assembly
Metadata None Noné? Manifest Descriptor Manifest Shadow
e Object Assembl
Identification Class ID Refegence Class Name Class Name Namey Facet ID
Components ngr::tgrgeﬁg dto Components Components Io’\llJ%ITeSgiOLe Components
Characteristic need to be np follow certain follow certain 9 yuniq have one
) : with . ; names for)
Features registered with , syntactic syntactic h publicly callable
component’s i o private
the OS specifications specifications method
stub. components
CONTRACT

Composition

Object-based

Interface-based

Object-based

Object-based

Object-based

Interface-based

Interface MIDL OMG IDL NA NA NA None
Definition
Number of
contracts per More than one® One* One One One One
component
Access points More than one More than one More than one More than one More than one One
per contract
C_om_ponent Run-time Run-time Compile time Run-time Run-time Run-time
Linking
Location of Local & Remote Local & Remote Local Remote Local Local & Remote
Components
Lookup Registry/ Active Naming and Global Access
Service Directory Trading Service None INDI Cache Proxy
Lookup Nickname or . Assembly Functionality ID
Criteria Class ID Service Type Class Name Nickname Name +other criteria
REMOTE COMPONENTS
Remote Proxy sent to Stub compiled Proxy sent to

) - } . Component
Component client at run- into client N.A. client at run- N.A. sent to client
Interaction time program time
Remote wiring RMI- 1IOP or

DCE-RPC IlOP N.A N.A SOAP
protocol CORBA

1. .NET Assemblies are targeted for Microsoft's Common Language Rurrtime (CLR). CLR istheoreticaly platform independent. However, at

present it isonly available for Windows Platforms.

2. A CORBA object hasno metadata. However a CORBA component containsan XML component descriptor

3. One COM component can implement more than one interface.

4. A CORBA object can have only oneinterface. However, a CORBA component can implement more than one interface

Table 4.1 Comparison of Different Component Models

-51-

specific object reference, the object reference can be dynamically determined by querying the
Naming and Trading Servicee A point to note about COM is that, even though dl the
interaction among components takes place via interfaces, component lookup is actudly based
on the identifier of the component, i.e. class id. Facets fdl under the category of interface-
based linking.

In the facet modd, looking up of a facet involves more than just maching an interface
identifier or a name. No doubt, we have to match the functiondlity identifier, which implies
the interface of the facet. We dso have to match the other criteria such as the resource
congraints. Matching these often requires some in-depth analysis. The facet moddl, thus,

requires a more complicated look-up service than the other component models.

There are many other differences between the facet modd and the other models. These have
been highlighted in Table 4.1.

4.5 RELATED WORK

In this section, we look a& some projects which have employed component-based mechanisms
in mobile and pervasive environments.

The Aura Group a Carnegie Mdlon University [26] is looking into issues which affecting
component-based development in pervasive environments. They consder software systems as
collections of components co-operating to achieve a user’'s tasks. They argue that to be
successful in a pervasive environment, component models must exhibit (1) mohbility — tasks
follow the user as he moves from one device to another, (2) adaptability — tasks can take
advantage of resources as they change, and (3) resource awareness — components publish their
resource requirements and offer multi-fidelity of services. Our facet mode fulfills to a greet
extent their criteria of the component modd. At the time of writing, their component model

was not yet published, hence a comparison could not be made.

Yau and Kaim [89] take a different approach to adaptation. Instead of having different
versons of components with different runtime resource behaviors, they incorporate
adeptability in a dngle component. Components are cgpable of peforming sdf-
customization so that they can fit themselves into specific red-time requirements. The
components provide a set of built-in services which can be used to change the red-time

-52 -

resource requirements of the component. However, since adaptation is carried out during the
component integration stage of software development and not at run-time, it is not suitable for

environments which experience alot of changes at run-time.

Another project which considers applications as made up of functiondities is the OneWorld
project [30, 31, 32] a the University of Washington. They argue that application data and
functionality need to be kept separate in order for a system to be suitable for a pervasive
environment. Functiondlities are represented by components, which are dynamicdly linked
and unlinked. An gpplication’'s man component initidizes its components and performs
initid linking. While the agpplication is running, it can initiate additiond components, relink
and unlink them as needed. The main difference between the facet moded and OneWorld's
model is the flexibility in the facet modd. As mentioned earlier, in the facet model, which
component is actualy used is deteemined at run-time, as for OneWorld, which component to
use is programmed into the agpplication, thereby limiting the range of adaptability that can be
achieved.

2K [47, 48] supports reconfiguration of component systems a runtime. 2K is actudly a
distributed OS rather than a middleware technology. However, it does endorse our approach
of bringing in components only when they are needed. When a component is needed, the
component and its prerequisite components are brought in from the component repository,
which may be located locdly or on the network. After that, the resource manager is contacted
to allocate the required resources for the components. Developers have to provide specidized

component configurator objects, which handle dynamic reconfigurdion. If any changes occur
in run-time resources, the resource manager will call the component configurator which will

adapt the application, for example, by replacing a component by anew one.

The DACIA project [57], a the University of Michigan, provides a framework for building
adaptive distributed applications. Applications are made of components located on various
network entities and the links between the components represent the direction of data flow
within the application. DACIA condders components as processing and routing units,
transforming one or more input data streams. There are monitors, specific to particular
gpplications, which are responsible for monitoring application performance and making
configuration decisons. Applications are adapted by dynamicaly adjusting the connection
between components and/or the location of the different components, and hence leading to a
change in the application graph. This framework seems more suited for distributed
gpplications which require data flow from one entity to another, for example video-on
demand.

-53-

For both 2K and DACIA, the adaptation policy is gpplicaion specific. Every goplication
implements its own adaptation policy, by means of component configurators (2K) or monitors
(DACIA). This puts a lot of burden on application programmers. The facet modd, instead
employs a system wide adgptation policy. The system has a better picture of the resource
needs of al the running applications. Also, this endbles programmers to focus on application
logic rather than on adaptation detalls, and makes it easier to develop mobile gpplications.

4.6 SUIMMARY

In this chapter, we have seen that the current software distribution gpproach is essentialy
flaved when it comes to deployment in mobile computing environments. The monolithic
approach, which digtributes gpplications as one indivisble chunk, makes an application too
big to fit into a smal device, thereby, limiting the functiondity a device can provide. In
addition, the adaptability and the extensibility of gpplications are somewhat limited.

We then introduced the dynamic component composition gpproach. Applications are made
up of components rather than as monalithic blocks. When a component is needed at run-time,
it is brought in from the network and external. Once it is used, it can be thrown away. The
advantages of this gpproach in mobile computing environments are that it does not limit the
functiondity of a device by its configuration. It aso provides an extensve support for
functionality adaptation and provides an increased the scope for peer-to-peer co-operation. In
addition, it supports user mohility and migration adaptation.

The foundation of the Sparkle project is dynamic component composition. It is made up of
severa network entities which, together, form a mobile system with innate support for
functiondity adaptation. The main role in adaptation is played by the proxy. It matches the
functiona and the non-functiond requirements in a client request with the components that
ae avalable and returns a suitable component to the client. Bascdly, functiondity
adaptation, in this approach, is achieved by choosing the appropriate component among
different ones which have the same functiondity. This provides a flexible and dynamic way
to achieve functionality adaptation, which reduces the burden on the application programmer

and provides for easy extension of adaptation aternatives.

-54 -

In short, dynamic component compostion is a suitable mechanism to provide functiondity
adaptation in a mobile environment. The components in the Sparkle Mobile Computing
Environment are caled facets.

The fundamental philosophy of the facet modd is the separation of functiondity from data
and user interface. Facets are pure functiond units. Every facet implements only a single
functionality. A functiondity can be seen as a contract — a sngle well-defined task in an
gpplication. It embodies the functiona requirements of the contract, including the inputs,

outputs, pre-conditions, post-conditions, €tc.

Facets have two fegtures, they only have a single publicly cdlable method, and they have no
resdua sate. This makes them throwable enhancing the overal memory efficiency. A facet
is made up of two parts — a shadow, which describes the properties of the facet and a code
segment, which implements the functiondity provided by the facet.

When an agpplication needs a facet, it does not request for a specific facet. Instead it requests
for a particular functionality and provides other criteria, such as resource condtraints, to the

proxy. The proxy finds an appropriate facet which satisfies al the criteria and passes it on to
the client.

A facet may cal upon other facets to fulfill its functiondity. Facet dependencies are the
functionalities a particular facet depends on. Due to the nature of the facet requests sent to the
proxy, which facet is actualy executed can only be determined a runtime. Active facets are
facets which are under execution at a particular instant in time. Inactive facets can be
discarded.

Facets execute indde a container. A container is an gpplicaion-like abdtraction. It has
structures to store state. It dso contains a pluggable user interface. A container is also a unit

of mohility, in Situations where the execution needs to migrate to another device.

This chapter ended by comparing the facet model with other component technologies and

looking at some research carried out on components in mobile environments.

-55-

-56 -

Chapter 5

The Sparkle Client System

We have discussed, in previous chapters, dynamic component composition, its importance in
mobile computing, as well as the facet modd, which is based on dynamic component
composition. As part of my work, | have implemented a client prototype which supports the
facet model in order to show the feasibility of such a model. The prototype supports bringing
in facets a runtime, loading and linking them up with the execution, and after they are used,
removing them from the memory. The client-system is built in the context of the Sparkle
architecture described in Chapter 4. We have aso built applications following the facet
model which run on the client system successfully.

This chapter describes the Sparkle client system, its various congtituent entities, their roles
and implementations. Most of the mechanisms have been implemented above the VM, in
order to ensure portability, for example, the use of user-level class loaders to drop facets

5.1 CLIENT SYSTEM OVERVIEW

All the user devices involved in the Sparkle architecture will be ingdled with client system.
The client system forms a basic necessity that al user devices must posses. Without it, the
devices cannot access the services provided by the Sparkle system. Thus, it isvitd to the
whole architecture.

Because it will be ingdled on devices which come in al shapes, szes and configurations,
there are severa requirements that it hasto fulfill. Theseinclude

= Portability

There is no common configuration for devices on which the client system should
work. The devices not only have different shapes and sizes, they have different

-57 -

processors, different amounts of memories and even different operating systems. The
client system should be able to work on the heterogeneous mix of devices.

Memory efficiency

Many of the devices may have smdl memoaries, often limited by their form-factors
and power availability. Since the client system is a requisite for al devices, it should
be kept as smdl as possible. It should dso be able to dynamicaly change its runtime
memory usage, if possible, in order to adapt to run-time needs.

Support for dynamic component composition

The dient system should support dl the intricacies of dynamic component
composition. Mogt of the details are transparent to the programmer, hence the client
system handles dl the mechanisms involved. These include negotiating with proxies
and peers for facets, loading and linking them up with the run-time when they are
received, and discarding them when they are no longer active, etc.

Support for dynamic discovery

Devices move from one place to another. Their environments and nearby entities
change according to their locations. Since dynamic component composition relies
heavily on retrieving functionality from the network, the client system should have
the capability of dynamicdly discovering nearby proxies and peers, in order to
determine which would be best suited for facet retrieva at a particular ingtant.

Peer-to-peer co-operation

Devices need to interact with each other in several ways. They share information or
files with one another. They can dso share facets with peers in the vicinity, in a
sense forming a pool of facets located closeby. A device can dso delegate the
execution of a facet to a near-by peer if it deems itself not having sufficient resources
to execute that facet. The client system must be able to support al the different sorts

of interaction possible between peers.

The current implementation of the client system addresses the first three requirements. We

believe that support for dynamic discovery and peer-to-peer co-operation are inter-related and

are complex issues. They require a separate in-depth study to look into the various possible
mechanisms. The dlient is built on the Java Virtud Machine (VM) in order to maintain the
portability of the client sysem and the facets. A virtud machine is indaled on top of the

-58 -

device operating system, over which the Sparkle dient system is implemented. The virtud
machine forms the main execution engine of the system.

The client system accepts facet specifications, in the form of Facet Request objects. It will
then contact a proxy or a peer through the available network service to request for the facets.
Once it receives a facet, ether from a server or a peer, it will load the facet and make it ready
for use and return the ready-to-use facet to the caller. Once the facet is no longer in use, the
system is responsible for throwing it avay. The client system dso handles dl the background

housekeeping, such as locating proxies and peers on the network, keeping track of the
resources being used, and handling mobility.

Facels and Containers

Taw Faceth™ | ~a

Java Virtual Machina

Host Operating System

Figure 5.1 Architectural Overview of the Client System

-59-

Anatomy of the Client System

The Sparkle client system interndly is made up of severd entities, each of which have
dedicated responsbilities. There is a centra manager which co-ordinates the activities of al
these entities in order to provide a unified system image. Facets and containers can only see
and interact with the centra manager. They cannot directly interact with the system modules.
In this section, we describe the basic congtituents of the client system and their roles.

The client system is made up of seven main entities.

0 Central Manager
The central manager is the main coordinating entity in the client system. It overlooks the
activities of al the condtituent entities in the client system. It interfaces with the facets
and containers, accepts requests for facets from the user-level, delegetes the gppropriate
tasks to the modules and returns a loaded, ready-to-use instance of the facet. It carries out
the main housekeeping of the client system.

0 Discovery Manager
Fecets are retrieved from the network. As a device moves from one location to another, it
needs to keep track of nearby proxies and peers from which it can request facets. The
discovery manager plays a vita role in this respect. It implements protocols and
mechanisms to discover devices and network entities in proximity to the client.

0 Nework Handler
A device needs to communicate with various entities in the surrounding network, for
examples with proxies and peers. Each of which may employ different protocols. It is
the responsihility of the network handler to handle the exact details of the communication
mechanisms and provide a generic access mechanism for the centra manager to use. It
handles dl the particulars of the protocol, negotiation, connection, sending requests and
receiving facets, etc.

0 Facet Loader
When the network handler receives a facet from the proxy or other peers, it will pass it on
to the facet loader. The facet loader is responsible for loading the facet into the run-time,
cregting a ready-to-use, invokable ingance of it. Every facet has its own object space
where its condtituent Java objects are loaded, so as to facilitate discarding a facet.

-60 -

O Facet Cache
Instead of bringing in facets from the network every time a functionality is required, some
of the commonly used facets are stored in the Facet Cache. Since the facets are locdly
available, this improves the response time and the performance a the cost of memory
usage. The size of the cache can be dynamicaly changed, on the ingtructions of the
resource manager. In addition, facetsin the cache can be shared with peers. If a peer
requests afacet and it is available in the cache, the client can send that facet to the peer.

o Light-weight Mobile Code System (LMCS
In a mobile environment, support for user and device mobility is indispensable. This
involves moving the execution from one device to another, or perhaps delegating part of
the execution to another devicer The light-weight mobile code sysem (LMCS) is
reponsble for handling dl the mechanisms involved, including suspending the
execution, capturing the execution state, moving it to another device, restoring the dtete
and continuing the execution.

0 Resource Manager

The resource manager keeps track of the resource usages of dl the entities in the Sparkle
sysem as well as the agpplications in the usar-leve i.e. facets and containers. It is
responsible for resource determination and resource alocation. It can adso control the
amount of resources used by the entities in Sparkle system, for example, the facet cache.
It appends to facet requests how much resources are alocated for those functiondities. It
is dso respongble for informing the LMCS to delegate the execution to another device.
The delegation can be proxy-triggered — the proxy responds with a directive to ddegae if
a facet cannot be found which satisfies the specified resource restrictions. The delegation
can adso be client-triggered — while running a facet, if most of the resources are used up,
the resource manager can stop the execution of that facet, rdlback and ask the LMCS to
migrate that particular facet.

As you can see from above, dl the seven entities cooperate with each other when handling a

facet request. They keep the underlying details transparent from the programmer so that he
can focus on functionality and application logic rather than on networking details.

-61-

5.2 CLIENT SYSTEM ENTITIES

The previous section described the responshbilities of each of the client system’s entities. In
this section, we look into how these responghilities trandate into implementation terms. We
have built a prototype whose main purpose is to illugrate the feesbility of dynamic
component compostion, rather than building a comprenensve mobile client syslem. Hence,
the implementation effort focused on doing just that — dynamic facet composition.

Some entities require and in-depth study in certain area which is out of the scope of this
thess. For those entities, we have made use of simplified implementations. In the next sub-
sections, we look at exch of the entities in turn, the demands from them, how they have been
implemented in the current prototype.

5.2.1 Central Manager

The centra manager is center of control and coordination of the Sparkle client system. It
contrals the activities of al the entities in the client sysem. Because the Sparkle client
system is small, with only six other entities, such a centralized model of control is feasible. If
anything goes wrong in any of the other entities, they will inform the centra manager, which
can take the appropriate steps for recovery.

At present, it is the only entity which can directly interact with the user-levd, i.e. the facets
and containers. It receives requedts to lookup a facet, puts the other entities into action to
retrieve and load the facet, and will return an instance of the loaded facet back to the user-

level. In case of no mgor errors, the sequence of actions taken by the central manager can be
summarized by the flow diagram in Figure 5.2.

Idedlly, the centrd manager co-operates with the resource manager in order to control the
resources used by the various entities in the Sparkle system. At present, the resource manager

provides smple resource management mechanisms and thus the duties of the centra manager
in the current implementation is limited to the flow chart in Figure 5.2.

-62 -

| Received a request to look up a facet I

-
Facet Requast |
n

Check if @ suitatle facet is in the cache I

.
4 IF nat l If yes

; Get resource corditions from resource
; manager

FacarBykes. Get a suitable proxy from the
distovery manager

|
i
i
: Pragy ° I
i
¥
[

1 Ak ruebwork: Randler to get facet from
' the proy

- L

§
| Ask the Facet Cache to cache the facet

W
%N l
ST Y

"| Ask the Facet Loader to load the face! I

P
Loaded Facet ! l
Y

| Retum the lnaded facet to the caller I

Figure 5.2 Actions Carried Out by the Central Manager

5.2.2 Discovery Manager

In a mobile environment, devices move from one location to another. A device may move
from one wireless cell to another. It may move from one network to another, for example
from a Bluetooth network to a GPRS network. Peers in the surrounding areas adso change.

The facet model depends a lot on retrieving facets from the network. Due to performance
reasons, it is advisable for a device to connect to an entity which would have a faster

download time. Consequently, the client must keep track of proxies and peers which are in
close vicinity and determine which one should be used for facet retrievd. The discovay
manager is responsible for discovering nearby entities. It implements discovery protocols.

Different network environment may require different discovery agorithms. It is the
respongibility of the discovery manager to employ a suitable protocols under the given
network conditions.

The discovery manager plays an important role in the system. However, a comprehensive
implementation of it would require an in-depth study of discovery protocols and a study of
typica spatia patterns of devices and proxies. At present, our prototype does not support
dynamic discovery yet. The location of the proxy is hard-coded in the implementation.

-63 -

5.2.3 Network Handler

Clients need to communicate with various entities, including proxies and peers. Each of them
may require different protocols for communication. For example, with proxies a client may
use SOAP to communicate, where as with peers it may use a more lightweight, proprietary
protocol. The network handler dedls with dl the details of communication with the different
types of entities It handles al the aspects including connecting and negotiating with the
network entity, converting the facet request in a form suitable to be sent over the
corresponding protocol. It adso extracts the facet from the response and passes it on to the
centra manager. It handles encryption and decryption mechanisms, if required. In short, it
provides a generic interface for other modules in the Sparkle system, such as the centra
manager, to interact with, keeping them shielded from the exact details of networking.

public class NetworkHandl er {
public byte[] getFacet(FacetRequest fr, NetworkEntity ne) {
//requests for a facet froma particular network entity

}

Figure 5.3 Interface of the Network Handler

At present, the communication between the client and the proxy utilizes the Simple Object
Access Protocol (SOAP). The facet specifications in the facet request are changed into XML
format and sent over Hypertext Transfer Protocol (HTTP). An exampe of a sample request is

shown below.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<SQAP- ENV: Envel ope
xm ns: SOAP-ENV="ht t p: / / schenas. xni soap. or g/ soap/ envel ope/ " >
<SQAP- ENV: Body> <ns1: Get Facet xm ns: ns1="Facet Proxy">
<facet >
<functionality_i d>20003</functionality_id>
<vendor >SRG SANG</ vendor >

</ facet>
<r oot f acet >no</ r oot f acet >
<cont ext >
<user >
<i dentifier>vjwrkwan</identifier>
</ user >
<static_resource> ... </static_resource>
<runtine_resource>... </runtime_resource>

</ cont ext >
</ nsl: Get Facet ></ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>
Figure 5.4 Sample SOAP Request Sent to the Proxy

The request usualy contains the criteria specified by the programmer as well as the resource

avalahility information added by the resource manager. The proxy responds to the request
by returning the matched facet as a MIME attachment to a SOAP response.

-64 -

Cont ent -Lengt h: 2955

Content-Type: multipart/related; type="text/xm";
boundary="----= Part_12_7542354. 1019098911017"
SQAPAction: "

------ =_Part_12_7542354. 1019098911017
Cont ent - Type: text/xm

<soap-env: Envel ope

xm ns: soap-env="http://schemas. xm soap. or g/ soap/ envel ope/ " >
<soap-env: Body>

<nsl: Get Facet Response xm ns: ns1="Facet Proxy" >

<facet href="cid:11289"/>

</ ns1: Cet Facet Response></ soap-env: Body>

</ soap- env: Envel ope>

------ = Part_12_7542354. 1019098911017
Cont ent - Type: appl i cation/java-archive
Cont ent - Tr ansf er - Encodi ng: base64
Content-1d: 11289

UES DBBQACAAI AVFWi Yy WAAAAAAAAAAAAAAAA] AAQATUVUQE1J Tk Yv/ s OAAANVAUES HCAAAA
AAAAAFBL AWQUAAAACAB2eows n79FVE AAAB7 AAAAFAAVAEL FVEEL SUsGLO1BTKI GRVNUL

UEs FBgAAAAAGAAYAOWEAAEQFAAAAAA==
—————— = Part_12_7542354.1019098911017- -
Figure 5.5 Sample SOAP Response Received by the Client

5.2.4 Facet Loader

Once the netwak handler has extracted the facet from the response of the proxy, it is passed
on to the facet loader. The facet loader then loads facet into the run-time and returns it to the
central manager.

The current implementation makes extensive use of Java's user class loaders. Every facet is
assigned its own class loader, a Facet d assLoader abject, through which its classes are
loaded into the virtua machine. The main motivation behind this is that it allows facets to be
cleanly discarded. Normaly, classes are not dynamicdly unloaded from the runtime
However, if there are no strong references to any of a facet’s constituent classes or to its class
loader, the Java Garbage Collector will consder them to be garbage and collect them. If a
class loader is collected, then al the classes loaded by that loader will be unloaded from the
virtua machine, consequently leading to the remova of the facet classes from the memory.

In this way, afacet is“discarded”.

The facet loader is given the facet and asked to load it. It will create a new
Facet d assLoader object and delegate the task to it. The Facet Q assLoader will load

the main facet class — that is determined from the manifest of the jar file, and return an
insance of it. The facet is kept in the Facet A assLoader S0 as to enable loading of the
other constituent classes of the facet.

-65 -

public class Facet Loader {
public A ass | oadFacet (byte[] facetBytes, dassLoader cl){
Facet A assLoader fcl = new Facet A assLoader (facetBytes,cl);
Cl ass facetd ass = fcl.|oadFacet();
'ret urn facetd ass;

}
/lother stuff

Figure 5.6 The FacetLoader class

5.2.5 Facet Cache

The facet cache serves a dud purpose. Ingtead of having to bring in facets every time a
functiondity is needed, some of the commonly used facets can be cached localy. This would
improve the performance of the system. The other purpose of the cache is to enhance peer-to-
peer co-operation. The cached facets could be shared with nearby peers, which request for

them.

Despite the advantages of the cache, it does, however, take up resources. The bigger the
cache is, the larger its memory usage. Trade-offs need to be made. Since the resource
manager keeps track of the resource needs of the whole system, it is responsible to determine
what would be a suitable cache size for a particular time frame. The facet cache can change

its size dynamically according to the instructions of the resource manager.

Currently, the facet cache is implemented as atwo-level cache. The primary cache stores the
facet in the memory. The secondary cache stores the facet as temp files in the secondary
dorage, i.e. hard disks for the case of lgptops. Cache entries are replaced using the least-
recently-used (LRU) scheme.

When the centrd manager receives a request for a facet, it will first forward that request to the
cache to see if a suitable facet is locdly available. Thus, the cache aso requires a matching
mechanism to identify which facet will be suitable. Since the suitability of the facets in the
cache, in terms of resource usage, have aready been matched by the proxies before, and due
to processing limitations of the client devices, a Smple maiching mechanism is sufficient. At
present, the cache tries to match either the functiondlity id or the facet identifier, with the
shadows of the cached facets. If there is a match, i.e. a facet is found in the cache with the
same functiondlity id or the same facet identifier, then the facet is retrieved from the cache

-66 -

and sent to the centrd manager. In case of no match, the central manager will forward the
request to the network handler to get the facet from the network instead.

public class Facet Cache {
public String cacheFacet (byte[] facetBytes) {
// caches the facet bytes according to LRU schene
}

public CacheEntry findFacet (Facet Request fRequest){
//finds a facet which matches the fRequest specifications
}

public void setLimts (int plimt, int slimt) {
// changes the size of the prinmary and secondary cache

/lother stuff

Figure 5.7 FacetCache Class

5.2.6 Lightweight Mobile Code System

In some sense, facets can be consdered as mobile code segments. They move from servers to
the clients when they ae required (i.e. code-on demand). However, the responsibility of this
module is not to move facets around, rather, to move the execution of facets. This is the
module which enables user mobility. When users move from one device to another, they
would want to carry on their tasks from where they left off. In addition, it is possible that the
client device does not have sufficient resources to support the execution of a certain
functiondity. In that case, pat of the execution can be delegated to another peer or a
dedicated server.

The lightweight mobile code system (LMCS) is responsble for handling al the details of
suspending and restoring the execution from one device to another. It needs to capture the
state of the execution. Since one facet can cal another facet, it needs to keep track of all the
facets which are active under the current execution tree. It moves the container, the state
information and the identifiers of the active facets to the other device. On the other device,
the facets are retrieved from the proxy, and the execution continues where it left off. From
then onwards, every time another functiondlity is required, it is adapted to the resource
characterigtics of the new device, rather than that of the origina device. Such amoabile
system s lightweight since it does not actualy move the code from one place to ancther;
rether, it moves the specification of the code, i.e. the facet identifiers and the dtate.

-67 -

The actud implementation and the research issues involved are art of another study. For in-
depth details about the LMCS, please refer to the Master of Philosophy thesis by Y. Chow
[15].

5.2.7 Resour ce M anager

The resource manager, as the name implies, is respongble for the management of dl the
resources of the device. Resource management involves four aspects. First, determining how
much resource is available at the particular ingtant in time. Second, determining the resource
requirements of currently executing applications, or system entities. Third, evauating and
alocating resources, taking into account side effects and tradeoffs. Fourth, taking steps to
enforce the alocation scheme. Resources encompass various aspects, such as memory,
energy, processing power, network bandwidth, etc. In short, the resaurce manager tries to
dlocate the various avalable resources among the resource clamants, and enforces the
dlocation scheme, s0 as to atain a suitable working environment for the user and
applications. The resource manager may need to keep track of previous resource usage
patterns and resource states so as to derive an appropriate alocation scheme. It needs to be
smple and effective. If it is too complicated, a device may spend too much time on resource

management rather than on doing actud work.

In the Sparkle system, the resource manager determines how much resources, such as
memory, network bandwidth, etc., are under use and by whom and how much resources are
avalable. It dlocates them accordingly to the various system entities and gpplicationsi.e.
containers, running. For the system entities, it may directly inform them to change their
resource usage. For example, the resource manager may inform the facet cache to reduce its
cache size when running low on resources. As for the applications, the resource allocation
scheme is enforced via facet requests sent to the proxy. Every time an application needs a
facet, the resource manager appends the amount of resource allocated for the whole execution
tree of that facet to the request sent. The proxy is then responsible for returning a facet which
can execute under the specified resource congraints.

For every facet request, the resource manager will add the static resource constraints and the
dynamic resource congtraints of the device. Static resource congtraints are those resources of
a device which do not change with run-time, for examples, the display sze, the processing
power, etc. The dynamic resource congtraints are those resources which can change with

-68 -

every request sent to the proxy. These include, runtime memory size, network bandwidth
and power, €tc.

There may be situations in which it is impossible for a proxy to locate a facet which can run
within the dlocated resources. In that case, the resource manager can increase the resource
dlocation or, dternatively, it can decide to delegate the execution of that facet to another
device or server. It will inform the lightweight mobile code sysem (LMCS), which will take
care of al the details of the migration.

The current implementation of the resource manager supports rudimentary memory
management. Our system is based on Java The Java virtud machine only supports
determination of the runtime memory avalability. Incorporation of the management of
processing power, energy and network bandwidth has to be built into the virtua machine,
which may be the next step of the project. The resource manager, a present, implements a
very smple dlocation strategy. It alocates a congtant fraction of the available memory to the
facet to be requested. That alocated amount, together with the static resource congtraints are
added to facet requests sent out to the proxy.

5.3 DISCARDING A FACET

We rely on the Java Garbage Collector to discard the facet. The overal drategy is as follows
— when afacet is no longer active, al the strong references to it are removed. Once the facet
object is collected, there are no strong references to the facet classes and its class loader. The
classes and the loader are collected as well, in effect discarding the facet from the memory.

As mentioned in the previous chapter, when a programmer programs a facet, he essentialy

writes a Facetlnplenentation classs. When a dient requests a functiondity, the
Facet | npl enent ati on is received from the proxy and loaded. The underlying system will

encapaulate the Facetlnplenentation in a Facet oObject. All cdls to the
Facet | npl enent ati on go through the Facet object.

_Execute

.

Execute

Facal Hequasl

Figure 5.8 All Calls to Facetimplementation go through a Facet Object

-69 -

The Facet object dores the Facet Request of a functiondity and a reference to a
Facet | npl enentation object. When a client accesses a functiondity, i.e. invokes the
execute method, the Facet object will pass the Facet Request to the manager, obtain the

Facet | npl enent at i on object and cdl execut e on it.

If there is no other reference to the facet, i.e. Facet!npl enentation object, it can be
gabage collected. Since each facet is loaded in its own class loader, if a
Facet | npl enentation object is collected, its class and cbss loader have no strong
references to them. The garbage collector will get rid of the aobject, the class loader, the
loaded facet classes. In this way, the facet is completely discarded from the system.

The Facet object and use four different types of references to deference the
Facet | npl enent at i on object.
= Srong References
After execute is cdled and the output is returned. The reference to the
Facet | npl ement at i on object is Sill maintained. Hence, the
Facet | npl enent ati on object cannot be collected by the garbage collector until the
Facet object is collected.

= Soft References
The characteristic of soft references is that they dlow objects to be collected even
though they have a reference to them. If an object is only accessble via a soft
reference, we don’t know when exactly it will be cleared. But we do know that it will

definitely be cleared before the virtua machine runs out of memory.

= Wesk References
Weakly referenced objects are amost aways collected by the garbage collector. If an
object is only accessible via a weak reference, the garbage collector can collect it any
timeit wants.

= Null References
Null references implies that no reference to the Facet ! npl ementation object is
maintained in the Facet object. Thus it can be collected & soon as it returns the
output.
Often in an application, a facet is cdled upon more than once If the

Facet | npl enent ati on object has not been collected, then it is accesshle via its reference

-70 -

and can be immediately used. However, if it has been garbage collected, then the manager
has to be contacted to retrieve the facet, either from the cache, or from proxies and peers.
Thus, it is a tradeoff between memory and performance. If the facets are kept loaded in the
virtua machine, then when they are needed again, there is no need to contact the manager
again, improving performance, however the loaded facets would take up more of the virtud
machine memory. The current implementation utilizes soft references, since it provides a
reasonable compromise of both memory and performance. Please refer to Section 7.4 which
describes some of the performancereated experiments carried out on the system.

public class Facet inplements Facetlnterface {
d assLoader cl;
Facet Request f Request;
Sof t Ref erence soft Facet ;
Facet Cont ai ner cont ai ner;

publ i c Facet (Cbject obj, FacetRequest fr, FacetContainer c){
f Request = fr;
cl = obj.getdass().getd assLoader();
cont ai ner =c;

}

public Cbject[] execute(Qoject[] in){
Facet | npl enentation flnpl = null;
if(softFacet != null){
flnpl = (Facetlnpl ementation) softFacet.get();
}

if(flnpl == null) {
/Ineed to | ook up facet again fromthe nanager
flnpl = manager. | ookupFacet (f Request, cl);

f I npl . set Cont ai ner (cont ai ner);
sof t Facet = new Sof t Ref erence(flnpl);

return flnpl.execute(in);

}
/lother stuff

Figure 5.9 Facet Class

5.4 DISCUSSON

The main purpose of the prototype is to illudrate the feashbility of dynamic component
composition and the facet modd, i.e. being able to bring in a fact, link it up to the runtime
and discard it after it has been used. Thus, most of the structures directly related to that have
been comprehensively implemented, such as the facet loader. However, a complete client
system requires much more than just that. It requires support for peer-to-peer co-operation,
dynamic discovery and comprehensive resource management. More work reeds to be done
on the discovery manager, network handler, and the resource manager, in order to build a
more complete client system.

-71-

Even though, at present, the resource manager is smple, it can illustrate the use of dynamic
component composition to achieve functionality adaptation. The amount of resource alocated
for a functiondity is specified in a facet request. An gppropriate facet is then brought in and
executed. Thus, the execution of a functionality adapts to the resources available at run-time
achieving functiondity adaptation.

The main concern during the implementation of the client system was to keep dl mechanisms
above the VM, i.e. keeping the internas of the VM unchanged. This would keep the client
system portable across various devices and VM implementations. One of the main
difficulties was to be able to unlink facets from the run-time system and discard them from
memory. Idedly, the resource manager or the facet loader should be able to detect when a
particular facet is not needed, and be able to decide when it should be discarded. However,
this is not possible without making changes to the WM referencing mechanism. Ingtead, we
employed user-level class loaders. With these, when exactly a facet is discarded is under the
control of the garbage collector. User-level entities, such as the resource manager, can just
indicate whether a facet is available for discard by removing dl strong references to it. To a

certain extent, this method can achieve what we want, despite a dight loss of control.

5.5 SUMMARY

In this chapter, we have looked at the Sparkle client sysem. The client system is vitd to the
architecture since it is, in fact, the basic necessity that al devices must posses. The client
system mugt fulfill the requirements of portability, memory efficiency, support for dynamic

component composition and dynamic discovery.

The client sde is made up of four layers - the operating system, on top of which is the Java
virtua machine, then the Sparkle client system, and right on top is the applicationleve which
is made up of facets and containers. The Sparkle client system is made up of seven main
entitieswhich are:
= Central Manager. The main coordinating entity in the client system, which interfaces
with the gpplications.
= Discovery Manager. It locates nearby peers and servers.
= Nework Handler. It handles dl the details of communication between the various
network entities.

-72 -

* Facet Loader. It loads facets into the runtime and creates ready-to-use instances of
them.

= Facet Cache. It gtores facets localy to improve performance

= Light-weight Mobile Code System. It handles dl the mechanisms involved in
migrating execution from one device to another.

= Resource Manager. It determines the availability of resources and alocates them

among the various run-time processes.

We looked a each of these entities in turn, and how they have been implemented in the
current prototype. The current prototype illustrates the feashbility of dynamic component
composition and the facet model. Discarding a facet was achieved by loading every facet
with its own class loader, and either removing a reference to it when it is not being used, or
using a soft or weak reference to it. When an instance of a facet is inaccessible by any strong
reference i.e. there are no references to it, or it is only softly or weakly accessible, the garbage
collector will collect the facet instance, its class loader and its corresponding class and, hence,
discarding the facet.

-73-

-74 -

Chapter 6

Programming for the Facet M odel

In the previous chapter we looked at the implementation details of the client syssem. In this
chapter, we look at the programmer’s viewpoint. At present, the facet mode is based on the
Java programming language, mainly due to its inherent portability. Familiarity with Java or
an objectoriented language will be beneficid to the underganding of the following
discusson. Even though we are using an object-oriented language, facet programming is
considerably different from tradtional object-oriented programming. Facet programming has
as its basis the separation of functiondity and data, whereas object-oriented programming
favors putting the two together.

In this chapter, we first describe the syntax for programming an application made of facets,
including the facets, the container and the user interface. We then discuss the difference
between facet-based and objectoriented programming, and provide guiddines on cregting a
facet-based program.

6.1 FACET -BASED PROGRAMMING

Cregting an gpplication based on the facet modd involves understanding a couple of different
abdtractions. First of al, a programmer needs to know how to write the different parts of the
facet i.e. the code segment and the shadow, and to pack them together. Since facets can
depend on each other, programmers need to know how to request for another facet during
execution. Findly, the programmer needs to know how to put dl these together in the
container so that the user sees a unified application, even though behind the scenes it is
dynamicaly composed. We shdl discuss dl of the abovein turn.

Applications and facets run on top of the Sparkle client syssem. The client system is designed
in such a way that it takes care of al the dynamic compostion of the facets. Networking,

-75-

negotiation and resource management details are transparent to the programmer, dlowing the
programmer to focus on the application functionality.

6.1.1 Facets

All facets implement only a single functiondity. A direct implication of this is that facets can
only contain a single publicly cdlable method. Facets are made up of two parts. a shadow
which describes the properties of the facet and a code segment which implements the
functionality.

6.1.1.1 Shadow

The shadow is actudly an XML file, shadow xn , with tags describing the properties of a
particular facet. Some of the tags are compulsory, for example those indicating the facet 1D
and the functiondlity id. Others such as description or dependencies are optiona. The proxy
keeps track of the shadow xm files of the avalable facets. When a proxy receives a
request for a facet, it uses the shadows to find a suitable match for the request. Hence, a lot
of tags in the shadow ae used to provide metainformation to the proxy to carry out
intelligent matching. The dependency information in the shadow is dso used to prefetch the
dependencies so as to improve performance.

The shadow. xm file can be divided into 3 parts. The fird part provides information about
the facet, such as its ID, vendor, verson, the functionality it implements, an optiond name
and description, etc.

<i dentifi er>@B00056</i dentifier>
<nane>i nageApp. i mageFacet . Gaussi anBl ur </ nane>
<vendor >SRG SANG</ vendor >
<ver si on>
<mgj or >1. 0</ maj or >
<m nor >a</ n nor >
</ versi on>

<functionality_ i d>200007</functionality_id>

<description>Blurs an i mage pi xel array </description>

Figure 6.1 Part of the Shadow Providing General Information of the Facet
The second part of the shadow desxibes its resource requirements. This could include

anything from memory to network requirements. At present, the programmer must specify

the memory requirements of a facet. It does not include the memory requirements of the

-76 -

dependencies. He must include the satic facet size, and the run-time working memory
required. The runtime memory is, very often, a function of the input size. The programmer
must specify the resource function with respect to the input size so as to assist the proxy in its

matching decisions.

<resour ce>
<nenory>
<static>128</static>
<dynam c>
<i nput _vari abl es>
<par aneter name="n{> 1 </ paraneter>
<par anet er name="n"> 2 </ paranet er >
</i nput _vari abl es>
<fornul a> 3n"2+5m </ f or mul a>
</ dynam c>
</ menor y>
<di spl ay>
<wi dt h>300</ wi dt h>
<hei ght >400</ hei ght >
</ di spl ay>
</resour ce>
Figure 6.2 Part of the Shadow Providing Resource Information of the Facet

The third part of the shadow describes its dependencies. It specifies the functiondlities the
facet depends on, and whether the dependencies are necessary for the execution of the facet,

or whether are used only in certain Stuations, i.e. optiona. All this information is used by the
proxy for resource matching and prefectching. The proxy recursively anayses the resource
usage of the whole tree of dependencies, up to a certain level, before deciding which facet to
return. In addition, since the dependencies of the facet is known, the dependencies can be
prefetched from the facet servers in order to improve performance. When a request for the
dependency arrives, it can be immediately dispatched to the client.

<dependenci es>
<dependency order="1" type="optional" subtype="if-then-else">
<functionality_id>sparkle.imageapp. bl ur</functionality_id>
</ dependency>
<dependency order="1" type="optional" subtype="if-then-else">
<functionality_id> sparkle.inmageapp.flip </functionality_id>
</ dependency>
<dependency order="1" type="optional" subtype="if-then-el se">
<functionality_id> sparkle.inmageapp.rotate </functionality_id>
</ dependency>
<dependency order="2" type="conpul sory">
<functionality_id> sparkle.imageapp. matrix </functionality_id>
</ dependency>
</ dependenci es>
Figure 6.3 Part of the Shadow Providing Dependency Information of the Facet

6.1.1.2 Code Segment

The code segment is actudly an implementation of a functiondity. It follows the
specification of the contract which includes the input parameters, output parameters, pre
conditions, post-conditions, etc. By definition, a facet only offers a single functiondity,

-77 -

hence it contains only a single publicly accessible method. Tha method follows the syntactic
interface specified in the contract. A facet may have many condituent classes. However,
there is only one class which exposes the publicly calable method. That class is cdled the
main facet class

Due to limitations put by the Java programming language and in order to smplify the
implementation of the underlying Sparkle system, every facet is accessed through a uniform
interface. This interface takes in an object array as input and returns an object array as
output. If there is any error during the execution of the facet. It throws a

Facet Execut i onExcepti on.

public interface Facetlnterface {
public Cbject[] execute(hject[] in)
throws Facet Executi onExcepti on;

Figure 6.4 The Facetinterface Class

When developing a facet, the main facet needs to extend the Facet | npl enent at i on class.
The Facetlnplementation cass implements the Facetinterface, and provides
methods for housekeeping which are used by the underlying system, and may or may not be
accessible by the programmer. For example, every Facet | npl enentation object has a

vaiable fContai ner which indicates which container the facet ingtance is associated with.
This varidble is set when the Facet | npl enent ati on class is loaded by the underlying

system.

public abstract class Facetlnpl enentation inplenents Facetlnterface {
public abstract Cbject[] execute(Chject[] in)
throws Facet Executi onExcepti on;

/I ot her house keepi ng met hods and vari abl es
protected Facet Contai ner fContainer=null;

Figure 6.5 The Facetimplementation Class

Here is an example of the main facet dass which carries out Gaussian Blur.

-78 -

public class Gaussi anBl ur extends Facet! npl enentati on{
[/ vari abl es
private static final int BYTE=0, SHORT=1, FLOAT=2, RGB=3;

// construct or

publ i c Gaussi anBl ur () {

public Cbject[] execute (Cbject in[]){
//follows the contract

//can call other nethods in this class or
/lother classes in the facet

return out;

/1 ot her met hods

voi d bl ur (Pi xel Processor pp, double radius) {

voi d bl urFl oat (Pi xel Processor pp, float[] kernel) {

Figure 6.6 Example of a GaussianBlur Facet Implementation

Whenever a facet is invoked, it is invoked through the execute method. The numbers and
the types of objects in the input and output object arrays are specified in the contract of the
functiondity. The execute method can invoke methods in the same class or in other classes

which make up the facet.

The “gadless’ nature of the facet must be kept in mind when developing a facet. A facet
cannot keep any date beyond a sngle invocation. A facet only has access to the input
parameters and objects stored in the storage area of the container it is running in. In addition,
a programmer cannot assume that a facet will continue to “live’ once the execution of the
execut e method has finished. It may very well be unloaded from memory, so any changes to
datic variables would be lost. Thus, every invocation must depend on the input arguments
and the storage area soldly.

-79 -

6.1.1.3 Dynamic Resource Requirement

Once a programmer has written the code segment, he needs to fill in the details of the shadow.
Most of the details are pretty sraightforward. However, evauating the dynamic runtime
usage of afacet can be rather complicated.

The resource requirement information of a facet plays an important role in the whole
architecture. It is the bass on which functionality adaptation takes place. The proxy
compares the resource requirement of facets with the resource availability in the client. It will
send a facet whose resource requirement and the resource requirements of al its dependencies

put together is less than the resource availability.

Resource reguirements can be consdered in two dimensions, datic and dynamic. What
differentiates between the two is whether these requirements change a run-time. For
example, the vaues or the amounts of static resource requirements do not change, wheress,
the amounts of dynamic resource reguirements may change depending on various run-time
conditions, such as size of the inputs, gorithm etc.

Congder the example of memory usage. The code size (in kilobytes) of the facet is aways
congtant. A device would need to have sufficient memory to store the facet when it is
downloaded. Thus, this forms the static memory requirement. However a run-time, the
actualy memory that is used by the facet is highly dependent on the size of inputs and the
implementation agorithm. For example, the memory used by a blur facet depends on the size
of the image i.e. the size of pixe array which is the input to the facet, and depending on the
agorithm, the memory requirement may be linear or exponential.

The facet programmer would need to specify both the gtatic and the dynamic requirement in
the shadow. The determination of the static requirement is rather straight forward, however
the determination of the dynamic requirement requires some effort. We argue that most of
the dynamic resource requirement can be expressed as a function of the sizes of the inputs.
The requirements can depend on the sizes of more than one input parameter.

In order to find the dynamic memory requirements, the facet developer needs to test the facet
with different sizes of input, and record the resource usages for each combination. He can run
a mathematica or a statiticd analysis program, such as Matlab, to go through the results and
obtain a mathematica formula describing the resource requirements. That formula can be put
in the shadow.

-80 -

<nenory>
<static>233</static>
<dynam c>
<i nput _vari abl es>
<par arret er nane="m'> 1 </ paranet er>
<par aret er nane="n"> 2 </ paranet er >
</i nput _vari abl es>
<fornul a> 3n"2+5m </ f or mul a>
</ dynam c>
</ nenor y>

Figure 6.7 Specifying the Memory Usage by a Formula

On the other hand, instead of specifying a formula, the programmer could include the
resource usage as a look-up table for each combination in the shadow. However, the facet
developer has to put an appropriate number of entries n the shadow. Including too many
entries would make the size of the shadow and, hence, the facet, big. The number of entries
should be sufficient to alow the proxy to do interpolation as required.

<nenory>
<static>233</static>
<dynani c>
<i nput _vari abl es>
<par arret er nane="m'> 1 </ paraneter>
<par arret er nane="n"> 2 </ paranet er >
</input _vari abl es>
<t abl e>
<entry>
<i nput name="ni'> 20 </i nput>
<i nput nanme="n"> 10 </i nput>
<val ue> 400 </val ue>
</entry>
<entry>
<i nput name="ni'> 40 </i nput>
<i nput name="n"> 30 </input>
<val ue> 2900 </val ue>
</entry>

</table>
</ dynam c>
</ menor y>

Figure 6.8 Specifying the Dynamic Memory Usage by a Lookup Table

Please note the resource requirements described in the shadow are the reguirements of that
facet only and not of its dependencies. Developers need to be careful to exclude the resources
requirements of the dependencies when filling in the shadow. There may be cases in which
the dynamic resource requirement cannot be expressed as a function of the input arguments,
i.e. it depends on other factors, such as I/0O, rather than on the size of the inputs. In that case,

the developer can just consider the dynamic resource reguirement as unknown.

-81-

6.1.1.4 Packaging the facet

A facet is made up of a shadow xm file, and severa class files which conditute the code
ssgment. They ae packaged together and distributed as a single entity. In our
implementation, we use a JAR file to box them together. The facet JAR file is like an
ordinary jar file with one main difference. In the manifest of JAR fie, the programmer must
indicate the main facet class. This will enable the Sparkle client system locate the execut e
method among dl the classes in the JAR.

META- | NF/
META- | NF/ MANI FEST. MF
shadow. xm
i mageApp/ i nageFacet / Gaussi anBl ur . cl ass
Figure 6.9 Contents of the Jar file of the Gaussian Blur Facet

Mani fest -Version: 1.0
Oeated-By: 1.3.1 01 (Sun Mcrosystens Inc.)
Facet - ass: i nageApp. i mageFacet . Gaussi anBl ur
Figure 6.10 Contents of the Manifest of the Jar File

Our first choice for packaging the files was actualy the Java Executable File Format (JEFF).
JEFF is a new specification of Java file format proposed by JConsortium released in April
2001, which is specifically designed for smdl devices By usng JEFF, unnecessary
duplication during dass loading can be avoided. As clamed, JEFF can reduce the memory
requirement to load a class by 40%. However, support for JEFF would require changes to the
compiler and possibly the Java Virtud Machine. When we started our development, to the
best of our knowledge, there was no fully implemented VM with JEFF support. Thus, we
utilize JAR as our packaging unit. At the time of writing of this thess a suitable JEFF

implementation was not yet available.

6.1.2 Facet Requests and | nvocation

Facets are brought in a runtime. That is the foundation of dynamic component composition.
During execution, application code sends request for facets to the proxy, which will return
suitable ones to the dlient. When a programmer requires a facet, he will fill in a
Facet Request object with the criteria he needs. These criteria from the facet specification
of the required functionality. Most of them follow a key-vaue patern. The programmer only
needs to specify criteria to indicate the gppropriate functionality. Details about the resource
availability are added by the underlying system when the request is sent out to the proxy. The

programmer does not need to worry about the resource congtraints.

-82 -

Facet Request fr = new Facet Request () ;
fr.addCiteria("functionality_id", "200007");
fr.addCriteria("vendor", "SRG SANG');

Figure 6.11 Adding criteria to a FacetRequest

The details of how a facet request is sent and how a facet is recelved is aso kept transparent
from the programmer. Once the programmer has filled in the Facet Request , he just needs
to declare a new Facet and invoke the execute method on it. The Facet class will interact
with the underlying Sparkle system to load afacet implementation when it is needed.

FacetInterface fB ur =
(Facet I nterface) new Facet(this, fr, fcontainer);

.iject[] input = null, output = null;

output = fBlur.execute(input);

output = fBl ur.execute(input);
Figure 6.12 Invoking a Facet

As you can see from above, when declaring a new Facet , the programmer needs to provide
certain information to the ingtance. It needs to specify itsdf (i.e. this), the caler. Thisis
needed because the underlying system makes extensive use of user class-loaders. In order to
ensure proper class loading and access of input parameters in the cdlee facet, it is necessary
to determine the classloader of the caller.

The programmer aso needs to specify the Facet Request . As mentioned earlier, the Facet
class hides the details of when and how a facet implementation is brought in and dso when it
is discarded. It will transparently use the Facet Request to retrieve the required facet when
needed, if facet is not loaded (i.e. it is the first time the facet has been requested, or the facet
has been previoudy discarded). In other words, a programmer just needs to declare a Facet
object. He does not know whether that object actualy contains a facet implementation a a
particular ingant in time. All he knows is that when he invokes the method execute on it,
the Facet object will link up to a suitable facet implementation to carry out the functionality
required.

The execution of every facet a run-time is associated with a container. Containers are

gpplication-like abstractions which provide areas for facets to run in and to store run-time
data. When one facet invokes another facet, they both belong to the same container. Thus,

-83-

when a facet calls another facet, it needs to indicate which container it belongs to. More
about containers will be discussed in Section 6.1.3.

A programmer accesses the services of a facet by invoking the execut e method of the Facet
object, with the appropriate objects in the input array. |f there is any unrecoverable error
during the execution of the facet, the method will throw a Facet Executi onException, In
other words, facets interact with each other by method invocation.

6.1.3 Containers

Applications are implemented as containers in which facets can execute, store rurttime data,
etc. Since facets cannot interact with the users drectly, containers form a bridge between the
facets and the user by incorporating a pluggable user interface (Ul). Every application has a
st of functionalities it can offer to a user. When invoked, these funcitonalities form the root
facets of the whole execution trees. Thus, the container stores the root functiondities it
offers, the user interface, as well as providing a storage area to store shared data. In the
current implementation, the set of facet specifications in the container is fixed. Thisimplies
that once a container is developed, the functiondities the gpplication can provide cannot be
changed. The Ul follows the facet model as well in order to be consistent, i.e. it is invoked by
the execute method. However, how it will evolve in the future has yet to be determined.

public abstract class Facet Contai ner extends Thread {
publ i c Facet Container fContainer = this;
public Facet U;
publ i ¢ Root Facets root Facets = new Root Facets();

public Storage storage = new Storage();

protected abstract void setU ();
protected abstract void set Root Facets();
public abstract void run();

publ i c Facet Cont ai ner (){
setU ();
set Root Facet s() ;
}
}

Figure 6.13 The FacetContainer Class

When a developer want to write an application, he needs to extend the Facet Cont ai ner
class and implement the setU, setRoot Facets and the run methods. When a container
is loaded, the Ul and the root facets are first set, and then the run method is called to start off
the execution of the application.

-84 -

Root Facets stores the functiondlities this particular container can offer. The root Facets
object can be consdered as an index table which holds the specification of the root facets.
The programmer adds the Facet Request objects into the root Facets a a paticular index

inthetable. This defines the functiondities a particular container provides.

prot ect ed voi d set Root Facet s() {
Facet Request fr = new Facet Request ();
fr.addCriteria("functionality_id", "200001");
root Facets. add(0, fr);

fr = new Facet Request ();
fr.addOriteria("functionality_id", "200002");
root Facets. add(1,fr);

fr = new Facet Request ();
fr.addOriteria("functionality_id", "200003");
root Facets. add(2,fr);

Figure 6.14 Defining the Functionality of a Container

If the Ul code, or the container code need any of these root functionalities, they access them
via their indices in the root Facets object. When a functiondity is retrieved from the

root Facet s object, it isretrieved asaFacet object, ready to be “executed”.

Cbj ect[] input = new oject[]{pp, X, Y};
(hj ect[] output =

f Cont ai ner. root Facet s. get (2) . execut e(i nput);

Figure 6.15 Invoking a Root Facet

The main motivation of usng an index-based access to root facets is that it maintains a certain
levedl of congtancy in an gpplicaion. As different Ul codes can be plugged into the same
container, the Ul developer does not need to ded with cregting the actua request to retrieve
the root facet. He just needs to link a certain user interaction with the functiondity provided
by a certan index in the root Facet s, provide the input arguments for the facet invocation
and trand ate the output results into a user-comprehensible form.

Different Ul implementers may link different subsets of the root fecets. Say we have a
container which can offer 8 functiondities (i.e. there are 8 entries in the root Facet s table).
One Ul implementation may link to al 8 of them, whereas ancther one only to 5 of them.

Users of the second Ul cannot access the other 3 functiondlities. Such a scheme may seem
awkward at firgt, but it provides flexibility to the programmer to handle user mobility. When a
user moves from a resource rich device, to a resource constrained device with limited display
adility, the whole container moves together with it. In the new environment, a more
conservative Ul can be plugged into the container instead of the previoudy used full-color UI.

-85-

It is then up to the Ul programmer to decide whether to support dl the functiondities

provided in the container or to support only those he deems suitable.

Ul code actudly bridges the user interaction and the functiondity offered by the container.
At present, in order to keep things smple and consigtent, the Ul, in fact is just another facet,

which extends the Facet | nt er f ace dass and implements the execut e method.

public class AppU extends Facetlnpl ementation {
public oject[] execute(Chject[] args){
D spl ayMenu() ;

f Cont ai ner. r oot Facet s. get (2) . execut e(i nput);

return null;

Figure 6.16 Example of a Ul Tinking to the Root Facet

The Ul can be dynamicdly retrieved as well. The setU method fills in a request. When the
container loads, the request is trangparently sent to the proxy and the appropriate Ul is

brought in. The container code can then execute the Ul code. The current implementation

uses the same mechanisms and AP for the Ul asit does for the facets.

protected void setU (){
fr = new Facet Request ();
fr.addOriteria("identifier",
fr,

" I mageAppU ") ;

U = new Facet (this, this);

public void run(){
// cont ai ner code

U . execute(null);

Figure 6.17 Execution of the Ul follows facet model

When a facet needs to access the storage area in the container, it does so via the f Cont ai ner

variable which every loaded facet contains.

-86 -

| npagePr ocessor a = new | nageProcessor();

f cont ai ner. st orage. add(4, a)

Cbject b = fContai ner. storage. get(2);
Figure 6.18 Accessing the Storage Area of the Container

6.2 OBJECT-ORIENTED PROGRAMMING AND FACET -BASED PROGRAMMING

In the previous sections, we have briefly provided the syntactic overview of facet-based
programming. Even though we have employed an object-oriented approach to implement
facet, the fundamental principles of facet-based programming differ from object-oriented
programming. In this section, we discuss some of the differences between the two and
provide certan guiddines which programmers can follow when they build facet-based
applications.

6.2.1 Object-Oriented vs. Facet-Based Programming

The fundamentd difference between object-orient programming (OOP) and facet-based
programming (FBP) is their centers of focus. OOP revolves around data. Programmers
define not only the data structures of the data types, but aso the operations that can be applied
to a data structure. In essence, the data structure becomes an object, incorporating both data
and the functions that can be gpplied to the data.

FBP, on the other hand, is focused on the gpplication logic. Programmers define what
functiondities an application provides, and these functiondities become facets. Facets do not
store any data. Data Structures are just input and output parameters to facets.

Objects encapsulate both date and functiondity. At run-time, an object-oriented program’s
date is digributed among dl the ingtantiated objects. The application logic is achieved by
sending messages from one object to another, invoking different functions in different objects
which in turn change the state in those objects. Facets on the other hand, encapsulate only
the functiondity. The application’s rurnrtime state is centraized. It is stored in the container,
gther in the storage or in the Ul. Applicaion logic is achieved by sending messages to the
facets. The messages contain the data (state) on which the facets should act upon. Facets
make changes to the state which is then stored back into the container.

-87 -

The above is dso reflected in the way programmers develop applications. The first step in
OOP is data modding — identifying al the objects they need to manipulate and how they
relae to each other. The firs sep in FBP is functiondity modeling — identifying dl the
functiondities in an gpplication and how they are dependent on each other.

Since facets are types of components, the differences between components and objects aso
apply to facets and objects. A facet is a unit of third paty compostion; hence, it is
aufficiently self-contained. Also, a facet has no persistent state. One copy of a facet cannot be
differentiated from another copy. An object, on the other hand, is a unit of ingantiation and
has a dtate that can be perdgtent. It encapsulates both state and behavior. A facet may be
redized by traditiond procedures, assembly language or by using objects, as in our
implementation. A facet may contain multiple classes, but a dass is definitely confined to a
single facet. The main difference lies in the roles of components and objects. The role of
facets is to capture the static structure of an application whereas the role of objects is to
capture the dynamic nature of systems built out of facets [82, 83].

Beow we include a table, which highlights some of the differences between object-oriented
and facet-based programming.

Object-Oriented Programming Facet-Based Programming
Unit of programming Object Facet
Granularity 1class Can have more than 1 class

Any number of interfaces, with any Onlyhas 1 publicly accessible

Interfaces number of public methods method, which needs to follow a
contract

State and Stores some form of state during its Does not store any state between 2
P al eta lifetime. invocations.

ersistence May contain some persistent state. No persistent state in facets.

Driving Principle Data-centric Functionality-centric
Run-time Application Distributed among all instantiated c lized i .
State objects entralized in container

Table 6.1 Difference between OOP and FBP

6.2.2 Developing a Facet-Based program
As mentioned earlier, devdoping a facet-based program is consderably different from

developing an objectoriented program, and due to this reason converting an object-oriented
program into facets is a tremendoudy taxing job. The main difficulty lies in the fact that in

-88 -

OOP, data and gpplication logic are intermingled together and are didributed al throughout
the program, in different objects. In order to convert it to facets, data structures must be
identified and separated from the application logic. The application logic nust then be
divided into facets. At the same time, it must be decided what data structures the facets act on.
The Ul aspects of the application must also be extracted and separately coded.

Instead of converting an objectoriented gpplication into a facet-based application, it is
recommendable to develop the application from scraich. Below we provide some guidelines
for facet-based programming.

O Functionality Modeling

The firgt step for FBP is functiondity modding — identifying al the functiondities in an
gpplication and how they are dependent on esch other. The developer darts by
identifying which functiondlities or tasks the application should provide to the user.
These functionalities essentialy form the root facets of the gpplication. Then, for each of
the functiondities, it must be determined how they will be implemented, whether as a
sngle facet, or whether the functiondity should be divided up into smaler functionalities
i.e. whether some of the work carried out to fulfill the functiondity can be extracted and
placed in another facet. The reason for doing this is that it allows reuse. For example, in
an image processing application, both adding shadows to an image and finding the edges
of an image require convolving a 3x3 kernd. Thus the convolving functiondlity can be
extracted and implemented as a facet, o that both the “add shadows’ and “find edges’
facets can access it. In short, the developer has to determine the logic of the application
and how it will be distributed among the various facets.

There are no definite limits to the granularity of the functiondlities or the depth of the
dependencies. It is up to the developer to decide how fine they want their facets to be and
how deep the dependencies run. As a gened guiddine it is advissble to keep the
dependencies shalow. It is because if the execution tree runs very deep, there are more
active facets in the syssem. These cannot be discarded, thus clogging up the memory
resources in a constrained device.

0 Facet Qualification & Programming
Then comes the nitty-gritty details of actualy assembling the gpplication. The data
structures on which facets act, i.e. the input and output arguments, the pre conditions, and
post-conditions must be determined. Some facets may have to be programmed from
scraich. However, some functiondities may dreedy have been implemented before, by

-89 -

Qa

other vendors or from previous versions. These can be used if they fit the requirements of
the current development. The programmer may aso provide different versions of a
functiondity. For example, different facets, carying out the same functiondlity,
implementing different dgorithms and thus having different resource characteritics.
These different versions are essentid for functionality adaptation.

One thing to note is that if we are using an objectoriented language to develop facets, the
inputs and outputs are in the form of objects. Thus, the data structures are encapsulated
as objects and passed in and out a facet. These objects @ntain methods which act on
their internad data. This may seem like a contradiction to FBP. However, looking at it
more closdly, these methods only provide functions to access the data, i.e. set, or get, or to
do some minimd processng. The main gpplication logic is located in the facets. These
so-caled data objects only have functions to make the access of the data structures more

convenient.

Container & Ul Programming

Facets can be considered as dispersed entities. The container is the unifying force, which
brings the facets together so that they work together as a single application. The
container stores the specifications of the root facets. It is the Ul which provides the link

between users and the root facets, and from one root facet to another.

Since facets cannot directly interact with the user, it is the Ul's responshility to receive
input from the users, convert into the appropriate data structures, call the corresponding
root facets and then trandate the output results and data structures in a form so that it is

comprehensible by the user.

Tegting & Distribution

Once dl the facets and the container have been built, they must be tested together for
correctness and to determine their resource requirements. The resource requirements,
both static and dynamic, of each of the facets must be ascertained. The next step is to
package the facets, with their shadows and distribute them to facet servers. The container
and the Ul can now be digtributed to the users.

The above summarizes the steps which must be taken to develop a facet-based gpplication.
Throughout the development, it must be kept in mind that facet offer only a single
functiondlity and cannot be used to maintain any date, thus the date must be maintained in
the container.

-90 -

6.3 SUMMARY

This chapter provided a programmer’s perspective of the facet modd. In the first section, the
syntactic description of the facet model was discussed. The second section highlighted the
difference between objectoriented programming and facet-based programming and provided
guidelines for facet-based devel opment.

Fecets are made up of 2 parts, the shadow and the code segment. The shadow is just an XML
file which describes the properties of the facet including information about the facet, the static
and dynamic resource requirements, and the dependencies of the facet. The code segment is a
group of classes implementing the functiondity. Only one of the classes exposes a publicly
cdlable method and that class is cdled the facet main class Facets are packaged as JAR files
and distributed.

Facet requests are carried out trangparently to the programmer. The programmer just provides
the facet specification. The underlying system will handle everything ese, including bringing
in the facet from the proxy, loading it and discarding it. The programmer is kept ignorant of
dl the detals.

Containers provide a unified gpplication abdraction to the user. They contan the
specification of the root facets, and pluggable Ul which provide links between the users and
the root facets. One of the main purposes of containers is to provide programmers with
storage area to store some run-time state.

The fundamenta difference between object-oriented programming (OOP) and facet-based
programming (FBP) is that OOP revolves around data and functions which act on the data.
FBP is based on functiondlity and how it is organized among various facets. In OOP, date
and gpplication logic is intermingled together and digtributed among the various ingtantiated
objects. In FBP, application logic is separate from dtate and Ul. Facets contain the
gpplication functiondity, whereas state and Ul are centrdized in the container.

Devdoping a facet-based gpplication encompasses the following steps:
= Functiondity Modding
= Facet Programming and Quadlification
= Container and Ul Programming
= Teding and Didtribution

-01 -

Converting an object-orient program to a facet-based program is a rather complicated task,
due to the difference in the distribution of state and functionality throughout the program.

-02 -

Chapter 7

Testing and Evaluation

The main implementation focus of my dissertation is the client system, which supports
dynamic component compostion. Chapter 5 described the client system and its constituent
entities. This chapter provides an evauation of the client system implementation in more

concrete and practical terms.

The main purpose of the testing is to demondrae the feashility of the facet modd and
andyze its performance. Severa test cases were created and run on the client system installed
on a pesond digital assstant. In this chapter, first, the testing methodology adopted is
described. Then, we look at the features of the test bed. Testing was carried out under three

contexts. We look at each of these contexts in turn, and describe the results obtained.

7.1 MOTIVATION

Our tests involve three aspects:.
= To demongrate the ability of the client to support dynamic facet compostion, i.e.
being able to bring in facets a& runtime, load them, execute them and then throw
them away.
= To establish factors, which can be adjusted to improve the performance of the client.
* To show that ared world gpplication can be built by utilizing the facet mode.

My dissertation covers only the client system, and hence, functionality adaptation, cannot be
comprehensively tested. The proxy plays an important role in adaptation. The client system
notifies the proxy of the amount of resources it processes, and the proxy then matches an
appropriate facet for it. The evduation of adaptation would require both the client system and
the proxy, which is out of the scope of this thesis.

-03-

Performance is affected by many factors other than the client system implementation,
including the network bandwidth and the implementation of the proxy. Thus, any
performance data must be evaluated in the context of its environment, rather than attributing

any shortcomings or strengths solely to the client system.

We carried out testing under three contexts. The facet model dgpends on the ability of the
client system to request for facets, and load them at runtime. The first experiment looks into
exactly that. It invedtigates the timing patterns of each of the stages involved in bringing in a
facet and running it. We tested with facets of different sizesin order to identify bottlenecks.

The second experiment aims to identify factors which can have an effect on the performance
of the system. We ran a benchmark application, which consisted of severa facets and which
cdled them in different access patterns, on the client and investigated the effect of caching,
and the types of references on the performance of the application.

The last experiment aims to demondirate the feasbility of building a norma application using
the facet model. An image processing application was built, which provided severa basic
functiondities to the user. We wanted to investigate whether the delay in retrieving the facets
from the network in the context of such an application can be consdered acceptable by the

user.

7.2 TESTBED

The Sparkle client system is built on Java. Thus, every dient system requires a Java Virtua
Machine. The sze of the class files of the Sparkle system is 252K B, not including the domdj
XML parsr which is actudly 24MB. When inddled together as a jar file which is
compressed, the client system and the parser comes up to 630KB. The client system was
ingtalled on a Compaq iPAQ persona digital assgtant, which was the basis of dl the tests.

The iPAQ was directly connected to a Linux PC via a serid connection. A PPP connection
was established over the serid line so that the Linux PC acted as a gateway to the Internet for
the handheld. The maximum bit rate for the connection was 115200bps. The proxy was dso
set up on that PC. It stored facets and responded to client requests. This simplified proxy only
matched facet identifiers and functionality identifiers in requests. It did not carry out any
resource matching or adaptation.

-94 -

Compaq iPAQ Pocket PC H3870 PC Proxy

CPU 206 MHz Intel® StrongARM, 32-bit CPU Intel Pentium Il MMX 300MHz
RISC Processor

Memory 64 MB RAM + 32 MB Flash ROM Memory 128MB RAM

oS Familiar Linux v0.5.2 oS RedHat Linux 7.1 (2.4.2-2 kernel)

JVM Blackdown -1.3.1-RC1, native Web Server Apache 1.3.195
threads, nojit

PPP Daemon | pppd version 2.4.0b4 PPP Daemon ppd version 2.4.0

Table 7.1 Hardware Configuration used for Testing

The iPAQ is that it has 2 types of memory, 32MB of Hash ROM and 64MB of RAM. Daa
on the Flash ROM does not get erased after a reset and hence, it is used to store more
permanent data such as the OS, the VM, etc. Since the RAM s voldile, it is used to store
temporary files and dso is used as the dynamic working memory of gpplications. Currently,
the OS and the VM take up 16MB and 13MB of the Flash ROM respectively. After the
ingalation of the client system, there is roughly 2MB of Flash ROM and 64MB of RAM |Ieft
for applications.

7.3 EXPERIMENT 1 - TIMING ANALYSIS

The main purpose of the dient system is to support dynamic component composition, i.e.
being able to bring in facets a runtime, load them, execute them and then throw them away.
In this experiment, we investigate the delay in bringing in and loading facets and look at the
timing patterns, in order to identify bottlenecks.

Every application needs facets. These facets are located on the network. The client sends
requests for these facets to the proxy, which returns appropriate ones to it. The main stages
involved in the process on the client side include, (1) checking if the facet is in the cache, (2)
cregting a SOAP request and sending it to the proxy, (3) receiving the facet from the proxy,
(4) caching the facet for future use, (5) loading the facet class into the virtua machine, and
finaly (6) creating an instance of the facet which can be used.

In this experiment, we ran an application which requested facets of different szes and
recorded the timing data for each of the stages. The code size of the facets ranged from 1KB
to 500KB, however the actual sze of the facets (i.e. the Jar files) ranged from 1KB to 69KB.
This is because Jar files actualy compress their contents when packing them together. The
facets do nothing except output some strings to the console. For each facet, the application

-05-

was run 20 times and the average of the timing data was recorded. The cache size was st to
5 entries, and it was ensured that the cache was full when the request for the facet was made.

The timing breskdown obtained is depicted in Figure 7.1.

__.___..a-"'
16 _d_f
_ﬂ____-l'
14 -
..I"'H--FF
12 "
:‘1‘: 10 _‘ﬁ_,..r’".'
¢ .
F 4 = F
-] __.-l"'"-r e —t
— b -
4 4 - g
"‘- iy -
2 ~ 4__..——"“__ s
T e e e R S B T B T S i e
] L 20 30 a0 L] ED by
Facet Jar Sire {KE)
——[heckCache — CraateRequest GatFrienwork CacheFanet
—#*— lpadFacet —— Crestelrstance —+— Misc —=— TotalTime

Figure 7.1 Timing Breakdown of Requests for Facets of Different Sizes

It can be seen from Figure 7.1 tha as the facet size increases, the tota time to retrieve a facet
aso increases. The dage, which takes the most amount of time, is the receiving the facet
from the proxy. This is attributable to the dow network connection of the iPAQ. The
laency of the network is agpproximatdy 2.3 seconds and the transmission rate is
approximately 80kbps.

Ancther stage which takes up a condderable amount of the total time is the creation of an
ingance of afacet. For smaler code sizes, it is dmost negligible. However, as the size of the
facet code increases, it can be amost as much as one third of the total time taken. This value
depends grestly on the implementation of the virtud machine and the processing power of the
client system.

The loading of the facet is probably the stage which takes the third most amount of time.

However, in comparison to receiving a facet from the network and cregting an instance of it,
this dtage takes a relatively smdl amount of time. Again, this stage depends greetly on the
implementation of the virtual machine and the processing power of the client system.

-06 -

7.4 EXPERIMENT 2 — PERFORMANCEANALYSS

In the previous experiment, we noted that the main bottleneck was the time taken to retrieve a
facet from the network and the time taken to creste an indtance of the facet. In this
experiment, we investigate ways of reducing the cost incurred by that to an goplication, in
order to improve performance. In this experiment, we look into two approaches, namely,

references and caching.

An gpplication requires facets. 1t may call upon a facet more than once. There may be three
possibilities:

The facet is ill loaded in the JVM. It has not been collected by the garbage collector
(GC) and is till accessible viaitsreference. Thus, it can be immediately used.

The facet is available in Sparkle’'s cache. The facet instance has aready been garbage
collected. However, the facet code is available localy in the cache. In this case, the
facet instance needs to be created again in the WM before it can be used.

The facet is not available locally. The facet instance has been garbage collected and
the facet code is not available in the cache. In this case the facet has to be retrieved
from the network, and the facet instance needs to be crested. This incurs a great ded

of overhead.

If the facets are never unloaded, even though this may improve performance, it takes up alot
of memory. Hence a bdance between the three posshilities must be achieved. We

investigated of using different types of references to dereference facet instances.

Srong references
If facets are strongly referenced, they cannot be discarded as soon as they are used,

unless the references are explicitly nullified or the end of the scope is reached.

Soft references
If facets are soft referenced, then the garbage collector can collect the facet instance
even though there is a reference to the instance. These instances will definitely be

collected before the machine runs out of memory.

-97 -

" Weak references
These are dmilar to soft references. Only that the garbage collector will dmost
always collect the weakly referenced instances.

= Null references

No references to the facets are kept. They become garbage as soon as they are used.
This method can save alot of the run-time memory taken up.

As it can be seen from above, soft and week references are mid-way between strong and null
references. For both soft references and weak references, the garbage collector can collect the
referenced facet, as it deems necessary. |If a facet has not been collected, it can be reused,
thus reducing the number of facet requests created.

We ran a benchmark application on the client systems severd times, with different types of
references, hegp sizes, and cache sizes. The agpplication consists of 21 facets. The code size
ranged from 1KB to 32 KB with an average size of 10.7KB. However, the facet Szes (i.e. the
ja file size) ranges from 0.9KB to 5KB with an average sze of 2.6KB. The agpplication cdled
facets in different access patterns. The total number of facet calsis 724. A single facet may
be cdled upon more than once, ether in the same block or even by another facet. The
execution trees of the root facets of the application had a maximum depth and breadth of 5.

In the first round of tests, we used different types of references and ran the benchmark on the
iPAQ with the hegp sze st to 4MB and 16MB and the cache size to 8. The results are shown
in Figure 7.2. For each test case, five iterations were carried out and their average vaue was
recorded. Instead of measuring execution time, which is affected by a lot of factors, including
bandwidth availability, processing power, garbage collection scheme, etc, we report how the
requests for facets were satisfied. As mentioned earlier, when an application requires a facet,
there are three posshilities for satisfying that request. Either the facet is located in the loca
cache, or it needs to be retrieved from the network. In the case that the facet has been used
before in the same block, it is possible that the facet has not been discarded, i.e it is il
loaded in the VM and the ingtance is till accessble. This is particularly the case for strong
references. Comparing the results entails looking at the number of requests sent to the
network, because that has a direct implication on performance. The more requests directed to
the network, the longer the delay, and thus, the dower the performance.

-08 -

100
2%
&%
s
L
5%
A%
i]
2%
1%

Percentages of Total Requests

Sirong Slrong Soft Ral. Soft Rel. VWaak Waak HNoRed No Ral
Fal. Red. 4Ma TEME Ref. Fof. 408 18MB
L) WME kB wME

Aready Loaded WFrom Cache From Hebwork

Figure 7.2 Results of the Benchmark with Different Types of References and Sizes of Heap on the iPAQ

As you can see from Figure 7.2, the results obtained somewhat maich the expected results.
The number of request which find the facets aready loaded decreases from strong references
to soft references to weak references to no references. Likewise, the number of requests sent
out to the network increases from strong to soft references o references to no reference.
There is a marked difference between soft references and weak references. However, there is
little difference between the 4MB and the 16MB performance.

Theoreticdly, if less memory is avalable, the garbage collector will collect more soft
references and the week references in order to regain more of the hesp. However, that did not
seem to be the case in the above graph. This could be attributed to the particular
implementation of the garbage collector. We carried out this experiment again, but on a PC
which had the same configuration as the proxy and which was ingtalled with Sun’'s Java(TM)
2 Runtime Environment, Standard Edition (build 1.3.1 01). The results are depicted in
Figure 7.3. In this case, a difference can be seen between in the performance of soft
references and wesk reference, in a smaler memory situation i.e. 4MB hegp size, and in a
high memory stuation i.e. 16MB. With less memory available, soft and weak references are
more easly collected, and hence it is less likely to find the facet ill accessible through the
reference. In other words, more requests need to be directed to the cache or to the network.
The heap size has a bigger effect on the case of soft references than that of weak references.

-99 -

Parcentage of Tolal Requasts

100FE
v
BiFE,
T,
¥,
S,
AE,
AUFE,
e
107,

o,
Steng Steng Bofi Red. Scfi Ral, Wk Wk Wo Rel, He Ral,
Raf. Rt 4B 1EW8 Fadt R, 4B B

B B 4 1608

Already Loaded M From Cache From Metwork

Figure 7.3 Results of the Benchmark with Different Types of References and Sizes of Heap on a PC

From the graphs above, it can be seen that soft references are probably best suited for the
client system. Strong references disdlow the discard of facets, which goes against the
“throwable” philosophy. The benefit of weak references when compared to no references, in
the presence of a cache, is not as dgnificant. That is, there isn't much difference in the
numbers of requests retrieved from the network. Soft references, hence, are a better option
for our syslem. They provide performance improvement, and adaptation to different memory
conditions, depending on the implementation of the Java Virtua Machine. Ther performance
is comparable to that of strong references. When running out of memory, the soft referenced
facets will be discarded, reclaiming the much needed memory. It must be emphasized that the
results obtained above are greatly affected by the implementation of the garbage collector.

Howeve, the tests above serve as indicators of what can be expected from different virtua

machines, and can be used to make design decisions.

In the second round of tests, we investigate the effect of caching. The system caches the
recently used facets, i.e. it implements the Least-Recently-Used (LRU) dgorithm. It will first
look into its locd cache to see if a facet is available there, if not, only then will it request the
facet from the network. In that way, it reduces the number of requests sent out b the

network, and thus improves performance.
We ran the benchmark severa times on the iPAQ with different cache sizes. Soft references

were used and the hegp sze was set to 4MB. For each test casg, five iterations were carried
out and their average was recorded. The results are illustrated in Figure 7.4.

-100 -

Parcantsge of Tatsl
Raguiasts
o
£F
A b

Time Takian (s

=

b 2Ertsy A Enby B Enky 96 Entiy
Cache

[Mready Loaded 8 From Cache £ From Network]

Figure 7.4 Effect of Caching on Performance

It can be seen from the graph, that as the cache Size increases, less requests need to be sent out
to the network and thus improving performance.

7.5 EXPERIMENT 3 — IMAGE PROCESSING APPLICATION

In this experiment, we illugtrate the feasibility of employing the facet modd to build a usable
goplicetion. We have built an image processng application, which provides basic
functiondlity to the user. The application consists of 15 facets, each providing different
functiondlity, out of which 10 are root facets.

The gructure of the gpplication is depicted in Figure 7.5. The root facets essentialy provide
functiondlity to open, to blur, to find edges and to flip images. The other facets provide
functionality such as matrix convolvers and converters (i.e. converting an image of which the
pixels arein bytes into an image with pixels as shorts).

Fnd Shergen Pe——
Edoes I3
i
H
Hartrontsl

¢

‘

a4
&
Encndar
&
Open
1

5

3

Figure 7.5 Facets of the Image Processing Application. (Gray ovals represent root facets)

-101 -

The sze of the gpplication container and Ul is 10.1KB. The tota sze of the facets is 51KB,
the average being 3KB. We carried out two tests on the iPAQ handheld. One to measure
how long it takes to retrieve a facet and how much of that time is spent on receiving it from
the network. In the second test, we ran the application and compared the difference in
response times, with respect to the user, of each of the functiondities, when the facets are
locdly retrieved, i.e. from the iPAQ itsdlf, or from the proxy. The graphs of the tests are
depicted in Figure 7.6. The vaues in the graphs represent averages of 20 iterations.

g
4.59
i
3.5
3+
2.5
21
1.57

Time (5)

14
059
-

y LSS,
(LML

B Total Time to Retrieve Facet L Time to get fram Mebwork

Figure 7.6 Timing Analysis of Retrieving Various Facets from the Network

The average time to retrieve a facet is 3.5 seconds, out of which most of the time is spent
waiting for the network transmission, which takes, on average, 2.9 seconds. This corresponds

with the results obtained in Experiment 1, in which it was indicated that the main bottleneck
was the network transmission.

Time (&)

Madaadldall .

Add Molas Sdd Fird Flp Gaussan Open Fils Bavras 5&\€m Shaipan
Shadows Edges I-ksn?l;rqeb Verticel blur

l B Facets Locally Retreived. [Facets Remotely Retreived |

Figure 7.7 Comparison of Response Times for Facets locally retrieved and remotely acquired.

-102 -

Figure 7.7, we compare the response times in executing a functiondity when the facets are
locdly avaldble and tha of retrieving them from the network. The functiondities were
invoked on the same image. The difference between the response times is dependent greetly
on the number of dependencies the root facet has, and whether those dependencies are
available in the cache or not. For example, a huge difference can be seen in the execution of
Gaussian Blur. This is because the Gaussian blur facet has the most number of dependencies
al of which must be retrieved from the proxy, leading to the accumulation of the transmisson
delays of the facets. The average difference in response time between having dl facets
localy available, and that of having to retrieve dl of them from the network is 5.6 seconds.
With no mechanisms incorporated for performance improvement, such as caching, this can be

considered as acceptable.

The screen shots of the application are depicted in Figure 7.8.

I s

DOpam 1
riip HuhnnEl

Flip Weanical

mdd HolEe

Afd Shadow

Fimel Edpes
Sharpen

Gaussian Bur
Sawe & gif

Save a3 JpE

Emall this Phasaf
Email 5 macrepied Fhoins!
Closs e e

_

The application on Functionalities

the iPAQ provided

Figure 7.8 Screen Shots of the Image Processing Application

- sparkyien - picture2,

Open Operation

EECCNEER
D=

Original Image

= EECENEES)

aa i 2

After Gaussian Blur After Adding After Finding Edges

Figure 7.9 Applying Various Functionalities on an Image

-103 -

It can be seen that the facet mode can be used to build practica applications, especidly those
which contain a lot of functionalities. Mechanisms, such as caching, or prefetching
algorithms can be incorporated which reduce the gpparent delay and improve the esponse

times.

7.6 EVALUATION

From the above experiments, it can be seen that the main bottleneck is the delay caused by
network transmission. We cannot reduce the latency per se, however we can improve the
performance by reducing the number of requests sent to the network. One mechanism, which
was explored in the second experiment, was the use of references. Instead of marking every
facet as garbage as soon as it has been used, i.e. by removing references to it, we can let it be
accessible by soft references. In that case, if the client has sufficient memory, the facet will
not be collected, i.e. discarded, and will ill be accessble. If it is required again in the same
scope, it can directly be used, without having to load it or to create another instance of it.

Another mechanism which was explored was the caching of the facets. Facets were locally
retrieved ingtead of getting them from the network. At present, the LRU dgorithm is being
used for caching. An increase in the size of the cache demonstrated an exponentia decrease
in the number of requests sent to the network and in the execution time as well.

The above are mechanisms which the client sde can implement on its own. Other techniques,
which require co-operation with the proxy, can be dso employed. For every request, the
proxy will carry out dependency and resource analysis. It can predict, to a certain extent,
which facet will be used next and prefetches it so that it is ready to transmit when the next
request arrives. Ingtead of waiting for the next request, a push mechanism can be utilized
which dlows the proxy to send the facet to the client beforeit is requested. In other words,
while the client is executing a facet, the proxy pushes the dependencies into the cache, so that
when the dependency is required, the client can retrieve it from its cache instead of requesting
the facet from the proxy. This technique reduces the response time and can improve
peformance. At present, the above technique has not been implemented. This and other

techniques are avenues for future work on the system.

The fina experiment illustrated that the facet model can be used to build practica
gpplications. 1t is believed that the facet mode is best suited for applications which have a lot

-14 -

of functiondities, which can benefit from the memory saving and dynamic adaptation
provided by the facet model. The image processing application suffered some response time
dday due to the network transmission of the facets. However, for facets which aredready
located in the cache, the performance delay isinsignificant.

It must be kept in mind that the current experiments were carried out on a serial connection
with an effective trangmisson rate of 80kbp. With wirdess LANS and bluetooth networks
which have a transmission rate of 54Mbps and 1 Mbps respectively, the network delay may
be grestly reduced.

Even though our testing only focused on the client system, we envision that the performance
of the whole sparkle system will not be much worse. The current test results do not include
the time taken for the proxy to carry out andysis and matching. However, since the proxies
are implemented on machines with sufficient processng powers, we believe tha the delay
incurred will not be as subgtantid as the network delay, and may be in the order of tens or
hundreds of milliseconds.

7.7 SUIMMARY

This chapter described the testing carried out on the client sysem. The main purpose of
carrying out the experiments was to demondgtrate the feasibility of the facet model. This was
done in three contexts. The tests were carried out on a Compaq iPAQ persond digitd

assistant.

The fird experiment invedtigated the timing paterns of each of the stages involved in
bringing in a facet and running it. The gcond experiment identified factors which can have
an effect on the performance of the system such as the use of references and caches. The last
experiment demondrated the feashility of building a normd application using the facet
mode.

From the first experiment, it was concluded that the main bottleneck during the request for a
facet was the network transmisson ddlay. In addition, creating an instance of a facet took a
significant portion of thetimein cases of large code size.

-105 -

The second experiment demongtrated that performance could be improved by using weak
references, soft references or strong references, because they reduce the number of requests
for facets and in turn the number of requests sent to the network. However, strong references
dsdlow the discard of facets, and the benefit of weak references when compared to no
references, in the presence of a cache is not as significant. Soft references, hence, are a better
option for our system. They provide performance improvement, and adaptetion to different
memory conditions, depending on the implementation of the VM.

The third experiment demondtrated the feasibility of building a practica application using the
facet modd. An image processing agpplication was built which provided functions like
opening, blurring, flipping and saving images, etc. It highlighted the need to incorporate
mechanisms to improve response times.

At present, only two mechanisms, soft references and caching, have been incorporated into
the system for performance improvement. Other techniques, which involve the co-operation
of the proxy to reduce the observed latency in receiving a facet, can provide avenues of future
work.

-106 -

Chapter 8

Overall Discussion

The last few chapters have focused on the facet model, the detals of its implementation and
that of the Sparkle client system. The previous chapter described some of the tests carried out
on the prototype of the client system.

In this chapter, we take a step back and look at the overal picture. Despite having gone
through a lot of issues, there are some which have not been discussed and deserve a mention.
We particularly look into web-services and the digtinctive features of the facet modd. Web-
sarvices have been halled as the computing paradigm for the future, and thus it is important to
know where the facet model stands in the face of web-services.

We adso look a some issues regarding the facet model itsdf. No doubt, there are certain
cases in which the facet modd takes a different approach than the others. When it comes to
functionality adaptation and resource management, the facet modd opts for programmer
transparency, whereas in many other systems, the programmer has a large part to play in
resource management. This chapter will aso look into the transparency issue.

The main motivation of the facet modd is its ease of adaptability. We andyze how
effectively the facet mode can be gpplied to achieve the different types of adaptabilities
discussed in Chapter 2. We dso look into how catext-awareness can be achieved under this
modd.

Nothing is perfect. Everything has some flaws and drengths. We discuss some of the
deficiencies of the facet modd and then describe sSituations in which it would be most
sliteble

Findly, we look at the Sparkle architecture as a whole, and describe what it is lacking in order

for it to be a suitable architecture for the mobile computing environment.

- 107 -

8.1 WEB-SERVICESVSFACET M ODEL

The Internet and the World-Wide Web have traditiondly been used far access of information,
web pages, emalls, etc. However, recently, there has been an expansion of the paradigm to
include the provison of web services. The web services movement has a lot of mgor
software vendors as its proponents including Microsoft (.NET), IBM (WebSphere), Sun
Micrasystems (SunOne), Oracle (Dynamic Services), and HP (HP Web Service Platform). It
has aso been the focus of a lot of research including Ninja [29], Sahara [69], Open Mash[1]
efc. The movement is about using the Web as a platform to provide services.

Web sarvices can be considered as active programs or software components, which are
hosted on the wel>rservers and can be accessad by other entities. What sets them apart from
cgi-programs is that they can be discovered and composed. A web service is usudly
asociated with a description usng WSDL, Web Services Description Language, and is
published in a directory such as the Universd Description, Discovery and Integration Service
(UDDI). This dlows the discovery of the service. Various services located on different
sarvers can be dynamicdly composed together to provide a complex service to the user.

SOAP isthe de facto protocol used for invoking services.

Condgdering the client sde view, functiondity is implemented by services which are hosted
on third-party servers. Users send data, or information about the location of the data, to the
services which then act on the data and send the results back to the user.

The web services gpproach partidly aleviates the heterogeneity problem and the adaptation
problem. Mogt of the essentid parts of the application are executed on servers, whose
configurations and runtime conditions are known. This makes adgptation of the gpplication
redundant, because the most resource @mnsuming part of an application is carried out on the

SErVers.

However, it is possible that the results returned by the services may not be in a form suitable
for the client devices. For example, they may be encrypted with a large key and it would teke
a lot of computational effort for the device to decrypt them. Or, the results may be too large
to send over a dow wirdess network to a devicee This necesstates the use of a
transformationa intermediary.

-108 -

The tranformational intermediary is often implemented as a proxy responsible for adaptation.
It carries out data adaptation - transforming the results returned by the services. For examples,
changing HTML results to WAP, or changing the image resolution. The proxy may dso
carry out network adaptation, such as using protocols especialy designed for low power, low
computation or poorly connected devices as the need arises. Thus, the proxy becomes the
center for adaptation. In the facet model, the proxies dso have a mgor role to play in
adaptation However, their role is focused mainly on functiondity adaptation.

The fundamentd difference between the facet model and web-services is that the facet model
brings code to the client to execute, and in web-services, data is moved to the servers and the
results are sent to the client. Both modds have their advantages and disadvantages. We
cannot say which is better than the other because both systems have to be more widely
adopted in order to provide a more comprehensive comparison. Below, we highlight some
issues which are of conseguence to mobile computing.

As mentioned earlier, the facet modd brings in components rather than accessing the
goplication logic remotdy, i.e. web-services. The latter method requires moving data to the
service, and getting back the results. It would be easier to move components rather than data
because, very often, the code Sze is often smdler than the data size, especidly in the facet
model, where each component only supports a single functiondity. Also, there is less of a

need for marshaling and unmarshalling the data, thus reducing processing time.

Moreover, there may be stuations in which it is difficult to send data to the service, ether
because the data is too large to be sent over dow wireless netwaks, or because the data is
private and should not be sent over an insecure network to a third-party server. In those
Stuations, thereis no option but to bring in code.

In addition, devices need to be able to access the sarvices from any place, a any time. This
places a burden on the service provider who must ensure service availability. If a service
fails, multitudes of devices may not be able to function, unless another compatible service is
avalable. On the other hand, in the facet modd, if aproxy fails, a client can aways access
another proxy. If afacet is not available, a client can get another compatible one instead.

The web-services gpproach drictly follows the client-server modd. It requires that dl
interactions that occur are those between a client and a server. Any communication between
two devices has to go through an intermediary service. Devices cannot directly communicate

with each other. This mode does not dlow for direct client-device peer-to-peer

-109 -

communication, which is one of the characteristics of mobile computing. For both
performance and security reasons, it is not desirable for al peer-to-peer communications to be

carried out viaintermediary servers.

Furthermore, in some cases, it may not be possble to carry out the application logic on
sarvers. Some things have to be done localy. One such example is the processing of private
data which cannot be moved away from the device. Another example is a miniature robot on
an exploration journey, insde a digedtive track or a pipe. It may have the hardware parts to
carry out some repair work, but not enough memory to store the code. Asiit is exploring the
surface, when it encounters a certain blemish or problem on the surface, it can download code

for that particular repair work, i.e. to control the parts in order to diminate that problem.

Web services are essentia for providing access to certain resources. For example, access to a
printer in an Internet café can be provided through a printing web service. Clients in the
vicinity can dynamicaly discover the printing service and use it if the user wants to print

documents to that printer.

In fact, web services and facets are not mutualy exclusve. They can be used to complement
each other. A client can download a facet which accesses a web service. Such as the printing
web service described above, a client can download a facet to the service. This way, we can
have the best of both worlds.

8.2 TRANSPARENCY OF ADAPTATION

In the facet modd, programmers ae kept reatively shidded from the details of run-time
adaptation. Programmers only need to specify the functionality they require, and they can
safely assume that they will receive a facet with resource characterigtics suitable for the
current execution environment. The amount of resource an application uses is, to a large
extent, under the control of the resource manager and the proxy. The resource manager
determines how much resource to dlocate to a particular application (or functiondity), and
the proxy finds a facet which can conform to those constraints.

In many systems, the amount of resources an application uses is under the control of the
gpplication itsdf, i.e. the gpplication has in-built mechanisms to change its own run-time

resource usage reguirements. There is a system wide resource manager which keeps track of

the resources being used, but its role differs from system to system. There are two major
approaches. On one hand, the system resource manager is just a source of information.
Applications query the resource manager to determine the current resource status, and then
adapt themsdlves accordingly, i.e. they have their own adaptation policy. On the other hand,
ingtead of just keeping track of resource usages, the resource manegers aso determine the
adaptation policy. They carry out resource alocation among applications and inform the
applications the amount of resources that have been alocated to them. The gpplications then
adapt their resource usage according to that.

It can be seen that, for both approaches discussed above, applications manage their own
resource usage. Application programmers mugt include mechanisms of adaptation in their
programs. In other words, programmers are not only exposed to the mechanism of
adaptations but need to know it thoroughly and write it as well. How well an gpplication
adapts at run-time, thus, is highly dependent on the skills of the developer.

Yes, in the facet modd, application developers do need to build different facets with the same
functionality with different resource characteristic. However, they are spared from coding

mechanisms for responding to changes in run-time resource availability.

The main advantage of having this trangparency is that it maekes it a lot easer to build
gpplications. Programming with support for adaptation for a huge variety of devices available
can become a burden for programmers. Moreover, gpplications only possess a loca view of
the whole system. The resource manager has a globd picture and thusis more suitable to do
resource alocation and adaptation. It has a centraized control over the usage of the resources
in the sysem. A wel-written resource manager can make the system and the execution
environment generally more stable and friendlier to work in.

Providing programmers with transparency for important system functions is not something
new. Frameworks for Enterprise JavaBeans, CORBA, .N€, etc., aso give programmers
trangparency for persistence, life-cycle management, transactions, etc, making life more easer
for programmers and the systems implemented on them more stable. Transparency for
adaptation can be seen as the next step in the same direction.

-111-

8.3 THE FACET M ODEL AND ADAPTABILITY

In chapter two, we discussed five different types of adaptability commonly exhibited by
gpplications, namey — memory, energy, network, device and context adaptability. In this
section, we look a how the facet model can be used to enhance each kind adaptability of a
mobile application.

The facet mode achieves memory adaptability by bringing in facets which have suitable
memory characteristics for the current run-time memory conditions. If a device has less run-
time memory available, a more memory efficient facet is brought in and executed. In
addition, since functiondity is brought in little by little (i.e. facet by facet), this makes it more
adaptable. For example, stages of a game are downloaded as you go aong, saving the
memory required for the whole game application.

The facet modd is not very suitable for energy adaptability. Facets are just parts of
gpplication code. Power-management is usualy the responsibility of the operating system, or
the middleware, and hence the facet mode does not greatly impact energy adaptability.
Energy adaptability is best achieved by energy adaptation techniques, such as automatic
power off, or dynamic voltage scaling, etc.

Network adaptability is often achieved by network-levd adaptation and data adaptation
techniques, i.e, by using different protocols, or by changing the quality of data accessed.
Network traffic of an application is largely affected by the amount of data it needs to access.
Thus, in order to achieve network adaptability, facets with different agorithms, which reguire
less network interaction or access less amount of data, should be used instead.

The facet model dso enhances the device adaptability of an gpplication. Different devices
have different configurations, e.g. input devices, output devices, processing powers, etc. The
facet modd makes it easer to adgpt the presentation format, Ul and even the application
functiondity. For example, accessng an HTML web page on a notebook could be pretty
graightforward. It would require a smple HTML parser face and associated presentation.
However, accessing the same web page on a mobile phone would perhaps require a facet
which carries out HTML-to-WML trandation in order to adapt the presentation of the page to
the display screen of the phone.

Context encompasses a lot of factors — location, time, preferences, surrounding entities.
Context adaptability can be easily achieved by using facets suitable, or specidly designed for
the current context. For example, a client can adapt at runtime to the surroundng entities
and be able to work with them. Let's say when a client device detects a nearby printer, it uses
a facet, which it receives from the printer itsedf or from a nearby proxy, enabling it
communicate with and to print to that particular printer. With the facet modd, applications
can adso adapt according to the input data they are presented with. Take an MMS
(Multimedia Messaging System) agpplication as an example. The type of decoding facet used
depends on the type of message that is received. For a jpeg message, a jpeg decoding facet
can be downloaded and used. For an mpeg message, an mpeg decoding is used. The
advantage of using the facet mode for the MMS application is that does not put any
limitation on the types of messages the MMS gpplication can decode. As new messaging
formats evolve, the MMS gpplication just has to download the suitable decoding facet for that

message.

As it can be seen from above, the facet model has a large impact on the degree of memory,
device and context adaptability an application possesses.

8.4 CONTEXT AWARENESS

Context-awareness implies being able to detect the context an application is running in and
modify the execution of the application according to that. The term context-awareness is

often used synonymoudy with device, network and context adaptability.

In the facet model, context awareness implies choosing the facet suitable for current context.
Context detection is carried out by both the client device and the proxy. The dient device
detects the local context such as time, locale, and the surrounding context such as nearby
entities, and network conditions, etc. The proxy keeps track of other context information such
as location, surrounding proxies and clients and user preferences, information from
surrounding clients, etc. The decision on how to respond to the context is made by the proxy.
When a client sends request to the proxy, it includes al the context information it has
gathered. The proxy receives this information and combines it with the information it has
gathered. It decides which facet will be best for the current context by analyzing and
comparing the context information and the shadows of the facets. Thus, both proxies and

clients play a part in achieving context awareness.

8.5 DEFICIENCIESOF THE FACET M ODEL

As seen in the previous chapter, the facet model has been successfully employed to build
applications. However, during the process, a deficiency that we came across was the lack of
control or feedback mechanism for facets. In other words, there is no way we can control or
enquire about the progress of a functiondity until and unless the facet returns. Take, for
example, the blurring of an image. Blurring requires a lot of matrix operations and is very
computation intensve. When a user invokes a blur operation, he can only know whether the
operation was successful when the blur facet returns. While the user is waiting for the results,
which may be a long time if the operation was invoked on a dow machine, there is no way of
knowing whether the facet is executing, or if it has just hung. However, such a scenario is

aso present in some of the common software systems currently used.

An application domain that would take a lot of effort to switch to the facet modd is that of
highly interactive games. For interactive games, functionality, Ul and data are very closdy
linked. Object-oriented programming often makes things easier in this domain. For instance,
an enemy can be implemented as an object which contains the enemy’s location, code of its
movement strategy, code to make it kick and jump, and its rdated Ul. Thus, every entity in
the game can be cleanly represented as an object. However, if such a game were to be
implemented according to the facet model, functiondity, Ul and data would need to be more
clear-cut. It is dl right if Strategies, such as those of enemy movement, or for a chess game,
are implemented as facets. These drategies can be replaced easily when moving from one
gsage to the next, i.e. usng a facet which implements a more difficult strategy. However,
often in games, user interaction invokes rather miniscule functiondity, for example, moving
forward, kicking, shooting etc. This is not to say that the facet model cannot be used to
develop games. The facet modd just provides a different style of programming. The game
must be carefully designed with the facet modd in mind.

8.6 APPLICABILITY OF THE FACET M ODEL

Since functiondity is brought in as it is required, one of the advantages of the facet modd is
that it adlows devices to run applications which normaly would be too large to fit into the
device. It helps keep the run-time program size smdl. The facet modd would be the ided
choice for gpplications with lots of functions, or add-on plugins and filters, like image editors,

word processors, €tc.

-114 -

Because of its innate support for adaptation, the facet modd is particularly suited for mobile
gpplications, i.e. applications which can move from one device to ancther, either on ther
own, or to cater for user mobility. As the user moves from one device to another, the facet

model enables the application for state migration and to adapt to the corresponding device.

The domain of scientific smulation and artificid intelligence can aso benefit from the facet
model. The grategies or the agorithms are implemented as facets. A facet, which contains a
drategy, can be easly replaced by another compatible facet with a different strategy.
Therefore, it adds flexibility and dynamicsto programs.

In fact, the facet model has advantages in the fied of grid computing as well. Grids, by
definition, are heterogeneous. They am to make use of the idle cycles of the CPUs, or
resources of their congtituent nodes. Without functionality adaptation, a machine has to have
aufficient "idle" resources before it can be used in grid computation. With the facet modd,
the grid gpplication could adapt to whatever resources are available in the nodes of the grid,
of course, depending on the versions of facets available. This implies that, even if a present a
node has less idle resources, those resources can still be put to use. Thisis very beneficia for
the grid because it leads to a better overdl usage of the computing resources in he grid and,
thereby, improves performance.

Even though in this thess, the facet modd has been discussed in the context of mobile
computing, it can be applied to dmost any domain. The facet modd advocates computing in
small. It enables resources, especidly memory, to be used efficiently and, thereby, improving
performance. Even standdone applications in PCs would benefit from being able to unload

an gpplication component once it is no longer used. Thus, the facet modd actudly has far-
reaching benefits.

8.7 SECURITY | SSUE

One important issue which has not been addressed in the current mode! is security. Fecets are
located on the public domain and are sent over various insecure public networks to client

devices. Security of facets entails making sure that the facet received on the client device is
executable and runs as they were meant to, in a safe manner.

Security of facets can be considered as consisting of five aspects

= Facet Authentication
It dso involves verifying the information in the shadow of the facet, i.e. confirming
that the facet comes from the vendor it claims to be from, confirming the resource

usage, etc.

= Facet Integrity
This involves ensuring the facet itsdf is not maicious. Facets can be written by
amost anyone and uploaded on facet servers. And because of the trangparency of the
model, it becomes crucid to ensure that facets themselves do not carry out any

vicious things and come from trusted sources.

» Facet Validity
This means making sure that the facet has not been corrupted or tampered with.
Since facets may be sent over insecure networks, it is possible that it may have been
tampered by hackers. We need to ensure that the facet isintact before it is executed.

= Execution Error Logging
There may be some facets which often cause clients to hang. In such cases, having a
logging system which notifies the proxy of the execution state will be beneficid. The
proxy can then screen out facets which are particularly buggy, or have poor

performance.

= Private Facets
In the current model, al facets are avalable to everyone. However, there may be a
need for private facets, which have restricted use. These may be specid high-
security facets which can be used by those only with the appropriate access right.

Further study needs to be carried out on how to make the facet model more secure.
Mechanisms which can be explored include encryption, digitad signatures, check sums,

checking facets thoroughly before including them in the proxy facet lists, using a security
model, such as the sand box model in order to protect clients against malicious code, alowing

run-time execution logging and sending reports to proxies from time to time, etc.

-116 -

8.8 SPARKLE ARCHITECTURE

The Sparkle architecture, which has been described in detail in Chapter 4, provides extensive
support for the facet modd. Every entity in the architecture has a direct role to play with
regards to facets. Clients request for and run facets, facet servers store facets, proxies match
appropriate facets for clients and execution surrogates execute delegated facets. Since facets
are embodiments of functionality, it can be said that the Sparkle architecture has a very strong
functionality modd!.

Running an gpplication requires the definition of three main models
» The functionality access model . How application logic is retrieved and from where.
= The data access modd . Where the user datais located and how it is retrieved.
= Theexternal resource access modd. How external resources are accessed.

In traditiond computing, both functionality and data are assumed to be located locally and
can be easily accessed by the use of a filename. Externa resources, such as printers, are
assumed to be connected to the loca machine, or available on the locd network.

For mobile computing, in which user mobility, resource limitations, network disconnections
and ingtability are prevaent, more robust models need to be applied, so as to ensure the
continuity of computation. The Sparkle architecture provides a functiondlity access model,
however, the data access model and the externa resource model are not yet well developed.

The Sparkle architecture alows users to access functionality from whichever location they are
a, and whatever device they are using. It adso provides for the functiondity to be adapted to

the run-time execution environment.

When a user moves from one device to another, he would expect his data, such as his files,
preferences, to be accessible on the new device as well. At present, the Sparkle architecture
does not support data migration. It assumes dl user data is located in the loca device. To
make it more suitable for mobile computing, approaches such as mobile file systems, or
having a centrdized server to store user data need to be investigated and gppropriate ones
adopted.

A handhdld device is consderably different from a PC, especialy when it comes to accessng

externa resources such as printers and scanners. A PC may be directly connected to a printer,

-117 -

whereas a handhed would have no connections any such resources. Applications may, at
times, require access to such resources, thus the devices must be able to make wireless links
to them. In the mobile computing context, clients need to be able to locate such resources in
close vicinity and be able to access them. Severa clients could be competing for access to the
devices a a particular ingant in time. Subsequently, a resolution mechanism is aso required.
The Sparkle architecture, at present, does not address this issue. A mechanism commonly
adopted is for these external resources to expose themselves as services. Clients, then, locate
the services they need, and lease them for some time, i.e. a service discovery and leasing
mechanism. This may have an effect on the programming style. The programmer could be
aware of these details or it could be hidden from him. The feashility of this gpproach and
others needs to be invetigated thoroughly, and a suitable externd resource access mode
incorporated.

8.9 SUMMARY

In this chapter, we took a step back and looked a severd issues regarding the overal picture
of the Sparkle syssem. We looked at how the facet model stands in face of web services.
Web services dleviate the problem of functiondity adaptation since most of the gpplication
logic is executed on servers. However, intermediary proxies are required to carry out data
adaptation of the results. The fundamenta difference between web services and the facet
modd is that web services require the movement of daa from the client to the service,
wheress the facet model moves the code to the client. The direct implications of the previous
statements are that
= Code sze is often smdler than data sSze, which may be better for transmisson over
dow networks.
= In some cases, it may not be possble to move the data, due to privacy and other
reasons.
= The sarvice provider has a huge burden of maintaining service availability a dl
times.
= Web services follow the client-server approach, and hence may not alow for direct
peer-to-peer communication which is essentia for mobile computing.
= There are cases in which application logic must be executed locally and cannot be
carried out remotely.
= However, web services are essential to provide access to externa resources such as
printers.

One cannot argue which is better than the other. Both web services and facets can be used in
order to regp the benefits of both models.

We a0 looked a some of the issues rdating to the facet modd, namely the transparency
issue, the deficiencies of the facet model and its gpplicability. In many systems, resource
adaptation is under the control of the application itself, i.e. the programmer has to write dl
mechanisms to respond to change. Our modd tekes a totaly different approach. All the
mechanisms are kept transparent from the application designer. The main advantege is that it
is much more easier to build gpplications. Designers just need to provide different versions of
facets, and the rest is handled by the system. In addition, the resource manager is probably in
the best position to carry out the adaptation policies since it has centrdized control over the

resources.

We dso andyzed how effectively the facet modd can enhance the different types of
adaptability of an gpplication. The facet mode is particularly applicable for memory, device
and context adeptability. It can help achieve network adaptability to a limited extent.
However, it playsaminimd role in achieving energy adaptability.

Context-awareness in the facet modd is achieved by usng a facet suitable for the current
context. Both client devices and proxies gather context information. When the client makes a
request for a facet, it sends the context information to the proxy. The proxy compiles dl this
information and decides which facet to return to the client. In other words, the proxy makes
the ultimate decision on how to respond to a particular contextua change.

The facet model has some deficiencies. From a programmer’s point of view, there is no
mechanism to find out the progress of the facet while it is being executed. We can only know
whether it was successful or not when it returns. In addition, since there is such a marked
separation of Ul from functiondity and data, applying the facet modd gpplications with a lot

of user interaction, such as action games, may be cumbersome.

The facet modd, however, is suitable for gpplications in the scientific Smulation and artificid

intelligence domains. It provides dynamics to the programs because of the flexibility that a
facet can be replaced by another facet. Also, the facet is suitable for applications that require
functiondlity adaptation, for example, for applications which need to migrate from one device
to another. Grid computing can aso benefit from the facet model since it enables applications

to adapt to the idle resources available in the nodes, rather than waiting for the nodes to have
sufficient idle resources before they can be utilized.

Findly, we looked a the deficiencies of the Sparkle architecture. The Sparkle architecture
has a very solid functionality access model, however it does have a data access model or an
externd resource access model suitable for mobile computing. At present, there is no support
for users to access their data from any device, nor for clients to discover and access nearby
resources, such as printers and scanners. Approaches such as mobile file systems, centralized
data servers, service discovery and leasing need to be studied and suitable mechanisms need
to be incorporated in the Sparkle architecture to make it more gpt for mobile computing.

Chapter 9

Conclusion

The whole dissartation is based on employing dynamic component composition to achieve
functiondlity adaptation in mobile computing. This chapter summarizes al the previous

discussions and presents avenues for future work.

9.1 SUMMARY ANDCONTRIBUTIONS

Mobile systems are characterized by variation and change. Thus, systems targeted for such a
dynamic environment have to cater for the incessant variation. They have to be able to detect
run-time changes and adapt to them appropriately.

We looked at the different types of adaptability systems demonstrate in order to accommodate
changes. Out of al the adaptation techniques, functiondity adaptation is probably the most
versdtile. Unfortunately, current approaches to functionality adeptation are rather limited and
inflexible. They place undue burden on the application programmer, resulting in a larger
gpplication sze and, not to mention, a limited adaptive capability, which cannot be
dynamicdly extended. Hence, there is a need for a flexible and dynamic functiondity
adaptation technique which can overcome the above drawbacks. My dissertation ams to
fulfill this need.

We proposed dynamic component composition as a means of achieving functionality
adaptation. Dynamic component composition can be summarized as follows. Software and
gpplications are made up of components, which are assembled a runtime as they ae
required. There may be severa components carrying out the same task. Which component is
used for that particular task depends on the run-time execution environment. Each of these
components may have different runtime characteristics and, thereby, achieve functiondity
adaptation by adapting the execution of the task a hand.

This approach has severd advantages in the context of mobile computing, other than
functiondlity adaptation. Since components are brought in when needed and discarded after
use, the functiondity a device can provide is not limited by its configuration. There is
increased scope for peer-to-peer cooperation. Peers can share components, in addition to
sharing data and files. Dynamic component composition aso supports user mobility and
migration adaptation. Since components are located on the network, they can be accessed
from any devicee When the execution moves from one device to ancther, the same
functiondities can be brought in but with components suiteble for the new device i.e

functiondly adapted to the new device.

A new component mode — the facet mode, was designed especidly with dynamic
component composition in mind, and an Internet-enabled architecture — the Sparkle system
was built to support the facet model. Functionality adeptation, in this case, is achieved by
choosing the appropriate component among different ones which have the same functionality.

The main foci of my work are the definition of the facet model and the demonstration of its
feasihility. Facets can be considered as just another type of software components, which
embody functionality. In addition to the four characteristics of components — being
independent, units of compostion, providing functiondity via well-defined interfaces and
having no persset dae, facets only have a single publicly cdlable method and have no
residua dtate. This alows them to be smal and throwable.

The facet modd relies on the separation of functionality from data and user interface. Facets
are the embodiments of functionality, where as the data and the user interface is stored in the
container. It can be said that for an application, the gpplication logic is distributed among the

various facets, whereas the state and the user interface are centralized in the container.

Dynamic component systems have been used before, no doubt, but mainly in the area of
reconfiguration of long-running systems. For mobile systems, one often hears about service
components. However, it is difficult to find a dynamic component sysem specidly
addressing adaptation with as much flexibility as the facet moddl.

In short, we can conclude that the main contributions of this dissertation are as follows:
= |t provides a classfication of the different types of adaptabilities mobile systems and
gpplications exhibit and aso another of the adaptation techniques employed.
= |t introduces functionality adaptation and its importance to mobile computing.

* |t proposes dynamic component compodtion as a means of achieving functionaity
adaptation.
= Mogt importantly, it defines the facet component model, designed for dynamic

component composition.
= |t illugrates the facet modd’s feasibility and gpplicability in a mobile environment
viathe Sparkle architecture.
9.2 FUTUREWORK

The current status ¢ the design and implementation does illustrate the importance of the facet
modd in achieving functionadity adaptation for mobile computing. However, it cannot be
consdered as a full-fledged mobile system. There are severa issues which must be further
studied and implemented, which include

O The Facet Modd
The facet mode has proved sufficient for applications which have been implemented
using it. However, more work needs to be carried out to demondtrate its feasihility for
general applications. It nust be experimented with various kinds of gpplications in order
to study its applicability and to provide basis for refinement.

0 Resource Management
The current implementation of the resource management in the client system is rather
smple. It is redricted by the resource information available to it. At present, it only
receives information about heap usage. A native resource monitor, which can effectively
keep track of alot more types of resources, such as memory, power, network, needs to be
incorporated. In addition, different adaptation policies need to be implemented and tested
in order to determine which would be most suitable under different conditions. Perhaps a

priority scheme can dso be incorporated.

0 Discovery Mechanism and Peer-to-Peer Interaction
At present, there are no discovery or peer-to-peer interaction mechanisms incorporated in
the client system. These are essentid parts of any system targeted for mobile computing.
Mechanisms for the discovery of services, peers and other network entities need to be
studied and incorporated. In addition, how peers interact and to which extent adaptation
is required needs to be determined.

o Performance Enhancement
The main bottleneck in performance is the delay in the transmisson of facets. Sverd
approaches for improvement have been employed, however, there are some avenues
which have not yet been explored, for example pushing facets to the client.

0 Facet Security
The current model does not incorporate mechanisms for ensuring the integrity of the
facets and their execution. Since facets are distributed over public networks, and together
with transparency of the modd, makes security a crucid issue. Further study on the
feasibility of mechanisms such encryption, digita signatures, check &ims, sandbox model
and execution feedback need to be explored.

O The Sparkle Architecture
The Sparkle Architecture does not possess a clear and strong data access model nor an
external resource access modd. These modds are essentid for many kinds of
applications. Approaches, such as mobile file systems, centralized data servers, service
discovery and leasing, need to be dudied and suitable mechanisms need to be
incorporated.

With this, we conclude this dissertation. The facet model lays a foundation for a flexible
software system for mobile computing. However, there are many issues which need to be
resolved to redize a practical syssem. The facet model forms the ground work on which other
research can be based on. Thus, its significance and contribution cannot be undermined.

-124 -

10

11

12

13

14

15

16

BIBLIOGRAPHY

E. Amir, S McCanne, and R. Kaiz. An Active Service Framework and its Applicaion to Red-time
Multimedia Transcoding. In Proceedings of ACM SIGCOMM ,pp. 178-189, September 1998.

D. Andersen, D. Bansd, D. Curtiss S. Seshan, and H. Bdakrishnan. System support for bandwidth
management and content adaptetion in Internet gpplications. In Proceedings of 4th Symposum on
Operating Systems Design and Implementation, pp. 213-226, October 2000.

N. Apteand T. Mehta. Web Services—a Java Developer’ s Guide using E-speak. Prentice-Hall, 2002.

L. Bao and J J GarciaLunaAceves. A New Approach to Channd Access Scheduling for AdHoc
Networks. In Proceedings of the 7" ACM/IEEE International Conference on Mobile Computing and
Networking (MOBICOM ' 01) pp. 210-221, July 2001.

G. Banavar, J Beck, E. Gluzberg, J Munson, J. B. Sussman, D. Zukowski. Chdlenges an Application
Model for Pervasve Computing. In Proceedings of the 6" ACM/IEEE International Conference on
Mobile Computing and Networking(MOBICOM ' 00) pp. 266-274, August 2000.

P. Brereton and D. Budgen. Component-based Systems. a Classfication of Issues. In IEEE Computer,
vol. 33 (11), pp. 54-62, November 2000

G. Can. A Scdadle Low-Latency Cache Inveidation Strategy for Mobile Environments. In Proceedings
of the 6" ACM/IEEE International Conference on Mohile Computing and Networking (MOBICOM
’00), pp. 200-209, August 2000.

Canegie Medlon Software Engineering Inditute. Component-Based Software Devedlopment / COTS
I ntegration. http://www.sal.cmu.edu/str/descriptions/cbsd_body.html

Canegie Mdlon Software Enginegring Indittee COTS and Open Sysems — An Overivew.
http://www.sai.cmu.edu/str/descriptions/cots_body.html

P. Castro, P. Chiu, T. Kremenek and R. R. Muntz. A Probabilisic Room Location Service for Wireless
Networked Environments. In Proceedings of the 3™ International Conference in Ubiquitous Computing
(Ubicomp ‘01), pp. 18-34, September 2001.

Cetus Links. http://www.cetus-links.org

S Chandra, C. S Hllis and A. Vahdat. Mulitmedia Web Services for Mobile Clients Using Quality
Aware Transcoding. In Proceedings of the Second ACM International Workshop on Wirdess Mobile
Multimedia(WOWMOM ’99), pp. 99-108, August 1999.

G. Chen and D. Kotz. A Survey of Context-Aware Mobile Computing Research. Technical Report
TR2000-381, November 2000

|. Chlamtac and J Redi. Mohile Computing: Chdlenges and Potentid. In Encyclopedia of Computer
Science, 4th Edition, International Thomson Publishing, 1998.

Y. Chow. A Lightweight Mobile Code System for Pervasve Computing. Master's Thesis, Department of
Computer Science and Information Systems, The University of Hong Kong, August 2002

|. Clarke, O. Sendberg, B. Wiley, T. W. Hong. Freenet: A Digtributed Anonymous Information Storage

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

and Retrieval System. In Proceedings of the International Workshop on Design Issues in Anonymity
and Unobservahility, pp.46-66, July 2000

COM. http:/Avww.microsoft.com/com/

A. Corradi, R. Montanari and C. Stefanelli. How to Support Adaptive Mobile Applications. In
Proceedings of WOA2001, September 2001

PT. Cox, B. Song, A Forma Modd for Component-Based Software, In Proceadings of IEEE
Symposum on Visual/Multimedia Approaches to Programming and Software Engineering, September
2001.

Domdj, Theflexible XML Framework for Java. http:/immw.domdj.org

D. F. D'Souza and A. C. Wills. Objects, Components and Frameworks with UML — the Catalysis
Approach, Addison-Wed ey, 1997.

C. Efdgratiou, K. Cheverst, N. Davies and A. Friday. An Architecture for the Effective Support of
Adgptive Context -Aware Applications. In Proceedings of the Second International Conference on
Mobile Data Management (MDM'’ 01), pp. 15-26, January 2001.

J Hinn and M. Satyanarayanan. Energy-aware Adaptation for Mobile Applications. In Proceedings of
the 17th ACM Symposiumon Operating System Principles, pp. 48-63, December 1999.

A. Fox, S Cribble, Y. Chawathe and E. A. Brewer. Adapting to Network and Client Variation Using
Active Proxies Lesons and Perspectives In IEEE Personal Communications Specid Issue on
Adaptation, August 1998.

A. Fuggetta, G. P. Picco, and G. Vigna Undergtanding Code Mobility. In IEEE Transactions on
Software Engineering vol. 24(5), pp. 342-361,1998.

J Geo, P. Steenkiste, E. Takahashi and A. Fisher. A Programmable Router Architecture Supporting
Control Plane Extensbility. In IEEE Communications Magazne, Special Issue on Active
Programmable, and Mobile Code Networking, vol. 38(3), pp. 152-159, 2000.

D. Galan and B. R Schmel. Component-Based Software Enginesring in a Pervesve Computing
Environment. In Proceedings of the 4th ICSE Workshop on Component-Based Software Engineering,
May 2001.

Gnutella. http:/mww.gnutellacom

S. D. Gribble, M. Welsh, J. R. von Behren, E. A. Brewer, D. E. Culler, N. Borisov, S. E. Czerwinski, R.
Gummeadi, J. R. Hill, A. D. Joseph, R. H. Katz, Z. M. Mao, S. Ross and B. Y. Zhao. The Ninja
Architecture for Robust Internet-Scde Sysems and Services. In Computer Networks vol. 35(4),pp. 473-
497, 2001.

R. Grimm, T. Andeson, B. Bershad, and D. Wetherdl. A System Architecture for Pervasive
Computing. In Proceedings of the 9th ACM SGOPS European Workshop, pp. 177-182, September
2000.

R. Grimm, J. Davis, B. Hendrickson, E. Lemar, A. MacBeth, S. Swanson, T. Anderson, B. Bershad, G.
Baridlo, S. Gribble and D. Wetherdl. Systems Directions for Pervasve Computing In Proceedings of
the 8th Workshop on Hot Topicsin Operating Systems, pp. 128-132, May 2001.

R. Grimm, J Davis, E. Lema, A. MacBeth, S. Swanson, S. Gribble, T. Anderson, B. Bershad, G.
Borridlo, and D. Wetherdl. Programming for Pervasive Computing Environments. Technical Report
UW-CSE 01-06-01, Universty of Washington, Depatment of Computer Science and Engineering, June
2001.

T. Gross, P. Steenkiste and J Subhlok. Adaptive Digtributed Applications

35

36

37

38

39

40

41

42

43

45

46

47

48

49

50

on Heterogeneous Networks. In Proceedings of the 8th Heterogeneous Computing Workshop, pp.209-
218, April 1999.

R. Han, P. Bhagwat, R. LaMare, T. Mummert, V. Perret and J Rubas. Dynamic Adaptation in an
Imege Transcoding Proxy for Mobile Web Browsing. In IEEE Personal Communication, vol. 5(6), pp.
8-17,1998.

A. Hater, A. Hopper, P. Steggless A. Ward and P. Webster. The Anatomy of a Context-Aware
Application. In Proceedings of the 5" ACM/IEEE Internatioral Conference on Mobile Computing and
Networking (MOBICOM ' 99) pp. 59-68, August 1999.

W. R. Heinsdman, J Kulik and H. Baakrishnan. Adaptive Protocols for Information Dissemination in
Wirdess Sensor Networks. In Proceedings of the 5" ACM/EEE Inernational Conference on Mohile
Computing and Networking(MOBICOM ' 99) pp. 174-185, August 1999.

G. D. Hdland, N. H. Vadya, and P. Bahl. A rateadaptive MAC protocol for multi-Hop wireless
networks. In Procesdings of the 7" ACM/IEEE International Conference on Mobile Computing and
Networking (MOBICOM ’01) pp. 236-251, July 2001.

HP Web Sarvices Patform.
http:/mww.hpmiddleware.convSal sapi.dll/SaServletEngine.class/products/hp_web _services/default,jsp

A. C. Huang, B. C. Ling and S. Ponnekanti. Pervasve Computing: What is it Good for? In Proceedings
of the ACM International Workshop on Data Engineering for Wirdess and Mobile Access, pp. 84-91,
August 1999.

Image Processing and Andlysisin Java. http:/rsh.info.nih.gov/ij/

IP Routing for WirdessMobile Hogts. http:/Mmww.ietf.org/html.charters/mobileip-charter.html
J-consortium JEFF. http://mww.j-consortium.org/jeffwg/index.shtm

JavarLinux. http:/Amww.blackdown.org/

JNI Network Technology. http:/Awwws.sun.com/softwarefjini/

D. B. Johnson and D. A. Madtz. Dynamic Source Routing in Ad Hoc Wireess Networks. In Mobile
Computing, ed. T. Imielinski and H. Korth, Kluwer Academic Publishers, 1996.

V. Kanodia, C. Li, A. Sabharwd, B. Sadeghi, and E. W. Knightly. Distributed Multi-Hop Scheduling
and Medium Access with Delay and Throughput Constraints. In Proceedings of the 7" ACM/IEEE
International Conference on Mobile Computing and Networking (MOBICOM '01) pp. 200-209, July
2001.

F. Kon, R. H. Campbdl, M. D. Mickunas, K. Nahrstedt and F. J. Bdlesteros. 2K: A Didtributed
Opeaing Sysem for Dynamic Heterogeneous Environments. In Proceedings of the Sth I|EEE
International Symposum on High Performance Disributed Computing (HPDC00), pp. 201-210,
August 2000.

F. Kon and T. Yamane Dynamic Resource Management and Automatic Configuration of Didtributed
Component Systems. In Proceedings of the 6" USENIX Conference on Object-Oriented Technologies
and Systems (COOTS2001), pp. 15-30, February 2001.

J. Kramer and J Magee Andysng Dynamic Change in Software Architecturess A case dudy. In
Proceedings of the 4th International Conference on Configurable Didributed Sygtems, pp. 91-100,
1998.

R. Kravets and P. Krishnan. Application-driven Power Management for Mobile Communication. In
Wireless Networks (WINET), vol.6(4), pp. 236-277, 2000.

51

52

53

55

56

57

58

59

60

61

62

63

65

66

67

68

69

70

71

T. Kunz and J. P. Black. An Architecture for Adaptive Mobile Applications. In Poceedings of the 11th
International Conference on Wireless Communications (Wireless'99) pp. 27-38, July 1999.

W. M. Kwan. A Distributed Proxy Systemfor Functionality Adaptation in Pervasive
Computing Environments. Magter’'s Thesis, Department of Computer Science and Information Systems,
The Universty of Hong Kong, August 2002.

YW. Lee K. S Leung, and M. Satyanarayanan. Operation Shipping for Mobile File Systems. In the
Proceadings of the 1999 USENIX Annual Technical Conference, June 1999.

Q. Li, J Adam, and D. Rus Online Power-Aware Routing in Wirdess Ad-hoc Networks. In
Proceedings of the 7" ACMIEEE International Conference on Mobile Computing and
Networking(MOBICOM '01) pp. 97-107, July 2001.

J Li, J Jannotti, D. S. J De Couto, D. R. Karger and R. Morris. A Scdable Location Service for
Geographic Ad Hoc Routing. In Proceedings of the 6" ACM/IEEE International Conference on Mobile
Computing and Networking (MOBICOM ' 00), pp. 120-130, August 2000.

Q. Li and D. Rus Sending Messages to Mobile Users in Disconnected Ad-hoc Wirdess Networks. In
Procesdings of the 6" ACM/EEE International Conference on Mobile Computing and Networking
(MOBICOM ’00) pp. 44-55, August 2000.

R. Litiu and A. Prakash. DACIA: A Mohile Component Framework for Building Adaptive Distributed
Applications. In the Operating Systems Review, vol35(2), 31-42, April 2001

Microsoft Developer’s Network, http://msdn.microsoft.com

Micorsoft .NET. http://www.microsoft.com/net/

Napster. http://www.napster.com

Net Assemblies and Manifest. http://www.dotnetextreme.com/art icles'assemblies.asp

B. Noble and M. Satyanarayanan. Experience with Adaptive Mobile Applications in Odyssey. In
Mobile Networks and Applications (MONET), vol. 4(4), pp. 245-254, 1999.

Object Management Group. http://www.omg.org/

OMG CORBA. http:/Amww.corba.org/

Oracle 9i Dynamic Services, http://otn.oracle.com/tech/webservices/content.html

Pervasive Computing. http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci759337,00.html

P. Alla and K. G. Shin. Red-Time Dynamic Voltage Scding for Low-Power Embedded Operating

Systems. In Proceedings of the 18th ACM Symposum on Operating Sysem Principles, pp. 89-102,
October 2001.

F. Plasl, D. Bdek, R. Janecek. SOFA/DCUP: Architecture for Component Trading and Dynamic
Updating. In Proceedings of the International Conference on Configurable Didributed Sygtems
(ICCDS98), May 1998.

B. Raman, S. Agawd, Y. Chen, M. Caesar, W. Cui, P. Johansson, K. La, T. Lavian, S. Machirgu, Z.
M. Mao, G. Porter, T. Roscoe, M. Seshadri, J. Shih, K. Sklower, L. Subramanian, T. Suzuki, S. Zhuang,
A. D. Joseph, R. H. Katz and |. Stoica The SAHARA Modd for Service Composition Across Multiple
Providers. In Proceedings of the International Conference on Pervasive Computing, August 2002

R. Rock-Evans. DCOM Explained, Digital Press, 1998.

A. Rofall and Y. Shohoud. Mastering COM and COM+. Sybex, 2000.

72

73

74

75

76

7

78

79

80

81

82

83

85

86

87

88

89

90

91

E. Roman. Madering Enterprise JavaBeans and the Javea 2 Platform, Enterprise Edition. Wiley
Computer Publishing, 1999.

E. M. Royer and C.K. Toh. A Review of Current Routing Protocols for Ad-Hoc Mobile Wirdess
Networks. In1EEE Personal Communications Magazing pp. 46-55, April 1999.

T. Schiegpek. A Comparison of Component Technologies. In Saminar on Component-Based Software
Deve opment. Germany, 2000.

S K. Srivasava and S. M. Whesater. Architecturd Support for Dynamic Reconfiguration of Large
Scde Didributed Applications. In Proceedings of the 4th International Conference on Configurable
Distributed Systems (CDS98), May 1998.

J Siegel. CORBA 3— Fundamentalsand Programming, 2™ Edition. OMG Press, 2000.

T. Smunic, L. Benini, P. W. Glynn and G. D. Michdi. Dynamic Power Management for Portable
Systems. In Proceedings of the 6" ACM/IEEE International Conference on Mobile Computing and
Networking (MOBICOM ' 00), pp. 11-19, August 2000.

P. Sridharan. JavaBeans —Developer’s Resource. Prentice Hall, 1997.

|. Stoica, R. Morris, D. Karger, M. F. Kaashoek and H.Badakrishnan. Chord: A scdable pear-to-peer
lookup service for internet gpplications. In Proceadings of the ACM Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication (SGCOMM 2001), pp.149-
160, August 2001.

Sun Open Net Environment, http://wwws.sun.com/software/sunone/
SyncML, http:/Ammww.syncml.org/
C. Szyperski. Component Software— Beyond Object-Oriented Programming, Addison-Wed ey, 1997.

C. Szypaski. Components and Objects Together. In Software Development Online.
htt p://mww.sdmagazine.com, May 1999.

N. Vaidya, P. Bahl and S. Gupta Didributed Fair Scheduling in a Wirdess LAN. In Proceadings of the
6" ACM/IEEE International Conference on Mobile Computing and Networking (MOBICOM '00), pp.
167-178, August 2000.

Visua Studio .Net Training Tour, DOTNET, 2001

WebSphere Application Server. hitp:/imww-3.ibm.com/software/webservers/appserv/

The Xerox PARCTab, http://www.ubiq.com/parctaby/

Y. Xu, J Hedemann, and D. Estrin. Geography -infformed energy conservation for ad hoc routing. In
Proceedings of the 7" ACM/EEE International Conference on Mohile Computing and Networking
(MOBICOM ' 01) pp. 70-84, July 2001.

S Yau and F. Kaim. Component Customization for Object-Oriented Didributed Red-time Software
Devdopment. In Proceedings of 3rd IEEE International Symposum on Object-oriented Real-time
Distributed Computing pp. 156-163, March 2000.

A. B. Zadavky and Tari. Mobile Computing: Overview and Current Status. In Audtralian Computer
Journal, vol.30(2), pp. 42-52, 1998.

B. Zend and D. Duchamp. A Generd Purpose Proxy Filtering Mechanism Applied to the Mohile
Environment. In Proceedings of the 3" ACM/IEEE International Conference on Mobile Computing and
Networking (MOBICOM '97), pp. 248 259, September 1997.

