

A COMPONENT-BASED SOFTWARE SYSTEM WITH
FUNCTIONALITY ADAPTATION FOR MOBILE

COMPUTING

BELARAMANI NALINI MOTI

M. PHIL. THESIS

THE UNIVERSITY OF HONG KONG
2002

A COMPONENT-BASED SOFTWARE SYSTEM WITH

FUNCTIONALITY ADAPTATION FOR MOBILE
COMPUTING

by

Belaramani Nalini Moti

B.Eng. H.K.

A thesis submitted in partial fulfillment of the requirements for

the Degree of Master of Philosophy

at The University of Hong Kong.

August 2002

Abstract of thesis entitled

A COMPONENT-BASED SOFTWARE SYSTEM WITH
FUNCTIONALITY ADAPTATION FOR MOBILE COMPUTING

Submitted by

Belaramani Nalini Moti

for the degree of Master of Philosophy

at The University of Hong Kong
in August 2002

All things are affected by change. This is especially true for mobile computing environments.

Everything, from devices used, resources available, network bandwidths to user contexts, can

change drastically at run-time. It therefore becomes imperative for software systems and

applications to be able to adapt to these changes in order to provide a suitable and relatively

stable working environment for users.

Various techniques of adaptation have been researched, for instance changing the quality of

data accessed, or changing routing information dynamically. These each addresses a certain

aspect of change affecting the computing environment. However, dynamically changing how

an application carries out its functionality – functionality adaptation – has not been

sufficiently explored in the context of mobile computing. Techniques do exist, however, with

limited flexibility and adaptive capability.

My work is motivated by the desire to devise a flexible and intuitive functionality adaptation

technique, which can adapt to many different types of change affecting a mobile computing

environment. The basis of this dissertation is dynamic component composition. Software

and applications are made up of components which are assembled at run-time as they are

required. There may be several components carrying out the same task. Which component is

used for that particular task depends on the run-time execution environment. Under different

run-time conditions, different components are used. Each of these components may have

different run-time characteristics and adapt the execution of the task at hand, thereby

achieving functionality adaptation. A new component model, the facet model, has been

designed in order to realize the above technique.

The fundamental philosophy of the facet model is the separation of functionality from data

and user interface (UI). Applications can be broken up into facets along the lines of

functionalities. Every facet provides a certain functionality. There may be more than one

facet achieving the same functionality. At run-time, the appropriate facet is brought in and

executed. This enables applications to be linked by functionalities, rather than by exact

components. Functionality adaptation, in this approach, is achieved by choosing the

appropriate component from several components with the same functionality. The adaptation

mechanism is, in fact, transparent to the programmer.

This thesis classifies into categories the different types of adaptabilities that mobile systems

exhibit, and the different types of techniques employed to achieve them. It defines

functionality adaptation and argues that dynamic component composition is a flexible

mechanism to achieve it. Finally, it looks into the details of the facet component model – a

component model especially designed for dynamic component composition in the context of

mobile computing – and illustrates its feasibility and applicability through the implementation

of the Sparkle software system.

To Kiran, Mom & Dad

for their unfaltering support.

 - i -

Declaration

I declare that this thesis represents my own work, except where due acknowledgement is

made, and that it has not been previously included in a thesis, dissertation or report submitted

to this University or to any other institution for a degree, diploma or other qualifications.

Signed .

 Belaramani Nalini Moti

 - ii -

Acknowledgements

I must thank, first and foremost, my supervisor Dr. Cho-Li Wang, without whose guidance

and patience, this dissertation would not be possible. His enthusiasm was one of my main

motivations for pursuing this dissertation. I am also grateful to my other supervisor, Dr.

Francis Lau, who at various points of my research enabled me to step back and re-evaluate

where I was heading.

I must thank my project mates, Chow Yuk and Vivien Kwan. Working with them, made

research fun. Their advice in all the discussions we had has played an important role for the

realization of this thesis.

Research would have been very daunting if it not were for my officemates, Cathy Luo, Fang

Wei-Jian, Felix Cheung, Reynold Cheng, Zhuo Ling, and Dave Towey, who livened things up

with their chatter, wit, and entertaining tales.

I must thank the technical staff and the administrative staff of the Department of Computer

Science and Information Systems, who were extremely helpful and made sure everything

went smoothly.

I must say, I have been blessed with lovely friends. I really appreciate Vivian Mak’s and

Henry Cho’s heart-felt concern for my well being. Every meeting with them is always filled

with laughter at top-volume. I must thank Ah Lam for always being there whenever I have

had any problems, from installing Linux to deciding where to go for hiking.

I thank Manoj Mahboobani for actually helping me proof read my initial draft without having

any idea about what was going on and Baggy Sartape for listening to my useless chatter,

showing me the lighter side of things and helping me conquer bugs with a laugh.

I am deeply indebted to my closest friends and my pillars of support, Sunita Budhrani and

Sabrina Kriplani. Life has a more entertaining and “lively” dimension with them around.

 - iii -

The best thing about them is that they go through the torture of standing my whims and fusses

every day without saying a word, such as being forced to proof read my whole dissertation.

My sister, Kiran, is where my strength lies. She has been beside me through thick and thin,

heard my endless chatter about computers at wee hours in the night, pretending to understand

every single bit of it. She has made me laugh and made me mad. Talking to her just makes all

my frustrations disappear. I don’t think I would be the person I am without her.

And, of course, I thank my parents for being there for me, giving me all the comforts I need,

and showering me with their love and care.

Finally, I thank the Lord Almighty, by whose grace I am where I am now.

 - iv -

Table of Contents

Declaration i

Acknowledgements ii

Table of Contents iv

List of Figures viii

List of Tables ix

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 MOBILE COMPUTING & ADAPTATION 5

 2.1 Mobile Computing 6

 2.1.1 The Emerging Trend 6

 2.1.2 What is Mobile Computing? 6

 2.1.3 New Environment, New Features 7

 2.1.4 Infrastructural Requirements 9

 2.2 The Need for Functionality Adaptation 12

 2.2.1 Characterized by Variation and Change 12

 2.2.2 Adaptation and Adaptability 13

 2.2.3 Functionality Adaptation 18

 2.3 Summary 21

CHAPTER 3 COMPONENT-BASED TECHNOLOGY 23

 3.1 What is a component? 23

 3.2 Component-based development 25

 3.3 Current Component Technologies 26

 3.3.1 Microsoft's Component Object Model (COM) 27

 3.3.2 OMG's Common Object Request Broker Architecture (CORBA) 28

 - v -

 3.3.3 Sun's JavaBeans 29

 3.3.4 Sun's Enterprise JavaBeans 30

 3.3.5 .NET Assemblies 31

 3.3.6 General Discussion 32

 3.4 Summary 34

CHAPTER 4 THE SPARKLE MOBILE COMPUTING ENVIRONMENT 35

 4.1 Current Software Distribution Approach 35

 4.2 Dynamic Component Composition 37

 4.3 The Sparkle Mobile Computing Environment 39

 4.3.1 Overview 40

 4.3.2 Interaction Scenario 41

 4.3.3 Functionality Adaptation 41

 4.4 Facet Model 43

 4.4.1 Functionality 44

 4.4.2 Facets 44

 4.4.3 Facet Requests 46

 4.4.4 Facet Dependencies 47

 4.4.5 Containers 48

 4.4.6 Comparison Among the Component Models 50

 4.5 Related Work 52

 4.6 Summary 54

CHAPTER 5 THE SPARKLE CLIENT SYSTEM 57

 5.1 Client System Overview 57

 5.2 Client System Entities 62

 5.2.1 Central Manager 62

 5.2.2 Discovery Manager 63

 5.2.3 Network Handler 64

 5.2.4 Facet Loader 65

 5.2.5 Facet Cache 66

 5.2.6 Lightweight Mobile Code System 67

 5.2.7 Resource Manager 68

 5.3 Discarding a facet 69

 - vi -

 5.4 Discussion 71

 5.5 Summary 72

CHAPTER 6 PROGRAMMING FOR THE FACET MODEL 75

 6.1 Facet-based Programming 75

 6.1.1 Facets 76

 6.1.1.1 Shadow 76

 6.1.1.2 Code Segment 77

 6.1.1.3 Dynamic Resource Requirement 80

 6.1.1.4 Packaging the facet 82

 6.1.2 Facet Requests and Invocation 82

 6.1.3 Containers 84

 6.2 Object-oriented Programming and Facet-Based programming 87

 6.2.1 Object-Oriented vs. Facet-Based Programming 87

 6.2.2 Developing a Facet-Based program 88

 6.3 Summary 91

CHAPTER 7 TESTING AND EVALUATION 93

 7.1 Motivation 93

 7.2 Testbed 94

 7.3 Experiment 1 - Timing Analysis 95

 7.4 Experiment 2 - Performance analysis 97

 7.5 Experiment 3 - Image Processing Application 101

 7.6 Evaluation 104

 7.7 Summary 105

CHAPTER 8 OVERALL DISCUSSION 107

 8.1 Web-Services vs Facet Model 108

 8.2 Transparency of Adaptation 110

 8.3 The Facet Model and Adaptability 112

 8.4 Context Awareness 113

 8.5 Deficiencies of the Facet Model 114

 8.6 Applicability of the Facet Model 115

 - vii -

 8.7 Security Issue 116

 8.8 Sparkle Architecture 117

 8.9 Summary 118

CHAPTER 9 CONCLUSION 121

 9.1 Summary and Contributions 121

 9.2 Future Work 123

BIBLIOGRAPHY 125

 - viii -

List of Figures

4.1 Overview of the Sparkle Architecture 40

4.2 Different Execution Trees of Facet x 48

4.3 Structure of the Container 49

5.1 Architectural Overview of the Client System 59

5.2 Actions Carried Out by the Central Manager 63

5.3 Interface of the Network Handler 64

5.4 Sample SOAP Request Sent to the Proxy 64

5.5 Sample SOAP Response Received by the Client 65

5.6 The FacetLoader class 66

5.7 FacetCache Class 67

5.8 All Calls to FacetImplementation go through a Facet Object 69

5.9 Facet Class 71

6.1 Part of the Shadow Providing General Information of the Facet 76

6.2 Part of the Shadow Providing Resource Information of the Facet 77

6.3 Part of the Shadow Providing Dependency Information of the Facet 77

6.4 The FacetInterface Class 78

6.5 The FacetImplementation Class 78

6.6 Example of a GaussianBlur Facet Implementation 79

6.7 Specifying the Memory Usage by a Formula 81

6.8 Specifying the Dynamic Memory Usage by a Lookup Table 81

6.9 Contents of the Jar file of the Gaussian Blur Facet 82

6.10 Contents of the Manifest of the Jar File 82

6.11 Adding criteria to a FacetRequest 83

6.12 Invoking a Facet 83

6.13 The FacetContainer Class 84

 - ix -

6.14 Defining the Functionality of a Container 85

6.15 Invoking a Root Facet 85

6.16 Example of a UI linking to the Root Facet 86

6.17 Execution of the UI follows facet model 86

6.18 Accessing the Storage Area of the Container 87

7.1 Timing Breakdown of Requests for Facets of Different Sizes 96

7.2 Results of the Benchmark with Different Types of References and Sizes

 of Heap on the iPAQ

99

7.3 Results of the Benchmark with Different Types of References and Sizes

 of Heap on a PC

100

7.4 Effect of Caching on Performance 101

7.5 Facets of the Image Processing Application. (Gray ovals represent

 root acets)

101

7.6 Timing Analysis of Retrieving Various Facets from the Network 102

7.7 Comparison of Response Times for Facets locally retrieved and

 remotely acquired.

102

7.8 Screen Shots of the Image Processing Application 103

7.9 Applying Various Functionalities on an Image 103

List of Tables

4.1 Comparison of Different Component Models 51

6.1 Difference between OOP and FBP 88

7.1 Hardware Configuration used for Testing 95

 - 1 -

Chapter 1

Introduction

“Everything is in constant flux.” – Heraclitus (c.540-480 B.C)

Nothing could be more true than the fact that all things are flowing – everything is under

constant change. Even in the field of computing, we are witnessing great changes right before

our eyes. When it first began, computing was limited to huge machines operated by scientists

in research laboratories. At present, computing covers a lot more devices, such as PCs,

laptops, and are used by a lot more people, even by those who don’t have any technical

background.

With the millennium, there is an advent of a new computing environment. Computing is no

longer limited to a “computer” per se. You see more and more different types of devices, such

as personal digital assistants (PDA’s) and mobile phones, taking advantage of wireless

networks to connect to the Internet to provide some sort of services to the user.

The trend towards mobile computing should not be ignored. Like every other computing

paradigm, mobile computing has its features and limitations. However, what sets it apart

from the other paradigms is the amount of change it is affected by. Everything, from devices

used, to resources available, to network bandwidths, to user context, can change drastically at

run-time. From a computing environment’s perspective, we could say that things in mobile

computing flow more quickly and in more directions than traditional computing

environments.

It, therefore, becomes imperative for software systems and applications to be able to adapt to

changes, in order to provide a suitable and relatively stable working environment for users.

Various adaptation techniques have been previously explored – from lower-level techniques

of dynamically changing routing information, to changing fidelity (i.e. quality) of data.

However, dynamically changing how an application carries out its functionality, functionality

 - 2 -

adaptation, has not been sufficiently explored, in the context of mobile computing.

Techniques do exist; however, with limited flexibility and adaptive capability.

My work is motivated by the desire to devise a flexible and intuitive functionality adaptation

technique, which can adapt to a lot of different types of change affecting a mobile computing

environment. The focus of my work is dynamic component composition. The basic

philosophy is as follows: Software and applications are made up of components. The

components are assembled at run-time as they are required. Which components are used to

achieve a certain functionality depend on the current execution environment. Under different

run-time conditions, different components will be used, hence achieving functionality

adaptation. These components are brought, either from dedicated servers or from near-by

peers. They are then linked to the run-time system and executed. Once the components are

used, they are unlinked from the run-time system and thrown away, achieving memory

efficiency.

A prototype architecture – the Sparkle architecture, was built to demonstrate the feasibility

and applicability of the above proposed technique. A new component model – the facet

model, was designed from scratch with innate support for dynamic component composition.

The facet model is, in fact, of great significance since it is the means for applications to

achieve functionality adaptation.

The fundamental philosophy of the facet model is the separation of functionality from data

and user interface (UI). Applications can be seen as a means by which users perform tasks.

An application usually provides several functionalities which users can invoke to fulfill their

tasks. It is argued that functionality that an application provides changes more often than the

data implementation and data layout. In addition, the UI can be considered just as a means to

access functionality. Often, the UI changes more often than the essential functionality of an

application.

Facets are pure functional units. Applications can be broken up into facets along the lines of

functionalities. Every facet provides certain functionality. There may be more than one facet

which fulfills the same functionality. As mentioned earlier, at run-time, the appropriate facet

is brought in and executed. Hence, it can be seen that applications are linked by

functionalities, rather than by exact components. Functionality adaptation, in this approach,

is achieved by choosing the appropriate component among different ones which have the

same functionality. This choice is made by the underlying Sparkle system and the various

network entities. The adaptation mechanism is transparent to the programmer.

 - 3 -

The main advantage of having this transparency is that it makes it a lot easier to build

applications. Programming with support for adaptation for a huge variety of devices available

can become a burden for programmers. Moreover, applications only possess a local view of

the whole system. The resource manager has a global picture and thus is more suitable to do

resource allocation and adaptation. Providing programmers with transparency for important

system functions is not something new. Frameworks for Enterprise JavaBeans, CORBA and

.Net give programmers transparency for persistence, transaction, etc. Transparency for

adaptation can be seen as the next step in the same direction.

This thesis describes dynamic component composition and its use in achieving functionality

adaptation in the context of mobile environments. It is organized as follows.

Chapter 2 looks into the mobile computing paradigm. It discusses its features and

requirements. It also looks into the types of change affecting the environment, and the

adaptation techniques which have been employed in order to respond to these changes. The

main role of Chapter 2 is that it differentiates between adaptability and adaptation, and

categorizes different types of adaptability and adaptation techniques. It discusses

functionality adaptation in detail and points out the flaws of some of the current functionality

adaptation techniques.

The focus of Chapter 3 is components. It looks into component-based technology in general,

and looks into common current component models. It provides the background needed for

understanding components, and dynamic component composition.

Chapter 4 describes the approach we have adopted in the Sparkle Mobile Computing

Environment. It introduces the concept of dynamic component composition. It compares

dynamic component composition with the traditional monolithic approach of distributing

software and demonstrates how dynamic component composition is more suitable in a mobile

computing environment and for functionality adaptation. This chapter also describes the

overall architecture of the Sparkle system and the facet model – the component model we

have devised for dynamic component composition. It describes the basic motivation and

design philosophy of the facet model and finally compares the facet model with the other

component technologies.

Chapter 5 describes the Sparkle client system which was built to support dynamic

composition of facets. It looks into the constituent entities of the client system and how they

have been realized in implementation.

 - 4 -

Chapter 6 describes facets in greater detail. It provides a programmer’s view of facet-based

development. It describes how facets and their related abstractions should be implemented.

Most importantly, it highlights the difference between facet-based development and object-

oriented development.

Chapter 7 reports the experiments carried out on the Sparkle system in order to demonstrate

the feasibility of the facet model. The experiments aimed to demonstrate the ability of the

client system to support dynamic facet composition, to establish factors which affect the

performance of the client and lastly, to show the feasibility of building a real-world

application built by facets.

Chapter 8 takes a step back and looks at the overall picture. It addresses issues such as web

services and the transparency of the facet model. It also looks into the deficiencies of the facet

model and the Sparkle architecture.

Chapter 9 concludes the whole dissertation and points out avenues for future work.

In short, this dissertation makes the following contributions to research in field of Computer

Science:

§ It provides a classification of the different types of adaptabilities mobile systems and

applications exhibit and also another of the adaptation techniques employed.

§ It introduces functionality adaptation and its importance to mobile computing.

§ It proposes dynamic component composition as a means of achieving functionality

adaptation.

§ Most importantly, it defines the facet component model, designed for dynamic

component composition.

§ It illustrates the facet model’s feasibility and applicability in a mobile environment

via the Sparkle architecture.

 - 5 -

Chapter 2

Mobile Computing & Adaptation

There is an indisputable trend today towards mobile computing. Fuelled by the plethora of

small, light-weight devices and the advances in network connectivity, especially in the

wireless domain, one can easily predict that this is just the beginning of a whole new model of

computing. This new model brings with itself, new features and places new requirements on

software systems and infrastructures. What makes computing in the new model so difficult is

its inherent and incessant change. The purpose of this chapter is two-fold. It aims to provide

a brief introduction to the field of mobile computing and it explores the various dimensions of

change which affect mobile environments.

This chapter is divided into two sections. The first section provides a brief overview of the

mobile computing arena. It is not meant to be a comprehensive discussion of all the issues

involved but it does provide an insight to the field. It first introduces mobile computing

including its definition. It then discusses the typical features of the mobile computing

environment and the requirements these features put on the infrastructure for support.

The second section starts off by exploring the kinds of change which affect mobile

environments. It then differentiates between adaptation and adaptability, providing

definitions, classifications and examples of both. Finally, it concludes that functionality

adaptation in the context of mobile computing is not very well researched and that there exists

a need for a system which has flexible and comprehensive support for it.

 - 6 -

2.1 MOBILE COMPUTING

2.1.1 The Emerging Trend

 Computing is no longer limited to a “computer” per se. Increasingly, many different types of

devices are taking advantage of wireless networks and the Internet to provide services to the

user. It has become commonplace to see cellular phones which allow web browsing and

email reception with wireless connectivity, personal digital assistants (PDAs) with scaled-

down versions of applications, digital video cameras with Bluetooth connectivity. Public

places such as coffee shops and corridors of major commercial buildings have set up wireless

networks for patrons to use.

All this indicates the advent of the new model of computing. With the increasing availability

of small, light-weight and portable devices together with the advances in wireless technology,

users are demanding mobile devices to provide them with more convenience and

functionality. Users want to be able to access information and carry out tasks as they are

moving from place to place regardless of the device they are using, may it be their PDAs,

mobile phones, or even perhaps their watches.

Not only that, applications should be able to take advantage of facilities and information in

the surrounding environment to provide relevant services. For example, a user may be

working on a document on his PDA in a coffee shop. He should be able to use a printer

available in the coffee shop directly, without having to go through the setup procedures. The

mobile computing infrastructure should enable the discovery of nearby devices, services, etc.,

and provide links to them. In short, users want a seamless computing environment in which

their device or their location is not a major concern when compared to the task they want to

achieve.

2.1.2 What is Mobile Computing?

Mobile computing no doubt implies mobility. In this context, mobility can be seen in two

dimensions: One dimension is device mobility - a user carrying out his tasks on a device while

moving about, taking advantage of wireless connections. The other dimension is user

mobility – allowing users to move from one device to another and still being able to carry out

their tasks, access their information and continue where they left off. Device mobility, thus,

 - 7 -

implies change of spatial co-ordinates, whereas user mobility implies change of computing

device. At a software level, mobility can denote the movement of data and or the movement

of code. To a certain extent, data mobility and code mobility are some techniques which can

be employed to achieve user and device mobility.

What exactly, then, is mobile computing? Defining mobile computing is just as difficult as

defining traditional computing. With the plethora of devices, technologies and applications

employed, it is difficult to assign the definition of mobile computing to a single class of

devices or applications. Chlamtac and Redi [14] have defined a mobile computing device

simply as a “computing device which can communicate through a wireless channel”. Mobile

computing can be seen as the use of mobile devices and not-so-mobile devices, taking

advantage of wireless means, to create a seamless computing environment enabling access of

information, computation and co-operation.

Many times the term “mobile computing” is used in conjunction with “pervasive computing”

or “ubiquitous computing”. Pervasive (or ubiquitous) computing aims to create an

environment in which computing is so naturalized that people do not realize they are using

computers[66]. This is achieved by deploying a lot of smart devices in working and living

spaces that coordinate with one another in order to provide an intuitively personalized and

constantly available system to users. These devices are small, may be mobile or non-mobile

and embedded in gadgets such as appliances, cars, badges, etc., communicating through wired

or wireless means. No doubt, pervasive computing and mobile computing have a lot in

common. The difference lies in the focus of the two fields. Mobile computing has its focus

on providing mobility especially by wireless means. Pervasive computing aims to fill the

living environment with smart devices. Both fields complement each other to a certain extent.

As mobile devices become smaller, and as the use of wireless technologies become more

pervasive, the distinction between the two will become blurred.

2.1.3 New Environment, New Features

The mobile computing environment brings about new styles and scenarios. Users are moving

in, about and out of the network, using different devices at different times, carrying out tasks

or accessing information. The devices may be communicating with servers on the Internet or

communicating with one another – forming peer groups, sharing resources, or services. It is

evident that the mobile computing environment is very different from the traditional

networked environment.

 - 8 -

The essential features and demands, which set the mobile computing environment apart,

include:

q Device Heterogeneity

Instead of mainly PCs, computing is carried out on a wide range of devices, from laptops

to PDAs, from mobile phones to pagers. Many of these devices are low-cost, small size,

low weight devices. Each of them has very varied capabilities including display size,

memory size, processing power, etc.

q Device Resource Limitations

Miniaturization of devices is one of the propelling factors for the trend towards mobile

computing. The compactness of the devices makes them limited in terms of memory,

processing capabilities and, especially, power. No doubt, advances in technology will

increase the amount of resources on a device. However, compared with a desktop PC,

these resources will always be limited.

q Network Bandwidth Limitations and Instability

Wireless networking is the foundation of mobile computing. Without wireless networks,

mobility cannot really be achieved. At present, the wireless technologies include

Bluetooth, General Packet Radio Service (GPRS), IEEE 802.11a, IEEE 802.11b, IEEE

802.11g and several others under development. The bandwidth available for wireless

network is, no doubt, limited when compared to wired networks. At present, the largest

possible bandwidth (54Mbps) is provided by IEEE 802.11a. However, many devices

could be using 1-2Mbps of Bluetooth connections, or a 114 kbps GPRS connection.

Also, the frequency spectrum in which communication is carried out is shared. This

could lead to interference in communication. In addition, connectivity is affected by

network coverage. Some areas may have very weak coverage or no coverage at all. In

short, we have a limited bandwidth network affected by interference, random range of

coverage and network failures, leading to a very unstable network environment.

q High Mobility

Users are provided with unrestricted mobility and connectivity, encompassing both user

and device mobility. They can carry out their task while moving from one location to the

other, as well as switching from one device to another. For example, a user is carrying

out a video conference on his way home. He may be using the digital display in his car for

the conference. While walking from his car to his home, he switches the conference to his

PDA. Once he is at home, in his room, he continues the video conference on his personal

 - 9 -

computer. This simple scenario exemplifies the highly mobile characteristic of the

computing environment.

q Context Awareness

Applications are able to take advantage of the context of the user, including location, the

device being used, time, preferences and nearby services, to provide customized and

relevant services to the user. Let’s consider the two examples discussed earlier. In the

coffee shop example, the application is able to discover nearby services, and take

advantage of them, such as the printing service offered by printer in the coffee shop,

enabling the user to print his document. Applications are able to adapt to the input and

output capabilities of the device being used. In the video conferencing scenario, the

output adapts from the digital display of the car, to perhaps a monochrome display of the

PDA, and finally to the full-fledged color display of the PC.

q Proximity Interactions

Computing is not longer carried out in an isolated manner in which the only interactions

are those with servers. In fact, a major part of the interactions will be carried out with

devices which are in close vicinity – forming peer to peer networks for co-operation,

accessing services, sharing resources and information. Continuing with the video

conferencing scenario, when the user walks into his room with his PDA, the PDA

automatically detects and joins in the peer-to-peer network already existing in the room.

It discovers the PC in the network, and negotiates for the transfer of the application. It

would need to share information in order to ensure a smooth transition of the application.

2.1.4 Infrastructural Requirements

Current computing infrastructure and architectural models are inadequate to provide for the

new features of mobile computing. It calls for a change in software systems, network systems,

in applications and, in facet, in the whole architecture. Software systems rely on the

underlying architecture for support. Therefore it must provide certain basic services in order

to realize a truly seamless mobile environment. Some of these requirements are discussed

below.

q Location Tracking

Users are constantly moving. The system must be able to determine the location of users.

Some systems utilize special hardware to detect the location, such as an infrared

 - 10 -

transceiver system [87], while others may use a commercially available Global

Positioning System (GPS), which works only outdoors. Castro et al. [10] propose a

method to infer the location of a client in an indoor wireless LAN environment from

signal quality measures. Once the location of a device is determined, this information is

usually stored on location servers present in the network where it can be queried.

q Data Delivery and Synchronization

Users access their data from various locations and devices. The changes they make on

the data from one device must be reflected when they change their device or location. In

other words, they must be presented with a consistent view of their data. Work is being

carried out on distributed information storage and retrieval systems, such as, Chord [79]

and Freenet [16]. These utilize mapping algorithms - given an identifier, they will

determine the node responsible for storing that identifier’s value, which could be a data

value or a document. Coda [74], a file system for mobile clients, supports disconnected

operations and utilizes operations-based update propagation to save network traffic. In

addtion, frequently accessed data is often cached on the device. Disconnection and client

mobility make maintaining cache consistency a problem [7]. The industry also recognizes

the need for data consistency and have come up with SyncML [81], which is an open

industry standard based on XML, for universal synchronization of remote data and

personal information across multiple networks, platforms and devices.

q Mobile Networking

Mobile hosts will, no doubt, be using wireless channels to connect to the Internet. The

network topology can be constantly changing as the device moves from cell to cell.

Moreover, the radio frequency spectrum, which is used for communication, will probably

be shared with the other devices in the vicinity. A lot of research is being carried out to

deal with the network access issues of mobile computing which includes research in

protocols, packet scheduling, channel allocation, admission control and bandwidth

management [4, 37, 46, 84]. For example, MobileIP [41] maintains addressing of mobile

nodes while maintaining compatibility with existing Internet protocols

q Ad-hoc Networking

Devices communicate with those in close proximity, usually by forming ad-hoc networks

among each other. An ad-hoc network is a collection of wireless mobile hosts, forming a

temporary network without the aid of any established infrastructure or centralized

administration [45]. In such an environment, due to range limits or other factors, one

device may need to seek the help of another in forwarding a packet to its destination.

 - 11 -

Royer and Toh [73] provide a review of current routing algorithms for ad-hoc networking

in wireless environments. The various algorithms can be classified under two categories:

table-driven and source-initiated algorithms. Table-driven algorithms require each node

to maintain one or more tables storing routing information, thereby always maintaining a

consistent network view. Source-initiated routing algorithms create routes only when

desired by the source node, i.e. they probe a route only when a message needs to be sent.

Most of the time, devices rely on information from neighboring hosts, but some systems

also use geographical positions to help routing decisions [55]. However, geographic

position based routing schemes have very limited use in indoor networks with closely

located nodes.

q Context Determination and Dissemination

Mobile applications, many times, depend on the context in which they are running. They

rely on, (1) locally available data, such as memory, the available bandwidth, and also on

(2) information regarding the surrounding environment such as printing services available

nearby. Determination of some context information needs infrastructural support, such as

locating nearby objects and services and the end-to-end bandwidth available. Huang et

al. [39] argue that information is, many times, not useful at the time and place it is

generated. Rather, it must be re-presented later where it can be acted upon. In that sense,

the infrastructure will have a major role in the timely and relevant delivery of context

information. Research on context determination and dissemination is still in its early

stages [13]. Most research focus on location determination, network bandwidth

availability, nearby service discovery and device resource usage [13, 35]. As the field

becomes more mature, we shall see determination of a lot more contextual parameters,

and a more integrated infrastructural support for context delivery.

q Support for Adaptation

As one can see from above, what makes mobile computing difficult is the inherent

characteristic of variation and incessant change. Everything - device resources, network

conditions and contexts, are constantly changing. Any application, middleware or system

targeted to such an environment needs to be able to detect and dynamically adapt to these

changes. Applications will rely on infrastructure for adaptation. In some cases, the

infrastructure itself needs to adapt some of its components, for example routing

mechanisms, transmission protocols, etc. [37, 45]. More on this will be discussed in the

next section.

 - 12 -

2.2 THE NEED FOR FUNCTIONALITY ADAPTATION

2.2.1 Characterized by Variation and Change

The mobile computing environment is characterized by variation. It is marked by the use of a

wide range of devices and technologies. There is no universal device, network characteristic

or configuration. In addition to this variation, environments are constantly afflicted by change

– a device may run out of power, or use a different device, or move to a location with lower

bandwidth. Thus, applications and systems targeted for such a dynamic environment should

cater for the incessant variation. They have to be able to detect run-time changes and adapt to

them appropriately.

Such variation and change can be broadly classified along the following axes:

q Device and Run-time Resources

There is a huge plethora of devices which can be used for mobile computing and that

range of devices will keep on widening. As mentioned in the previous sections, these

devices have different processing powers, memory sizes, display capabilities, input

devices, output devices, etc. Applications need to cater for this variation in device

configuration. More importantly, the amount of resources keeps changing at run-time,

such as available memory and energy. With the limited amount of resources these

devices have, any change would have a pronounced effect. Application and systems must

gracefully adapt to the change.

q Network Infrastructure

Devices connect to the network through various networking technologies - wireless

LANs, Bluetooth and GPRS, each with different bandwidths, access protocols, and error

rates. In addition, as mobile hosts move from one location to another, network

characteristics change. Bandwidths may change if the host moves into an area with low

network coverage. A device may also move into an area of whose network it has no prior

knowledge. It will, no doubt, have to learn at run-time.

q User Preferences and Environmental Factors

Not only do the device and network affect applications, they also need to take into

account user preferences and environmental considerations to provide appropriate,

 - 13 -

intuitive and customized services to the user. These considerations include time, location,

nearby devices, nearby people, etc.

Often, when reading literature on mobile computing, one comes across the terms “context”

and “context-awareness”. Any factor which affects an application’s behavior can be

considered as part of the context. Chen and Kotz [13] have divided contexts into 4 categories

§ Computing context, such as network connectivity, communication bandwidth, nearby

resources, etc.

§ User context, such as user profiles, location, social situation, etc.

§ Physical context, such as lightning, noise conditions, temperature, etc.

§ Time context, such as time of a day, week, month, season, etc.

In other words, mobile computing can be seen as being affected by a constant change in

context. Applications and systems need to adapt to contextual changes i.e. they need to be

context-aware. For the clarity of our discussion, in this chapter, we categorize these

contextual changes into four types

§ Device Resources. These include factors internal to the device, such as the working

memory available, the processing power, the energy, etc

§ Network Properties. These are changes in the network characteristics, such as the

network bandwidth, network type, protocol, etc.

§ Environmental Context. This includes factors in the surrounding environment, such

as location, entities available nearby, time, etc.

§ User Preferences. These are specific choices which the user has made to decide the

execution of a particular application.

2.2.2 Adaptation and Adaptability

Adaptation is fundamental to mobile computing. It is currently the focus of extensive

research. Some of the techniques being explored include data adaptation, energy-aware

adaptation and rate adaptation. The word adaptation is so widely used that it has come to

mean two different concepts, which are discussed below.

We want applications to be able to change at run-time, say, to adapt the amount of memory

available they use, the network bandwidth they take up, or maybe, when running out of

power, switching to low-power mode. They should be able to detect changes in the

 - 14 -

environment and respond to them appropriately. This is the “end result” we want applications

to achieve.

On the other hand, applications can employ various ways to respond to the change – “the

means”. By changing the quality of the data accessed, say, a poor quality image, both

network bandwidth and memory can be saved. In other words, you are adapting the data

quality, in order to achieve two “ends”.

There is a slight, but significant, difference between the two concepts: one is the end and one

is the means. Most literature use the term “adaptation” to mean both (i.e. using data quality

adaptation to achieve network adaptation and memory adaptation). However, for the sake of

clarity of the discussion, we differentiate between them.

§ Adaptability – the ability to change a run-time characteristic in response to a trigger.

It is the “end” we want to achieve. If a piece of software supports network

adaptability, that means that it can adapt its network behavior according to different

network environments.

§ Adaptation – the action taken to achieve adaptability by change of a certain property,

parameter or metric. It is the “means”. If an application changes the quality of the

data it accesses according to the network characteristic, it is employing data

adaptability.

Hence, adaptation is used to achieve adaptability. For the example above, we can say that we

use data adaptation to achieve memory and network adaptability.

Adaptive applications and systems have adaptability. They can change their run-time

characteristics in response to an external trigger or change. These run-time characteristics can

be considered in several dimensions which include:

§ Memory adaptability. The ability to adapt to the changes in run-time memory

available. Every device has different amounts of memory and processing power

available. An application should have the ability to provide the same functionality in

a resource-rich PC and in a resource-constrained PDA environment. Moreover, with

several applications running at the same time, it is possible that one application may

find itself suddenly out of memory. In that situation, it should gracefully adapt to

perhaps a more memory efficient mode.

 - 15 -

§ Energy adaptability. The ability of an application, or system, to adapt its energy

usage. Power is one of the most limited resources in a mobile environment.

Applications and systems should be able to run in a more energy efficient manner, in

situations of limited power supply.

§ Network adaptability. The ability of systems to change their network behaviors in

response to changes in the network infrastructure. They should be able to reduce their

bandwidth requirements, accept a greater degree of packet loss or be able to connect

to a new network environment as the need arises.

§ Device adaptability. The ability to adapt to device configurations. Users move from

one device to another. Applications will need to follow the users. The devices may

have different input and output capabilities. For example, a PDA may use a pen-based

input, whereas a laptop uses a keyboard. They may have different processing powers.

It involves more than just changing the device drivers. The presentation format, the

UI and perhaps the application logic also need to adapt to the new configuration.

Applications need to provide a seamless transition from one device to another.

§ Context adaptability. The ability to adapt to various external factors. This

encompasses everything else that can affect an application, including location, time,

user preference, presence of nearby entities, etc.

There are many techniques, both hardware and software, which are currently used to achieve

the various forms of adaptability. Many times, change in one metric can affect two or more

dimensions of adaptability. As seen from above, by being able to change the quality of data

accessed through the network, one can achieve both network and memory adaptability.

Adaptability embodies two mechanisms. One, to detect the changes in the factors of interest,

such as the network environment and the amount of resources, etc. Usually there is an entity,

such as a resource manager or a network manager, which detects the change. This entity can

be located in the mobile host, in the network, or even on servers. The second mechanism is to

respond appropriately to the change. A lot of factors come into play when deciding how to

respond, such as what metric to change and where to carry out the change. Often, you have to

take into account several conflicting criteria. For example, when sending data over a

network, using a higher bit rate may drain more power resources than sending the same piece

of data using a lower bit rate. Tradeoffs need to be made.

 - 16 -

Very often, some sort of adaptation is employed as a response to the change. Adaptation can

be seen as a means of achieving adaptability. According to our definition discussed above,

adaptation implies change of a certain metric or parameter. Adaptation changes a certain

parameter and the effect of that change leads to adaptability. We can roughly categorize

adaptation into five categories according to the metric or the factor changed.

q Data Adaptation

Mobile applications usually need to access data for information or for entertainment, such

as emails, stock quotes, web pages, multi-media, etc. Data adaptation involves changing

the data in some manner, such as changing the quality of the data accessed, transforming

data to a more appropriate form, accessing a different set of data altogether, etc. This is

the basis of many of the transcoding and content adaptation techniques. There are several

projects which use proxy-based data adaptation to change the quality, or fidelity, of the

data accessed, on the fly according to the client resource available, or according to the

network environment [24, 12, 34]. For example, in Odyssey [23], the server has several

pre-generated versions of the data with different fidelity levels, and the appropriate one is

chosen at run-time according to the resources, or even energy, available.

q Network Level Adaptation

This involves the change of network level parameters. This can be done in many ways,

for example, by using different protocols, adapting routing information, changing the rate

of transmission, network level QoS management, etc. There is a lot of research in this

area covering a wide spectrum of adaptation techniques, which lead to network

adaptability and even energy adaptability. A few examples include dynamically changing

data rates to match channel conditions [37], deploying filters to an intermediate proxy to

filter or delay all but the most essential data [91], using an adaptive communication

protocol for energy conservation [36], changing routing information according to location

of the client device [41] or even according to the energy available in the nodes [54].

q Energy Adaptation

This involves using techniques which change the amount of energy consumed, either by

turning the power off or moving to an less energy-consuming state. Many of techniques

are hardware related, such as dynamic voltage scaling of the CPU [67], adapting hard disk

spin policies, etc. Simunic et al [77] have devised a dynamic power management policy

which can be used on small devices, laptops and wireless LAN cards. Xu et al. [88],

 - 17 -

carry out power adaptation in ad-hoc wireless networks by turning off unnecessary nodes

without affect the routing capability.

q Migration Adaptation

This involves changing the location of execution, for example, by moving to another

machine with more resources. This is often used in the fields of distributed computing

and mobile agents, whereas in the field of mobile computing, it is still rare or under

development. Adaptive distributed applications and mobile agents migrate to nodes,

which fulfill the resource requirements, if they realize that the current node does not have

sufficient resources for their execution [18,33]. Migration adaptation can be advantageous

in a mobile environment, for example, migrating from a PDA to a nearby laptop in order

to speedup execution.

q Functionality Adaptation

This involves changing the way an application carries out its functionality. Applications

in a mobile environment can be seen as fulfilling certain tasks [5]. Functionality

adaptation implies carrying out the same task but in a different manner, either by using a

different mechanism, different algorithm, a different QoS characteristic, or by switching

to another execution mode, etc. It involves changing the execution of the task. For

example, if a device does not have sufficient computation power, an application can use a

smaller key for encryption. More details on functionality adaptation will be discussed in

Section 2.2.3.

There may be techniques used to achieve adaptability which do not fall into any of the above

categories. As time goes by and more techniques are discovered and employed, the

categorization has to be broadened and refined.

Notice that we have not included context adaptation as one of the adaptation techniques. As

mentioned earlier, adaptation implies change of a certain parameter. Hence, context

adaptation would mean that we change the external contexts in a certain way. Up to the

current moment, to the best of our knowledge, such a technique has not been applied.

Context adaptability, on the other hand, means responding to contextual changes.

 - 18 -

2.2.3 Functionality Adaptation

Functionality adaptation is probably the most versatile and the least explored of the five

adaptation categories. In a mobile environment, user interaction can be seen as users

performing certain tasks [5]. Thus, applications provide a means to carry out a group of tasks,

i.e. an application provides a set of functionalities which a user can execute to fulfill his task.

Functionality adaptation involves changing the way the task is carried out in order to respond

to the changes in the mobile execution environment or context.

The other adaptation techniques involve changing lower level factors, such as the network

transmission parameters, data quality or the power utilization. They do not really change

how the assigned task is executed. Functionality adaptation involves changing the execution

of the application. It is a software level adaptation technique and some of the ways it can be

carried out include:

§ using different sequence of actions or different algorithms,

§ using code enhanced for certain platforms,

§ changing the memory usage and processing time balance (i.e. using less memory but

more processing time to carry out a task), or

§ partitioning the task so that it is partially executed on a server rather than completely

locally.

Let’s consider a simple example of an email application. When checking mail, the application

downloads all the new messages, including the body and attachments if it is running in a

device which has sufficient resources, such as a laptop. However, if it is running on a

resource-limited, network-constrained device, such as a mobile phone, it downloads only the

headers of the messages - the sender and the subject fields. When the user wants to read a

message, only then does it download the body of the message. To a user, this difference in

the actions taken is transparent. The application achieves functionality adaptation by using

different sequences of actions to fulfill its task or, in other words, its functionality.

At a lower level, it can be said that functionality adaptation involves using different chunks of

code for execution under different environments. Mechanisms for achieving this include,

among others:

§ using different parts of the application code, i.e. different subroutines, or modules in

different scenarios. Which part of the code is used is decided by the application

itself, or by the underlying middleware.

 - 19 -

§ using completely different application code i.e. dynamically replacing a module or a

chunk by a more appropriate one. This requires that the software architecture and

runtime infrastructure support replacement.

§ delegating the execution of the code to some other entity (this could involve code

migration). There could be active delegation, i.e. the application code decides which

part to delegate and to whom. Or, it could involve passive delegation – the underlying

system decides what and where to delegate to.

Functionality adaptation is, in fact, a very powerful tool. If implemented appropriately, it can

be a comprehensive technique which has the potential for enhancing an application’s or a

system’s adaptability to a very wide range of factors, including network bandwidth, device

resource availability, and environmental context. For example, in a network-constrained

environment, it can delay the download of the body of an email until the message is actually

accessed. Depending on the device display capabilities and memory available, different codes

are used for viewing email.

Unfortunately, research in functionality adaptation in the context of mobile computing is

rather limited and the mechanisms used are rather restricted. In Odyssey [23, 62], for

example, the system notifies the application when there is a change in the resource of interest.

The application responds by accessing a different fidelity of data, which may need a different

decoding mechanism altogether. Functionality adaptation, in this case, involves adapting the

application so that it can process different levels of data fidelity. Data adaptation and

functionality adaptation go hand-in-hand in this case. You cannot change the data fidelity if

the targeted application does not have the appropriate code to process it.

Another example is the architecture proposed by Kunz and Black [51]. In a client-proxy-

server scenario, the application logic is dynamically split between the mobile client and the

proxy in order to adapt to the dynamic wireless environment. This is referred to as application

apportioning. Applications register certain information with the run-time system about when

to carry out partitioning, for example, execute a certain code on the proxy if the bandwidth is

smaller than a value. At the appropriate time, the application logic is moved by using object

migration mechanisms.

The main difficulty with the above approaches is that the adaptation policy is ingrained in the

application code. The programmer has to decide the adaptation policy at design time and

hence, it cannot be dynamically extended. This leads to three major drawbacks:

 - 20 -

q Burden on Application Programmer

The programmer has to decide when to adapt and how to adapt. He has to incorporate the

different versions of the same functionality into the application. Not only that, he has to

determine the adaptation policy at design time, i.e. when to use which version of the

functionality. This places a burden on the programmer, who has to design for all possible

scenarios.

q Bigger Application Size

Since all the different functionality versions are packed into the application, an adaptive

application has a bigger size when compared to a non-adaptive one. With memory being a

limited resource in a mobile device, such a feature goes against adaptive programs.

q Limited Adaptive Capability

The different adaptation versions are determined at design time. As mobile environments

evolve, incorporating new types of devices, technologies, etc, the adaptive nature of such

applications become outdated. The adaptation cannot be dynamically changed, or

extended. For every new range of devices or technologies introduced, the application may

have to be rewritten or reinstalled. This is not feasible in a fast-paced arena such as

mobile computing.

Functionality adaptation, no doubt, is essential and important in a mobile computing

environment. A mechanism for achieving functionality adaptation needs to be developed

which can overcome the above problems. Such a mechanism

§ should not increase the application size considerably,

§ it should be able to incorporate features of new technologies without having to go

through the trouble of rewriting or reinstalling the whole application and

§ it should reduce the burden on the application programmer.

You may notice a similarity between functionality adaptation and dynamically reconfigurable

software systems [48, 49, 75]. The difference lies in their purpose and targeted execution

environment. Functionality adaptation occurs in programs targeting the mobile computing

environment. “Reconfiguration” is carried out in response to changes in the run-time

environment or context. The main purpose for reconfiguration is adaptation. On the other

hand, configurable systems usually are long running server-side applications.

“Reconfiguration”, in this case, is carried out for software upgrading, that is, for software

extension. Methods for achieving functionality adaptation may be able to learn from some of

the techniques used in dynamic reconfiguration.

 - 21 -

2.3 SUMMARY

In this chapter, we see that mobile computing is an emerging trend. Mobile computing can

be seen as the use of mobile devices, taking advantage of wireless means, to create a seamless

computing environment, enabling access of information, computation and co-operation.

Mobile computing is different from pervasive computing, in the sense that it puts its focus on

mobility rather than on filling the living environment with smart devices.

What sets the mobile computing environment apart from other environments is its device

heterogeneity, device resource limitations, network limitations and instability, high mobility,

need for context-awareness, and the proliferation of proximity interactions. To realize the

ultimate mobile environment, infrastructural support for location tracking, data delivery and

synchronization, mobile networking, ad-hoc networking, context determination and

dissemination, and adaptation are needed.

The difficulty of mobile computing lies in its highly dynamic environment. Every aspect is

affected by change and variation, including resources, networks properties and context.

Systems and applications need to take into account these changes and respond to them

accordingly. In this chapter, we have differentiated between adaptation and adaptability.

§ Adaptability is the ability to change a runtime characteristic in response to a trigger.

It is the ability to detect a change in the external environment and respond to that

change.

§ Adaptation is the action taken to achieve adaptability by change of a certain property,

parameter or metric. The change of a single property often affects more than one run-

time characteristic.

We looked at several types of adaptability including resource, energy, network, device and

context adaptability. We also explored the different adaptation techniques currently

employed to achieve adaptability including data adaptation, network level adaptation, energy

adaptation, migration adaptation and functionality adaptation.

Out of the five adaptation techniques, functionality adaptation provides a comprehensive

mechanism which has the most impact on the adaptability of a software. However, current

research in functionality adaptation, in the context of mobile computing, is limited and is

lacking. The major drawback of some of these techniques is that they put a lot of burden on

 - 22 -

the programmer who has to decide the adaptation policy at design time and hence, cannot be

dynamically extended. There is a need of a functionality adaptation technique which can

overcome the drawbacks.

 - 23 -

Chapter 3

Component-Based Technology

Component-based software development has received interest from both the commercial and

academic sectors in recent years. Components allow the commoditization of software.

Software systems can be built by integrating already existing software components rather than

from scratch. From the development point of view, software components enable greater code

reuse, reduce development time, enhance maintainability and thus reduce development costs.

Often an analogy between software components and hardware components in integrated

circuits is brought up. Just as how a modem can be made by assembling different IC

components and wiring them together, similarly, software systems can be built by wiring

together different software components. Software components, hence, have become

commercial-off the shelf (COTS) products [9, 82].

This chapter provides a brief overview of current component-based technology. We first

define what a component is. Then we describe the stages involved in carrying out

component-based development. The rest of the chapter looks into current leading component

models including CORBA, JavaBeans, Enterprise JavaBeans and .Net Assemblies.

3.1 WHAT IS A COMPONENT?

Before we can continue our discussion, we must first define what a component exactly is. At

present there are many similar but no single definition of component. For example,

Szyperski provides the following definition of a component in his book [82].

 “A software component is a unit of composition with contractually specified

interfaces and explicit context dependencies only. A software component can be deployed

independently and is subject to composition by third parties.”

 - 24 -

Similary, D’Souza and Wills [21] define a component as follows.

 “A component is a coherent package of software that can be independently developed

and delivered as a unit, and that offers interfaces by which it can be connected, unchanged,

with other components to compose a larger system.”

Even though the definitions are different, they agree that a component has the following three

characteristics.

§ A component is independent. Independence does not mean that a component does not

depend on other components. It just implies that the dependencies are general enough

for several different providers to satisfy [6].

§ A component provides functionality via well-defined interfaces. Each component can

have multiple interfaces, each representing a service the component offers. These

interfaces are of contractual nature with well-specified input and outputs, so that the

services of the component can be used. They emphasize the black-box nature of a

component.

§ Components can be used for composition. This is the most important characteristic.

For components to be composable, they must come with clear specifications of what

they require and what they provide. They must specify what the deployment

environment will need to provide for the execution of the component, for example,

the required interfaces of other components i.e. the dependencies. They also must

specify a complete listing of the services provided including any error conditions that

may occur.

Another characteristic of a component, which is often implied, is that a component has no

persistent state [82]. It cannot be distinguished from copies of its own. A component can be

activated and loaded into a system. Different instances of a component may be available at

the run-time, however there is only a single copy of the component in a system.

 - 25 -

3.2 COMPONENT-BASED DEVELOPMENT

As mentioned earlier, components can be composed to create software systems. Granularity

of the components is determined by the programmer. Components connect to each other by

invoking one another’s interfaces. Interfaces are the means by which components connect. A

component provides an interface to a functionality, and the client calls that interface to access

the functionality.

Interface specifications can be considered as contracts between clients of the interface and

implementations of the interface. They become the mediating link between providers and

clients which may be ignorant of each other. The contracts usually include the syntactic

definition of the interface, the pre-conditions and the post-conditions of the operation – the

functional requirements. Non-functional requirements such as the performance, the resource

requirements, etc, should theoretically be part of the contract. However in many commonly-

used component models, they are often left out.

Component-based development can be divided into four phases [8, 74].

§ Component Qualification – determining which existing components are fit for use in

the new system context, keeping in mind both functional and the non-functional

requirements.

§ Component Adaptation – fine-tuning the component so that it fulfills the requirements

of the new system. The degree to which a component can be adapted depends on the

individual component.

§ Assembling Components – integrating the components so as to form a software

system from the disparate components.

§ System Evolution – adding, removing or replacing a component so as to upgrade the

system, add new functionality, etc.

One must keep in mind the difference between the run-time and the static characteristics of

software. Component-based development, no doubt, creates a modularized static software

structure. The software code is divided into components which are connected to form the

system. However, the run-time characteristic may be very different. In some systems, the

component boundaries are indistinguishable at run-time, or even load-time, hence creating a

big monolithic chunk of software. On the other end of the spectrum, some systems enable

components to be looked up and hooked at run-time, creating a dynamic component

infrastructure, allowing components to be replaced at run-time. Dynamic component

 - 26 -

composition falls under the latter category of component systems. Most systems fall in

between the two extremes. Software is built from components. All the constituent

components are packaged and distributed as part of the application, even though they may be

linked at run-time. From the application user’s point of view, software is still distributed as a

monolithic chunk. For dynamic component composition, however, software is distributed

component by component.

The benefits of component-based technology include reusability, understandability, reduced

development costs and dynamic extensibility. However, the feature, which is of most

importance to mobile computing, is its adaptability. Component systems possess the

capability to change configurations by adding, replacing or removing the constituent

components, adapting the software as desired.

3.3 CURRENT COMPONENT TECHNOLOGIES

In this section, we look at some of the current component technologies, namely COM [17],

CORBA [64], JavaBeans [78], Enterprise JavaBeans [72], and .Net Assemblies [59]. Most

of the components cannot run on their own and need to execute inside another process which

is often called a container. Some, however, can run by themselves and provide mechanisms

for other processes to access their services. Not all components need to be located locally at

the client. Some components may be located on servers. Technologies such as DCOM [17]

and CORBA, provide the wiring required to connect up distributed components.

Essentially, most of the commonly used components can be divided into four categories [74]

which are:-

§ In-process client components. These components run inside containers, or

applications, such as ActiveX, which are based on COM, JavaBeans, and .NET

Assemblies

§ Standalone client components. These components can run on their own, exposing

their services to other programs through interfaces, for example, OLE Automation

(which is again based on COM) and .NET Assemblies.

§ Standalone server components. These components run on a server machine, which

can be accessed through remote procedure calls or other networking communication.

Leading technologies include DCOM and CORBA

 - 27 -

§ In-process server components. These run inside containers such as transaction servers

on the server machine. Leading technologies include MTS [58] and Enterprise

JavaBeans

In many the component models, the terms “component” and “object” are used

interchangeably. It is true that components can be implemented by object-oriented

technology. However, the terms are not equivalent. A component is a unit of composition

and does not have persistent state. An object, on the other hand, is a unit of instantiation and

has a state that can be persistent. A component may be realized by traditional procedures,

assembly language or by using objects. A component may contain multiple classes, but a

class is definitely confined to a single component. The main difference lies in the roles of

components and objects. The role of components is to capture the static properties of an

architecture whereas the role of objects is to capture the dynamic nature of systems built out

of components [83]. A component can be considered as a static entity, while an object is a

dynamic entity, only accessible at run-time. In the discussion below, we have tried as much as

possible not to interchange the two terms.

3.3.1 Microsoft’s Component Object Model (COM)

Microsoft’s Component Object Model (COM) is a software architecture that allows

applications to be built from binary software components. COM allows components to

interact as long as they stick to the binary standard specified by Microsoft. Distributed COM

(DCOM) is an extension to COM which allows network-based component interaction. COM

and DCOM, in fact, lay the foundation of many other Microsoft technologies such as object

linking and embedding (OLE), dynamic link libraries (DLL), ActiveX, COM+ and MTS.

A COM component is an executable block of machine code which implements a set of

interfaces through which clients can access its services. Interfaces form the only points of

contact between the clients and the component. Every component implements an IUnknown

interface which is used to gain access to other interfaces of the component. Interfaces are

specified using Microsoft Interface Definition Language (MIDL). Once the interface is

defined, it cannot be changed, i.e. interfaces are immutable.

Both interfaces and components are given globally unique identifiers, Interface ID (IID) and

Class ID(CLSID) respectively. A client dynamically locates components by querying the

registry with the class identifier, CLSID, of the required component. A new instance of the

 - 28 -

component is created and returned to the client. The client will then query the instance to

acquire a reference to the required interface, through which it can access the functionality it

needs.

An important aspect in COM is that, instances of components have no identity. A client can

request for a component of a particular type (i.e. CSLID), but not a particular instance. Every

time a client requests for a component, a new instance is returned.

Components run either in the same process as the client, or in a different process which may

be on the local computer or in another computer across the network. In the case that it is

located in a different process, the client is given a proxy object is through which it can

connect to the component. The location of the component is transparent to the client. DCOM

handles all the details of marshalling and unmarshalling when the components are located in

different computers.

ActiveX controls are essentially COM components which implement special interfaces and

may incorporate a user interface. They can only be used with OLE containers, for examples

Internet Explorer and Visual Studio, which are aware of ActiveX controls. If an ActiveX

control is embedded in a web page, Internet Explorer will download the control and then

execute it in the same process. In Visual Studio, they can be used to add functionality to an

application visually. This visual property is similar to JavaBeans. Please refer to Section

3.3.3.

3.3.2 OMG’s Common Object Request Broker Architecture (CORBA)

CORBA is a distributed object architecture which allows application components to

interoperate across networks regardless of the language in which they were written or the

platform on which they are deployed [11].

The main abstraction in CORBA is a CORBA object. CORBA objects can be considered as

application components which provide services through specific interfaces. Interfaces serve

as contracts between clients of the services and the objects.

Firstly, an object’s interface is defined in OMG IDL – Interface Definition Language. When

the IDL is compiled, it will generate a skeleton and a stub. The skeleton code is compiled

with the object’s implementation and the stub code is compiled with the client code. Both

 - 29 -

clients and objects are installed over an ORB – Object Request Broker. They may be

installed on the same machine or on different machines, each with an ORB.

Every CORBA object has an object reference which identifies its instance. A client will

access an object through its IDL interface by specifying its object reference. A client obtains

object references either by receiving them as output parameters on invocations on other

objects for which they have references, such as the Naming and Trading Service, or by de-

stringification of a “stringified” object reference. The invocation of the service goes to the

local ORB via the IDL stub. The local ORB will route the invocation to the remote ORB,

which will pass it on to the object implementation via the skeleton. The location of the object

and the details of the routing is completely transparent to the client.

Since the client needs to be statically linked to the stub of the objects, it is inflexible.

CORBA provides a Dynamic Invocation Interface which allows clients to discover new

objects, interfaces and interact with them at run-time even if they are not linked to their stubs.

In CORBA 3, a new abstraction called the CORBA component was introduced together with

the CORBA Component Model (CCM). CORBA components are simply special CORBA

objects which have been programmed to a special style of interface. CORBA components

are server-side objects which are installed in a CORBA container. The container provides

services such as persistence, transactions, security and notification, so that the CORBA

component programmer can focus solely on business logic. CORBA components are

compatible with Enterprise JavaBeans (see section 3.3.4).

CORBA objects can implement only one IDL interface. A CORBA component can bear

more than one interface, each with its own object reference. These multiple references are

known as facets. Clients of the component can navigate from one interface to another at run-

time. Usually, components are distributed as a .car file which contains an XML component

description together with the component executable. However, several components may be

packaged together as assemblies (.aar files), which are used as units of distribution.

3.3.3 Sun’s JavaBeans

A JavaBean is a reusable software component that can be visually manipulated in builder

tools to allow programmers to manipulate functionality in a simple and visual way.

JavaBeans exhibit four properties: customizability, introspection, events and persistence.

 - 30 -

JavaBeans have accessor and mutator methods which can be used to customize the properties

of a bean. Beans can also look into other beans to discover their variables, methods and

events. Interaction between beans usually takes place through events. Beans are usually

stateful. Hence provide mechanisms to save and restore their state.

Beans are essentially Java class files which follow certain conventions. They extend the Bean

class and are serializable. Access to all properties is provided by methods which begin with

get and set. Beans are usually packaged in JAR files and are identified by their class names.

Developers use visual tools, such as bean box, to compose the components and make

applications or applets. The applications are distributed to the client as a whole, together with

all their constituent beans. JavaBeans can be considered as development components rather

than deployable components.

3.3.4 Sun’s Enterprise JavaBeans

Enterprise JavaBeans (EJB) is an architecture for server-side components making it easier to

build middle-tier, server -side business applications. An enterprise bean is a server-side

software component, which is made of one or more Java objects, and exposes a single

component interface. Enterprise beans are deployed in an EJB container, which in turn is

located on an EJB server. The container provides a run-time environment for the component

to execute in and provides a set of common services to the beans running in it, such as

transaction management, security, resource management and life cycle management,

persistence, remote accessibility and location transparency etc.

There are two types of enterprise beans – session beans and entity beans. Session beans

implement the business logic of an application. They live only as long as the lifetime of the

calling client. Sessions beans can be stateful. Especially in the case that the implemented

business process spans multiple requests, the bean needs to retain the state on behalf of the

client. In other cases, session beans are stateless. Entity beans, on the other hand, model

permanent data. They are long lasting and can serve multiple clients at one time, unlike

session beans for which an instance can only be used by one client.

An enterprise bean exposes a single interface which exposes methods for clients to invoke.

When a client tries to use a method in an enterprise bean, the invocation is actually

intercepted by an EJB object and then delegated to the bean. The EJB object is a part of the

container. It is network aware and acts as a glue between the client and the bean. A developer

 - 31 -

will create a remote interface which is specific to a particular bean, and the EJB container will

auto-generate the EJB objects. A client needs to obtain a reference to an EJB object before it

can use the bean. It achieves that by querying the home object. Home objects are responsible

for creating EJB objects, finding existing EJB objects and removing them. Home objects are

also part of the container. They are generated by the container from bean-specific home

interfaces provided by bean developers. The enterprise bean, the EJB object, and the home

object, are located in the container.

In order to use a bean, a client first has to look up the home object of the required bean. This

is done by querying the Java Naming and Directory Interface (JNDI) for the nickname of the

bean. Then the client uses the home object to create an EJB object in the container on the

server. The client then uses the reference to the EJB object to call the methods on it, which of

course are delegated to the actual enterprise bean. Once the client is done with the bean, it

needs to remove the EJB object, i.e. destroy it from the container. RMI-IIOP or CORBA is

used for network communication.

Enterprise beans are distributed as Ejb-jar files. Other than the enterprise bean classes, the

remote interface and the home interface, the Ejb-jar also contains an XML deployment

descriptor which specifies the component’s servic e requirements, such as transaction,

persistence, etc. The Ejb-jar also includes Bean-Specific Properties files which the bean can

read at runtime to customize how the bean functions. The Ejb-jar files are then deployed on

an EJB server such as the BEA WebLogic server.

3.3.5 .NET Assemblies

.NET Assemblies are the primary building blocks of an application for Microsoft’s .NET

Framework. An assembly is a collection of functionality that is built, versioned and deployed

as a single implementation unit. An assembly can be considered as a DLL or a COM

component targeted for .NET Framework’s Common Language Runtime (CLR).

The main difference between a .NET assembly and a COM component is that an assembly is

self-describing. It contains a manifest, which contains the assembly metadata including the

naming and versioning information, dependencies, and type information, in addition to code.

Due to this reason, registration, separate IDL files, type libraries or proxy/stubs are not

required to access a component. Assemblies are mainly identified by their name. They do

not need to register themselves with the operating system, unlike COM components

 - 32 -

There are two types of assemblies – private assemblies and shared assemblies. Private

assemblies are meant to be only for a single application. They stored in the application folder

or subdirectory in which they will be only visible for that application. This makes naming the

assembly easy since private assemblies have no specific naming requirements except to be

unique to the application. Shared assemblies on the other hand are assemblies that can be

shared among several applications. They are given a shared name which follows strict

naming conventions since the assemblies must be uniquely identifiable across the entire

system. They are installed in a centralized repository called the Global Assembly Cache,

which is essentially a folder in the file system.

At run-time, the client indicates the name and the version number of the required assembly, it

is looked up from the application directory or from the global assembly cache.

3.3.6 General Discussion

It can be seen from above how the theoretical component model has been realized in different

ways with different foci and features. COM, CORBA and .NET Assemblies are language

independent, whereas JavaBeans, EJBs, CORBA components and .NET Assemblies can boast

platform independence.

For some of the models, the linking of components is rather static. It is programmatically

decided which component is to be used. For example, for COM, JavaBeans and EJBs,

classnames are used to locate the required components. Assemblies use assembly names as

well which are programmatically specified within an application. Thus, an application is

bounded to a particular implementation of functionality. It can only use that particular

component. This reduces the amount of adaptability an application can have. COM, however,

does possess a little more flexibility than JavaBeans and EJBs, since each component can

implement more than one interface. A client can move from one interface to another during

run-time. For CORBA, components are looked up via their object references. Different

objects, which implement the same interface, will have different object references. Clients

obtain an object reference from the Naming and Trading Service at run-time.

In the above models, the components are not mobile. An application can access a component

which is located locally, or a component located on a remote server. The remote component

does not move to the client. The component framework provides the wiring for the client to

 - 33 -

access the remote component, such as the ORB in CORBA, DCOM and EJBs. In most cases,

a proxy is sent to the client at run-time through which a client can access the remote

component’s services. However, for CORBA, the stub needs to be compiled into the client

application.

Java applets on the other hand, move to the client device when they are needed, and are

dynamically linked. They also follow certain syntactic constraints. However, applets are not

composable, i.e. you cannot put two applets together to make a larger applet, and hence they

do not qualify as components.

As for ActiveX controls, they are essentially COM objects which can be used for

composition. However, an ActiveX control can be embedded in a web page and it will be

downloaded to the client when the client accesses the web page and executed. In this sense,

they seem very similar to our facet model i.e. downloaded when required. However, one of

the main difference is that ActiveX controls, even though they are dynamically linked to the

application, they are not dynamically composed. When you download an ActiveX control,

you download the whole control, as one chunk. As for facets, every constituent facet is

downloaded separately. In addition, the facet model allow for adaptation to the client device.

For ActiveX, the control used is decided at design time, hence limiting the flexibility.

 CORBA and EJB are actually distributed object technologies which can be used to realize a

distributed component model. When a client application retrieves a reference to a CORBA

object, then client is communicating with a specific object instance. If a client stores some

data in that object, it can retrieve back some or all of the data later. This is because every

CORBA object has an “identity” which can store some “state”. In DCOM, however, objects

do not have a state or identity. If a client obtains a reference to a remote object and stores

data into that object, later when it attempts to retrieve the same object, it cannot. This

highlights the difference between the two approaches to distributed components [3].

It can be seen that for the above discussed component models, the contract between

components is very syntactic in nature. It only includes the functional aspects. Components

connect to each other through interfaces or component names. Often interface definition

languages (IDLs) are used to define the interface of the component. What functionality a

component provides is implied by its implementation or by the description supplied by the

provider. Non-functional criteria, such as performance, resource requirements, etc, are

usually not included in the contract.

 - 34 -

3.4 SUMMARY

This chapter provides background on component-based technology. A software component

has four characteristics

§ It is independent.

§ It provides functionality via well-defined interfaces.

§ It is a unit of composition.

§ It has no persistent state.

Interface specifications can be considered as contracts between clients and providers of a

component. Theoretically, interface specifications should include both functional and non-

functional requirements, but in practice, they often only include the former.

The dynamic characteristics of component systems lie between two extremes. On one hand,

component boundaries are indistinguishable at both run-time and load time. On the other

hand, components retain their boundaries all through out, even during execution. Dynamic

component composition falls under the latter category. The advantage of component systems

is that they possess the capability to change configurations by adding, replacing or removing

the constituent components.

We looked at five current component technologies including COM, CORBA, JavaBeans,

Enterprise JavaBeans and .NET assemblies. Each of them has a different focus and can boast

different advantages. Some of them support only local components, such as JavaBeans and

.NET Assemblies. Others provide wiring to remote components as well, such as COM,

CORBA and Enterprise JavaBeans. However, components in these models, do not move.

Their location, once installed, is fixed.

 - 35 -

Chapter 4

The Sparkle Mobile Computing Environment

In the earlier chapters, we saw how mobile computing differs from traditional distributed

computing. The most fundamental requirement for software is to be able to adapt to the

heterogeneity and the fluctuating conditions of the environment. Current software and

software distribution models are found to be lacking in this respect.

In this chapter, we look at the current software distribution model, the monolithic approach,

and explain why it is not suitable in a mobile computing environment. We then propose an

approach, which utilizes dynamic component composition, and discuss its appropriateness to

mobile computing. After that, we describe the infrastructure of Sparkle Mobile System which

makes use of dynamic component composition to achieve functionality adaptation in a

dynamic and flexible way.

We then describe the component model employed in the Sparkle System. The components

are called facets, because they resemble facets of a diamond. Numerous small facets put

together make up a sparkling diamond. In the same way, many components put together can

make up a powerful mobile application. Finally, we look at some research carried out on

component models in mobile environments.

4.1 CURRENT SOFTWARE DISTRIBUTION APPROACH

At present, the most common way of obtaining software is by purchasing an installation CD

from a software shop, or by downloading application files from the Internet and running the

installation program. The whole application is installed in the device and can be invoked for

use. This is the monolithic approach – applications are distributed as monolithic chunks. You

have to install the whole application or nothing at all. You have to install the whole piece of

 - 36 -

software, even if you normally use, say, one tenth of the functionality provided in that

software.

One of the main drawbacks of the monolithic approach is that it puts a limit on the amount of

functionality that can be placed on a mobile device. Applications provide users with

functions. The more functions an application has, the bigger its size or memory requirements

will be. In mobile environments, where devices with limited resources are prevalent, normal

applications are too big to be installed. Instead, programmers need to provide smaller, scaled-

down versions of the applications with less functionality, in order to fit into the resource

constraints of the targeted device. In other words, to fit programs into devices, developers

build applications with smaller sizes, which, in turn, limit the functionality provided by the

applications.

In addition, applications are usually tailored for a specific platform. It is not possible, though,

to write different versions for all the possible configurations in a mobile environment.

Moreover, once an application is made for a certain device, it runs as it is designed.

Consequently, the applications are designed for the most limited configurations of the target

device, for example, the least memory available. It usually is not able to take advantage of the

extra memory available if it is running in a device with more memory.

Some applications are adaptive. However, the adaptability is usually hard-coded into the

application, which can only accommodate a limited set of configurations, or devices. To be

able to adapt to another new configuration or platform, developers need to rewrite the

application again, and redistribute it. Such an approach will not be able to cope with the ever-

increasing range of heterogeneity of mobile devices.

Also, once an application is made and installed, there is limited support for extending the

functionality offered by it, unless you reinstall the application. The exception to this are plug-

ins. But, plug-ins provide limited functionality extension. There is a tendency of application

developers to bundle an overly rich set of functionality in a single piece of software. Again,

the more functions an application has, the bigger the size, the less suitable it is for small

devices. Microsoft Word is a good example. It offers a lot of functions to users other than

just text editing, such as drawing graphs, editing formulas, macros. The functionality offered

increases with every new version of the software. However, most users only use a subset of

the functionality, but developers have to include all the functionality together for the sake of

completeness. Thus, applications have an unnecessary bulk to them.

 - 37 -

In fact, what would be more suitable in a mobile context is being able to extend the

application after installation. Applications are written so that they can be installed with only

the basic functionality, and are extended according to the user’s usage requirements.

Basically, applications only contain functionalities which users require rather than including

all the unnecessary ones, thereby reducing the size of the application and making it suitable to

be installed on small devices.

4.2 DYNAMIC COMPONENT COMPOSITION

As seen from above, current software distribution mechanisms fall short when applied in a

mobile computing context. The monolithic approach puts a limit in the amount of

functionality which can be placed in a device and cannot flexibly adapt to different device

configurations. Thus, a flexible way to distribute software, which overcomes the

shortcomings of the current model, is needed.

Our approach utilizes dynamic component composition. Instead of distributing an application

as one big monolithic chunk, an application is broken up into small components. A device is

installed with a minimal set of initializing components. When the application is run, as

components are needed, they are brought in from the network, linked to the run-time system

and executed. These components can be brought in from dedicated servers or from near-by

peers. Once the components are used, they are unlinked from the run-time system and thrown

away. The application is, thus, dynamically composed from components at run-time.

The basic philosophy of this approach can be summarized as the get-use-throw approach –

you get a component when needed, use it and then throw it when it is done. If you need it

again, you get it again. Even though the philosophy may seem simple, it has several

advantages over the other approaches:

§ The functionality a device can provide is not limited by its configuration

Components are brought in when they are needed and discarded after use. These

components are small when compared to full-fledged applications. Being able to

discard a component is of utmost importance for computing in small devices.

Whatever is unwanted, can be thrown away, freeing up resources and memory for

components, which are currently running, or to bring in other components. This

enables devices to run programs which, if distributed as one whole chunk, would not

 - 38 -

fit in the device. A device can run a program with more functionalities without

worrying about the size of the application.

§ Extensive support for functionality adaptation

Since components are brought in at run-time, the application can dynamically adapt

to the device’s run-time environment. For example, there are two components which

carry out the same thing, each with different run-time characteristics. The one which

is most suitable for the run-time conditions of the device is brought in and executed.

In a memory-constrained environment, a component which uses less memory, but

perhaps requires more computation may be used. In addition, since the application is

“assembled” at run-time, this makes it dynamically adaptable. Applications can easily

adapt to new requirements and configurations. All it takes is updating the

corresponding components and bringing in the newer components instead of the older

ones.

§ Increased scope for peer-to-peer co-operation

Many of the current peer-to-peer technologies focus on data and file sharing, such as

Napster [60], Gnutella [28]. Instead of sharing only data, clients can share

components, essentially forming a component pool. Clients can get components from

nearby peers, instead of getting them from far -away servers. For instance, if several

users are having a meeting and they all need to access a certain application on their

PDAs, they can get the components from each other. In addition, if one of them does

not have enough resources to run a component, it can delegate the execution of that

component to the peer.

§ Support for user mobility

All functionality is brought in from the network at run-time and it adapts dynamically

to the client device being used. Hence, applications are not restricted to a particular

device or even to a particular location. Users can access their applications from any

device anywhere. When a user moves from one device to another, the same

functionalities can be brought in, with components suitable for the new device.

§ Enhanced migration adaptation

If a client device does not have enough resources to run a component, it can delegate

the execution of that component to a peer or a server, as a last resort. Instead of

migrating the whole application, it only needs to migrate the execution of one

component. In a mobile environment, it is probably more suitable to delegate a single

 - 39 -

component rather than the whole application. Not only that, the delegated device

uses components which is more suitable for its run-time conditions rather than the

original components. This basically enhances migration adaptation with functionality

adaptation.

4.3 THE SPARKLE MOBILE COMPUTING ENVIRONMENT

The Sparkle Project aims to provide an Internet-enabled infrastructure for mobile computing

which supports dynamic component composition. Applications can be seen as a means by

which users perform tasks [5]. An application usually provides several functionalities which

users can invoke to fulfill their tasks. Applications can be broken up into components along

the lines of functionalities. Every component provides certain functionality. There may be

more than one component which fulfills the same functionality. As mentioned earlier, at run-

time, the appropriate component is brought in and executed. Hence, it can be seen that

applications are linked by functionalities, rather than by exact components. Consequently,

when you run an application in different environments, to carry out the same task, the actual

components used may be different.

In our model, clients send requests for the components to the network, and are returned with

the appropriate component. Since applications are linked by functionality rather than by

exact components, the requests specify functionality requirements rather than component

identifiers. They also include non-functional requirements such as run-time resource

information and context, so as to determine which component would be most suitable for the

client. From the client’s viewpoint, there is a lot of reliance on the network. The network

stores the components and also possesses intelligence to match the appropriate component for

the client.

Therefore, the network architecture plays an important role in this model. In this section, we

provide an overview of the whole architecture, the network entities involved and their roles in

achieving dynamic component composition. Components in our system are called facets1.

1 The components were named “facets” because they are similar to facets of a diamond. Many small facets put

together make up a dazzling diamond. In the same way, even though each facet may be small, when put together

with other facets, they can create a very powerful application. That’s why the project was named “Sparkle”, to

symbolize a sparkling diamond made of facets.

 - 40 -

Every component has a manifest which describes what functionality it fulfills and its run-time

behavior, such as the amount of memory it requires or the network bandwidth, etc.

Figure 4.1 Overview of the Sparkle Architecture

4.3.1 Overview

The sparkle architecture consists of several entities which are listed below.

§ Client Devices

Client devices provide a platform for the applications to run. Since applications

are made of components, the client devices responsible for retrieving and

executing the constituent components. They discover nearby peers and proxy

server from which to request for components. They also incorporate caching

mechanisms for performance improvement. In case a client does not have

sufficient resources to run a component, as a last resort, it can decide to delegate

the execution to a peer or an execution surrogate.

§ Facet servers

Facet servers host facets, i.e. components. They provide a permanent storage

area for facets on the network. You can compare them to web servers which host

web pages and cgi-programs.

 - 41 -

§ Intelligent Proxies

The proxies are the main intelligence of the network. They receive requests from

clients, match the requirements with description of the components and return the

most appropriate components to the clients. The proxies also incorporate

techniques to improve performance such as pre-fetching and co-operative

caching.

§ Execution Surrogate

Execution surrogates are dedicated servers which run users’ components. If a

device does not have sufficient resources to run the next component, it can

delegate the execution of that component to an execution surrogate.

4.3.2 Interaction Scenario

Every component fulfills a certain functionality. It is associated with a manifest which

contains a description of its resource requirements, run-time behavior, context conditions, etc.

An application, while running, needs components. It will request for a component which

fulfills the required functionality, i.e. functional requirement. The resource manager in the

client system adds to the request, the non-functional requirements such as the memory

availability, processing power, user preference, and local time, if appropriate.

Under normal cases, the request is sent to the proxy. The proxy possesses the overall view –

it knows what facets are available in the servers and it knows the requirements of the device.

It matches the requirements of the client with the properties of the available facets, carries out

some usage pattern analysis and determines which facet would be most suitable for the client

to use. It then returns the facet to the client.

If connection to the proxy is not available, the client device can send requests to nearby peers

to see if they have a facet with the required functionality available.

4.3.3 Functionality Adaptation

Dynamic component composition provides a flexible mechanism for achieving functionality

adaptation. Functionality adaptation is made possible by three factors.

 - 42 -

§ The component model, which separates applications neatly into components, allows

them to be composed at run-time, and to discard components which are no longer

used.

§ The resource managers in client devices, which maintain information about the

physical resources, network connectivity and the context of the devices. This

information is included in a component request and is the basis on which matching

occurs.

§ The proxies, which carry out matching between the request and facets. They are the

main active entities for adaptation.

Functionality adaptation, in this approach, is achieved by choosing the appropriate component

among different ones which have the same functionality. This can be compared to Odyssey

[23, 62] which achieves data adaptation by choosing among data with different fidelity levels.

Hence, instead of choosing among different versions of data, we choose among different

versions of functionality.

The main advantage of this approach, when compared to the approaches discussed in the

previous section, is that it is very flexible and dynamic. Developers only need to specify

which functionalities they require in an application, and provide different versions of them.

The adaptation mechanism is transparent to the programmer, unlike 2K and DACIA. Which

component comes in depends on the system and the matching mechanism of the proxy.

Also, in our model, the resource manager is contacted first to find out how much resource is

available and then a component is chosen accordingly. In other models, a component is

brought in, and then the allocation of the required resources to run that component is

negotiated. In addition, since applications are linked by functionalities, rather than specific

components, as new technologies or devices emerge, developers only need to write newer

versions of the affected functionalities. The proxies will automatically match these

components to suitable clients under the appropriate conditions. Rewriting or reinstallation of

the whole program is not required.

Since the components are thrown away from the run-time after use, even the biggest of

programs can be used in a small device, depending on the size and run-time behavior of each

component. In short, this approach overcomes all the drawbacks in current functionality

adaptation techniques, as mentioned in Chapter 2.

 - 43 -

4.4 FACET MODEL

In this section, we describe the facet component model. The main purpose of the facets is to

support dynamic component composition. Separation of functionality from data and user

interface (UI) is the fundamental philosophy of the facet model. Applications allow users to

carry out certain tasks. They can be seen as providing functionality to carry out these tasks.

These functionalities are embodied in facets. Facets are pure functional units. They provide a

means to carry out the tasks, independent of the data or user interface (UI).

Many distributed systems use objects as a unifying abstraction for both data and functionality.

Functionality is often bound with the specific data implementation it can act on. Grimm et

al. [30,31,32] find such an approach flawed for pervasive and mobile environments. They

argue that application functionality changes more frequently than data implementation and

data layout. In addition, it is preferable to store and communicate passive data rather than

active objects. A clean separation between data and functionality allows them to be managed

and to evolve independently. Facets provide pure functionality. They take in inputs, carry

out their functionality resulting in the corresponding outputs.

The user interface is just a means to access functionality. It is highly dependent on external

factors such as display capabilities of the device and user preferences, rather than on the

application or task at hand. Different UI can be used to access the same functionality or tasks.

In fact, the UI changes more often than the essential functionality of an application. When a

new version of an application is released, the UI is often completely revamped whereas the

basic functionality remains the same, except for a few additions and bug fixes. Since UI

changes from device to device, version to version, it is desirable to keep it separate from

functionality. As they are not bound to each other, this enables developers to change the UI

without changing the functionality and vice versa, attaining a more intuitive and flexible

software model.

In the following sub-sections, we provide an overview of the facet model – describing what

constitutes a facet, how facets depend on each other to support execution and how they are

requested from the proxy. We also discuss the container abstraction in which the facets

execute.

 - 44 -

4.4.1 Functionality

Before we can go into the details of the facet, we must clarify what a functionality is. As

mentioned earlier, applications provide sets of functionalities to the user. These

functionalities are independent of the user interface. A functionality can be considered as a

single well-defined task in an application. The task could be as small as a matrix

multiplication, or as big as blurring a whole image. It is mainly up to the programmer to

decide what an application’s constituent functionalities are or how “big” they are.

A more concrete definition of functionality is as follows: Given a set of inputs, the

functionality determines what changes are made and the outputs attained. Essentially

functionality can be seen as a contract defining what should be done. The contract includes

§ The set of input parameters, i.e. the number and types of the parameters.

§ The set of output parameters, i.e. the number and types of the outputs.

§ Description of what is carried out i.e. what are valid outputs for a set of inputs.

§ Pre-conditions, if any, for example, the ranges of input parameters supported

§ Post-conditions, if any, for examples, which values are nullified, error conditions.

§ Side effects, if any, for examples I/O, or changes to state in the container.

Basically, the contract defines the functionality to be achieved, but not how it should be

achieved. Implementations can use different algorithms, each with different performance

characteristics or resource requirements. As long as they stick to the contract, they can be

considered as achieving the same functionality. As a consequence, functionality defines the

interface for interaction and is independent of the implementation.

To make things simpler, every functionality is assigned a globally unique identifier, the

functionality id (funcID). Thus, a functionality id (funcID) uniquely identifies the contract

which incorporates the factors mentioned above.

4.4.2 Facets

Facets are entities which implement the functionalities. They contain code components which

follow the contract of their corresponding functionality. In our model, a facet implements

only one single functionality. In other words, a facet cannot provide two or more

functionalities.

 - 45 -

Due to this limitation and the nature of functionalities, facets have the following two features

§ They have a single publicly callable method.

Every facet implements only one functionality. A functionality carries out a single

task, which is accessed through a single interface with a defined set of input

parameters and output parameters. Basically, a facet only has a single access point.

§ They have no residual state

What this means is that the functionality provided by a facet is independent of any

previous invocations. During execution, a facet has a state which is determined by

the values of the variables at that particular instant of time. Once the execution of the

facet is finished, these variables are either discarded or are reset, so that they do not

affect execution of the next invocation of the facet. A facet cannot keep any state

beyond a single invocation. Thus, every invocation sees the facet as a “fresh” facet,

without residues of previous invocation.

The above is of major consequence to the whole software model. These features of facets

make them throwable – a facet can be discarded from the run-time as soon as it is used.

Let’s say a facet does have some residual state, for example, it contains some static variables

which need to be maintained, and the result of the execution depends on these variables. In

other words, every invocation to a facet depends on the previous state and will change it in

some way when it finishes. In that case, that state between the two invocations must be

maintained. And since this state is stored internally in the facet, it cannot be discarded.

However, if a facet has no residual state, there is no need to maintain the state of the facet at

the end of its execution. It can be discarded as soon as its invocation is over. If it is needed

again, the same facet, or even perhaps another facet which implements the same functionality,

can be reloaded. This results in a more flexible and memory efficient software model.

Every application does require a certain amount of state, i.e. data, or information, be

maintained throughout the execution. Facets cannot be used to keep state which extend

beyond one invocation. Therefore, application state is maintained in the container.

Consider the example of a facet which retrieves emails from an email server. This facet

would require the user name, the password and the server from which to download the mails

from. And after it retrieves the emails, it either stores them in the container or passes them on

to the invoker. An “improper” or “stateful” facet, on the other hand, can be one which stores

the user name, password and server name, internally on the first invocation and then for the

 - 46 -

other invocations, does not require any inputs but rather uses the stored values. Or a

“stateful” facet stores the emails internally after execution and just passes a pointer to them to

the invoker (i.e. the email data is kept inside the facet). In this case, the facet cannot be

discared after execution. If it is, then all the email data is lost. This goes against the notion of

having throwable facets.

A facet can be uniquely identified by its facet id. Since a facet implements a certain

functionality, it is associated with a functionality id (funcID), implying that it satisfies all the

conditions of the contract specified for that functionality.

Externally, a facet is not completely a black box. It consists of two parts:

§ Shadow. This describes the properties of the facet. It includes information about the

facet for example the facet id, vendor and versioning information, the funcID of the

functionality it achieves, its resource requirements (such as the size of the working

memory) and its dependencies. More on dependencies will be addressed later.

Basically, the shadow provides the meta-information about the facet. It is represented

in human and machine readable form, XML, and thus can be accessed by developers,

users and machines alike.

§ Code Segment. This is body of the executable code which achieves the functionality.

We utilize the object-oriented approach in our model. The code segment can consist

of several classes. However, there is only one class which contains the publicly

callable method corresponding to the functionality contract. The code segment is

essentially a black box which exposes only one interface to access its service.

4.4.3 Facet Requests

There may be several facets implementing the same functionality. These facets are called

compatible facets. Each of them could have different run-time characteristics, resource

usages, etc. In other words, even though the facets may have the same funcID, they may

have different properties. These properties are included in the shadow, and are taken into

consideration when deciding which facet to use.

Whenever a facet is needed, the facet specification is filled in a facet request and sent to the

proxy. The facet specification consists of the funcID of the functionality required and other

criteria which the application developer may want to include such as the vendor, or version

 - 47 -

information. The client system will add relevant context information such as the resources

available, to the request before sending it to the proxy. The proxy essentially compares the

criteria specified in request with the shadows of all the facets available and finds a facet

which satisfies all the criteria and is suitable to run under the specified resource constraints. It

then sends the facet to the client. The matching mechanism of the proxy is out of the scope of

this thesis. Please refer to the Master of Philosophy Thesis by Vivien Kwan [52] for more

information regarding the proxy.

4.4.4 Facet Dependencies

In order to achieve its functionality, a facet may call upon other facets. While executing, a

facet could request for another facet. As mentioned earlier, the facet requests are in terms of

functionalities, i.e. funcID, rather than for specific facets. In other words, a facet may depend

on other functionalities. For example, an implementation of the gaussian blur functionality

may depend on a matrix multiplication functionality.

Please note that functionalities themselves have no dependencies, it is the facets which have

dependencies. Functionalities are independent of implementation. They are like empty boxes

and hence do not depend on anything else. It is the facets, which fill in these boxes i.e.

implement them, that may require the services of other functionalities.

Different implementation of a functionality may have different dependencies. Not every

compatible facet has the same dependencies. One may require 2 other functionalities.

Another may not have any dependencies at all and achieves the whole functionality internally.

Since the facets are actually composed and linked at run-time, every time a certain

functionality is required, it is possible to get a different facet. Which facet is used depends on

the run-time resource and context characteristics. And that facet, in turn, may have different

dependencies. In essence, which facets are executed only can be determined at run-time.

To illustrate the above, let’s say we have a facet x which depends on 2 functionalities: A and

B. Each of facets i, j, k fulfill functionality A and facets p, q, r fulfill functionality B. A and

B are called the dependencies of x. Facet dependencies are the functionalities a particular

facet depends on.

 - 48 -

At run-time, when we are executing facet x and it requests for functionality A, which of the

facets i, j, k is brought in depends on the run-time characteristics and matching mechanism of

the proxy. At one instance, it could be i. At another time it could be k. Even though i, j, k are

compatible, they may have different dependencies. Again, which facets are called can only

be known during execution. It cannot be predetermined. In addition, facet x may require A

several times. The pictorial representation of which facets are actually executed at run-time, is

called the facet execution tree.

Figure 4.2 Different Execution Trees of Facet x

When a user invokes a certain functionality, it spans a whole tree of facet execution. The

facet at the root of the tree is called the root facet. It is the facet in the whole execution tree,

which is closest to the user interaction.

The facets, which are under execution at a particular instant in time, are called active facets.

A facet is brought in and loaded when it is required. When it is under execution, it is active.

As soon as its finishes execution, it becomes inactive. Inactive facets can be discarded to

make room to bring in other facets. For instance, considering the execution tree in Figure 4.2,

Facet x calls k which in turn calls m which calls e and f . After m is over, it calls n. At that

instant, facets x, k and n are active, and facets m, e and f are inactive. They are not needed

and thus, can be removed from memory.

4.4.5 Containers

Facets themselves do not keep any state and do not interact with the user. They only provide

a certain functionality. However, most applications require maintenance of some sort of state

and a user interface (UI). Facets are used by developers to build applications. They have a

programming interface with which to communicate with each other. However, they cannot

directly interact with the user. This is where the container comes in.

 - 49 -

The container is an abstraction that provides an application-like feeling to the user. Users

invoke the container to bring up an interface for user interaction, which in turn will request

for the appropriate functionalities based on the user’s input.

Figure 4.3 Structure of the Container

A container provides a place for facets to run in. Each container is associated with a

particular application and contains a set of functionalities which the application can offer.

These functionalities are stored in the container as facet specifications. Facet specifications

contain the funcIDs of the constituent functionalities and some additional criteria. When a

particular functionality is required, the corresponding facet specification is sent as a request to

the proxy, bringing in an appropriate facet and its dependencies, in turn starting off the

execution of a whole tree of facets. Essentially these facet specifications can be considered as

root facet specifications of the functionalities the application provides.

The container also incorporates a pluggable user interface. For different devices, there can be

different UI code. The UI provides a means for users to access the functionalities offered by

the container. It contains links to the set of functionalities in the container. When the user

carries out a certain action, the UI will invoke the corresponding functionality by passing the

facet specification to the underlying system to retrieve it and its execution tree from the

network. Different UI code may link to different subsets of the functionalities, depending on

the developer.

A container is much more than a bridge between the user and the facets. The main purpose of

the storage area is to store execution state and data which is important for the execution of an

application. These could be in the form of variables or objects. Since facets cannot be used to

maintain any application state, this state information is maintained in the storage area.

The container also plays an important role in mobility. It keeps track of the state information,

for examples, the execution status of the facets and shared data, and some relevant

 - 50 -

information for restoring the execution. In short, we can say that the container is responsible

for storing information about the execution state, in order to be able to restore it when the

execution moves to another device. Exactly how that execution state is maintained and

restored is out of the scope of this thesis. Please refer to the Masters of Philosophy thesis by

Y. Chow [15] for more details regarding execution migration.

4.4.6 Comparison Among the Component Models

We have looked at some of the current component technology and the facet model. In this

section we discuss how some of the issues affecting the different technologies and compare

our facet model with them.

For the current component models, the components are either distributed together with the

corresponding application to the client, or are located in remote servers. For the first case,

again, we face the problem of limits placed on functionality an application can provide due to

size constraints. The later case however, can be considered as services on the network. They

are mainly heavy-duty server side components for applications which follow the client-server

model.

Only in the facet model, the components are distributed individually to the client at run-time,

when they are required. This highlights the mobility of the components in the facet model.

Facets move to the client at run-time, whereas in the other models, the components are

stationary. The only movement is perhaps a proxy moving to the client device enabling it to

talk to the remote component.

In most of the component models, the components are dynamically linked. The types of

dynamic linking can be broadly classified into two types, (1) interface-based and (2) object-

based. For interface-based linking, components will link to each other via their interfaces.

They will look for a particular interface id rather than a particular component. Which

component is actually implementing that interface, does not matter. For object-based linking,

applications look for particular components. They specify the exact name of the component

or its instance. Object-based linking again can be classified into two types: One, the object or

instance to be used is decided at design-time, and second, the object to be used is dynamically

determined. For the first type, the name or identity of the component is actually built into the

program, such as in COM, JavaBeans, EJBs and .Net Assemblies. CORBA falls under the

second category of object-based linking. Even though it connects to a component via a

 - 51 -

 COM CORBA JavaBeans EJB .Net
Assemblies

Facets

Motivation
Reusable
software

components

Distributed
object

interaction

Reusable
components for

visual
development

Reusable
server-side

components

Building blocks
of applications

Functionality
adaptation

COMPONENT PROPERTIES

Language Independent Independent Java Java Independent Java

Platform Mainly Windows Independent Independent Independent Independent1 Independent

Distribution
Format Exe or DLL Executable,

Car, or Aar Jar Ejb-Jar Exe or DLL Jar

Component
Metadata None None2 Manifest

Deployment
Descriptor

Assembly
Manifest Shadow

Identification Class ID
Object

Reference Class Name Class Name
Assembly

Name Facet ID

Characteristic
Features

Components
need to be

registered with
the OS

Clients need to
be compiled

with
component’s

stub.

Components
follow certain

syntactic
specifications

Components
follow certain

syntactic
specifications

No need of
globally unique

names for
private

components

Components
have one

publicly callable
method

CONTRACT

Composition Object-based Interface-based Object-based Object-based Object-based Interface-based

Interface
Definition

MIDL OMG IDL N.A N.A N.A None

Number of
contracts per
component

More than one3 One4 One One One One

Access points
per contract

More than one More than one More than one More than one More than one One

Component
Linking

Run-time Run-time Compile time Run-time Run-time Run-time

Location of
Components Local & Remote Local & Remote Local Remote Local Local & Remote

Lookup
Service

Registry/ Active
Directory

Naming and
Trading Service None JNDI Global Access

Cache Proxy

Lookup
Criteria Class ID

Nickname or
Service Type Class Name Nickname

Assembly
Name

Functionality ID
+ other criteria

REMOTE COMPONENTS

Remote
Component
Interaction

Proxy sent to
client at run-

time

Stub compiled
into client
program

N.A.
Proxy sent to
client at run-

time
N.A. Component

sent to client

Remote wiring
protocol

DCE-RPC IIOP N.A RMI- IIOP or
CORBA

N.A SOAP

1. .NET Assemblies are targeted for Microsoft’s Common Language Run-time (CLR). CLR is theoretically platform independent. However, at

present it is only available for Windows Platforms.

2. A CORBA object has no meta data. However a CORBA component contains an XML component descriptor

3. One COM component can implement more than one interface.

4. A CORBA object can have only one interface. However, a CORBA component can implement more than one interface

Table 4.1 Comparison of Different Component Models

 - 52 -

specific object reference, the object reference can be dynamically determined by querying the

Naming and Trading Service. A point to note about COM is that, even though all the

interaction among components takes place via interfaces, component lookup is actually based

on the identifier of the component, i.e. class id. Facets fall under the category of interface-

based linking.

In the facet model, looking up of a facet involves more than just matching an interface

identifier or a name. No doubt, we have to match the functionality identifier, which implies

the interface of the facet. We also have to match the other criteria such as the resource

constraints. Matching these often requires some in-depth analysis. The facet model, thus,

requires a more complicated look-up service than the other component models.

There are many other differences between the facet model and the other models. These have

been highlighted in Table 4.1.

4.5 RELATED WORK

In this section, we look at some projects which have employed component-based mechanisms

in mobile and pervasive environments.

The Aura Group at Carnegie Mellon University [26] is looking into issues which affecting

component-based development in pervasive environments. They consider software systems as

collections of components co-operating to achieve a user’s tasks. They argue that to be

successful in a pervasive environment, component models must exhibit (1) mobility – tasks

follow the user as he moves from one device to another, (2) adaptability – tasks can take

advantage of resources as they change, and (3) resource awareness – components publish their

resource requirements and offer multi-fidelity of services. Our facet model fulfills to a great

extent their criteria of the component model. At the time of writing, their component model

was not yet published, hence a comparison could not be made.

Yau and Karim [89] take a different approach to adaptation. Instead of having different

versions of components with different run-time resource behaviors, they incorporate

adaptability in a single component. Components are capable of performing self-

customization so that they can fit themselves into specific real-time requirements. The

components provide a set of built-in services which can be used to change the real-time

 - 53 -

resource requirements of the component. However, since adaptation is carried out during the

component integration stage of software development and not at run-time, it is not suitable for

environments which experience a lot of changes at run-time.

Another project which considers applications as made up of functionalities is the One.World

project [30, 31, 32] at the University of Washington. They argue that application data and

functionality need to be kept separate in order for a system to be suitable for a pervasive

environment. Functionalities are represented by components, which are dynamically linked

and unlinked. An application’s main component initializes its components and performs

initial linking. While the application is running, it can initiate additional components, relink

and unlink them as needed. The main difference between the facet model and One.World’s

model is the flexibility in the facet model. As mentioned earlier, in the facet model, which

component is actually used is determined at run-time, as for One.World, which component to

use is programmed into the application, thereby limiting the range of adaptability that can be

achieved.

2K [47, 48] supports reconfiguration of component systems at run-time. 2K is actually a

distributed OS rather than a middleware technology. However, it does endorse our approach

of bringing in components only when they are needed. When a component is needed, the

component and its prerequisite components are brought in from the component repository,

which may be located locally or on the network. After that, the resource manager is contacted

to allocate the required resources for the components. Developers have to provide specialized

component configurator objects, which handle dynamic reconfiguration. If any changes occur

in run-time resources, the resource manager will call the component configurator which will

adapt the application, for example, by replacing a component by a new one.

The DACIA project [57], at the University of Michigan, provides a framework for building

adaptive distributed applications. Applications are made of components located on various

network entities and the links between the components represent the direction of data flow

within the application. DACIA considers components as processing and routing units,

transforming one or more input data streams. There are monitors, specific to particular

applications, which are responsible for monitoring application performance and making

configuration decisions. Applications are adapted by dynamically adjusting the connection

between components and/or the location of the different components, and hence leading to a

change in the application graph. This framework seems more suited for distributed

applications which require data flow from one entity to another, for example video-on-

demand.

 - 54 -

For both 2K and DACIA, the adaptation policy is application specific. Every application

implements its own adaptation policy, by means of component configurators (2K) or monitors

(DACIA). This puts a lot of burden on application programmers. The facet model, instead

employs a system wide adaptation policy. The system has a better picture of the resource

needs of all the running applications. Also, this enables programmers to focus on application

logic rather than on adaptation details, and makes it easier to develop mobile applications.

4.6 SUMMARY

In this chapter, we have seen that the current software distribution approach is essentially

flawed when it comes to deployment in mobile computing environments. The monolithic

approach, which distributes applications as one indivisible chunk, makes an application too

big to fit into a small device, thereby, limiting the functionality a device can provide. In

addition, the adaptability and the extensibility of applications are somewhat limited.

We then introduced the dynamic component composition approach. Applications are made

up of components rather than as monolithic blocks. When a component is needed at run-time,

it is brought in from the network and external. Once it is used, it can be thrown away. The

advantages of this approach in mobile computing environments are that it does not limit the

functionality of a device by its configuration. It also provides an extensive support for

functionality adaptation and provides an increased the scope for peer-to-peer co-operation. In

addition, it supports user mobility and migration adaptation.

The foundation of the Sparkle project is dynamic component composition. It is made up of

several network entities which, together, form a mobile system with innate support for

functionality adaptation. The main role in adaptation is played by the proxy. It matches the

functional and the non-functional requirements in a client request with the components that

are available and returns a suitable component to the client. Basically, functionality

adaptation, in this approach, is achieved by choosing the appropriate component among

different ones which have the same functionality. This provides a flexible and dynamic way

to achieve functionality adaptation, which reduces the burden on the application programmer

and provides for easy extension of adaptation alternatives.

 - 55 -

In short, dynamic component composition is a suitable mechanism to provide functionality

adaptation in a mobile environment. The components in the Sparkle Mobile Computing

Environment are called facets.

The fundamental philosophy of the facet model is the separation of functionality from data

and user interface. Facets are pure functional units. Every facet implements only a single

functionality. A functionality can be seen as a contract – a single well-defined task in an

application. It embodies the functional requirements of the contract, including the inputs,

outputs, pre-conditions, post-conditions, etc.

Facets have two features, they only have a single publicly callable method, and they have no

residual state. This makes them throwable enhancing the overall memory efficiency. A facet

is made up of two parts – a shadow, which describes the properties of the facet and a code

segment, which implements the functionality provided by the facet.

When an application needs a facet, it does not request for a specific facet. Instead it requests

for a particular functionality and provides other criteria, such as resource constraints, to the

proxy. The proxy finds an appropriate facet which satisfies all the criteria and passes it on to

the client.

A facet may call upon other facets to fulfill its functionality. Facet dependencies are the

functionalities a particular facet depends on. Due to the nature of the facet requests sent to the

proxy, which facet is actually executed can only be determined at runtime. Active facets are

facets which are under execution at a particular instant in time. Inactive facets can be

discarded.

Facets execute inside a container. A container is an application-like abstraction. It has

structures to store state. It also contains a pluggable user interface. A container is also a unit

of mobility, in situations where the execution needs to migrate to another device.

This chapter ended by comparing the facet model with other component technologies and

looking at some research carried out on components in mobile environments.

 - 56 -

 - 57 -

Chapter 5

The Sparkle Client System

We have discussed, in previous chapters, dynamic component composition, its importance in

mobile computing, as well as the facet model, which is based on dynamic component

composition. As part of my work, I have implemented a client prototype which supports the

facet model in order to show the feasibility of such a model. The prototype supports bringing

in facets at run-time, loading and linking them up with the execution, and after they are used,

removing them from the memory. The client-system is built in the context of the Sparkle

architecture described in Chapter 4. We have also built applications following the facet

model which run on the client system successfully.

This chapter describes the Sparkle client system, its various constituent entities, their roles

and implementations. Most of the mechanisms have been implemented above the JVM, in

order to ensure portability, for example, the use of user-level class loaders to drop facets

5.1 CLIENT SYSTEM OVERVIEW

All the user devices involved in the Sparkle architecture will be installed with client system.

The client system forms a basic necessity that all user devices must posses. Without it, the

devices cannot access the services provided by the Sparkle system. Thus, it is vital to the

whole architecture.

Because it will be installed on devices which come in all shapes, sizes and configurations,

there are several requirements that it has to fulfill. These include:

§ Portability

There is no common configuration for devices on which the client system should

work. The devices not only have different shapes and sizes, they have different

 - 58 -

processors, different amounts of memories and even different operating systems. The

client system should be able to work on the heterogeneous mix of devices.

§ Memory efficiency

Many of the devices may have small memories, often limited by their form-factors

and power availability. Since the client system is a requisite for all devices, it should

be kept as small as possible. It should also be able to dynamically change its run-time

memory usage, if possible, in order to adapt to run-time needs.

§ Support for dynamic component composition

The client system should support all the intricacies of dynamic component

composition. Most of the details are transparent to the programmer, hence the client

system handles all the mechanisms involved. These include negotiating with proxies

and peers for facets, loading and linking them up with the run-time when they are

received, and discarding them when they are no longer active, etc.

§ Support for dynamic discovery

Devices move from one place to another. Their environments and nearby entities

change according to their locations. Since dynamic component composition relies

heavily on retrieving functionality from the network, the client system should have

the capability of dynamically discovering nearby proxies and peers, in order to

determine which would be best suited for facet retrieval at a particular instant.

§ Peer-to-peer co-operation

Devices need to interact with each other in several ways. They share information or

files with one another. They can also share facets with peers in the vicinity, in a

sense forming a pool of facets located close-by. A device can also delegate the

execution of a facet to a near -by peer if it deems itself not having sufficient resources

to execute that facet. The client system must be able to support all the different sorts

of interaction possible between peers.

The current implementation of the client system addresses the first three requirements. We

believe that support for dynamic discovery and peer-to-peer co-operation are inter-related and

are complex issues. They require a separate in-depth study to look into the various possible

mechanisms. The client is built on the Java Virtual Machine (JVM) in order to maintain the

portability of the client system and the facets. A virtual machine is installed on top of the

 - 59 -

device operating system, over which the Sparkle client system is implemented. The virtual

machine forms the main execution engine of the system.

The client system accepts facet specifications, in the form of FacetRequest objects. It will

then contact a proxy or a peer through the available network service to request for the facets.

Once it receives a facet, either from a server or a peer, it will load the facet and make it ready

for use and return the ready-to-use facet to the caller. Once the facet is no longer in use, the

system is responsible for throwing it away. The client system also handles all the background

housekeeping, such as locating proxies and peers on the network, keeping track of the

resources being used, and handling mobility.

Figure 5.1 Architectural Overview of the Client System

 - 60 -

Anatomy of the Client System

The Sparkle client system internally is made up of several entities, each of which have

dedicated responsibilities. There is a central manager which co-ordinates the activities of all

these entities in order to provide a unified system image. Facets and containers can only see

and interact with the central manager. They cannot directly interact with the system modules.

In this section, we describe the basic constituents of the client system and their roles.

The client system is made up of seven main entities:

q Central Manager

The central manager is the main coordinating entity in the client system. It overlooks the

activities of all the constituent entities in the client system. It interfaces with the facets

and containers, accepts requests for facets from the user-level, delegates the appropriate

tasks to the modules and returns a loaded, ready-to-use instance of the facet. It carries out

the main housekeeping of the client system.

q Discovery Manager

Facets are retrieved from the network. As a device moves from one location to another, it

needs to keep track of nearby proxies and peers from which it can request facets. The

discovery manager plays a vital role in this respect. It implements protocols and

mechanisms to discover devices and network entities in proximity to the client.

q Network Handler

A device needs to communicate with various entities in the surrounding network, for

examples with proxies and peers. Each of which may employ different protocols. It is

the responsibility of the network handler to handle the exact details of the communication

mechanisms and provide a generic access mechanism for the central manager to use. It

handles all the particulars of the protocol, negotiation, connection, sending requests and

receiving facets, etc.

q Facet Loader

When the network handler receives a facet from the proxy or other peers, it will pass it on

to the facet loader. The facet loader is responsible for loading the facet into the run-time,

creating a ready-to-use, invokable instance of it. Every facet has its own object space

where its constituent Java objects are loaded, so as to facilitate discarding a facet.

 - 61 -

q Facet Cache

Instead of bringing in facets from the network every time a functionality is required, some

of the commonly used facets are stored in the Facet Cache. Since the facets are locally

available, this improves the response time and the performance at the cost of memory

usage. The size of the cache can be dynamically changed, on the instructions of the

resource manager. In addition, facets in the cache can be shared with peers. If a peer

requests a facet and it is available in the cache, the client can send that facet to the peer.

q Light-weight Mobile Code System (LMCS)

In a mobile environment, support for user and device mobility is indispensable. This

involves moving the execution from one device to another, or perhaps delegating part of

the execution to another device. The light-weight mobile code system (LMCS) is

responsible for handling all the mechanisms involved, including suspending the

execution, capturing the execution state, moving it to another device, restoring the state

and continuing the execution.

q Resource Manager

The resource manager keeps track of the resource usages of all the entities in the Sparkle

system as well as the applications in the user-level i.e. facets and containers. It is

responsible for resource determination and resource allocation. It can also control the

amount of resources used by the entities in Sparkle system, for example, the facet cache.

It appends to facet requests how much resources are allocated for those functionalities. It

is also responsible for informing the LMCS to delegate the execution to another device.

The delegation can be proxy-triggered – the proxy responds with a directive to delegate if

a facet cannot be found which satisfies the specified resource restrictions. The delegation

can also be client-triggered – while running a facet, if most of the resources are used up,

the resource manager can stop the execution of that facet, rollback and ask the LMCS to

migrate that particular facet.

As you can see from above, all the seven entities co-operate with each other when handling a

facet request. They keep the underlying details transparent from the programmer so that he

can focus on functionality and application logic rather than on networking details.

 - 62 -

5.2 CLIENT SYSTEM ENTITIES

The previous section described the responsibilities of each of the client system’s entities. In

this section, we look into how these responsibilities translate into implementation terms. We

have built a prototype whose main purpose is to illustrate the feasibility of dynamic

component composition, rather than building a comprehensive mobile client system. Hence,

the implementation effort focused on doing just that – dynamic facet composition.

Some entities require and in-depth study in certain area which is out of the scope of this

thesis. For those entities, we have made use of simplified implementations. In the next sub-

sections, we look at each of the entities in turn, the demands from them, how they have been

implemented in the current prototype.

5.2.1 Central Manager

The central manager is center of control and coordination of the Sparkle client system. It

controls the activities of all the entities in the client system. Because the Sparkle client

system is small, with only six other entities, such a centralized model of control is feasible. If

anything goes wrong in any of the other entities, they will inform the central manager, which

can take the appropriate steps for recovery.

At present, it is the only entity which can directly interact with the user -level, i.e. the facets

and containers. It receives requests to lookup a facet, puts the other entities into action to

retrieve and load the facet, and will return an instance of the loaded facet back to the user-

level. In case of no major errors, the sequence of actions taken by the central manager can be

summarized by the flow diagram in Figure 5.2.

Ideally, the central manager co-operates with the resource manager in order to control the

resources used by the various entities in the Sparkle system. At present, the resource manager

provides simple resource management mechanisms and thus the duties of the central manager

in the current implementation is limited to the flow chart in Figure 5.2.

 - 63 -

Figure 5.2 Actions Carried Out by the Central Manager

5.2.2 Discovery Manager

In a mobile environment, devices move from one location to another. A device may move

from one wireless cell to another. It may move from one network to another, for example

from a Bluetooth network to a GPRS network. Peers in the surrounding areas also change.

The facet model depends a lot on retrieving facets from the network. Due to performance

reasons, it is advisable for a device to connect to an entity which would have a faster

download time. Consequently, the client must keep track of proxies and peers which are in

close vicinity and determine which one should be used for facet retrieval. The discovery

manager is responsible for discovering nearby entities. It implements discovery protocols.

Different network environment may require different discovery algorithms. It is the

responsibility of the discovery manager to employ a suitable protocols under the given

network conditions.

The discovery manager plays an important role in the system. However, a comprehensive

implementation of it would require an in-depth study of discovery protocols and a study of

typical spatial patterns of devices and proxies. At present, our prototype does not support

dynamic discovery yet. The location of the proxy is hard-coded in the implementation.

 - 64 -

5.2.3 Network Handler

Clients need to communicate with various entities, including proxies and peers. Each of them

may require different protocols for communication. For example, with proxies a client may

use SOAP to communicate, where as with peers it may use a more lightweight, proprietary

protocol. The network handler deals with all the details of communication with the different

types of entities. It handles all the aspects including connecting and negotiating with the

network entity, converting the facet request in a form suitable to be sent over the

corresponding protocol. It also extracts the facet from the response and passes it on to the

central manager. It handles encryption and decryption mechanisms, if required. In short, it

provides a generic interface for other modules in the Sparkle system, such as the central

manager, to interact with, keeping them shielded from the exact details of networking.

public class NetworkHandler {
 public byte[] getFacet(FacetRequest fr, NetworkEntity ne) {
 //requests for a facet from a particular network entity
 }
 .
}

Figure 5.3 Interface of the Network Handler

At present, the communication between the client and the proxy utilizes the Simple Object

Access Protocol (SOAP). The facet specifications in the facet request are changed into XML

format and sent over Hypertext Transfer Protocol (HTTP). An example of a sample request is

shown below.

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body> <ns1:GetFacet xmlns:ns1="FacetProxy">
 <facet>
 <functionality_id>20003</functionality_id>
 <vendor>SRG SANG</vendor>
 </facet>
 <rootfacet>no</rootfacet>
 <context>
 <user>
 <identifier>vjwmkwan</identifier>
 </user>
 <static_resource> ... </static_resource>
 <runtime_resource>... </runtime_resource>
 </context>
 </ns1:GetFacet></SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 5.4 Sample SOAP Request Sent to the Proxy

The request usually contains the criteria specified by the programmer as well as the resource

availability information added by the resource manager. The proxy responds to the request

by returning the matched facet as a MIME attachment to a SOAP response.

 - 65 -

Content-Length: 2955
Content-Type: multipart/related; type="text/xml";
boundary="----=_Part_12_7542354.1019098911017"
SOAPAction: ""

------=_Part_12_7542354.1019098911017
Content-Type: text/xml

<soap-env:Envelope
xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">
<soap-env:Body>
<ns1:GetFacetResponse xmlns:ns1="FacetProxy">
<facet href="cid:11289"/>
</ns1:GetFacetResponse></soap-env:Body>
</soap-env:Envelope>

------=_Part_12_7542354.1019098911017
Content-Type: application/java-archive
Content-Transfer-Encoding: base64
Content-Id: 11289

UEsDBBQACAAIAMFwiywAAAAAAAAAAAAAAAAJAAQATUVUQS1JTkYv/soAAAMAUEsHCAAAA
AAAAAFBLAwQUAAAACAB2eowsQn79FWsAAAB7AAAAFAAVAE1FVEEtSU5GL01BTklGRVNUL
.
.
UEsFBgAAAAAGAAYAowEAAEQFAAAAAA==
------=_Part_12_7542354.1019098911017--

Figure 5.5 Sample SOAP Response Received by the Client

5.2.4 Facet Loader

Once the network handler has extracted the facet from the response of the proxy, it is passed

on to the facet loader. The facet loader then loads facet into the run-time and returns it to the

central manager.

The current implementation makes extensive use of Java’s user class loaders. Every facet is

assigned its own class loader, a FacetClassLoader object, through which its classes are

loaded into the virtual machine. The main motivation behind this is that it allows facets to be

cleanly discarded. Normally, classes are not dynamically unloaded from the run-time.

However, if there are no strong references to any of a facet’s constituent classes or to its class

loader, the Java Garbage Collector will consider them to be garbage and collect them. If a

class loader is collected, then all the classes loaded by that loader will be unloaded from the

virtual machine, consequently leading to the removal of the facet classes from the memory.

In this way, a facet is “discarded”.

The facet loader is given the facet and asked to load it. It will create a new

FacetClassLoader object and delegate the task to it. The FacetClassLoader will load

the main facet class – that is determined from the manifest of the jar file, and return an

instance of it. The facet is kept in the FacetClassLoader so as to enable loading of the

other constituent classes of the facet.

 - 66 -

public class FacetLoader {
 public Class loadFacet(byte[] facetBytes, ClassLoader cl){
 FacetClassLoader fcl = new FacetClassLoader(facetBytes,cl);
 .
 Class facetClass = fcl.loadFacet();
 .
 return facetClass;
 }
 //other stuff
 .
 .
 }

Figure 5.6 The FacetLoader class

5.2.5 Facet Cache

The facet cache serves a dual purpose. Instead of having to bring in facets every time a

functionality is needed, some of the commonly used facets can be cached locally. This would

improve the performance of the system. The other purpose of the cache is to enhance peer-to-

peer co-operation. The cached facets could be shared with nearby peers, which request for

them.

Despite the advantages of the cache, it does, however, take up resources. The bigger the

cache is, the larger its memory usage. Trade-offs need to be made. Since the resource

manager keeps track of the resource needs of the whole system, it is responsible to determine

what would be a suitable cache size for a particular time frame. The facet cache can change

its size dynamically according to the instructions of the resource manager.

Currently, the facet cache is implemented as a two-level cache. The primary cache stores the

facet in the memory. The secondary cache stores the facet as temp files in the secondary

storage, i.e. hard disks for the case of laptops. Cache entries are replaced using the least-

recently-used (LRU) scheme.

When the central manager receives a request for a facet, it will first forward that request to the

cache to see if a suitable facet is locally available. Thus, the cache also requires a matching

mechanism to identify which facet will be suitable. Since the suitability of the facets in the

cache, in terms of resource usage, have already been matched by the proxies before, and due

to processing limitations of the client devices, a simple matching mechanism is sufficient. At

present, the cache tries to match either the functionality id or the facet identifier, with the

shadows of the cached facets. If there is a match, i.e. a facet is found in the cache with the

same functionality id or the same facet identifier, then the facet is retrieved from the cache

 - 67 -

and sent to the central manager. In case of no match, the central manager will forward the

request to the network handler to get the facet from the network instead.

public class FacetCache {
 public String cacheFacet(byte[] facetBytes) {
 //caches the facet bytes according to LRU scheme
 }

 public CacheEntry findFacet(FacetRequest fRequest){
 //finds a facet which matches the fRequest specifications
 }

 public void setLimits (int plimit, int slimit) {
 //changes the size of the primary and secondary cache
 }

 //other stuff
}

Figure 5.7 FacetCache Class

5.2.6 Lightweight Mobile Code System

In some sense, facets can be considered as mobile code segments. They move from servers to

the clients when they are required (i.e. code-on demand). However, the responsibility of this

module is not to move facets around, rather, to move the execution of facets. This is the

module which enables user mobility. When users move from one device to another, they

would want to carry on their tasks from where they left off. In addition, it is possible that the

client device does not have sufficient resources to support the execution of a certain

functionality. In that case, part of the execution can be delegated to another peer or a

dedicated server.

The lightweight mobile code system (LMCS) is responsible for handling all the details of

suspending and restoring the execution from one device to another. It needs to capture the

state of the execution. Since one facet can call another facet, it needs to keep track of all the

facets which are active under the current execution tree. It moves the container, the state

information and the identifiers of the active facets to the other device. On the other device,

the facets are retrieved from the proxy, and the execution continues where it left off. From

then onwards, every time another functionality is required, it is adapted to the resource

characteristics of the new device, rather than that of the original device. Such a mobile

system is lightweight since it does not actually move the code from one place to another;

rather, it moves the specification of the code, i.e. the facet identifiers and the state.

 - 68 -

The actual implementation and the research issues involved are part of another study. For in-

depth details about the LMCS, please refer to the Master of Philosophy thesis by Y. Chow

[15].

5.2.7 Resource Manager

The resource manager, as the name implies, is responsible for the management of all the

resources of the device. Resource management involves four aspects. First, determining how

much resource is available at the particular instant in time. Second, determining the resource

requirements of currently executing applications, or system entities. Third, evaluating and

allocating resources, taking into account side effects and tradeoffs. Fourth, taking steps to

enforce the allocation scheme. Resources encompass various aspects, such as memory,

energy, processing power, network bandwidth, etc. In short, the resource manager tries to

allocate the various available resources among the resource claimants, and enforces the

allocation scheme, so as to attain a suitable working environment for the user and

applications. The resource manager may need to keep track of previous resource usage

patterns and resource states so as to derive an appropriate allocation scheme. It needs to be

simple and effective. If it is too complicated, a device may spend too much time on resource

management rather than on doing actual work.

In the Sparkle system, the resource manager determines how much resources, such as

memory, network bandwidth, etc., are under use and by whom and how much resources are

available. It allocates them accordingly to the various system entities and applications i.e.

containers, running. For the system entities, it may directly inform them to change their

resource usage. For example, the resource manager may inform the facet cache to reduce its

cache size when running low on resources. As for the applications, the resource allocation

scheme is enforced via facet requests sent to the proxy. Every time an application needs a

facet, the resource manager appends the amount of resource allocated for the whole execution

tree of that facet to the request sent. The proxy is then responsible for returning a facet which

can execute under the specified resource constraints.

For every facet request, the resource manager will add the static resource constraints and the

dynamic resource constraints of the device. Static resource constraints are those resources of

a device which do not change with run-time, for examples, the display size, the processing

power, etc. The dynamic resource constraints are those resources which can change with

 - 69 -

every request sent to the proxy. These include, run-time memory size, network bandwidth

and power, etc.

There may be situations in which it is impossible for a proxy to locate a facet which can run

within the allocated resources. In that case, the resource manager can increase the resource

allocation or, alternatively, it can decide to delegate the execution of that facet to another

device or server. It will inform the lightweight mobile code system (LMCS), which will take

care of all the details of the migration.

The current implementation of the resource manager supports rudimentary memory

management. Our system is based on Java. The Java virtual machine only supports

determination of the run-time memory availability. Incorporation of the management of

processing power, energy and network bandwidth has to be built into the virtual machine,

which may be the next step of the project. The resource manager, at present, implements a

very simple allocation strategy. It allocates a constant fraction of the available memory to the

facet to be requested. That allocated amount, together with the static resource constraints are

added to facet requests sent out to the proxy.

5.3 DISCARDING A FACET

We rely on the Java Garbage Collector to discard the facet. The overall strategy is as follows

– when a facet is no longer active, all the strong references to it are removed. Once the facet

object is collected, there are no strong references to the facet classes and its class loader. The

classes and the loader are collected as well, in effect discarding the facet from the memory.

As mentioned in the previous chapter, when a programmer programs a facet, he essentially

writes a FacetImplementation class. When a client requests a functionality, the

FacetImplementation is received from the proxy and loaded. The underlying system will

encapsulate the FacetImplementation in a Facet object. All calls to the

FacetImplementation go through the Facet object.

Figure 5.8 All Calls to FacetImplementation go through a Facet Object

 - 70 -

The Facet object stores the FacetRequest of a functionality and a reference to a

FacetImplementation object. When a client accesses a functionality, i.e. invokes the

execute method, the Facet object will pass the FacetRequest to the manager, obtain the

FacetImplementation object and call execute on it.

If there is no other reference to the facet, i.e. FacetImplementation object, it can be

garbage collected. Since each facet is loaded in its own class loader, if a

FacetImplementation object is collected, its class and class loader have no strong

references to them. The garbage collector will get rid of the object, the class loader, the

loaded facet classes. In this way, the facet is completely discarded from the system.

The Facet object and use four different types of references to deference the

FacetImplementation object.

§ Strong References

After execute is called and the output is returned. The reference to the

FacetImplementation object is still maintained. Hence, the

FacetImplementation object cannot be collected by the garbage collector until the

Facet object is collected.

§ Soft References

The characteristic of soft references is that they allow objects to be collected even

though they have a reference to them. If an object is only accessible via a soft

reference, we don’t know when exactly it will be cleared. But we do know that it will

definitely be cleared before the virtual machine runs out of memory.

§ Weak References

Weakly referenced objects are almost always collected by the garbage collector. If an

object is only accessible via a weak reference, the garbage collector can collect it any

time it wants.

§ Null References

Null references implies that no reference to the FacetImplementation object is

maintained in the Facet object. Thus it can be collected as soon as it returns the

output.

Often in an application, a facet is called upon more than once. If the

FacetImplementation object has not been collected, then it is accessible via its reference

 - 71 -

and can be immediately used. However, if it has been garbage collected, then the manager

has to be contacted to retrieve the facet, either from the cache, or from proxies and peers.

Thus, it is a tradeoff between memory and performance. If the facets are kept loaded in the

virtual machine, then when they are needed again, there is no need to contact the manager

again, improving performance, however the loaded facets would take up more of the virtual

machine memory. The current implementation utilizes soft references, since it provides a

reasonable compromise of both memory and performance. Please refer to Section 7.4 which

describes some of the performance-related experiments carried out on the system.

public class Facet implements FacetInterface {
 ClassLoader cl;
 FacetRequest fRequest;
 SoftReference softFacet;
 FacetContainer container;

 public Facet(Object obj, FacetRequest fr, FacetContainer c){
 fRequest = fr;
 cl = obj.getClass().getClassLoader();
 container=c;
 }

 public Object[] execute(Object[] in){
 FacetImplementation fImpl = null;
 if(softFacet != null){
 fImpl = (FacetImplementation) softFacet.get();
 }

 if(fImpl == null) {
 //need to look up facet again from the manager
 fImpl = manager.lookupFacet(fRequest, cl);
 ..
 fImpl.setContainer(container);
 softFacet = new SoftReference(fImpl);
 }
 return fImpl.execute(in);
 }

 //other stuff
}

Figure 5.9 Facet Class

5.4 DISCUSSION

The main purpose of the prototype is to illustrate the feasibility of dynamic component

composition and the facet model, i.e. being able to bring in a facet, link it up to the run-time

and discard it after it has been used. Thus, most of the structures directly related to that have

been comprehensively implemented, such as the facet loader. However, a complete client

system requires much more than just that. It requires support for peer-to-peer co-operation,

dynamic discovery and comprehensive resource management. More work needs to be done

on the discovery manager, network handler, and the resource manager, in order to build a

more complete client system.

 - 72 -

Even though, at present, the resource manager is simple, it can illustrate the use of dynamic

component composition to achieve functionality adaptation. The amount of resource allocated

for a functionality is specified in a facet request. An appropriate facet is then brought in and

executed. Thus, the execution of a functionality adapts to the resources available at run-time

achieving functionality adaptation.

The main concern during the implementation of the client system was to keep all mechanisms

above the JVM, i.e. keeping the internals of the JVM unchanged. This would keep the client

system portable across various devices and JVM implementations. One of the main

difficulties was to be able to unlink facets from the run-time system and discard them from

memory. Ideally, the resource manager or the facet loader should be able to detect when a

particular facet is not needed, and be able to decide when it should be discarded. However,

this is not possible without making changes to the JVM referencing mechanism. Instead, we

employed user-level class loaders. With these, when exactly a facet is discarded is under the

control of the garbage collector. User-level entities, such as the resource manager, can just

indicate whether a facet is available for discard by removing all strong references to it. To a

certain extent, this method can achieve what we want, despite a slight loss of control.

5.5 SUMMARY

In this chapter, we have looked at the Sparkle client system. The client system is vital to the

architecture since it is, in fact, the basic necessity that all devices must posses. The client

system must fulfill the requirements of portability, memory efficiency, support for dynamic

component composition and dynamic discovery.

The client side is made up of four layers - the operating system, on top of which is the Java

virtual machine, then the Sparkle client system, and right on top is the application-level which

is made up of facets and containers. The Sparkle client system is made up of seven main

entities which are:

§ Central Manager. The main coordinating entity in the client system, which interfaces

with the applications.

§ Discovery Manager. It locates nearby peers and servers.

§ Network Handler. It handles all the details of communication between the various

network entities.

 - 73 -

§ Facet Loader. It loads facets into the run-time and creates ready-to-use instances of

them.

§ Facet Cache. It stores facets locally to improve performance

§ Light-weight Mobile Code System. It handles all the mechanisms involved in

migrating execution from one device to another.

§ Resource Manager. It determines the availability of resources and allocates them

among the various run-time processes.

We looked at each of these entities in turn, and how they have been implemented in the

current prototype. The current prototype illustrates the feasibility of dynamic component

composition and the facet model. Discarding a facet was achieved by loading every facet

with its own class loader, and either removing a reference to it when it is not being used, or

using a soft or weak reference to it. When an instance of a facet is inaccessible by any strong

reference i.e. there are no references to it, or it is only softly or weakly accessible, the garbage

collector will collect the facet instance, its class loader and its corresponding class and, hence,

discarding the facet.

 - 74 -

 - 75 -

Chapter 6

Programming for the Facet Model

In the previous chapter we looked at the implementation details of the client system. In this

chapter, we look at the programmer’s viewpoint. At present, the facet model is based on the

Java programming language, mainly due to its inherent portability. Familiarity with Java or

an object-oriented language will be beneficial to the understanding of the following

discussion. Even though we are using an object-oriented language, facet programming is

considerably different from traditional object-oriented programming. Facet programming has

as its basis the separation of functionality and data, whereas object-oriented programming

favors putting the two together.

In this chapter, we first describe the syntax for programming an application made of facets,

including the facets, the container and the user interface. We then discuss the difference

between facet-based and object-oriented programming, and provide guidelines on creating a

facet-based program.

6.1 FACET-BASED PROGRAMMING

Creating an application based on the facet model involves understanding a couple of different

abstractions. First of all, a programmer needs to know how to write the different parts of the

facet i.e. the code segment and the shadow, and to pack them together. Since facets can

depend on each other, programmers need to know how to request for another facet during

execution. Finally, the programmer needs to know how to put all these together in the

container so that the user sees a unified application, even though behind the scenes it is

dynamically composed. We shall discuss all of the above in turn.

Applications and facets run on top of the Sparkle client system. The client system is designed

in such a way that it takes care of all the dynamic composition of the facets. Networking,

 - 76 -

negotiation and resource management details are transparent to the programmer, allowing the

programmer to focus on the application functionality.

6.1.1 Facets

All facets implement only a single functionality. A direct implication of this is that facets can

only contain a single publicly callable method. Facets are made up of two parts: a shadow

which describes the properties of the facet and a code segment which implements the

functionality.

6.1.1.1 Shadow

The shadow is actually an XML file, shadow.xml, with tags describing the properties of a

particular facet. Some of the tags are compulsory, for example those indicating the facet ID

and the functionality id. Others such as description or dependencies are optional. The proxy

keeps track of the shadow.xml files of the available facets. When a proxy receives a

request for a facet, it uses the shadows to find a suitable match for the request. Hence, a lot

of tags in the shadow are used to provide meta-information to the proxy to carry out

intelligent matching. The dependency information in the shadow is also used to prefetch the

dependencies so as to improve performance.

The shadow.xml file can be divided into 3 parts. The first part provides information about

the facet, such as its ID, vendor, version, the functionality it implements, an optional name

and description, etc.

 <identifier>GB00056</identifier>

 <name>imageApp.imageFacet.GaussianBlur</name>

 <vendor>SRG SANG</vendor>

 <version>

 <major>1.0</major>

 <minor>a</minor>

 </version>

 <functionality_id>200007</functionality_id>

 <description>Blurs an image pixel array </description>

Figure 6.1 Part of the Shadow Providing General Information of the Facet

The second part of the shadow describes its resource requirements. This could include

anything from memory to network requirements. At present, the programmer must specify

the memory requirements of a facet. It does not include the memory requirements of the

 - 77 -

dependencies. He must include the static facet size, and the run-time working memory

required. The run-time memory is, very often, a function of the input size. The programmer

must specify the resource function with respect to the input size so as to assist the proxy in its

matching decisions.

 <resource>
 <memory>
 <static>128</static>
 <dynamic>
 <input_variables>
 <parameter name="m"> 1 </parameter>
 <parameter name="n"> 2 </parameter>
 </input_variables>
 <formula> 3n^2+5m </formula>
 </dynamic>
 </memory>
 <display>
 <width>300</width>
 <height>400</height>
 </display>
 </resource>

Figure 6.2 Part of the Shadow Providing Resource Information of the Facet

The third part of the shadow describes its dependencies. It specifies the functionalities the

facet depends on, and whether the dependencies are necessary for the execution of the facet,

or whether are used only in certain situations, i.e. optional. All this information is used by the

proxy for resource matching and prefectching. The proxy recursively analyses the resource

usage of the whole tree of dependencies, up to a certain level, before deciding which facet to

return. In addition, since the dependencies of the facet is known, the dependencies can be

prefetched from the facet servers in order to improve performance. When a request for the

dependency arrives, it can be immediately dispatched to the client.

 <dependencies>
 <dependency order="1" type="optional" subtype="if-then-else">
 <functionality_id>sparkle.imageapp.blur</functionality_id>
 </dependency>
 <dependency order="1" type="optional" subtype="if-then-else">
 <functionality_id> sparkle.imageapp.flip </functionality_id>
 </dependency>
 <dependency order="1" type="optional" subtype="if-then-else">
 <functionality_id> sparkle.imageapp.rotate </functionality_id>
 </dependency>
 <dependency order="2" type="compulsory">
 <functionality_id> sparkle.imageapp.matrix </functionality_id>
 </dependency>
 </dependencies>

Figure 6.3 Part of the Shadow Providing Dependency Information of the Facet

6.1.1.2 Code Segment

The code segment is actually an implementation of a functionality. It follows the

specification of the contract which includes the input parameters, output parameters, pre-

conditions, post-conditions, etc. By definition, a facet only offers a single functionality,

 - 78 -

hence it contains only a single publicly accessible method. That method follows the syntactic

interface specified in the contract. A facet may have many constituent classes. However,

there is only one class which exposes the publicly callable method. That class is called the

main facet class.

Due to limitations put by the Java programming language and in order to simplify the

implementation of the underlying Sparkle system, every facet is accessed through a uniform

interface. This interface takes in an object array as input and returns an object array as

output. If there is any error during the execution of the facet. It throws a

FacetExecutionException.

public interface FacetInterface {
 public Object[] execute(Object[] in)
 throws FacetExecutionException;
}

Figure 6.4 The FacetInterface Class

When developing a facet, the main facet needs to extend the FacetImplementation class.

The FacetImplementation class implements the FacetInterface, and provides

methods for housekeeping which are used by the underlying system, and may or may not be

accessible by the programmer. For example, every FacetImplementation object has a

variable fContainer which indicates which container the facet instance is associated with.

This variable is set when the FacetImplementation class is loaded by the underlying

system.

public abstract class FacetImplementation implements FacetInterface {
 public abstract Object[] execute(Object[] in)
 throws FacetExecutionException;

 //other house keeping methods and variables
 protected FacetContainer fContainer=null;
}

Figure 6.5 The FacetImplementation Class

Here is an example of the main facet class which carries out Gaussian Blur.

 - 79 -

public class GaussianBlur extends FacetImplementation{

 //variables

 private static final int BYTE=0, SHORT=1, FLOAT=2, RGB=3;

 .

 //constructor

 public GaussianBlur(){

 .

 }

 public Object[] execute (Object in[]){

 //follows the contract

 //can call other methods in this class or

 //other classes in the facet

 .

 .

 return out;

 }

 //other methods

 void blur(PixelProcessor pp, double radius) {

 .

 }

 void blurFloat(PixelProcessor pp, float[] kernel) {

 .

 }

 .

 .

}

Figure 6.6 Example of a GaussianBlur Facet Implementation

Whenever a facet is invoked, it is invoked through the execute method. The numbers and

the types of objects in the input and output object arrays are specified in the contract of the

functionality. The execute method can invoke methods in the same class or in other classes

which make up the facet.

The “stateless” nature of the facet must be kept in mind when developing a facet. A facet

cannot keep any state beyond a single invocation. A facet only has access to the input

parameters and objects stored in the storage area of the container it is running in. In addition,

a programmer cannot assume that a facet will continue to “live” once the execution of the

execute method has finished. It may very well be unloaded from memory, so any changes to

static variables would be lost. Thus, every invocation must depend on the input arguments

and the storage area solely.

 - 80 -

6.1.1.3 Dynamic Resource Requirement

Once a programmer has written the code segment, he needs to fill in the details of the shadow.

Most of the details are pretty straightforward. However, evaluating the dynamic run-time

usage of a facet can be rather complicated.

The resource requirement information of a facet plays an important role in the whole

architecture. It is the basis on which functionality adaptation takes place. The proxy

compares the resource requirement of facets with the resource availability in the client. It will

send a facet whose resource requirement and the resource requirements of all its dependencies

put together is less than the resource availability.

Resource requirements can be considered in two dimensions, static and dynamic. What

differentiates between the two is whether these requirements change at run-time. For

example, the values or the amounts of static resource requirements do not change, whereas,

the amounts of dynamic resource requirements may change depending on various run-time

conditions, such as size of the inputs, algorithm etc.

Consider the example of memory usage. The code size (in kilobytes) of the facet is always

constant. A device would need to have sufficient memory to store the facet when it is

downloaded. Thus, this forms the static memory requirement. However at run-time, the

actually memory that is used by the facet is highly dependent on the size of inputs and the

implementation algorithm. For example, the memory used by a blur facet depends on the size

of the image i.e. the size of pixel array which is the input to the facet, and depending on the

algorithm, the memory requirement may be linear or exponential.

The facet programmer would need to specify both the static and the dynamic requirement in

the shadow. The determination of the static requirement is rather straight forward, however

the determination of the dynamic requirement requires some effort. We argue that most of

the dynamic resource requirement can be expressed as a function of the sizes of the inputs.

The requirements can depend on the sizes of more than one input parameter.

In order to find the dynamic memory requirements, the facet developer needs to test the facet

with different sizes of input, and record the resource usages for each combination. He can run

a mathematical or a statistical analysis program, such as Matlab, to go through the results and

obtain a mathematical formula describing the resource requirements. That formula can be put

in the shadow.

 - 81 -

 <memory>
 <static>233</static>
 <dynamic>
 <input_variables>
 <parameter name="m"> 1 </parameter>
 <parameter name="n"> 2 </parameter>
 </input_variables>
 <formula> 3n^2+5m </formula>
 </dynamic>
 </memory>

Figure 6.7 Specifying the Memory Usage by a Formula

On the other hand, instead of specifying a formula, the programmer could include the

resource usage as a look-up table for each combination in the shadow. However, the facet

developer has to put an appropriate number of entries in the shadow. Including too many

entries would make the size of the shadow and, hence, the facet, big. The number of entries

should be sufficient to allow the proxy to do interpolation as required.

 <memory>
 <static>233</static>
 <dynamic>
 <input_variables>
 <parameter name="m"> 1 </parameter>
 <parameter name="n"> 2 </parameter>
 </input_variables>
 <table>
 <entry>
 <input name="m"> 20 </input>
 <input name="n"> 10 </input>
 <value> 400 </value>
 </entry>
 <entry>
 <input name="m"> 40 </input>
 <input name="n"> 30 </input>
 <value> 2900 </value>
 </entry>
 .
 .
 </table>
 </dynamic>
 </memory>

Figure 6.8 Specifying the Dynamic Memory Usage by a Lookup Table

Please note the resource requirements described in the shadow are the requirements of that

facet only and not of its dependencies. Developers need to be careful to exclude the resources

requirements of the dependencies when filling in the shadow. There may be cases in which

the dynamic resource requirement cannot be expressed as a function of the input arguments,

i.e. it depends on other factors, such as I/O, rather than on the size of the inputs. In that case,

the developer can just consider the dynamic resource requirement as unknown.

 - 82 -

6.1.1.4 Packaging the facet

A facet is made up of a shadow.xml file, and several class files which constitute the code

segment. They are packaged together and distributed as a single entity. In our

implementation, we use a JAR file to box them together. The facet JAR file is like an

ordinary jar file with one main difference. In the manifest of JAR file, the programmer must

indicate the main facet class. This will enable the Sparkle client system locate the execute

method among all the classes in the JAR.

META-INF/
META-INF/MANIFEST.MF
shadow.xml
imageApp/imageFacet/GaussianBlur.class

Figure 6.9 Contents of the Jar file of the Gaussian Blur Facet

Manifest-Version: 1.0
Created-By: 1.3.1_01 (Sun Microsystems Inc.)
Facet-Class: imageApp.imageFacet.GaussianBlur

Figure 6.10 Contents of the Manifest of the Jar File

Our first choice for packaging the files was actually the Java Executable File Format (JEFF).

JEFF is a new specification of Java file format proposed by J-Consortium released in April

2001, which is specifically designed for small devices. By using JEFF, unnecessary

duplication during class loading can be avoided. As claimed, JEFF can reduce the memory

requirement to load a class by 40%. However, support for JEFF would require changes to the

compiler and possibly the Java Virtual Machine. When we started our development, to the

best of our knowledge, there was no fully implemented JVM with JEFF support. Thus, we

utilize JAR as our packaging unit. At the time of writing of this thesis, a suitable JEFF

implementation was not yet available.

6.1.2 Facet Requests and Invocation

Facets are brought in at run-time. That is the foundation of dynamic component composition.

During execution, application code sends request for facets to the proxy, which will return

suitable ones to the client. When a programmer requires a facet, he will fill in a

FacetRequest object with the criteria he needs. These criteria from the facet specification

of the required functionality. Most of them follow a key-value pattern. The programmer only

needs to specify criteria to indicate the appropriate functionality. Details about the resource

availability are added by the underlying system when the request is sent out to the proxy. The

programmer does not need to worry about the resource constraints.

 - 83 -

 FacetRequest fr = new FacetRequest();
 fr.addCriteria("functionality_id", "200007");
 fr.addCriteria("vendor", "SRG SANG");

Figure 6.11 Adding criteria to a FacetRequest

The details of how a facet request is sent and how a facet is received is also kept transparent

from the programmer. Once the programmer has filled in the FacetRequest, he just needs

to declare a new Facet and invoke the execute method on it. The Facet class will interact

with the underlying Sparkle system to load a facet implementation when it is needed.

 FacetInterface fBlur =
 (FacetInterface) new Facet(this, fr, fcontainer);
 .
 Object[] input = null, output = null;
 .
 .
 output = fBlur.execute(input);
 .
 .
 output = fBlur.execute(input);

Figure 6.12 Invoking a Facet

As you can see from above, when declaring a new Facet, the programmer needs to provide

certain information to the instance. It needs to specify itself (i.e. this), the caller. This is

needed because the underlying system makes extensive use of user class-loaders. In order to

ensure proper class loading and access of input parameters in the callee facet, it is necessary

to determine the class-loader of the caller.

The programmer also needs to specify the FacetRequest. As mentioned earlier, the Facet

class hides the details of when and how a facet implementation is brought in and also when it

is discarded. It will transparently use the FacetRequest to retrieve the required facet when

needed, if facet is not loaded (i.e. it is the first time the facet has been requested, or the facet

has been previously discarded). In other words, a programmer just needs to declare a Facet

object. He does not know whether that object actually contains a facet implementation at a

particular instant in time. All he knows is that when he invokes the method execute on it,

the Facet object will link up to a suitable facet implementation to carry out the functionality

required.

The execution of every facet at run-time is associated with a container. Containers are

application-like abstractions which provide areas for facets to run in and to store run-time

data. When one facet invokes another facet, they both belong to the same container. Thus,

 - 84 -

when a facet calls another facet, it needs to indicate which container it belongs to. More

about containers will be discussed in Section 6.1.3.

A programmer accesses the services of a facet by invoking the execute method of the Facet

object, with the appropriate objects in the input array. If there is any unrecoverable error

during the execution of the facet, the method will throw a FacetExecutionException. In

other words, facets interact with each other by method invocation.

6.1.3 Containers

Applications are implemented as containers in which facets can execute, store run-time data,

etc. Since facets cannot interact with the users directly, containers form a bridge between the

facets and the user by incorporating a pluggable user interface (UI). Every application has a

set of functionalities it can offer to a user. When invoked, these funcitonalities form the root

facets of the whole execution trees. Thus, the container stores the root functionalities it

offers, the user interface, as well as providing a storage area to store shared data. In the

current implementation, the set of facet specifications in the container is fixed. This implies

that once a container is developed, the functionalities the application can provide cannot be

changed. The UI follows the facet model as well in order to be consistent, i.e. it is invoked by

the execute method. However, how it will evolve in the future has yet to be determined.

public abstract class FacetContainer extends Thread {
 public FacetContainer fContainer = this;
 public Facet UI;
 public RootFacets rootFacets = new RootFacets();
 public Storage storage = new Storage();

 protected abstract void setUI();
 protected abstract void setRootFacets();
 public abstract void run();

 public FacetContainer(){
 setUI();
 setRootFacets();
 }
}

Figure 6.13 The FacetContainer Class

When a developer want to write an application, he needs to extend the FacetContainer

class and implement the setUI, setRootFacets and the run methods. When a container

is loaded, the UI and the root facets are first set, and then the run method is called to start off

the execution of the application.

 - 85 -

RootFacets stores the functionalities this particular container can offer. The rootFacets

object can be considered as an index table which holds the specification of the root facets.

The programmer adds the FacetRequest objects into the rootFacets at a particular index

in the table. This defines the functionalities a particular container provides.

protected void setRootFacets(){
 FacetRequest fr = new FacetRequest();
 fr.addCriteria("functionality_id", "200001");
 rootFacets.add(0,fr);

 fr = new FacetRequest();
 fr.addCriteria("functionality_id", "200002");
 rootFacets.add(1,fr);

 fr = new FacetRequest();
 fr.addCriteria("functionality_id", "200003");
 rootFacets.add(2,fr);
}

Figure 6.14 Defining the Functionality of a Container

If the UI code, or the container code need any of these root functionalities, they access them

via their indices in the rootFacets object. When a functionality is retrieved from the

rootFacets object, it is retrieved as a Facet object, ready to be “executed”.

 Object[] input = new Object[]{pp, x, y};

 Object[] output =

 fContainer.rootFacets.get(2).execute(input);

Figure 6.15 Invoking a Root Facet

The main motivation of using an index-based access to root facets is that it maintains a certain

level of constancy in an application. As different UI codes can be plugged into the same

container, the UI developer does not need to deal with creating the actual request to retrieve

the root facet. He just needs to link a certain user interaction with the functionality provided

by a certain index in the rootFacets, provide the input arguments for the facet invocation

and translate the output results into a user-comprehensible form.

Different UI implementers may link different subsets of the root facets. Say we have a

container which can offer 8 functionalities (i.e. there are 8 entries in the rootFacets table).

One UI implementation may link to all 8 of them, whereas another one only to 5 of them.

Users of the second UI cannot access the other 3 functionalities. Such a scheme may seem

awkward at first, but it provides flexibility to the programmer to handle user mobility. When a

user moves from a resource rich device, to a resource constrained device with limited display

ability, the whole container moves together with it. In the new environment, a more

conservative UI can be plugged into the container instead of the previously used full-color UI.

 - 86 -

It is then up to the UI programmer to decide whether to support all the functionalities

provided in the container or to support only those he deems suitable.

UI code actually bridges the user interaction and the functionality offered by the container.

At present, in order to keep things simple and consistent, the UI, in fact is just another facet,

which extends the FacetInterface class and implements the execute method.

public class AppUI extends FacetImplementation {

 public Object[] execute(Object[] args){

 DisplayMenu();

 .

 .

 fContainer.rootFacets.get(2).execute(input);

 .

 .

 return null;

 }

}

Figure 6.16 Example of a UI linking to the Root Facet

The UI can be dynamically retrieved as well. The setUI method fills in a request. When the

container loads, the request is transparently sent to the proxy and the appropriate UI is

brought in. The container code can then execute the UI code. The current implementation

uses the same mechanisms and API for the UI as it does for the facets.

 protected void setUI(){

 fr = new FacetRequest();

 fr.addCriteria("identifier", "ImageAppUI");

 UI = new Facet(this, fr, this);

 }

 public void run(){

 //container code

 .

 UI.execute(null);

 .

 }

Figure 6.17 Execution of the UI follows facet model

When a facet needs to access the storage area in the container, it does so via the fContainer

variable which every loaded facet contains.

 - 87 -

ImpageProcessor a = new ImageProcessor();

.

fcontainer.storage.add(4, a)

.

Object b = fContainer.storage.get(2);

Figure 6.18 Accessing the Storage Area of the Container

6.2 OBJECT-ORIENTED PROGRAMMING AND FACET-BASED PROGRAMMING

In the previous sections, we have briefly provided the syntactic overview of facet-based

programming. Even though we have employed an object-oriented approach to implement

facet, the fundamental principles of facet-based programming differ from object-oriented

programming. In this section, we discuss some of the differences between the two and

provide certain guidelines which programmers can follow when they build facet-based

applications.

6.2.1 Object-Oriented vs. Facet-Based Programming

The fundamental difference between object-orient programming (OOP) and facet-based

programming (FBP) is their centers of focus. OOP revolves around data. Programmers

define not only the data structures of the data types, but also the operations that can be applied

to a data structure. In essence, the data structure becomes an object, incorporating both data

and the functions that can be applied to the data.

FBP, on the other hand, is focused on the application logic. Programmers define what

functionalities an application provides, and these functionalities become facets. Facets do not

store any data. Data structures are just input and output parameters to facets.

Objects encapsulate both state and functionality. At run-time, an object-oriented program’s

state is distributed among all the instantiated objects. The application logic is achieved by

sending messages from one object to another, invoking different functions in different objects

which in turn change the state in those objects. Facets on the other hand, encapsulate only

the functionality. The application’s run-time state is centralized. It is stored in the container,

either in the storage or in the UI. Application logic is achieved by sending messages to the

facets. The messages contain the data (state) on which the facets should act upon. Facets

make changes to the state which is then stored back into the container.

 - 88 -

The above is also reflected in the way programmers develop applications. The first step in

OOP is data modeling – identifying all the objects they need to manipulate and how they

relate to each other. The first step in FBP is functionality modeling – identifying all the

functionalities in an application and how they are dependent on each other.

Since facets are types of components, the differences between components and objects also

apply to facets and objects. A facet is a unit of third party composition; hence, it is

sufficiently self-contained. Also, a facet has no persistent state. One copy of a facet cannot be

differentiated from another copy. An object, on the other hand, is a unit of instantiation and

has a state that can be persistent. It encapsulates both state and behavior. A facet may be

realized by traditional procedures, assembly language or by using objects, as in our

implementation. A facet may contain multiple classes, but a class is definitely confined to a

single facet. The main difference lies in the roles of components and objects. The role of

facets is to capture the static structure of an application whereas the role of objects is to

capture the dynamic nature of systems built out of facets [82, 83].

Below we include a table, which highlights some of the differences between object-oriented

and facet-based programming.

 Object-Oriented Programming Facet-Based Programming

Unit of programming Object Facet

Granularity 1 class Can have more than 1 class

Interfaces
Any number of interfaces, with any

number of public methods

Only h as 1 publicly accessible
method, which needs to follow a

contract

State and
Persistence

Stores some form of state during its
lifetime.

May contain some persistent state.

Does not store any state between 2
invocations.

No persistent state in facets.

Driving Principle Data-centric Functionality-centric

Run-time Application
State

Distributed among all instantiated
objects Centralized in container

Table 6.1 Difference between OOP and FBP

6.2.2 Developing a Facet-Based program

As mentioned earlier, developing a facet-based program is considerably different from

developing an object-oriented program, and due to this reason converting an object-oriented

program into facets is a tremendously taxing job. The main difficulty lies in the fact that in

 - 89 -

OOP, data and application logic are intermingled together and are distributed all throughout

the program, in different objects. In order to convert it to facets, data structures must be

identified and separated from the application logic. The application logic must then be

divided into facets. At the same time, it must be decided what data structures the facets act on.

The UI aspects of the application must also be extracted and separately coded.

Instead of converting an object-oriented application into a facet-based application, it is

recommendable to develop the application from scratch. Below we provide some guidelines

for facet-based programming.

q Functionality Modeling

The first step for FBP is functionality modeling – identifying all the functionalities in an

application and how they are dependent on each other. The developer starts by

identifying which functionalities or tasks the application should provide to the user.

These functionalities essentially form the root facets of the application. Then, for each of

the functionalities, it must be determined how they will be implemented, whether as a

single facet, or whether the functionality should be divided up into smaller functionalities

i.e. whether some of the work carried out to fulfill the functionality can be extracted and

placed in another facet. The reason for doing this is that it allows reuse. For example, in

an image processing application, both adding shadows to an image and finding the edges

of an image require convolving a 3x3 kernel. Thus the convolving functionality can be

extracted and implemented as a facet, so that both the “add shadows” and “find edges”

facets can access it. In short, the developer has to determine the logic of the application

and how it will be distributed among the various facets.

There are no definite limits to the granularity of the functionalities or the depth of the

dependencies. It is up to the developer to decide how fine they want their facets to be and

how deep the dependencies run. As a general guideline, it is advisable to keep the

dependencies shallow. It is because if the execution tree runs very deep, there are more

active facets in the system. These cannot be discarded, thus clogging up the memory

resources in a constrained device.

q Facet Qualification & Programming

Then comes the nitty-gritty details of actually assembling the application. The data

structures on which facets act, i.e. the input and output arguments, the pre-conditions, and

post-conditions must be determined. Some facets may have to be programmed from

scratch. However, some functionalities may already have been implemented before, by

 - 90 -

other vendors or from previous versions. These can be used if they fit the requirements of

the current development. The programmer may also provide different versions of a

functionality. For example, different facets, carrying out the same functionality,

implementing different algorithms and thus having different resource characteristics.

These different versions are essential for functionality adaptation.

One thing to note is that if we are using an object-oriented language to develop facets, the

inputs and outputs are in the form of objects. Thus, the data structures are encapsulated

as objects and passed in and out a facet. These objects contain methods which act on

their internal data. This may seem like a contradiction to FBP. However, looking at it

more closely, these methods only provide functions to access the data, i.e. set, or get, or to

do some minimal processing. The main application logic is located in the facets. These

so-called data objects only have functions to make the access of the data structures more

convenient.

q Container & UI Programming

Facets can be considered as dispersed entities. The container is the unifying force, which

brings the facets together so that they work together as a single application. The

container stores the specifications of the root facets. It is the UI which provides the link

between users and the root facets, and from one root facet to another.

Since facets cannot directly interact with the user, it is the UI’s responsibility to receive

input from the users, convert into the appropriate data structures, call the corresponding

root facets and then translate the output results and data structures in a form so that it is

comprehensible by the user.

q Testing & Distribution

Once all the facets and the container have been built, they must be tested together for

correctness and to determine their resource requirements. The resource requirements,

both static and dynamic, of each of the facets must be ascertained. The next step is to

package the facets, with their shadows and distribute them to facet servers. The container

and the UI can now be distributed to the users.

The above summarizes the steps which must be taken to develop a facet-based application.

Throughout the development, it must be kept in mind that facet offer only a single

functionality and cannot be used to maintain any state, thus the state must be maintained in

the container.

 - 91 -

6.3 SUMMARY

This chapter provided a programmer’s perspective of the facet model. In the first section, the

syntactic description of the facet model was discussed. The second section highlighted the

difference between object-oriented programming and facet-based programming and provided

guidelines for facet-based development.

Facets are made up of 2 parts, the shadow and the code segment. The shadow is just an XML

file which describes the properties of the facet including information about the facet, the static

and dynamic resource requirements, and the dependencies of the facet. The code segment is a

group of classes implementing the functionality. Only one of the classes exposes a publicly

callable method and that class is called the facet main class. Facets are packaged as JAR files

and distributed.

Facet requests are carried out transparently to the programmer. The programmer just provides

the facet specification. The underlying system will handle everything else, including bringing

in the facet from the proxy, loading it and discarding it. The programmer is kept ignorant of

all the details.

Containers provide a unified application abstraction to the user. They contain the

specification of the root facets, and pluggable UI which provide links between the users and

the root facets. One of the main purposes of containers is to provide programmers with

storage area to store some run-time state.

The fundamental difference between object-oriented programming (OOP) and facet-based

programming (FBP) is that OOP revolves around data and functions which act on the data.

FBP is based on functionality and how it is organized among various facets. In OOP, state

and application logic is intermingled together and distributed among the various instantiated

objects. In FBP, application logic is separate from state and UI. Facets contain the

application functionality, whereas state and UI are centralized in the container.

Developing a facet-based application encompasses the following steps:

§ Functionality Modeling

§ Facet Programming and Qualification

§ Container and UI Programming

§ Testing and Distribution

 - 92 -

Converting an object-orient program to a facet-based program is a rather complicated task,

due to the difference in the distribution of state and functionality throughout the program.

 - 93 -

Chapter 7

Testing and Evaluation

The main implementation focus of my dissertation is the client system, which supports

dynamic component composition. Chapter 5 described the client system and its constituent

entities. This chapter provides an evaluation of the client system implementation in more

concrete and practical terms.

The main purpose of the testing is to demonstrate the feasibility of the facet model and

analyze its performance. Several test cases were created and run on the client system installed

on a personal digital assistant. In this chapter, first, the testing methodology adopted is

described. Then, we look at the features of the test bed. Testing was carried out under three

contexts. We look at each of these contexts in turn, and describe the results obtained.

7.1 MOTIVATION

Our tests involve three aspects:

§ To demonstrate the ability of the client to support dynamic facet composition, i.e.

being able to bring in facets at run-time, load them, execute them and then throw

them away.

§ To establish factors, which can be adjusted to improve the performance of the client.

§ To show that a real world application can be built by utilizing the facet model.

My dissertation covers only the client system, and hence, functionality adaptation, cannot be

comprehensively tested. The proxy plays an important role in adaptation. The client system

notifies the proxy of the amount of resources it processes, and the proxy then matches an

appropriate facet for it. The evaluation of adaptation would require both the client system and

the proxy, which is out of the scope of this thesis.

 - 94 -

Performance is affected by many factors other than the client system implementation,

including the network bandwidth and the implementation of the proxy. Thus, any

performance data must be evaluated in the context of its environment, rather than attributing

any shortcomings or strengths solely to the client system.

We carried out testing under three contexts. The facet model depends on the ability of the

client system to request for facets, and load them at run-time. The first experiment looks into

exactly that. It investigates the timing patterns of each of the stages involved in bringing in a

facet and running it. We tested with facets of different sizes in order to identify bottlenecks.

The second experiment aims to identify factors which can have an effect on the performance

of the system. We ran a benchmark application, which consisted of several facets and which

called them in different access patterns, on the client and investigated the effect of caching,

and the types of references on the performance of the application.

The last experiment aims to demonstrate the feasibility of building a normal application using

the facet model. An image processing application was built, which provided several basic

functionalities to the user. We wanted to investigate whether the delay in retrieving the facets

from the network in the context of such an application can be considered acceptable by the

user.

7.2 TESTBED

The Sparkle client system is built on Java. Thus, every client system requires a Java Virtual

Machine. The size of the class files of the Sparkle system is 252KB, not including the dom4j

XML parser which is actually 2.4MB. When installed together as a jar file which is

compressed, the client system and the parser comes up to 630KB. The client system was

installed on a Compaq iPAQ personal digital assistant, which was the basis of all the tests.

The iPAQ was directly connected to a Linux PC via a serial connection. A PPP connection

was established over the serial line so that the Linux PC acted as a gateway to the Internet for

the handheld. The maximum bit rate for the connection was 115200bps. The proxy was also

set up on that PC. It stored facets and responded to client requests. This simplified proxy only

matched facet identifiers and functionality identifiers in requests. It did not carry out any

resource matching or adaptation.

 - 95 -

Compaq iPAQ Pocket PC H3870 PC Proxy

CPU 206 MHz Intel® StrongARM, 32-bit
RISC Processor CPU Intel Pentium II MMX 300MHz

Memory 64 MB RAM + 32 MB Flash ROM Memory 128MB RAM

OS Familiar Linux v0.5.2 OS RedHat Linux 7.1 (2.4.2-2 kernel)

JVM Blackdown -1.3.1-RC1, native
threads, nojit Web Server Apache 1.3.19-5

PPP Daemon pppd version 2.4.0b4 PPP Daemon ppd version 2.4.0

 Table 7.1 Hardware Configuration used for Testing

The iPAQ is that it has 2 types of memory, 32MB of Flash ROM and 64MB of RAM. Data

on the Flash ROM does not get erased after a reset and hence, it is used to store more

permanent data such as the OS, the JVM, etc. Since the RAM is volatile, it is used to store

temporary files and also is used as the dynamic working memory of applications. Currently,

the OS and the JVM take up 16MB and 13MB of the Flash ROM respectively. After the

installation of the client system, there is roughly 2MB of Flash ROM and 64MB of RAM left

for applications.

7.3 EXPERIMENT 1 - TIMING ANALYSIS

The main purpose of the client system is to support dynamic component composition, i.e.

being able to bring in facets at run-time, load them, execute them and then throw them away.

In this experiment, we investigate the delay in bringing in and loading facets and look at the

timing patterns, in order to identify bottlenecks.

Every application needs facets. These facets are located on the network. The client sends

requests for these facets to the proxy, which returns appropriate ones to it. The main stages

involved in the process on the client side include, (1) checking if the facet is in the cache, (2)

creating a SOAP request and sending it to the proxy, (3) receiving the facet from the proxy,

(4) caching the facet for future use, (5) loading the facet class into the virtual machine, and

finally (6) creating an instance of the facet which can be used.

In this experiment, we ran an application which requested facets of different sizes and

recorded the timing data for each of the stages. The code size of the facets ranged from 1KB

to 500KB, however the actual size of the facets (i.e. the Jar files) ranged from 1KB to 69KB.

This is because Jar files actually compress their contents when packing them together. The

facets do nothing except output some strings to the console. For each facet, the application

 - 96 -

was run 20 times and the average of the timing data was recorded. The cache size was set to

5 entries, and it was ensured that the cache was full when the request for the facet was made.

The timing breakdown obtained is depicted in Figure 7.1.

Figure 7.1 Timing Breakdown of Requests for Facets of Different Sizes

It can be seen from Figure 7.1 that as the facet size increases, the total time to retrieve a facet

also increases. The stage, which takes the most amount of time, is the receiving the facet

from the proxy. This is attributable to the slow network connection of the iPAQ. The

latency of the network is approximately 2.3 seconds and the transmission rate is

approximately 80kbps.

Another stage which takes up a considerable amount of the total time is the creation of an

instance of a facet. For smaller code sizes, it is almost negligible. However, as the size of the

facet code increases, it can be almost as much as one third of the total time taken. This value

depends greatly on the implementation of the virtual machine and the processing power of the

client system.

The loading of the facet is probably the stage which takes the third most amount of time.

However, in comparison to receiving a facet from the network and creating an instance of it,

this stage takes a relatively small amount of time. Again, this stage depends greatly on the

implementation of the virtual machine and the processing power of the client system.

 - 97 -

7.4 EXPERIMENT 2 – PERFORMANCE ANALYSIS

In the previous experiment, we noted that the main bottleneck was the time taken to retrieve a

facet from the network and the time taken to create an instance of the facet. In this

experiment, we investigate ways of reducing the cost incurred by that to an application, in

order to improve performance. In this experiment, we look into two approaches, namely,

references and caching.

An application requires facets. It may call upon a facet more than once. There may be three

possibilities:

§ The facet is still loaded in the JVM. It has not been collected by the garbage collector

(GC) and is still accessible via its reference. Thus, it can be immediately used.

§ The facet is available in Sparkle’s cache. The facet instance has already been garbage

collected. However, the facet code is available locally in the cache. In this case, the

facet instance needs to be created again in the JVM before it can be used.

§ The facet is not available locally. The facet instance has been garbage collected and

the facet code is not available in the cache. In this case the facet has to be retrieved

from the network, and the facet instance needs to be created. This incurs a great deal

of overhead.

If the facets are never unloaded, even though this may improve performance, it takes up a lot

of memory. Hence a balance between the three possibilities must be achieved. We

investigated of using different types of references to dereference facet instances.

§ Strong references

If facets are strongly referenced, they cannot be discarded as soon as they are used,

unless the references are explicitly nullified or the end of the scope is reached.

§ Soft references

If facets are soft referenced, then the garbage collector can collect the facet instance

even though there is a reference to the instance. These instances will definitely be

collected before the machine runs out of memory.

 - 98 -

§ Weak references

These are similar to soft references. Only that the garbage collector will almost

always collect the weakly referenced instances.

§ Null references

No references to the facets are kept. They become garbage as soon as they are used.

This method can save a lot of the run-time memory taken up.

As it can be seen from above, soft and weak references are mid-way between strong and null

references. For both soft references and weak references, the garbage collector can collect the

referenced facet, as it deems necessary. If a facet has not been collected, it can be re-used,

thus reducing the number of facet requests created.

We ran a benchmark application on the client systems several times, with different types of

references, heap sizes, and cache sizes. The application consists of 21 facets. The code size

ranged from 1KB to 32 KB with an average size of 10.7KB. However, the facet sizes (i.e. the

jar file size) ranges from 0.9KB to 5KB with an average size of 2.6KB. The application called

facets in different access patterns. The total number of facet calls is 724. A single facet may

be called upon more than once, either in the same block or even by another facet. The

execution trees of the root facets of the application had a maximum depth and breadth of 5.

In the first round of tests, we used different types of references and ran the benchmark on the

iPAQ with the heap size set to 4MB and 16MB and the cache size to 8. The results are shown

in Figure 7.2. For each test case, five iterations were carried out and their average value was

recorded. Instead of measuring execution time, which is affected by a lot of factors, including

bandwidth availability, processing power, garbage collection scheme, etc, we report how the

requests for facets were satisfied. As mentioned earlier, when an application requires a facet,

there are three possibilities for satisfying that request. Either the facet is located in the local

cache, or it needs to be retrieved from the network. In the case that the facet has been used

before in the same block, it is possible that the facet has not been discarded, i.e. it is still

loaded in the JVM and the instance is still accessible. This is particularly the case for strong

references. Comparing the results entails looking at the number of requests sent to the

network, because that has a direct implication on performance. The more requests directed to

the network, the longer the delay, and thus, the slower the performance.

 - 99 -

Figure 7.2 Results of the Benchmark with Different Types of References and Sizes of Heap on the iPAQ

As you can see from Figure 7.2, the results obtained somewhat match the expected results.

The number of request which find the facets already loaded decreases from strong references

to soft references to weak references to no references. Likewise, the number of requests sent

out to the network increases from strong to soft references to references to no reference.

There is a marked difference between soft references and weak references. However, there is

little difference between the 4MB and the 16MB performance.

Theoretically, if less memory is available, the garbage collector will collect more soft

references and the weak references in order to regain more of the heap. However, that did not

seem to be the case in the above graph. This could be attributed to the particular

implementation of the garbage collector. We carried out this experiment again, but on a PC

which had the same configuration as the proxy and which was installed with Sun’s Java(TM)

2 Runtime Environment, Standard Edition (build 1.3.1_01). The results are depicted in

Figure 7.3. In this case, a difference can be seen between in the performance of soft

references and weak reference, in a smaller memory situation i.e. 4MB heap size, and in a

high memory situation i.e. 16MB. With less memory available, soft and weak references are

more easily collected, and hence it is less likely to find the facet still accessible through the

reference. In other words, more requests need to be directed to the cache or to the network.

The heap size has a bigger effect on the case of soft references than that of weak references.

 - 100 -

Figure 7.3 Results of the Benchmark with Different Types of References and Sizes of Heap on a PC

From the graphs above, it can be seen that soft references are probably best suited for the

client system. Strong references disallow the discard of facets, which goes against the

“throwable” philosophy. The benefit of weak references when compared to no references, in

the presence of a cache, is not as significant. That is, there isn’t much difference in the

numbers of requests retrieved from the network. Soft references, hence, are a better option

for our system. They provide performance improvement, and adaptation to different memory

conditions, depending on the implementation of the Java Virtual Machine. Their performance

is comparable to that of strong references. When running out of memory, the soft referenced

facets will be discarded, reclaiming the much needed memory. It must be emphasized that the

results obtained above are greatly affected by the implementation of the garbage collector.

However, the tests above serve as indicators of what can be expected from different virtual

machines, and can be used to make design decisions.

In the second round of tests, we investigate the effect of caching. The system caches the

recently used facets, i.e. it implements the Least-Recently-Used (LRU) algorithm. It will first

look into its local cache to see if a facet is available there, if not, only then will it request the

facet from the network. In that way, it reduces the number of requests sent out to the

network, and thus improves performance.

We ran the benchmark several times on the iPAQ with different cache sizes. Soft references

were used and the heap size was set to 4MB. For each test case, five iterations were carried

out and their average was recorded. The results are illustrated in Figure 7.4.

 - 101 -

Figure 7.4 Effect of Caching on Performance

It can be seen from the graph, that as the cache size increases, less requests need to be sent out

to the network and thus improving performance.

7.5 EXPERIMENT 3 – IMAGE PROCESSING APPLICATION

In this experiment, we illustrate the feasibility of employing the facet model to build a usable

application. We have built an image processing application, which provides basic

functionality to the user. The application consists of 15 facets, each providing different

functionality, out of which 10 are root facets.

The structure of the application is depicted in Figure 7.5. The root facets essentially provide

functionality to open, to blur, to find edges and to flip images. The other facets provide

functionality such as matrix convolvers and converters (i.e. converting an image of which the

pixels are in bytes into an image with pixels as shorts).

Figure 7.5 Facets of the Image Processing Application. (Gray ovals represent root facets)

 - 102 -

The size of the application container and UI is 10.1KB. The total size of the facets is 51KB,

the average being 3KB. We carried out two tests on the iPAQ handheld. One to measure

how long it takes to retrieve a facet and how much of that time is spent on receiving it from

the network. In the second test, we ran the application and compared the difference in

response times, with respect to the user, of each of the functionalities, when the facets are

locally retrieved, i.e. from the iPAQ itself, or from the proxy. The graphs of the tests are

depicted in Figure 7.6. The values in the graphs represent averages of 20 iterations.

Figure 7.6 Timing Analysis of Retrieving Various Facets from the Network

The average time to retrieve a facet is 3.5 seconds, out of which most of the time is spent

waiting for the network transmission, which takes, on average, 2.9 seconds. This corresponds

with the results obtained in Experiment 1, in which it was indicated that the main bottleneck

was the network transmission.

Figure 7.7 Comparison of Response Times for Facets locally retrieved and remotely acquired.

 - 103 -

Figure 7.7, we compare the response times in executing a functionality when the facets are

locally available and that of retrieving them from the network. The functionalities were

invoked on the same image. The difference between the response times is dependent greatly

on the number of dependencies the root facet has, and whether those dependencies are

available in the cache or not. For example, a huge difference can be seen in the execution of

Gaussian Blur. This is because the Gaussian blur facet has the most number of dependencies

all of which must be retrieved from the proxy, leading to the accumulation of the transmission

delays of the facets. The average difference in response time between having all facets

locally available, and that of having to retrieve all of them from the network is 5.6 seconds.

With no mechanisms incorporated for performance improvement, such as caching, this can be

considered as acceptable.

The screen shots of the application are depicted in Figure 7.8.

Figure 7.8 Screen Shots of the Image Processing Application

Figure 7.9 Applying Various Functionalities on an Image

The application on

the iPAQ

Functionalities

provided

Original Image

After Gaussian Blur After Adding After Finding Edges

 - 104 -

It can be seen that the facet model can be used to build practical applications, especially those

which contain a lot of functionalities. Mechanisms, such as caching, or pre-fetching

algorithms can be incorporated which reduce the apparent delay and improve the response

times.

7.6 EVALUATION

From the above experiments, it can be seen that the main bottleneck is the delay caused by

network transmission. We cannot reduce the latency per se, however we can improve the

performance by reducing the number of requests sent to the network. One mechanism, which

was explored in the second experiment, was the use of references. Instead of marking every

facet as garbage as soon as it has been used, i.e. by removing references to it, we can let it be

accessible by soft references. In that case, if the client has sufficient memory, the facet will

not be collected, i.e. discarded, and will still be accessible. If it is required again in the same

scope, it can directly be used, without having to load it or to create another instance of it.

Another mechanism which was explored was the caching of the facets. Facets were locally

retrieved instead of getting them from the network. At present, the LRU algorithm is being

used for caching. An increase in the size of the cache demonstrated an exponential decrease

in the number of requests sent to the network and in the execution time as well.

The above are mechanisms which the client side can implement on its own. Other techniques,

which require co-operation with the proxy, can be also employed. For every request, the

proxy will carry out dependency and resource analysis. It can predict, to a certain extent,

which facet will be used next and prefetches it so that it is ready to transmit when the next

request arrives. Instead of waiting for the next request, a push mechanism can be utilized

which allows the proxy to send the facet to the client before it is requested. In other words,

while the client is executing a facet, the proxy pushes the dependencies into the cache, so that

when the dependency is required, the client can retrieve it from its cache instead of requesting

the facet from the proxy. This technique reduces the response time and can improve

performance. At present, the above technique has not been implemented. This and other

techniques are avenues for future work on the system.

The final experiment illustrated that the facet model can be used to build practical

applications. It is believed that the facet model is best suited for applications which have a lot

 - 105 -

of functionalities, which can benefit from the memory saving and dynamic adaptation

provided by the facet model. The image processing application suffered some response time

delay due to the network transmission of the facets. However, for facets which are already

located in the cache, the performance delay is insignificant.

It must be kept in mind that the current experiments were carried out on a serial connection

with an effective transmission rate of 80kbp. With wireless LANS and bluetooth networks

which have a transmission rate of 54Mbps and 1 Mbps respectively, the network delay may

be greatly reduced.

Even though our testing only focused on the client system, we envision that the performance

of the whole sparkle system will not be much worse. The current test results do not include

the time taken for the proxy to carry out analysis and matching. However, since the proxies

are implemented on machines with sufficient processing powers, we believe that the delay

incurred will not be as substantial as the network delay, and may be in the order of tens or

hundreds of milliseconds.

7.7 SUMMARY

This chapter described the testing carried out on the client system. The main purpose of

carrying out the experiments was to demonstrate the feasibility of the facet model. This was

done in three contexts. The tests were carried out on a Compaq iPAQ personal digital

assistant.

 The first experiment investigated the timing patterns of each of the stages involved in

bringing in a facet and running it. The second experiment identified factors which can have

an effect on the performance of the system such as the use of references and caches. The last

experiment demonstrated the feasibility of building a normal application using the facet

model.

From the first experiment, it was concluded that the main bottleneck during the request for a

facet was the network transmission delay. In addition, creating an instance of a facet took a

significant portion of the time in cases of large code size.

 - 106 -

The second experiment demonstrated that performance could be improved by using weak

references, soft references or strong references, because they reduce the number of requests

for facets and in turn the number of requests sent to the network. However, strong references

disallow the discard of facets, and the benefit of weak references when compared to no

references, in the presence of a cache is not as significant. Soft references, hence, are a better

option for our system. They provide performance improvement, and adaptation to different

memory conditions, depending on the implementation of the JVM.

The third experiment demonstrated the feasibility of building a practical application using the

facet model. An image processing application was built which provided functions like

opening, blurring, flipping and saving images, etc. It highlighted the need to incorporate

mechanisms to improve response times.

At present, only two mechanisms, soft references and caching, have been incorporated into

the system for performance improvement. Other techniques, which involve the co-operation

of the proxy to reduce the observed latency in receiving a facet, can provide avenues of future

work.

 - 107 -

Chapter 8

Overall Discussion

The last few chapters have focused on the facet model, the details of its implementation and

that of the Sparkle client system. The previous chapter described some of the tests carried out

on the prototype of the client system.

In this chapter, we take a step back and look at the overall picture. Despite having gone

through a lot of issues, there are some which have not been discussed and deserve a mention.

We particularly look into web-services and the distinctive features of the facet model. Web-

services have been hailed as the computing paradigm for the future, and thus it is important to

know where the facet model stands in the face of web-services.

We also look at some issues regarding the facet model itself. No doubt, there are certain

cases in which the facet model takes a different approach than the others. When it comes to

functionality adaptation and resource management, the facet model opts for programmer

transparency, whereas in many other systems, the programmer has a large part to play in

resource management. This chapter will also look into the transparency issue.

The main motivation of the facet model is its ease of adaptability. We analyze how

effectively the facet model can be applied to achieve the different types of adaptabilities

discussed in Chapter 2. We also look into how context-awareness can be achieved under this

model.

Nothing is perfect. Everything has some flaws and strengths. We discuss some of the

deficiencies of the facet model and then describe situations in which it would be most

suitable.

Finally, we look at the Sparkle architecture as a whole, and describe what it is lacking in order

for it to be a suitable architecture for the mobile computing environment.

 - 108 -

8.1 WEB-SERVICES VS FACET MODEL

The Internet and the World-Wide Web have traditionally been used for access of information,

web pages, emails, etc. However, recently, there has been an expansion of the paradigm to

include the provision of web services. The web services movement has a lot of major

software vendors as its proponents including Microsoft (.NET), IBM (WebSphere), Sun

Microsystems (SunOne), Oracle (Dynamic Services), and HP (HP Web Service Platform). It

has also been the focus of a lot of research including Ninja [29], Sahara [69], Open Mash[1]

etc. The movement is about using the Web as a platform to provide services.

Web services can be considered as active programs or software components, which are

hosted on the web-servers and can be accessed by other entities. What sets them apart from

cgi-programs is that they can be discovered and composed. A web service is usually

associated with a description using WSDL, Web Services Description Language, and is

published in a directory such as the Universal Description, Discovery and Integration Service

(UDDI). This allows the discovery of the service. Various services located on different

servers can be dynamically composed together to provide a complex service to the user.

SOAP is the de facto protocol used for invoking services.

Considering the client side view, functionality is implemented by services which are hosted

on third-party servers. Users send data, or information about the location of the data, to the

services which then act on the data and send the results back to the user.

The web services approach partially alleviates the heterogeneity problem and the adaptation

problem. Most of the essential parts of the application are executed on servers, whose

configurations and runtime conditions are known. This makes adaptation of the application

redundant, because the most resource consuming part of an application is carried out on the

servers.

However, it is possible that the results returned by the services may not be in a form suitable

for the client devices. For example, they may be encrypted with a large key and it would take

a lot of computational effort for the device to decrypt them. Or, the results may be too large

to send over a slow wireless network to a device. This necessitates the use of a

transformational intermediary.

 - 109 -

The transformational intermediary is often implemented as a proxy responsible for adaptation.

It carries out data adaptation - transforming the results returned by the services. For examples,

changing HTML results to WAP, or changing the image resolution. The proxy may also

carry out network adaptation, such as using protocols especially designed for low power, low

computation or poorly connected devices as the need arises. Thus, the proxy becomes the

center for adaptation. In the facet model, the proxies also have a major role to play in

adaptation. However, their role is focused mainly on functionality adaptation.

The fundamental difference between the facet model and web-services is that the facet model

brings code to the client to execute, and in web-services, data is moved to the servers and the

results are sent to the client. Both models have their advantages and disadvantages. We

cannot say which is better than the other because both systems have to be more widely

adopted in order to provide a more comprehensive comparison. Below, we highlight some

issues which are of consequence to mobile computing.

As mentioned earlier, the facet model brings in components rather than accessing the

application logic remotely, i.e. web-services. The latter method requires moving data to the

service, and getting back the results. It would be easier to move components rather than data

because, very often, the code size is often smaller than the data size, especially in the facet

model, where each component only supports a single functionality. Also, there is less of a

need for marshalling and unmarshalling the data, thus reducing processing time.

Moreover, there may be situations in which it is difficult to send data to the service, either

because the data is too large to be sent over slow wire-less networks, or because the data is

private and should not be sent over an insecure network to a third-party server. In those

situations, there is no option but to bring in code.

In addition, devices need to be able to access the services from any place, at any time. This

places a burden on the service provider who must ensure service availability. If a service

fails, multitudes of devices may not be able to function, unless another compatible service is

available. On the other hand, in the facet model, if a proxy fails, a client can always access

another proxy. If a facet is not available, a client can get another compatible one instead.

The web-services approach strictly follows the client-server model. It requires that all

interactions that occur are those between a client and a server. Any communication between

two devices has to go through an intermediary service. Devices cannot directly communicate

with each other. This model does not allow for direct client-device peer-to-peer

 - 110 -

communication, which is one of the characteristics of mobile computing. For both

performance and security reasons, it is not desirable for all peer-to-peer communications to be

carried out via intermediary servers.

Furthermore, in some cases, it may not be possible to carry out the application logic on

servers. Some things have to be done locally. One such example is the processing of private

data which cannot be moved away from the device. Another example is a miniature robot on

an exploration journey, inside a digestive track or a pipe. It may have the hardware parts to

carry out some repair work, but not enough memory to store the code. As it is exploring the

surface, when it encounters a certain blemish or problem on the surface, it can download code

for that particular repair work, i.e. to control the parts in order to eliminate that problem.

Web services are essential for providing access to certain resources. For example, access to a

printer in an Internet café can be provided through a printing web service. Clients in the

vicinity can dynamically discover the printing service and use it if the user wants to print

documents to that printer.

In fact, web services and facets are not mutually exclusive. They can be used to complement

each other. A client can download a facet which accesses a web service. Such as the printing

web service described above, a client can download a facet to the service. This way, we can

have the best of both worlds.

8.2 TRANSPARENCY OF ADAPTATION

 In the facet model, programmers are kept relatively shielded from the details of run-time

adaptation. Programmers only need to specify the functionality they require, and they can

safely assume that they will receive a facet with resource characteristics suitable for the

current execution environment. The amount of resource an application uses is, to a large

extent, under the control of the resource manager and the proxy. The resource manager

determines how much resource to allocate to a particular application (or functionality), and

the proxy finds a facet which can conform to those constraints.

In many systems, the amount of resources an application uses is under the control of the

application itself, i.e. the application has in-built mechanisms to change its own run-time

resource usage requirements. There is a system wide resource manager which keeps track of

 - 111 -

the resources being used, but its role differs from system to system. There are two major

approaches. On one hand, the system resource manager is just a source of information.

Applications query the resource manager to determine the current resource status, and then

adapt themselves accordingly, i.e. they have their own adaptation policy. On the other hand,

instead of just keeping track of resource usages, the resource managers also determine the

adaptation policy. They carry out resource allocation among applications and inform the

applications the amount of resources that have been allocated to them. The applications then

adapt their resource usage according to that.

It can be seen that, for both approaches discussed above, applications manage their own

resource usage. Application programmers must include mechanisms of adaptation in their

programs. In other words, programmers are not only exposed to the mechanism of

adaptations but need to know it thoroughly and write it as well. How well an application

adapts at run-time, thus, is highly dependent on the skills of the developer.

Yes, in the facet model, application developers do need to build different facets with the same

functionality with different resource characteristic. However, they are spared from coding

mechanisms for responding to changes in run-time resource availability.

The main advantage of having this transparency is that it makes it a lot easier to build

applications. Programming with support for adaptation for a huge variety of devices available

can become a burden for programmers. Moreover, applications only possess a local view of

the whole system. The resource manager has a global picture and thus is more suitable to do

resource allocation and adaptation. It has a centralized control over the usage of the resources

in the system. A well-written resource manager can make the system and the execution

environment generally more stable and friendlier to work in.

Providing programmers with transparency for important system functions is not something

new. Frameworks for Enterprise JavaBeans, CORBA, .Net, etc., also give programmers

transparency for persistence, life-cycle management, transactions, etc, making life more easier

for programmers and the systems implemented on them more stable. Transparency for

adaptation can be seen as the next step in the same direction.

 - 112 -

8.3 THE FACET MODEL AND ADAPTABILITY

In chapter two, we discussed five different types of adaptability commonly exhibited by

applications, namely – memory, energy, network, device and context adaptability. In this

section, we look at how the facet model can be used to enhance each kind adaptability of a

mobile application.

The facet model achieves memory adaptability by bringing in facets which have suitable

memory characteristics for the current run-time memory conditions. If a device has less run-

time memory available, a more memory efficient facet is brought in and executed. In

addition, since functionality is brought in little by little (i.e. facet by facet), this makes it more

adaptable. For example, stages of a game are downloaded as you go along, saving the

memory required for the whole game application.

The facet model is not very suitable for energy adaptability. Facets are just parts of

application code. Power-management is usually the responsibility of the operating system, or

the middleware, and hence the facet model does not greatly impact energy adaptability.

Energy adaptability is best achieved by energy adaptation techniques, such as automatic

power off, or dynamic voltage scaling, etc.

Network adaptability is often achieved by network-level adaptation and data adaptation

techniques, i.e., by using different protocols, or by changing the quality of data accessed.

Network traffic of an application is largely affected by the amount of data it needs to access.

Thus, in order to achieve network adaptability, facets with different algorithms, which require

less network interaction or access less amount of data, should be used instead.

The facet model also enhances the device adaptability of an application. Different devices

have different configurations, e.g. input devices, output devices, processing powers, etc. The

facet model makes it easier to adapt the presentation format, UI and even the application

functionality. For example, accessing an HTML web page on a notebook could be pretty

straightforward. It would require a simple HTML parser facet and associated presentation.

However, accessing the same web page on a mobile phone would perhaps require a facet

which carries out HTML-to-WML translation in order to adapt the presentation of the page to

the display screen of the phone.

 - 113 -

Context encompasses a lot of factors – location, time, preferences, surrounding entities.

Context adaptability can be easily achieved by using facets suitable, or specially designed for

the current context. For example, a client can adapt at run-time to the surrounding entities

and be able to work with them. Let’s say when a client device detects a nearby printer, it uses

a facet, which it receives from the printer itself or from a nearby proxy, enabling it

communicate with and to print to that particular printer. With the facet model, applications

can also adapt according to the input data they are presented with. Take an MMS

(Multimedia Messaging System) application as an example. The type of decoding facet used

depends on the type of message that is received. For a jpeg message, a jpeg decoding facet

can be downloaded and used. For an mpeg message, an mpeg decoding is used. The

advantage of using the facet model for the MMS application is that does not put any

limitation on the types of messages the MMS application can decode. As new messaging

formats evolve, the MMS application just has to download the suitable decoding facet for that

message.

As it can be seen from above, the facet model has a large impact on the degree of memory,

device and context adaptability an application possesses.

8.4 CONTEXT AWARENESS

Context-awareness implies being able to detect the context an application is running in and

modify the execution of the application according to that. The term context-awareness is

often used synonymously with device, network and context adaptability.

In the facet model, context awareness implies choosing the facet suitable for current context.

Context detection is carried out by both the client device and the proxy. The client device

detects the local context such as time, locale, and the surrounding context such as nearby

entities, and network conditions, etc. The proxy keeps track of other context information such

as location, surrounding proxies and clients and user preferences, information from

surrounding clients, etc. The decision on how to respond to the context is made by the proxy.

When a client sends request to the proxy, it includes all the context information it has

gathered. The proxy receives this information and combines it with the information it has

gathered. It decides which facet will be best for the current context by analyzing and

comparing the context information and the shadows of the facets. Thus, both proxies and

clients play a part in achieving context awareness.

 - 114 -

8.5 DEFICIENCIES OF THE FACET MODEL

As seen in the previous chapter, the facet model has been successfully employed to build

applications. However, during the process, a deficiency that we came across was the lack of

control or feedback mechanism for facets. In other words, there is no way we can control or

enquire about the progress of a functionality until and unless the facet returns. Take, for

example, the blurring of an image. Blurring requires a lot of matrix operations and is very

computation intensive. When a user invokes a blur operation, he can only know whether the

operation was successful when the blur facet returns. While the user is waiting for the results,

which may be a long time if the operation was invoked on a slow machine, there is no way of

knowing whether the facet is executing, or if it has just hung. However, such a scenario is

also present in some of the common software systems currently used.

An application domain that would take a lot of effort to switch to the facet model is that of

highly interactive games. For interactive games, functionality, UI and data are very closely

linked. Object-oriented programming often makes things easier in this domain. For instance,

an enemy can be implemented as an object which contains the enemy’s location, code of its

movement strategy, code to make it kick and jump, and its related UI. Thus, every entity in

the game can be cleanly represented as an object. However, if such a game were to be

implemented according to the facet model, functionality, UI and data would need to be more

clear-cut. It is all right if strategies, such as those of enemy movement, or for a chess game,

are implemented as facets. These strategies can be replaced easily when moving from one

stage to the next, i.e. using a facet which implements a more difficult strategy. However,

often in games, user interaction invokes rather miniscule functionality, for example, moving

forward, kicking, shooting etc. This is not to say that the facet model cannot be used to

develop games. The facet model just provides a different style of programming. The game

must be carefully designed with the facet model in mind.

8.6 APPLICABILITY OF THE FACET MODEL

Since functionality is brought in as it is required, one of the advantages of the facet model is

that it allows devices to run applications which normally would be too large to fit into the

device. It helps keep the run-time program size small. The facet model would be the ideal

choice for applications with lots of functions, or add-on plugins and filters, like image editors,

word processors, etc.

 - 115 -

Because of its innate support for adaptation, the facet model is particularly suited for mobile

applications, i.e. applications which can move from one device to another, either on their

own, or to cater for user mobility. As the user moves from one device to another, the facet

model enables the application for state migration and to adapt to the corresponding device.

The domain of scientific simulation and artificial intelligence can also benefit from the facet

model. The strategies or the algorithms are implemented as facets. A facet, which contains a

strategy, can be easily replaced by another compatible facet with a different strategy.

Therefore, it adds flexibility and dynamics to programs.

In fact, the facet model has advantages in the field of grid computing as well. Grids, by

definition, are heterogeneous. They aim to make use of the idle cycles of the CPUs, or

resources of their constituent nodes. Without functionality adaptation, a machine has to have

sufficient "idle" resources before it can be used in grid computation. With the facet model,

the grid application could adapt to whatever resources are available in the nodes of the grid,

of course, depending on the versions of facets available. This implies that, even if at present a

node has less idle resources, those resources can still be put to use. This is very beneficial for

the grid because it leads to a better overall usage of the computing resources in the grid and,

thereby, improves performance.

Even though in this thesis, the facet model has been discussed in the context of mobile

computing, it can be applied to almost any domain. The facet model advocates computing in

small. It enables resources, especially memory, to be used efficiently and, thereby, improving

performance. Even standalone applications in PCs would benefit from being able to unload

an application component once it is no longer used. Thus, the facet model actually has far-

reaching benefits.

8.7 SECURITY ISSUE

One important issue which has not been addressed in the current model is security. Facets are

located on the public domain and are sent over various insecure public networks to client

devices. Security of facets entails making sure that the facet received on the client device is

executable and runs as they were meant to, in a safe manner.

Security of facets can be considered as consisting of five aspects

 - 116 -

§ Facet Authentication

It also involves verifying the information in the shadow of the facet, i.e. confirming

that the facet comes from the vendor it claims to be from, confirming the resource

usage, etc.

§ Facet Integrity

This involves ensuring the facet itself is not malicious. Facets can be written by

almost anyone and uploaded on facet servers. And because of the transparency of the

model, it becomes crucial to ensure that facets themselves do not carry out any

vicious things and come from trusted sources.

§ Facet Validity

This means making sure that the facet has not been corrupted or tampered with.

Since facets may be sent over insecure networks, it is possible that it may have been

tampered by hackers. We need to ensure that the facet is intact before it is executed.

§ Execution Error Logging

There may be some facets which often cause clients to hang. In such cases, having a

logging system which notifies the proxy of the execution state will be beneficial. The

proxy can then screen out facets which are particularly buggy, or have poor

performance.

§ Private Facets

In the current model, all facets are available to everyone. However, there may be a

need for private facets, which have restricted use. These may be special high-

security facets which can be used by those only with the appropriate access right.

Further study needs to be carried out on how to make the facet model more secure.

Mechanisms which can be explored include encryption, digital signatures, check sums,

checking facets thoroughly before including them in the proxy facet lists, using a security

model, such as the sand box model in order to protect clients against malicious code, allowing

run-time execution logging and sending reports to proxies from time to time, etc.

 - 117 -

8.8 SPARKLE ARCHITECTURE

The Sparkle architecture, which has been described in detail in Chapter 4, provides extensive

support for the facet model. Every entity in the architecture has a direct role to play with

regards to facets. Clients request for and run facets, facet servers store facets, proxies match

appropriate facets for clients and execution surrogates execute delegated facets. Since facets

are embodiments of functionality, it can be said that the Sparkle architecture has a very strong

functionality model.

Running an application requires the definition of three main models

§ The functionality access model. How application logic is retrieved and from where.

§ The data access model. Where the user data is located and how it is retrieved.

§ The external resource access model. How external resources are accessed.

In traditional computing, both functionality and data are assumed to be located locally and

can be easily accessed by the use of a filename. External resources, such as printers, are

assumed to be connected to the local machine, or available on the local network.

For mobile computing, in which user mobility, resource limitations, network disconnections

and instability are prevalent, more robust models need to be applied, so as to ensure the

continuity of computation. The Sparkle architecture provides a functionality access model,

however, the data access model and the external resource model are not yet well developed.

The Sparkle architecture allows users to access functionality from whichever location they are

at, and whatever device they are using. It also provides for the functionality to be adapted to

the run-time execution environment.

When a user moves from one device to another, he would expect his data, such as his files,

preferences, to be accessible on the new device as well. At present, the Sparkle architecture

does not support data migration. It assumes all user data is located in the local device. To

make it more suitable for mobile computing, approaches such as mobile file systems, or

having a centralized server to store user data need to be investigated and appropriate ones

adopted.

A handheld device is considerably different from a PC, especially when it comes to accessing

external resources such as printers and scanners. A PC may be directly connected to a printer,

 - 118 -

whereas a handheld would have no connections any such resources. Applications may, at

times, require access to such resources, thus the devices must be able to make wireless links

to them. In the mobile computing context, clients need to be able to locate such resources in

close vicinity and be able to access them. Several clients could be competing for access to the

devices at a particular instant in time. Subsequently, a resolution mechanism is also required.

The Sparkle architecture, at present, does not address this issue. A mechanism commonly

adopted is for these external resources to expose themselves as services. Clients, then, locate

the services they need, and lease them for some time, i.e. a service discovery and leasing

mechanism. This may have an effect on the programming style. The programmer could be

aware of these details or it could be hidden from him. The feasibility of this approach and

others needs to be investigated thoroughly, and a suitable external resource access model

incorporated.

8.9 SUMMARY

In this chapter, we took a step back and looked at several issues regarding the overall picture

of the Sparkle system. We looked at how the facet model stands in face of web services.

Web services alleviate the problem of functionality adaptation since most of the application

logic is executed on servers. However, intermediary proxies are required to carry out data

adaptation of the results. The fundamental difference between web services and the facet

model is that web services require the movement of data from the client to the service,

whereas the facet model moves the code to the client. The direct implications of the previous

statements are that

§ Code size is often smaller than data size, which may be better for transmission over

slow networks.

§ In some cases, it may not be possible to move the data, due to privacy and other

reasons.

§ The service provider has a huge burden of maintaining service availability at all

times.

§ Web services follow the client-server approach, and hence may not allow for direct

peer-to-peer communication which is essential for mobile computing.

§ There are cases in which application logic must be executed locally and cannot be

carried out remotely.

§ However, web services are essential to provide access to external resources such as

printers.

 - 119 -

One cannot argue which is better than the other. Both web services and facets can be used in

order to reap the benefits of both models.

We also looked at some of the issues relating to the facet model, namely the transparency

issue, the deficiencies of the facet model and its applicability. In many systems, resource

adaptation is under the control of the application itself, i.e. the programmer has to write all

mechanisms to respond to change. Our model takes a totally different approach. All the

mechanisms are kept transparent from the application designer. The main advantage is that it

is much more easier to build applications. Designers just need to provide different versions of

facets, and the rest is handled by the system. In addition, the resource manager is probably in

the best position to carry out the adaptation policies since it has centralized control over the

resources.

We also analyzed how effectively the facet model can enhance the different types of

adaptability of an application. The facet model is particularly applicable for memory, device

and context adaptability. It can help achieve network adaptability to a limited extent.

However, it plays a minimal role in achieving energy adaptability.

Context-awareness in the facet model is achieved by using a facet suitable for the current

context. Both client devices and proxies gather context information. When the client makes a

request for a facet, it sends the context information to the proxy. The proxy compiles all this

information and decides which facet to return to the client. In other words, the proxy makes

the ultimate decision on how to respond to a particular contextual change.

The facet model has some deficiencies. From a programmer’s point of view, there is no

mechanism to find out the progress of the facet while it is being executed. We can only know

whether it was successful or not when it returns. In addition, since there is such a marked

separation of UI from functionality and data, applying the facet model applications with a lot

of user interaction, such as action games, may be cumbersome.

The facet model, however, is suitable for applications in the scientific simulation and artificial

intelligence domains. It provides dynamics to the programs because of the flexibility that a

facet can be replaced by another facet. Also, the facet is suitable for applications that require

functionality adaptation, for example, for applications which need to migrate from one device

to another. Grid computing can also benefit from the facet model since it enables applications

 - 120 -

to adapt to the idle resources available in the nodes, rather than waiting for the nodes to have

sufficient idle resources before they can be utilized.

Finally, we looked at the deficiencies of the Sparkle architecture. The Sparkle architecture

has a very solid functionality access model, however it does have a data access model or an

external resource access model suitable for mobile computing. At present, there is no support

for users to access their data from any device, nor for clients to discover and access nearby

resources, such as printers and scanners. Approaches such as mobile file systems, centralized

data servers, service discovery and leasing need to be studied and suitable mechanisms need

to be incorporated in the Sparkle architecture to make it more apt for mobile computing.

 - 121 -

Chapter 9

Conclusion

The whole dissertation is based on employing dynamic component composition to achieve

functionality adaptation in mobile computing. This chapter summarizes all the previous

discussions and presents avenues for future work.

9.1 SUMMARY AND CONTRIBUTIONS

Mobile systems are characterized by variation and change. Thus, systems targeted for such a

dynamic environment have to cater for the incessant variation. They have to be able to detect

run-time changes and adapt to them appropriately.

We looked at the different types of adaptability systems demonstrate in order to accommodate

changes. Out of all the adaptation techniques, functionality adaptation is probably the most

versatile. Unfortunately, current approaches to functionality adaptation are rather limited and

inflexible. They place undue burden on the application programmer, resulting in a larger

application size and, not to mention, a limited adaptive capability, which cannot be

dynamically extended. Hence, there is a need for a flexible and dynamic functionality

adaptation technique which can overcome the above drawbacks. My dissertation aims to

fulfill this need.

We proposed dynamic component composition as a means of achieving functionality

adaptation. Dynamic component composition can be summarized as follows. Software and

applications are made up of components, which are assembled at run-time as they are

required. There may be several components carrying out the same task. Which component is

used for that particular task depends on the run-time execution environment. Each of these

components may have different run-time characteristics and, thereby, achieve functionality

adaptation by adapting the execution of the task at hand.

 - 122 -

This approach has several advantages in the context of mobile computing, other than

functionality adaptation. Since components are brought in when needed and discarded after

use, the func tionality a device can provide is not limited by its configuration. There is

increased scope for peer-to-peer co-operation. Peers can share components, in addition to

sharing data and files. Dynamic component composition also supports user mobility and

migration adaptation. Since components are located on the network, they can be accessed

from any device. When the execution moves from one device to another, the same

functionalities can be brought in but with components suitable for the new device, i.e.

functionally adapted to the new device.

A new component model – the facet model, was designed especially with dynamic

component composition in mind, and an Internet-enabled architecture – the Sparkle system

was built to support the facet model. Functionality adaptation, in this case, is achieved by

choosing the appropriate component among different ones which have the same functionality.

The main foci of my work are the definition of the facet model and the demonstration of its

feasibility. Facets can be considered as just another type of software components, which

embody functionality. In addition to the four characteristics of components – being

independent, units of composition, providing functionality via well-defined interfaces and

having no persistent state, facets only have a single publicly callable method and have no

residual state. This allows them to be small and throwable.

The facet model relies on the separation of functionality from data and user interface. Facets

are the embodiments of functionality, where as the data and the user interface is stored in the

container. It can be said that for an application, the application logic is distributed among the

various facets, whereas the state and the user interface are centralized in the container.

Dynamic component systems have been used before, no doubt, but mainly in the area of

reconfiguration of long-running systems. For mobile systems, one often hears about service

components. However, it is difficult to find a dynamic component system specially

addressing adaptation with as much flexibility as the facet model.

In short, we can conclude that the main contributions of this dissertation are as follows:

§ It provides a classification of the different types of adaptabilities mobile systems and

applications exhibit and also another of the adaptation techniques employed.

§ It introduces functionality adaptation and its importance to mobile computing.

 - 123 -

§ It proposes dynamic component composition as a means of achieving functionality

adaptation.

§ Most importantly, it defines the facet component model, designed for dynamic

component composition.

§ It illustrates the facet model’s feasibility and applicability in a mobile environment

via the Sparkle architecture.

9.2 FUTURE WORK

The current status of the design and implementation does illustrate the importance of the facet

model in achieving functionality adaptation for mobile computing. However, it cannot be

considered as a full-fledged mobile system. There are several issues which must be further

studied and implemented, which include

q The Facet Model

The facet model has proved sufficient for applications which have been implemented

using it. However, more work needs to be carried out to demonstrate its feasibility for

general applications. It must be experimented with various kinds of applications in order

to study its applicability and to provide basis for refinement.

q Resource Management

The current implementation of the resource management in the client system is rather

simple. It is restricted by the resource information available to it. At present, it only

receives information about heap usage. A native resource monitor, which can effectively

keep track of a lot more types of resources, such as memory, power, network, needs to be

incorporated. In addition, different adaptation policies need to be implemented and tested

in order to determine which would be most suitable under different conditions. Perhaps a

priority scheme can also be incorporated.

q Discovery Mechanism and Peer-to-Peer Interaction

At present, there are no discovery or peer-to-peer interaction mechanisms incorporated in

the client system. These are essential parts of any system targeted for mobile computing.

Mechanisms for the discovery of services, peers and other network entities need to be

studied and incorporated. In addition, how peers interact and to which extent adaptation

is required needs to be determined.

 - 124 -

q Performance Enhancement

The main bottleneck in performance is the delay in the transmission of facets. Several

approaches for improvement have been employed, however, there are some avenues

which have not yet been explored, for example pushing facets to the client.

q Facet Security

The current model does not incorporate mechanisms for ensuring the integrity of the

facets and their execution. Since facets are distributed over public networks, and together

with transparency of the model, makes security a crucial issue. Further study on the

feasibility of mechanisms such encryption, digital signatures, check sums, sandbox model

and execution feedback need to be explored.

q The Sparkle Architecture

The Sparkle Architecture does not possess a clear and strong data access model nor an

external resource access model. These models are essential for many kinds of

applications. Approaches, such as mobile file systems, centralized data servers, service

discovery and leasing, need to be studied and suitable mechanisms need to be

incorporated.

With this, we conclude this dissertation. The facet model lays a foundation for a flexible

software system for mobile computing. However, there are many issues which need to be

resolved to realize a practical system. The facet model forms the ground work on which other

research can be based on. Thus, its significance and contribution cannot be undermined.

 - 125 -

BIBLIOGRAPHY

1 E. Amir, S. McCanne, and R. Katz. An Active Service Framework and its Application to Real-time
Multimedia Transcoding. In Proceedings of ACM SIGCOMM,pp. 178-189, September 1998.

2 D. Andersen, D. Bansal, D. Curtis, S. Seshan, and H. Balakrishnan. System support for bandwidth
management and content adaptation in Internet applications. In Proceedings of 4th Symposium on
Operating Systems Design and Implementation, pp. 213-226, October 2000.

3 N. Apte and T. Mehta. Web Services – a Java Developer’s Guide using E-speak. Prentice-Hall, 2002.

4 L. Bao and J. J. Garcia-Luna-Aceves. A New Approach to Channel Access Scheduling for Ad Hoc
Networks. In Proceedings of the 7th ACM/IEEE International Conference on Mobile Computing and
Networking (MOBICOM ’01) pp. 210-221, July 2001.

5 G. Banavar, J. Beck, E. Gluzberg, J. Munson, J. B. Sussman, D. Zukowski. Challenges: an Application
Model for Pervasive Computing. In Proceedings of the 6th ACM/IEEE International Conference on
Mobile Computing and Networking(MOBICOM ’00) pp. 266-274, August 2000.

6 P. Brereton and D. Budgen. Component-based Systems: a Classification of Issues. In IEEE Computer,
vol. 33 (11), pp. 54-62, November 2000

7 G. Cao. A Scalable Low-Latency Cache Invalidation Strategy for Mobile Environments. In Proceedings
of the 6th ACM/IEEE International Conference on Mobile Computing and Networking (MOBICOM
’00), pp. 200-209, August 2000.

8 Carnegie Mellon Software Engineering Institute. Component -Based Software Development / COTS
Integration. http://www.sei.cmu.edu/str/descriptions/cbsd_body.html

9 Carnegie Mellon Software Engineering Institute. COTS and Open Systems – An Overivew.
http://www.sei.cmu.edu/str/descriptions/cots_body.html

10 P. Castro, P. Chiu, T. Kremenek and R. R. Muntz. A Probabilistic Room Location Service for Wireless
Networked Environments. In Proceedings of the 3rd International Conference in Ubiquitous Computing
(Ubicomp ‘01), pp. 18-34, September 2001.

11 Cetus Links. http://www.cetus-links.org

12 S. Chandra, C. S. Ellis, and A. Vahdat. Mulitmedia Web Services for Mobile Clients Using Quality
Aware Transcoding. In Proceedings of the Second ACM International Workshop on Wireless Mobile
Multimedia(WOWMOM ’99), pp. 99-108, August 1999.

13 G. Chen and D. Kotz. A Survey of Context -Aware Mobile Computing Research. Technical Report
TR2000-381, November 2000

14 I. Chlamtac and J. Redi. Mobile Computing: Challenges and Potential. In Encyclopedia of Computer
Science, 4th Edition, International Thomson Publishing, 1998.

15 Y. Chow. A Lightweight Mobile Code System for Pervasive Computing . Master’s Thesis, Department of
Computer Science and Information Systems, The University of Hong Kong, August 2002

16 I. Clarke, O. Sandberg, B. Wiley, T. W. Hong. Freenet: A Distributed Anonymous Information Storage
and Retrieval System. In Proceedings of the International Workshop on Design Issues in Anonymity

 - 126 -

and Retrieval System. In Proceedings of the International Workshop on Design Issues in Anonymity
and Unobservability, pp.46-66, July 2000

17 COM. http://www.microsoft.com/com/

18 A. Corradi, R. Montanari and C. Stefanelli. How to Support Adaptive Mobile Applications. In
Proceedings of WOA2001, September 2001

19 P.T. Cox, B. Song, A Formal Model for Component-Based Software, In Proceedings of IEEE
Symposium on Visual/Multimedia Approaches to Programming and Software Engineering, September
2001.

20 Dom4j, The flexible XML Framework for Java. http://www.dom4j.org/

21 D. F. D’Souza and A. C. Wills. Objects, Components and Frameworks with UML – the Catalysis
Approach, Addison-Wesley, 1997.

22 C. Efstratiou, K. Cheverst, N. Davies and A. Friday. An Architecture for the Effective Support of
Adaptive Context -Aware Applications. In Proceedings of the Second International Conference on
Mobile Data Management (MDM’01), pp. 15-26, January 2001.

23 J. Flinn and M. Satyanarayanan. Energy-aware Adaptation for Mobile Applications. In Proceedings of
the 17th ACM Symposium on Operating System Principles, pp. 48-63, December 1999.

24 A. Fox, S. Gribble, Y. Chawathe and E. A. Brewer. Adapting to Network and Client Variation Using
Active Proxies: Lessons and Perspectives. In IEEE Personal Communications, Special Issue on
Adaptation, August 1998.

25 A. Fuggetta, G. P. Picco, and G. Vigna. Understanding Code Mobility. In IEEE Transactions on
Software Engineering vol. 24(5), pp. 342-361,1998.

26 J. Gao, P. Steenkiste, E. Takahashi and A. Fisher. A Programmable Router Architecture Supporting
Control Plane Extensibility. In IEEE Communications Magazine, Special Issue on Active,
Programmable, and Mobile Code Networking, vol. 38(3), pp. 152-159, 2000.

27 D. Garlan and B. R. Schmerl. Component-Based Software Engineering in a Pervasive Computing
Environment. In Proceedings of the 4th ICSE Workshop on Component-Based Software Engineering,
May 2001.

28 Gnutella. http://www.gnutella.com

29 S. D. Gribble, M. Welsh, J. R. von Behren, E. A. Brewer, D. E. Culler, N. Borisov, S. E. Cz erwinski, R.
Gummadi, J. R. Hill, A. D. Joseph, R. H. Katz, Z. M. Mao, S. Ross and B. Y. Zhao. The Ninja
Architecture for Robust Internet-Scale Systems and Services. In Computer Networks vol. 35(4),pp. 473-
497, 2001.

30 R. Grimm, T. Anderson, B. Bershad, and D. Wetherall. A System Architecture for Pervasive
Computing. In Proceedings of the 9th ACM SIGOPS European Workshop, pp. 177-182, September
2000.

31 R. Grimm, J. Davis, B. Hendrickson, E. Lemar, A. MacBeth, S. Swanson, T. Anderson, B. Bershad, G.
Borriello, S. Gribble and D. Wetherall. Systems Directions for Pervasive Computing. In Proceedings of
the 8th Workshop on Hot Topics in Operating Systems, pp. 128-132, May 2001.

32 R. Grimm, J. Davis, E. Lemar, A. MacBeth, S. Swanson, S. Gribble, T. Anderson, B. Bershad, G.
Borriello, and D. Wetherall. Programming for Pervasive Computing Environments. Technical Report
UW-CSE 01-06-01, University of Washington, Department of Computer Science and Engineering, June
2001.

33 T. Gross, P. Steenkiste and J. Su bhlok. Adaptive Distributed Applications
on Heterogeneous Networks. In Proceedings of the 8th Heterogeneous Computing Workshop, pp.209-

 - 127 -

on Heterogeneous Networks. In Proceedings of the 8th Heterogeneous Computing Workshop, pp.209-
218, April 1999.

34 R. Han, P. Bhagwat, R. LaMaire, T. Mummert, V. Perret and J. Rubas. Dynamic Adaptation in an
Image Transcoding Proxy for Mobile Web Browsing. In IEEE Personal Communication, vol. 5(6), pp.
8-17, 1998.

35 A. Harter, A. Hopper, P. Steggles, A. Ward and P. Webster. The Anatomy of a Context -Aware
Application. In Proceedings of the 5th ACM/IEEE International Conference on Mobile Computing and
Networking (MOBICOM ’99) pp. 59-68, August 1999.

36 W. R. Heinselman, J. Kulik and H. Balakrishnan. Adaptive Protocols for Information Dissemination in
Wireless Sensor Networks. In Proceedings of the 5th ACM/IEEE International Conference on Mobile
Computing and Networking(MOBICOM ’99) pp. 174-185, August 1999.

37 G. D. Holland, N. H. Vaidya, and P. Bahl. A rate-adaptive MAC protocol for multi-Hop wireless
networks. In Proceedings of the 7th ACM/IEEE International Conference on Mobile Computing and
Networking (MOBICOM ’01) pp. 236-251, July 2001.

38 HP Web Services Platform.
http://www.hpmiddleware.com/SaIsapi.dll/SaServletEngine.class/products/hp_web_services/default.jsp

39 A. C. Huang, B. C. Ling and S. Ponnekanti. Pervasive Computing: What is it Good for? In Proceedings
of the ACM International Workshop on Data Engineering for Wireless and Mobile Access, pp. 84-91,
August 1999.

40 Image Processing and Analysis in Java. http://rsb.info.nih.gov/ij/

41 IP Routing for Wireless/Mobile Hosts. http://www.ietf.org/html.charters/mobileip-charter.html

42 J-consortium JEFF. http://www.j-consortium.org/jeffwg/index.shtml

43 Java-Linux. http://www.blackdown.org/

44 JINI Network Technology. http://wwws.sun.com/software/jini/

45 D. B. Johnson and D. A. Maltz. Dynamic Source Routing in Ad Hoc Wireless Networks. In Mobile
Computing, ed. T. Imielinski and H. Korth, Kluwer Academic Publishers, 1996.

46 V. Kanodia, C. Li, A. Sabharwal, B. Sadeghi, and E. W. Knightly. Distributed Multi-Hop Scheduling
and Medium Access with Delay and Throughput Constraints. In Proceedings of the 7th ACM/IEEE
International Conference on Mobile Computing and Networking (MOBICOM ’01) pp. 200-209, July
2001.

47 F. Kon, R. H. Campbell, M. D. Mickunas, K. Nahrstedt and F. J. Ballesteros. 2K: A Distributed
Operating System for Dynamic Heterogeneous Environments. In Proceedings of the 9th IEEE
International Symposium on High Performance Distributed Computing (HPDC'00), pp. 201-210,
August 2000.

48 F. Kon and T. Yamane. Dynamic Resource Management and Automatic Configuration of Distributed
Component Systems. In Proceedings of the 6th USENIX Conference on Object-Oriented Technologies
and Systems (COOTS'2001), pp. 15-30, February 2001.

49 J. Kramer and J. Magee. Analysing Dynamic Change in Software Architectures: A case study. In
Proceedings of the 4th International Conference on Configurable Distributed Systems, pp. 91-100,
1998.

50 R. Kravets and P. Krishnan. Application-driven Power Management for Mobile Communication. In
Wireless Networks (WINET), vol.6(4), pp. 236-277, 2000.

 - 128 -

51 T. Kunz and J. P. Black. An Architecture for Adaptive Mobile Applications. In Proceedings of the 11th
International Conference on Wireless Communications (Wireless '99) pp. 27-38, July 1999.

52 W. M. Kwan. A Distributed Proxy System for Functionality Adaptation in Pervasive
Computing Environments. Master’s Thesis, Department of Computer Science and Information Systems,
The University of Hong Kong, August 2002.

53 Y.W. Lee, K. S. Leung, and M. Satyanarayanan. Operation Shipping for Mobile File Systems . In the
Proceedings of the 1999 USENIX Annual Technical Conference, June 1999.

54 Q. Li, J. Aslam, and D. Rus. Online Power-Aware Routing in Wireless Ad-hoc Networks. In
Proceedings of the 7th ACM/IEEE International Conference on Mobile Computing and
Networking(MOBICOM ’01) pp. 97-107, July 2001.

55 J. Li, J. Jannotti, D. S. J. De Couto, D. R. Karger and R. Morris. A Scalable Location Service for
Geographic Ad Hoc Routing. In Proceedings of the 6th ACM/IEEE International Conference on Mobile
Computing and Networking (MOBICOM ’00), pp. 120-130, August 2000.

56 Q. Li and D. Rus. Sending Messages to Mobile Users in Disconnected Ad-hoc Wireless Networks. In
Proceedings of the 6th ACM/IEEE International Conference on Mobile Computing and Networking
(MOBICOM ’00) pp. 44-55, August 2000.

57 R. Litiu and A. Prakash. DACIA: A Mobile Component Framework for Building Adaptive Distributed
Applications. In the Operating Systems Review, vol35(2), 31-42, April 2001

58 Microsoft Developer’s Network, http://msdn.microsoft.com

59 Micorsoft .NET. http://www.microsoft.com/net/

60 Napster. http://www.napster.com

61 .Net Assemblies and Manifest. http://www.dotnetextreme.com/art icles/assemblies.asp

62 B. Noble and M. Satyanarayanan. Experience with Adaptive Mobile Applications in Odyssey. In
Mobile Networks and Applications (MONET), vol. 4(4), pp. 245-254, 1999.

63 Object Management Group. http://www.omg.org/

64 OMG CORBA. http://www.corba.org/

65 Oracle 9i Dynamic Services, http://otn.oracle.com/tech/webservices/content.html

66 Pervasive Computing. http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci759337,00.html

67 P. Pillai and K. G. Shin. Real-Time Dynamic Voltage Scaling for Low-Power Embedded Operating
Systems. In Proceedings of the 18th ACM Symposium on Operating System Principles, pp. 89-102,
October 2001.

68 F. Plasil, D. Balek, R. Janecek. SOFA/DCUP: Architecture for Component Trading and Dynamic
Updating. In Proceedings of the International Conference on Configurable Distributed Systems
(ICCDS'98), May 1998.

69 B. Raman, S. Agarwal, Y. Chen, M. Caesar, W. Cui, P. Johansson, K. Lai, T. Lavian, S. Machiraju, Z.
M. Mao, G. Porter, T. Roscoe, M. Seshadri, J. Shih, K. Sklower, L. Subramanian, T. Suzuki, S. Zhuang,
A. D. Joseph, R. H. Katz and I. Stoica. The SAHARA Model for Service Composition Across Multiple
Providers. In Proceedings of the International Conference on Pervasive Computing, August 2002.

70 R. Rock-Evans. DCOM Explained, Digital Press, 1998.

71 A. Rofail and Y. Shohoud. Mastering COM and COM+. Sybex, 2000.

 - 129 -

72 E. Roman. Mastering Enterprise JavaBeans and the Javea 2 Platform, Enterprise Edition. Wiley
Computer Publishing, 1999.

73 E. M. Royer and C.-K. Toh. A Review of Current Routing Protocols for Ad-Hoc Mobile Wireless
Networks. In IEEE Personal Communications Magazine, pp. 46-55, April 1999.

74 T. Schiepek. A Comparison of Component Technologies. In Seminar on Component-Based Software
Development. Germany, 2000.

75 S. K. Shrivastava and S. M. Wheater. Architectural Support for Dynamic Reconfiguration of Large
Scale Distributed Applications. In Proceedings of the 4th International Conference on Configurable
Distributed Systems (CDS'98), May 1998.

76 J. Siegel. CORBA 3 – Fundamentals and Programming, 2nd Edition. OMG Press, 2000.

77 T. Simunic, L. Benini, P. W. Glynn and G. D. Micheli. Dynamic Power Management for Portable
Systems. In Proceedings of the 6th ACM/IEEE International Conference on Mobile Computing and
Networking (MOBICOM ’00), pp. 11-19, August 2000.

78 P. Sridharan. JavaBeans – Developer’s Resource. Prentice Hall, 1997.

79 I. Stoica, R. Morris, D. Karger, M. F. Kaashoek and H.Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proceedings of the ACM Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM 2001), pp.149-
160, August 2001.

80 Sun Open Net Environment, http://wwws.sun.com/software/sunone/

81 SyncML, http://www.syncml.org/

82 C. Szyperski. Component Software – Beyond Object-Oriented Programming, Addison-Wesley, 1997.

83 C. Szyperski. Components and Objects Together. In Software Development Online.
http://www.sdmagazine.com, May 1999.

84 N. Vaidya, P. Bahl and S. Gupta. Distributed Fair Scheduling in a Wireless LAN. In Proceedings of the
6th ACM/IEEE International Conference on Mobile Computing and Networking (MOBICOM ’00), pp.
167-178, August 2000.

85 Visual Studio .Net Training Tour, DOTNET, 2001

86 WebSphere Application Server. http://www-3.ibm.com/software/webservers/appserv/

87 The Xerox PARCTab, http://www.ubiq.com/parctab/

88 Y. Xu, J. Heidemann, and D. Estrin. Geography -informed energy conservation for ad hoc routing. In
Proceedings of the 7th ACM/IEEE International Conference on Mobile Computing and Networking
(MOBICOM ’01) pp. 70-84, July 2001.

89 S. Yau and F. Karim. Component Customization for Object-Oriented Distributed Real-time Software
Development. In Proceedings of 3rd IEEE International Symposium on Object-oriented Real-time
Distributed Computing, pp. 156-163, March 2000.

90 A. B. Zaslavsky and Tari. Mobile Computing: Overview and Current Status. In Australian Computer
Journal, vol.30(2), pp. 42-52, 1998.

91 B. Zenel and D. Duchamp. A General Purpose Proxy Filtering Mechanism Applied to the Mobile
Environment. In Proceedings of the 3th ACM/IEEE International Conference on Mobile Computing and
Networking (MOBICOM ’97), pp. 248-259, September 1997.

 - 130 -

