
2760 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 12, DECEMBER 2017

Cost-Effective Low-Delay Design for Multiparty
Cloud Video Conferencing

Mohammad H. Hajiesmaili , Lok To Mak, Zhi Wang, Member, IEEE, Chuan Wu, Senior Member, IEEE,
Minghua Chen, Senior Member, IEEE, and Ahmad Khonsari

Abstract—Multiparty cloud video conferencing architecture has
been recently advocated to exploit rich computing and bandwidth
resources in the cloud to effectively improve video conferencing
performance. As a typical design in this architecture, multiple
agents, i.e., virtual machines, are deployed in different cloud sites,
and users are assigned to the agents. Then, the users communicate
through the agents, and the agents might transcode the recorded
videos given the heterogeneities among devices in terms of
hardware specification and connectivity. In this architecture, two
critical and nontrivial challenges are: 1) assigning users to agents
to reduce the operational cost and the user-to-user conferencing
delay and 2) identifying best agents to perform transcoding tasks,
taking into account the heterogeneous bandwidth and processing
availabilities. To address these challenges, we cast a joint problem
of user-to-agent assignment and transcoding-agent selection. The
ultimate objective is to simultaneously minimize the cost of the
service provider and the conferencing delay. The problem is
combinatorial in nature, which belongs to the NP-hard node
assignment problems. We leverage the Markov approximation
framework and devise an adaptive parallel algorithm that finds
a close-to-optimal solution to our problem with a bounded
performance guarantee. To evaluate the performance of our
solution, we implement a prototype video conferencing system
and carry out trace-driven experiments. In a set of large-
scale experiments using PlanetLab traces, our solution decreases

Manuscript received August 30, 2016; revised January 16, 2017 and March
27, 2017; accepted May 18, 2017. Date of publication June 1, 2017; date of cur-
rent version November 15, 2017. This work was supported in part by National
Basic Research Program of China under Project 2013CB336700 and in part
by the University Grants Committee of the Hong Kong Special Administrative
Region, China, under Area of Excellence Grant Project AoE/E-02/08 and Col-
laborative Research Fund C7036-15G, in part by the National Natural Science
Foundation of China under Grant 61402247, and in part by Hong Kong RGC
under Grant 718513, Grant 17204715, and Grant 17225516. The associate edi-
tor coordinating the review of this manuscript and approving it for publication
was Prof. Honggang Wang. The paper was presented in part at the IEEE 36th
International Conference on Distributed Computing Systems, Ohara Fujimino,
Japan, June 2016 [1]. (Corresponding author: Ahmad Khonsari.)

M. H. Hajiesmaili was with The Chinese University of Hong Kong, Shatin,
Hong Kong. He is now with the Whiting School of Engineering, The Johns
Hopkins University, Baltimore, MD 21218 USA (e-mail: hajiesmaili@jhu.edu).

L. T. Mak and M. Chen are with the Department of Information Engi-
neering, The Chinese University of Hong Kong, Shatin, Hong Kong (e-mail:
mlt014@ie.cuhk.edu.hk; minghua@ie.cuhk.edu.hk).

Z. Wang is with the Graduate School at Shenzhen, Tsinghua University,
Shenzhen 518055, China (e-mail: wangzhi@sz.tsinghua.edu.cn).

C. Wu is with the Department of Computer Science, The University of Hong
Kong, Pokfulam, Hong Kong (e-mail: cwu@cs.hku.edu.hk).

A. Khonsari is with the School of Electrical and Computer Engineering,
College of Engineering, University of Tehran, Tehran 1417466191, Iran, and
also with the School of Computer Science, Institute for Research in Fundamental
Sciences, Tehran 193955746, Iran (e-mail: ak@ipm.ir).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2017.2710799

the operational cost by 77% and simultaneously yields lower
conferencing delay compared with an existing alternative.

Index Terms—Cloud computing, network combinatorial
optimization, parallel algorithm, video conferencing.

I. INTRODUCTION

NOWADAYS the usage of video conferencing as a multi-
party applications has skyrocketed with 51.7% annual

growth [2], which is mainly due to the popularity of front-
facing cameras on laptops, tablets, and smart phones, and recent
advances in cellular networks. Moreover, it is estimated that
cloud applications generate over 90% of mobile data traffic
by 2018 [3], especially in multimedia networking applications
[4]. Hence, a promising trend is to leverage cloud comput-
ing services for multi-party video conferencing systems. The
exploitation of rich on-demand resources spanning multiple
geographic regions of a distributed cloud boosts the confer-
encing experience and overcomes the constraints of resource-
limited user devices (e.g., [5]–[7], and see [8] for commercial
examples).

A. Cloud Video Conferencing: Architecture and Benefits

As illustrated in Fig. 1(c), in cloud conferencing architecture,
multiple agents, i.e., virtual machines, are deployed in different
geographical locations, and users join a conferencing session by
subscribing to the cloud agents. Then, the users exchange the
streams indirectly via the cloud agents. In addition, the poten-
tial high processing tasks such as transcoding are performed by
the proper agents. In this way, the lightweight operations per-
formed on user devices consume less resources of the mainly
battery-limited devices. On the other hand, high demand tasks
are shifted to the resource-rich cloud agents, boosting the confer-
encing experience. This cloud architecture has more potentials
compared to the traditional client/server (C/S) [Fig. 1(a)] and
P2P [Fig. 1(b)] conferencing architectures [9], [10], for two
main reasons.

1) Better at meeting stringent delay requirements: The toler-
able conferencing delay is around 400 ms [11]. There are
extensive studies on reducing the delay of different video
applications [5], [12], [13]. In C/S architecture, depend-
ing on the distance between the servers and the clients,
the end-to-end conferencing delay might be large. In P2P
architecture there is no server in the middle, hence users

1520-9210 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on June 23,2020 at 09:35:32 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9278-2254
https://orcid.org/0000-0002-8669-4001

HAJIESMAILI et al.: COST-EFFECTIVE LOW-DELAY DESIGN FOR MULTIPARTY CLOUD VIDEO CONFERENCING 2761

Fig. 1. Different video conferencing architectures. (a) Client/Server. (b) Peer-
to-Peer. (c) Cloud.

communicate directly together that reduces the delay [9],
[10]. Measurements in [6] have shown that the delay in a
cloud architecture is comparable or even lower than the
delay in P2P architecture.

2) Providing more bandwidth and processing capacity at
lower costs: User devices in video conferencing are
mainly smart phones that are highly heterogeneous in
terms of screen resolution, hardware, and operating
system [14]. This heterogeneity, along with different
network connectivity demands for on-the-fly transcoding
to convert the streams from one format/bitrate to an-
other [15], [16]. The dedicated servers in C/S architecture
can be used to perform such high complexity transcoding
tasks. However, this architecture is not scalable and
on-demand. On the other hand, the resource-limited
devices in P2P architecture cannot be exploited to execute
such computation-intensive tasks. In contrast, the cloud
agents can effectively perform high demand tasks and
this architecture provides scalability by using on-demand
cloud agents, at a lower cost.

B. Critical Problem and Key Design Challenges

Nevertheless, there are two critical challenges to minimize
the service provider’s cost and the conferencing delay.

1) How to select a proper agent for each user is an impor-
tant design issue that has substantial effects on both user-
to-user delay and the costs to the service provider. The
existing solutions follow nearest assignment policy, i.e.,
each user is assigned to the nearest nearby agent [6], [7].
This policy is not optimal in terms of user-to-user con-
ferencing delay and inter-agent traffic cost.1 The reason
is that the nearest policy is oblivious to whereabouts of
the other users in a conferencing session and diversity of
transcoding latency in heterogeneous agents. For instance,
in Fig. 2, the SG agent must be chosen for user 4 if we
follow the nearest policy. However, assigning user 4 to
the TO agent (the second nearest one) is better as (i) the
inter-user delay is lower because the TO agent is closer
to other agents, e.g., the delay of user 4 to user 1 via TO
is at least 27 + 67 = 94, whereas this value via the SG is
at least 20 + 117 = 137; (ii) as user 3 is already assigned
to the TO agent, it is beneficial to assign user 4 to the TO
agent rather than the SG agent to avoid exchange of the

1According to our rough estimate, based on real data from Amazon EC2,
the monthly cost of inter-region stream exchange may be in the order of multi-
million dollars for a cloud conferencing service provider in the scale of Skype.

Fig. 2. Video conferencing scenario with seven users (PlanetLab nodes) in
two sessions and four cloud agents (Amazon EC2 instances). The numbers on
edges are real-world measured latency values. Agents in larger diamonds have
higher processing capabilities. SG: Singapore, TO: Tokyo, OR: Oregon, SP:
Sao Paulo, HK: Hong Kong, BR: Brazil, CA: Canada, JP: Japan.

streams. This assignment decreases traffic cost. Note that
reducing the cloud cost, i.e., traffic and processing costs,
has been studied for other types of multimedia stream-
ing applications [17], however, the multi-party nature of
video conferencing applications makes the problem more
challenging.

2) Proposing an approach that attempts to find a proper agent
to transcode the streams has not been studied. The agents
are heterogeneous in terms of resource availability; hence,
they might have different transcoding latencies. The agent
that must perform transcoding task should be chosen, to
minimize the cost and latencies. For example in Fig. 2, we
previously demonstrated that choosing the TO agent for
user 4 is better since it reduces the delay and operational
cost. However, since the SG agent has more computational
power than the TO agent, it is better in terms of the latency
of the potential transcoding tasks.

C. Summary of Contributions

Almost all of the existing studies that we are aware, neglect
to consider the cost to the service provider and simply adopt the
nearest policy for user-to-agent assignment (e.g., Airlift [6] and
vSkyConf [7]). To the best of our knowledge, this study is the
first that aims to improve the cloud video conferencing design by
tackling the user-to-agent and transcoding assignments problem
in a unified combinatorial optimization framework. The main
contributions of this study are summarized below.

1) We formulate the User-to-agent Assignment Problem
(UAP), that tries to select the user-to-agent assignment
and transcoding assignment in a multi-party application
with the objective of simultaneously minimizing the op-
erational cost to the service provider and conferencing
delay. The problem is subject to the capacity constraints
of the diverse agents and the user-to-user conferencing
delay constraints. The problem is a nonlinear combinato-
rial optimization problem in the category of NP-hard node
assignment problems [18] which are difficult to solve due
to persistent dynamics in the system and large problem
size.

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on June 23,2020 at 09:35:32 UTC from IEEE Xplore. Restrictions apply.

2762 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 12, DECEMBER 2017

2) We leverage the Markov approximation framework [19]
which is a technique for solving the combinatorial network
problems in a distributed fashion. We devise an efficient
parallel and iterative algorithm to solve the UAP, which
runs locally in a representative agent of each session and
converges to a close-to optimal assignment. The algo-
rithm adapts to the system dynamics, provides a bounded
approximation gap, and is robust against the inaccurate
measurements of the problem data. In addition, we im-
prove the convergence of the algorithm by proposing an-
other initialization algorithm called AgRank, which is a
simple scheme with low complexity.

3) We implement a cloud video conferencing system proto-
type using Amazon EC2 [20] platform and also carry out
trace-driven evaluation experiments using PlanetLab [21]
nodes. The results demonstrate the significant improve-
ment of our solution compared to the existing alterna-
tives. In a representative experimental setting of PlanetLab
traces, our algorithm outperforms the nearest assignment
policy [6], [7] by reducing the operational cost and the
delay by 77% and 2%, respectively.

The rest of this paper is organized as follows. We review the
related work in Section II. In Section III, we introduce the cloud
video conferencing system model. The problem is formulated
in Section IV. Then, in Section V, our solution design is pro-
posed. In Section VI, we propose a fast session initialization
algorithm. We discuss the implementation and the complexity
issues of our solution design in Section VII. The results of the
prototype system implementation and trace-driven experiments
are demonstrated in Section VIII. Finally, the paper is concluded
in Section IX.

II. RELATED WORK

Multiparty video conferencing: Previously, P2P architec-
ture [9], [10] was considered as an alternative to traditional
client/server architecture. In [10], following network utility
maximization framework, a problem of video conferencing in
P2P architecture has been studied. In another recent work [9],
the authors propose a scheme to maximize video quality un-
der uplink-downlink capacity constraints for peer-to-peer multi-
party video conferencing. However, in P2P there is no powerful
server in the architecture which hinders executing the high de-
mand tasks such as transcoding. The cloud architecture for video
conferencing has been proposed in Airlift [6] for the first time,
and it suggests to use cloud bandwidth resources to boost the
conferencing experience. In vSkyConf [7], the computational re-
sources of the cloud is exploited for executing processing tasks,
in addition to the dedicated cloud communication infrastruc-
ture. These studies assume nearest assignment policy, which
is not optimal in a multi-party application in terms of intra-
cloud traffic and user-to-user conferencing delay. Two recent
studies [5], [22] propose different server selection/placement
and topology control approaches to only minimize the latency
in transcoding-free video conferencing, without taking into ac-
count the operational cost. Finally, the delay-constrained video
streaming in different network infrastructures and applications

has been studied previously, e.g., in wireless and wireline net-
works [12], [13], [23]–[27]. For example, the authors in [24]
propose a wireless-aware cloud server scheduling policy for
mobile gaming applications. In contrast, this work focuses on
a cloud video conferencing scenario, which has a different set
of challenges mainly because of its multi-party and interactive
nature. Finally in [28], a stochastic approach for cloud server
scheduling with the goal of load-balancing has been proposed.
This approach is for the general applications and cannot be lever-
aged to multi-party video conferencing settings mainly due to
the delay consideration of such applications.

Virtual network embedding: In network virtualization [29]
multiple virtual networks cohabit the same substrate network.
In cloud video conferencing architecture, one can imagine the
underlying cloud agents as the substrate networks and the con-
ferencing sessions as the virtual networks on top of them. In [16],
a competitive online algorithm has been proposed for general
resources, i.e., bandwidth and processing resources, for delay-
sensitive multimedia applications. The solution follows virtual
network embedding approach and could be customized for video
conferencing scenarios in cloud architecture. Unlike [16], fur-
ther study of the UAP reveals that this is a challenging com-
binatorial problem that makes the approach in [16] inadequate.
The idea of migrating the current configuration has been widely
used in VN embedding problems to improve the acceptance
rate of VNs [30], energy saving [31], and house cleaning [32].
These goals could be imagined as additional motivations for
proper assignment in the UAP. Finally, we note that in another
recent paper [33], the cost minimization problem of cloud clone
migration using a Markov Decision Problem has been studied.
While the problem studied in [33] is largely different from ours,
the approach in [33] towards providing a trade-off between the
migration cost and the content transmission cost could be con-
sidered as a potential method to extend our work to the more
general setting.

III. VIDEO CONFERENCING MODEL

A video conferencing system in cloud architecture is assumed
with multiple sessions. Each session is established among mul-
tiple users. Within a session, each user transmits its video in a
specific representation which represents a fixed format/bitrate.
Each user is assigned to a cloud agent and inter-user transfer
is done indirectly through the agents. In addition, each user
demands specific representations from other parties of the ses-
sion. Within each particular pair of the users in the session,
the upstream representation of the sender might vary from the
downstream one demanded by the receiver. In this situation,
real-time converting of the representations, i.e., transcoding, is
required which is carried out by the agents. The key notations
of the system model are listed in Table I.

A. Session and User

Denote S and U as the set of conferencing sessions and
users, respectively. Let U(s) ⊆ U be the users of session s
and s(u) ∈ S be the session that user u belongs to. Let

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on June 23,2020 at 09:35:32 UTC from IEEE Xplore. Restrictions apply.

HAJIESMAILI et al.: COST-EFFECTIVE LOW-DELAY DESIGN FOR MULTIPARTY CLOUD VIDEO CONFERENCING 2763

TABLE I
KEY NOTATIONS

Notation Definition

Users S Set of video conferencing sessions,
S � |S|

U Set of users, U � |U|
U(s) Users of session s
s(u) Session of user u
P(u) Set of other parties in user u’s session

Representation R Set of video representations, R � |R|
κ(r) Bitrate of representation r
ru
u Upstream representation of user u

rd
u v Downstream repr. of user u from user v
θ U × U transcoding matrix; θu v = 1, if

s(v) = s(u) and ru
u �= rd

v u ; 0, otherwise

Agents L Set of cloud agents, L � |L|
ul Upload capacity of agent l
dl Download capacity of agent l
tl Transcoding capacity of agent l

σl (r1 , r2) Transcoding latency of agent l from
representation r1 to representation r2

D L × L inter-agent delay matrix
H L × U agent-to-user delay matrix

Opt. Vars. λlu User assignment variable; 1 if user u is
assigned to agent l; 0, otherwise

γlruv Transcoding task assignment variable; 1 if
rd
v u = r and the transcoding is done at

agent l; 0, otherwise

P(u) ⊆ U be the set of other parties in user u’s session, (i.e.,
P(u) = {v|v ∈ U , s(v) = s(u), v �= u}).

B. Representation

By representation, we mean a particular format, bitrate, and
resolution of a video, e.g., for YouTube videos, the standard
representations are (360 p, 1 Mbps), (480 p, 2.5 Mbps), (720 p,
5 Mbps), (1080 p, 8 Mbps), etc. Denote R as the set of possi-
ble representations in cloud conferencing system. The upstream
representation of user u, denoted by ru

u ∈ R, is an input to the
problem and takes into account its connection and device hard-
ware specification. Moreover, the downstream representation,
rd
uv ∈ R represents the required representation from another

user v in the session. The parameter rd
uv ∈ R is the input to the

problem, and it can be set so as to further limit the transcod-
ing of each stream to a single target representation for all of the
other users, e.g., to transcode each stream to the lowest common
resolution to simplify the design.

By κ(r), we represent the bitrate of representation r.
Moreover, let θ = [θuv]U×U be the transcoding matrix, where
θuv = 1 given that u and v belong to a same session and
produce/demand different representations, i.e., s(v) = s(u)
and ru

u �= rd
vu , and θuv = 0 otherwise. Note that θ is considered

in our model in a general form. It could be customized to
be restricted to practical constraints, e.g., to support only
high-to-low quality transcoding operations we can change the
definition of θuv = 1 if s(v) = s(u) and rd

vu < ru
u . Finally, we

assume these representations are computed by another design
scheme, e.g., the approach in [10]. Hence, in this study, the

representations are given as the input to the problem. However,
because of the dynamic network conditions, representations are
subject to change. Our solution design can effectively adapt to
these dynamics, as explained in Section V.

C. Cloud Agent

Agents, in set L, are typically virtual machines that a confer-
encing service provider, like Skype, leases from a cloud service
provider, like Amazon. There can be multiple agents with di-
verse computation and communication resources each of which
in a different data center. The agents are heterogeneous resources
with the following properties for agent l: (i) ul represents the
upload capacity of l (in Mbps); (ii) dl is the download capac-
ity of l (in Mbps); (iii) tl is the transcoding capacity of l (the
number of concurrent transcoding tasks). We assume that each
agent is a virtual machine with a fixed amount of processing
resources for the transcoding tasks, i.e., one unit of its transcod-
ing capacity, such that its number of concurrent transcoding
tasks can be derived; and (iv) σl(.) represents the transcoding
latency of l (in ms). The transcoding latency σl(r1 , r2) is an
increasing function of the bitrates of the input (r1) and output
(r2) representations, given that transcoding is typically done by
decoding the source stream to an intermediate format, and then
re-encoding the stream from the intermediate format to the des-
tination bitrate [7]. The more computing capacity an agent has,
the more concurrent transcoding tasks it can perform, and the
faster each of the tasks can be completed.

Let D = [Dlk]L×L be the inter-agent delay matrix and H =
[Hlu]L×U be the agent-to-user delay matrix, where Dlk is the
delay between agents l and k and Hlu is the delay between
agent l and user u. We have Dll = 0 and Dlk = Dkl , ∀l, k ∈ L.
Considering the dedicated cloud infrastructure, it is reasonable
to assume that any pairs of the agents are connected together.
Similar to the representations, in practice, the inter-agent and
agent-to-user delay and transcoding latency values are subject
to change, and thus a proper design should adapt to dynamics
(Section V-C).

D. Illustrative Example

Fig. 3 illustrates a conferencing session with four users. There
are three cloud agents and possible user-to-agent assignments
are depicted in Fig. 4. In Fig. 3, when the upstream repre-
sentation of a user (ru

1 = 2, say) differs from the downstream
representation requested by another user (rd

21 = 1, say), a flow
is marked using dotted lines with a transcoding task in the
middle (e.g., the flow from user 1 to user 2). On the other hand,
in flows where the upstream and downstream representations
are the same solid lines are used (e.g., flows from user 2 to
user 1). Fig. 4 plots a potential user-to-agent assignment by
highlighting the assigned links with thick lines, i.e., users 1, 2,
and 3 are assigned to agent 1 and user 4 is assigned to agent 2.
Fixing this user-to-agent assignment, agents 1 and 2 are the best
candidates for hosting the transcoding tasks. However, the result
of comparing the transcoding capacity and latency values of
these agents (eight concurrent tasks as the transcoding capacity
and the transcoding latency 50 ms for agent 2, and transcoding

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on June 23,2020 at 09:35:32 UTC from IEEE Xplore. Restrictions apply.

2764 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 12, DECEMBER 2017

Fig. 3. Video conferencing scenario: S = 1, U = 4, L = 3,R = {1, 2}.
Users are labeled by their upstearm and downstream representations. Squares
denote transcoding operations that are required due to different representations
requested by the source and the destination users in some flows.

Fig. 4. Illustration of user-to-agent and inter-agent latency values of con-
ferencing scenario of Fig. 3. Agents in diamonds are labeled with quadruple
{ul , dl , tl , σl}. The labels in edges are either user-to-agent or inter-agent la-
tency values. A possible user-to-agent assignment is highlighted in gray.

capacity 4 and latency 100 ms for agent 1, respectively)
suggests that agent 2 is the best host for the transcoding tasks.

IV. USER-TO-AGENT ASSIGNMENT PROBLEM

A. Optimization Variables

Let λlu be the user assignment variable such that λlu = 1 if
user u is assigned to agent l; and λlu = 0 otherwise. Each user
must be assigned to one agent. Hence we have

∑

l∈L
λlu = 1, ∀u ∈ U (1)

λlu ∈ {0, 1}, ∀l ∈ L,∀u ∈ U . (2)

The second decision variable indicates at which agents the
transcoding tasks must be performed. Each transcoding task
could be performed at the source agent, the destination agent, or
a tertiary agent. Denote γlruv as the transcoding task assignment
variable where γlruv = 1 if user v requires representation r from
user u (i.e., rd

vu = r) and the transcoding is done at agent l; and
γlruv = 0 otherwise. γlruv satisfies the following constraints:

∑

l∈L

∑

r∈R
γlruv = θuv ,∀u ∈ U ,∀v ∈ P(u) (3)

γlruv ∈ {0, 1},∀l ∈ L,∀r ∈ R,∀u ∈ U ,∀v ∈ P(u). (4)

Constraint (3) states that the transcoding of the flow from u to
v is needed only when θuv = 1, and exactly one agent should
carry out the transcoding to the required representation.

B. Capacity Constraints of Cloud Agents

To formulate the capacity constraint, first we introduce
some notations for the ease of explanation. Let νlru �
maxv∈P(u) γlruv denote whether agent l transcodes u’s stream to
representation r for at least one other participant in u’s session
(1 yes and 0 no), and ν ′lu � maxr∈R νlru denote whether agent
l transcodes u’s stream at all (1 yes and 0 no). The download
capacity constraint of agent l is formulated as

∑

u∈U

(
λluκ(ru

u) +
∑

k∈L,k �= l

μklu

)
≤ dl ,∀l ∈ L (5)

where the first term is due to the last-mile traffic of users that
are assigned to agent l. The second term represents the outgoing
traffic of user u from all of the other agents towards agent l.
Denote μklu as the total download traffic at agent l that is the
result of receiving the stream via another agent k and originated
from user u, as follows:

μklu = λkuν ′luκ(ru
u) + (max

v∈P(u),
θu v =0

λlv)λku (1− ν ′lu)κ(ru
u)

+
∑

r∈R,
r �=ru

u

(max
v∈P(u),
rd

v u =r

λlv)(1− λlu)νkruκ(r)

where the first term represents the traffic from u’s agent k to
agent l so that u’s stream can be transcoded at l; the second term
depicts the traffic resulting from sending the upstream to other
parties; and the last term is the traffic caused by bitrate changes
after transcoding. Note that the definition of μklu captures cloud-
level multicasting by considering the inter-agent stream of each
user once, regardless of the number of parties on the target agent.
In this way, this formulation takes the advantages of multicasting
in the design. For the upload capacity we get
∑

u∈U

(
λlu

∑

v∈P(u)

κ(rd
uv) +

∑

k∈L,k �= l

μlku

)
≤ ul,∀l ∈ L. (6)

Now we formulate the transcoding capacity constraints of the
agents. Note that regardless of the number of destinations,
transcoding of user u’s upstream to representation r occupies
one unit of the transcoding capacity of agent l. This constraint
is formulated as

∑

u∈U

∑

r∈R
νlru ≤ tl , ∀l ∈ L. (7)

C. End-to-End Delay Constraints of Users

The end-to-end delay of a flow from user u to user v is the
summation of the following.

1) Propagation delay from u to its agent l; Hlu .
2) The propagation delay between u’s agent and v’s agent,

including two cases:
a) from u’s agent l to v’s agent k directly; Dlk ; and

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on June 23,2020 at 09:35:32 UTC from IEEE Xplore. Restrictions apply.

HAJIESMAILI et al.: COST-EFFECTIVE LOW-DELAY DESIGN FOR MULTIPARTY CLOUD VIDEO CONFERENCING 2765

b) from u’s agent l to a tertiary agent m (for transcod-
ing) and then to v’s agent k; Dlm + Dmk .

3) From v’s agent k to v; Hkv .
4) (Possibly) the transcoding latency at an agent l;

σl(ru
u , rd

vu).
We ignore any queuing delay at the agents, as our bandwidth

and transcoding capacity constraints ensure the availability of
resources for the respective tasks.

Using the transcoding matrix θ and defining θ̄uv = 1− θuv ,
we get the user-to-user delay of flow u→ v as

duv =
∑

l∈L
(λluHlu + λlvHlv) + θ̄uv

(
∑

l∈L

∑

k∈L
λluλkvDlk

)

+ θuv

(
∑

l∈L

∑

k∈L

∑

r∈R
γlruv

(
Dlk (λku +λkv)+σl(ru

u , rd
vu)
))

.

Let Dmax be the maximum acceptable delay, so, the end-to-end
conferencing delay constraint is

duv ≤ Dmax , ∀u ∈ U ,∀v ∈ P(u). (8)

D. Optimization Problem

Objective function: The goal is to minimize the operational
cost to the conferencing service provider, and the conferencing
delay. The operational cost to the provider has two parts.

1) The bandwidth cost, which is expressed as G(xs) =∑
l∈L gl(xls) for session s, where xls =

∑
u∈U(s)∑

k∈L,k �= l μklu is the total incoming traffic to agent l from
other agents in session s, and vector xs = [xls]l∈L. gl(.) is
a convex and increasing function. By expressing the band-
width cost in this way, we focus the inter-agent traffic cost.
We do not consider the traffic cost between the users and
the agent, since it is fixed regardless of the user-to-agent
assignment.

2) Transcoding cost at the agents in session s is similarly
formulated as follows:

H(ys)=
∑

l∈L
hl(yls),ys =[yls]l∈L, yls =

∑

u∈U(s)

∑

r∈R
νlru

where yls indicates the number of transcoding tasks that
agent l performs in session s and hl(.) is a convex func-
tion. In our experiments, we use linear functions for both
bandwidth cost and transcoding cost functions.

The delay cost at users in session s is described by func-
tion F (ds), where ds = [du]u∈U(s) , du = maxv :u∈P(v) dvu is
the maximum end-to-end delay experienced by user u for re-
ceiving streams from other parties, and F (.) is a convex and in-
creasing function, e.g., F (ds) = (

∑
u∈U(s) du)/|U(s)|, which

corresponds to the average user delay in the session.
Problem formulation: We cast the user-to-agent and transcod-

ing task assignments problem as

UAP : min
λl u ,γ lruv

∑

s∈S
(α1F (ds) + α2G(xs) + α3H(ys))

s.t. Constraints (1)–(8).

Remarks: The solution to the UAP finds the optimal user-
to-agent and transcoding task assignments. The objective is to
minimize the service provider’s total bandwidth (G(xs)) and
processing costs (H(ys)), and the conferencing delay (F (ds)).
Considering delay in the objective function is intended to en-
sure that conferencing delay is as small as possible, although we
have constrained their stringent requirement in (8). The objec-
tive function is the sum of the above costs, weighted by design
parameters α1 , α2 , and α3 . The constraints of the problem are
the bandwidth and processing capacity of the cloud agents (Sec-
tion IV-B) and the end-to-end delay of the users (Section IV-C).
Design parameters αi ≥ 0 can be tuned towards any desired
trade-off between reducing the operational cost and conferenc-
ing delay, e.g., a larger α1 leans more towards optimizing con-
ferencing delay, whereas larger α2 and α3 stress to reduce the
cost to the service provider. In Section VIII, we experimentally
evaluate the effect of these parameters. Finally, we remark that
the user-to-agent assignment part of the UAP belongs to the node
assignment problems which are NP-hard [18]; hence, tackling
the UAP even in a centralized manner is difficult. We highlight
that a proper solution for this problem have to be adapted to
the dynamics in the system and be implemented in large-scale
systems.

V. MARKOV APPROXIMATION-BASED PARALLEL ALGORITHM

The goal is to devise a parallel and adaptive solution for
the UAP. By parallel, we mean that each session solves its local
problem separately. In this way, the solution can be implemented
for the large-scale conferencing systems. The recently proposed
Markov approximation approach [19] is a general framework to
tackle network combinatorial problems (see e.g., [34], [35]) that
allows us to design a parallel and adaptive solution. We proceed
to briefly introduce the framework.

A. Markov Approximation Framework

Generally, the Markov approximation framework [19] aims
to devise distributed solutions for network combinatorial opti-
mization problems by 1) constructing a certain Markov chains
with a target steady-state distribution following the structure
of the problem and 2) investigating a particular structure of
the Markov chain that could be implemented in distributed
manner.

We first begin with a brief primer on the theoretical approx-
imation framework. Denote f = {λ,γ} ∈ F as an instance of
feasible solutions to the UAP, where F is the set of all of the
feasible solutions, i.e., all of the assignments that satisfy con-
straints (1)–(8). Let Φf be the objective value of the UAP when
the assignment is f . In addition, let pf be the fraction of time
that f is used as the solution to the UAP. Using these notations,
we can rewrite the UAP as follows:

UAP−EQ : min
pf ,∀f∈F

∑

f∈F
pf Φf , s.t.

∑

f∈F
pf = 1.

We cast an approximate version, UAP-β, of the UAP-EQ
using log-sum-exp approximation [36] as

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on June 23,2020 at 09:35:32 UTC from IEEE Xplore. Restrictions apply.

2766 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 12, DECEMBER 2017

UAP−β : min
pf ,∀f∈F

∑

f∈F
pf Φf +

1
β

∑

f∈F
pf log pf

s.t.
∑

f∈F
pf = 1

where β is a sufficiently large fixed parameter that can be ex-
ploited to control how accurate is the approximation [19]. The
UAP-β is a convex optimization problem. The optimal solu-
tion could be achieved by solving the KKT conditions [36] as
follows:

p	
f =

exp(−βΦf)∑
f ′∈F exp(−βΦf ′)

, f ∈ F (9)

and the optimal objective function value is

Φ̂ = − 1
β

log
(∑

f∈F
exp(−βΦf)

)
. (10)

Moreover, the optimality gap between the optimal objective
values of the UAP-β and the UAP is characterized by

min
f∈F

Φf − 1
β

log |F| ≤ Φ̂ ≤ min
f∈F

Φf . (11)

Note that the approximation gap vanishes as β approaches in-
finity, i.e., the larger β is, the more accurate the approximation
model is. We further investigate the effect of β on the perfor-
mance of our algorithm in Section VIII.

We use the above approximation framework to find the opti-
mal solution to the UAP-β by time-sharing among its feasible
solutions f ∈ F according to p	

f in (9). The key is to construct a
Markov chain that models feasible solutions as states, achieves
stationary distribution p	

f ,∀f , and allows efficient parallel con-
struction among the conferencing sessions.

B. Algorithm Design

We propose a parallel algorithm that finds a close-to-optimal
assignment by simulating such a Markov chain over time.
Specifically, the algorithm starts with a feasible assignment so-
lution f of the UAP, and transits to another feasible solution
f ′ according to transition rate qf,f ′ . After several iterations, the
algorithm converges to the Markov chain’s steady-state p	

f as
defined in (9), which is the optimal solution to the UAP-β and a
close-to-optimal solution to the UAP. The transition rates, how-
ever, must be carefully computed to achieve the steady-state
distribution. In addition, although we have given the concrete
form of p	

f in (9), we should note that it is computed using KKT
conditions in a centralized fashion, which requires complete,
static information of the entire system. This incurs a further
challenge of computing the transition rates in a parallel fash-
ion (in each session respectively), to achieve the desired overall
stationary distribution.

Based on the theoretical insights from [19], the sufficient
conditions for constructing such a Markov chain are to ensure
that in the Markov chain the following are true:

1) any two states are reachable from each other (i.e., the
Markov chain is irreducible);

2) the detailed balance equations are satisfied, i.e.,
p	

f qf,f ′ = p	
f ′qf ′,f ,∀f, f ′ ∈ F .

The sufficiency of the above conditions is the key in providing
two degrees of freedom in Markov chain design that leads to a
parallel implementation of the desired Markov chain.

The first degree of freedom is that we are allowed to set
the transition rate between any two arbitrary states to zero,
i.e., remove their edge in the underlying graph, if they are still
reachable from the remaining Markov chain. By doing so, the
stationary distribution of the modified Markov chain distribution
is still p	

f . In the implementation, direct transition between two
states is equivalent to the migration of the current assignment
to another feasible one. This imposes migration overhead to
the system, that could be minimized by allowing direct links
between two states in the Markov chain only if either one user
or transcoding assignment differs between the two states. An
example Markov chain is depicted in Fig. 5(b) corresponding to
the scenario in Fig. 5(a). Consider feasible solution 1 in Fig. 5(a)
where both users and the transcoding task are assigned to L1,
and feasible solution 2 where both users are assigned to L1 but
the transcoding task is assigned to L2. They are different in
only one particular assignment; hence, a direct link is depicted
between these two states in Fig. 5(b).

The second degree of freedom is that for two assignments
(Markov chain states) f and f ′ with direct transitions, there are
many options in the design of transition rates qf,f ′ and qf ′,f .
To facilitate parallel Markov implementation, we design the
transition rate between two states as

qf,f ′ = τ exp
(

1
2
β(Φf − Φf ′)

)

= τ exp
(

1
2
β(Φs,f − Φs,f ′)

)
(12)

where Φs,f and Φs,f ′ are the local objective values of session s
(i.e., α1F (ds) + α2G(xs) + α3H(ys)) at solutions f and f ′,
respectively, and τ is a positive constant. In our algorithm based
on the value of τ , each session initiates a timer and when timer
expires, the session (possibly) migrates to another assignment.
Larger τ reduces the convergence of the algorithm, but it may
impose the overhead of frequent assignment migration. In Sec-
tion VIII, we explain the migration overhead of our algorithm
in more details. Note the transition rate could be computed us-
ing the local values of each conferencing session, thereby the
algorithm can be implemented per session locally, in a paral-
lel manner. The rationale is that we allow only one decision
variable’s value to be different between f and f ′. Note that
by this construction of the transition rates, the detailed balance
equations are respected.

Our proposed algorithm is listed as Algorithm V-B. First,
we mention that the algorithm runs in each session separately,
hence it is parallel. In addition, the algorithm procedure is per-
formed in a representative agent of each session, e.g., the session
initiator’s agent, so, it has no overhead on the user devices. In
the HOP procedure, session s migrates to another feasible as-
signment with a probability proportional to the local objective
value of the target solution. Since our design allows migrat-

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on June 23,2020 at 09:35:32 UTC from IEEE Xplore. Restrictions apply.

HAJIESMAILI et al.: COST-EFFECTIVE LOW-DELAY DESIGN FOR MULTIPARTY CLOUD VIDEO CONFERENCING 2767

Fig. 5. Simple video conferencing scenario with one session, two users, one transcoding operation, and two agents. (a) All eight feasible assignment solutions,
assuming both cloud agents are powerful enough and the end-to-end delays of both flows are always less than Dm ax . (b) The Markov chain.

Algorithm 1: Markov Approximation-Based Assignment
(for Each Session s)

1 procedure WAIT

2 Generate an exponentially distributed random
number with mean 1

τ and begin countdown
according to it

3 while the timer has not expired
4 If Receive a FREEZE message then Pause
5 If Receive a UNFREEZE message then Resume
6 end
7 Invoke HOP

8 end procedure
9 procedure HOP

10 Broadcast a FREEZE message to other sessions
11 Fetch the updated list of residual capacities of agents
12 Fs ← set of all feasible solutions with only one

different decision
13 Migrate to solution f ′ ∈ Fs with probability

proportional to exp(1
2 β(Φs,f − Φs,f ′))

14 Broadcast a UNFREEZE message to other sessions
15 Invoke WAIT

16 end procedure

ing to the assignments with at most one change in assignments
and given the residual capacity of the agent as in Line 11,
session s finds Fs (Line 12) which is the set of all target fea-
sible assignments with one change. We refer to Section VII-C
for the complexity analysis of computing the target feasible
assignments.

In the WAIT procedure, if session s receives a FREEZE mes-
sage, it pauses its countdown, as another session is migrating.
After receiving UNFREEZE message which means that the migra-
tion is done, it resumes the countdown, which is still exponen-
tially distributed. This is true since exponential distribution is
memoryless and because of this property an exponential count
down timer is used in our algorithm design. Last but not the
least, we remark that the FREEZE message is an intra-message
within the cloud agents that are synchronized together in a cloud
environment owned by a single cloud provider. The result in
Proposition 1 shows that regardless of the initial assignment,
Algorithm V-B converges to the stationary state with provable
convergence time, with the proof given in [19].

Proposition 1: Algorithm V-B realizes a continuous-time
Markov chain, which converges to the stationary distribution
in (9).

C. Robustness to System Dynamics and Noisy Measurements

In practice, almost all inputs to the UAP are subject to change
because of dynamics in network connectivity, duration of the
conferencing sessions, and users’ device conditions. As an im-
portant feature, our parallel algorithm is robust to variations due
to system dynamics, e.g., arrival and departures of the sessions.
In particular, upon arrival of a session, a feasible assignment
must be found, and the session’s local algorithm is initiated by
generating its counting process.

In addition, our algorithm adapts well to inaccurate measure-
ments of the problem data. For example, in practice, the latency
values between the users and the agents are perturbed. Further-
more, transcoding latency is highly dependent on both content
characteristics and agents’ load. Hence, the transition rate of
each session is subject to the perturbation with inaccurate val-
ues of either Φs,f and Φs,f ′ . In this situation, the Markov-based
algorithm converges to another steady-state point, since the ob-
jective value is perturbed. The Markov approximation frame-
work comes with an optimality gap bound when the problem
data is perturbed.

We assume the perturbed Φf belongs to one of the following
discrete values:

[Φf −Δf , . . . ,Φf − 1
nf

Δf ,Φf ,Φf +
1
nf

Δf , . . . ,Φf + Δf]

and the perturbed Φf takes the value Φf + j/nf Δf with prob-
ability ηj,f and

∑nf

j=−nf
ηj,f = 1, where Δf is the error bound

on configuration f and nf is a positive constant.
Theorem 1: The stationary distribution of the perturbed

assignment-hopping Markov chain is

p̄f =
δf exp(−βΦf)∑

f ′∈F δf ′ exp(−βΦf ′)
, ∀f ∈ F (13)

where δf =
∑nf

j=−nf
ηj,f exp(β jΔ f

nf
), and optimality gaps are

0 ≤ Φavg − Φmin ≤ (U + θsum) log L

β
, (14)

0 ≤ Φ̄avg − Φmin ≤ (U + θsum) log L

β
+ Δmax (15)

where θsum =
∑

u∈U
∑

v∈U θuv is the total number of transcod-
ing tasks, Δmax = maxf∈F Δf is the maximum perturbation
error, Φmin = minf∈F Φf is the optimal value of the UAP,
Φavg =

∑
f∈F p	

f Φf is the expected objective with the original
Markov chain, and Φ̄avg =

∑
f∈F p̄f Φf is the expected objec-

tive with the perturbed Markov chain.

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on June 23,2020 at 09:35:32 UTC from IEEE Xplore. Restrictions apply.

2768 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 12, DECEMBER 2017

The proof is given in the Appendix. (14) and (15) demon-
strate that when β increases the optimality gap of the perturbed
Markov chain decreases; however, larger β values increase the
convergence time of Algorithm V-B [35].

VI. AGRANK: A FAST SESSION BOOTSTRAPPING ALGORITHM

We proceed to design an agent ranking algorithm for identify-
ing a good starting feasible assignment solution, for bootstrap-
ping the Markov approximation based algorithm. The intuition
is that if Algorithm V-B can start from a close-to-optimal as-
signment, not only high-quality conferencing experience can be
provided to the users starting from the beginning, but also fast
convergence of the algorithm can be achieved.

A first idea might be using the nearest assignment policy
[6], [7] as the initial assignment. However, the motivating ex-
ample in Section I clearly evinces that nearest assignment is
a resource-oblivious and inter-agent proximity oblivious policy,
which only considers the one-hop distance between the user and
the nearest agent, while this agent might be far away from other
agents and also might impose severe inter-agent traffic to the
service provider. Instead, we prefer to seek a resource-aware
and proximity-aware policy.

In a nutshell of the algorithm which we refer to as AgRank,
upon the start of a session, a potential agent of the session (e.g.,
the nearest agent to the session initiator) identifies a set of poten-
tial agents, ranks the agents, and assigns the users and transcod-
ing tasks based on the ranking. Based on the example in Fig. 2,
inter-agent delay is important in agent ranking, in addition to the
agents’ residual capacities and user-to-agent delay. The design
of AgRank is motivated by the idea of Google’s PageRank [37]
and topology-aware node ranking in virtual network embedding
[38] and is summarized in Algorithm 2.

A. Constructing the Potential Agent List

In the first step, the set of all potential agents is constructed.
Toward this, a set of top nngbr closest agents, N (u), for user u
are picked as the possible agents and then the set of potential
agents of the session, N (s), is constructed by putting together
N (u) of all users (Lines 1–6). The parameter nngbr ∈ [1, L]
is the maximum number of potential agents for each user that
could be set on a per-session or per-user basis. Setting nngbr = 1
yields the nearest assignment. In addition, nngbr = L results in
subscribing all users to the highest ranked agent, which is similar
to the traditional C/S architecture, where the whole session is
maintained in a single server.

B. Agent Ranking

The second step is to rank the potential agents based on
a random walk model [37]. We define the initial ranking of
agent l ∈ N (s) as in Line 8, based on the normalized residual
quadruple of agent l. In this way, the initial ranking of the
agents is aware of the resource availability of the potential agents
which turns AgRank into a resource-aware algorithm. Let D̂ =
[D̂lk]|N (s)|×|N (s)| as normalized inter-agent delay matrix where

D̂lk = (minl ′,k ′∈N (s) Dl ′k ′)/Dlk , and π = [πl]l∈L is the vector

of ranking of the agent. The rank vector is updated iteratively
with πT [t + 1] = πT [t]D̂, whose rationale is to capture inter-
agent delay in ranking and find the optimal ranking of the agents
(Lines 7–14). It has been shown that this iterative procedure
converges very fast to a unique vector π	 = [π	

l]l∈L, as the
optimal ranking of the agents [37].

C. User and Transcoding Assignment

Next, user u is assigned to the highest ranked agent within the
set N (u) (Line 16). For transcoding task assignment, we apply
the rule of thumb that when there are at least two destinations
with the same downstream representations for the outgoing flow
of a particular user, assigning the corresponding transcoding task
at the source agent is a good solution, whose transcoded stream
can be served to more than one destination. One may imagine
other schemes for assigning the transcoding tasks, but here we
are only seeking a good feasible one.

VII. DISCUSSION

A. Differences With Similar Approaches

Note that in simulated annealing [39], Gibbs sampling, and
other Monte Carlo Markov chain approaches [40], the general
approach of iterative execution following a particular Markov
chain is similar to the Markov approximation framework [19].
However, different from the Markov approximation framework,
above approaches do not explicitly design the Markov chain
in such a way that it can be implemented in a parallel man-
ner. Thus, the alternative approaches cannot be used to devise

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on June 23,2020 at 09:35:32 UTC from IEEE Xplore. Restrictions apply.

HAJIESMAILI et al.: COST-EFFECTIVE LOW-DELAY DESIGN FOR MULTIPARTY CLOUD VIDEO CONFERENCING 2769

parallel algorithm for the UAP. In addition, the alternative ap-
proaches are inadequate in handling the dynamics in the system
and perturbation of the input to the problem. As discussed in
Section V-C, Markov approximation, however, is robust against
both system dynamics and inaccurate data. Last but not the
least, our framework can provide a performance guarantee that
is characterized in (11). Finally, in another recent work [41],
a solution approach based on spectral clustering methodology
has been proposed for resource selection and task assignment
in distributed computing environments. In this paper, we apply
Markov approximation framework to solve our problem because
of the need for parallel implementation and robustness against
system dynamics and perturbation in input measurements.

B. Real-Time Assignment Migration Without User Experience
Degradation

Our proposed algorithm executes in an iterative manner and
eventually converges to a bounded neighborhood of the opti-
mal solution. However, these iterations come at the expense of
imposing overhead needed to establish the new assignments. In
each migration, the users might suffer from a momentary inter-
ruption, such as a freeze in playback, since switching into a new
cloud agent is in progress. To prevent degradation of the user
experience, one may suggest to keep both the new and the old
assignments alive during the switching process. Finally, we note
that transcoding migration could be seamlessly implemented by
finishing the current task in the previous agent and beginning
the next transcoding in the next agent, following the idea of
segmentation-based transcoding [15]. We give the implementa-
tion details in Section VIII.

C. Complexity Analysis

Recall that a representative agent at each session (e.g., the
session initiator’s agent) runs the proposed algorithms. By do-
ing so, user devices are not involved in running the procedures
of the algorithms, thereby there is no overhead in the user de-
vices. At each iteration of Algorithm V-B, the time complexity
of calculating all of the feasible solutions with only one dif-
ferent decision is O(|U(s)|2L). In addition, for each potential
target assignment, a delay feasibility check is required which
could be done by measuring the round-trip time of each target
assignment and pruning those that are beyond the end-to-end
delay requirement of conferencing session as in (8). Note that
the transition probability in Line 13 of Algorithm V-B could
be computed given the local input of the session. Thus, Algo-
rithm 1 is a parallel algorithm that does not require the global
knowledge of the other conferencing sessions.

The iterative scheme in AgRank yields precision ε with
the number of iterations proportional to max{1,− log ε} [37].
Constructing candidate agents, user assignment, and transcod-
ing assignment takes a computation time of O(|U(s)|L log L),
O(|U(s)|) and O(|U(s)|2), respectively.

VIII. PERFORMANCE EVALUATION

Our experimental results are categorized into two different
sets of experiments with different goals. First, we implement

a prototype conferencing system (Section VIII-A), to investi-
gate the practicality of the algorithms in real environment with
several actual users in different locations. Second, using Plan-
etLab traces [21], we implement large-scale experiments (Sec-
tion VIII-B), to investigate the effectiveness of the proposed
algorithms in Internet-scale scenarios.

The baseline for evaluating the effectiveness of the proposed
solution is the nearest assignment policy (Nrst), i.e., the assign-
ment policy used in Airlift [6] and vSkyConf [7]. The transcoding
tasks are assigned to the agent of the sender of the stream at the
initial assignment in either Nrst or our proposed AgRank. For
the performance metrics, we report the inter-agent traffic (cor-
responding to the operational cost) and the conferencing delay,
i.e., the average delay of all of the users, where the delay of
each user is du = maxv :u∈P(v) dvu . We set Dmax = 400 ms ac-
cording to ITU-U G.114 [11]. Finally, as the proposed algorithm
runs in an iterative manner, we report the evolution of the results
over the time, wherein the initial values are either Nrst [6], [7]
or our proposed AgRank assignments.

A. Experiments on Prototype System

1) Prototype Overview and Setup: A prototype cloud video
conferencing system is implemented based on our solution de-
sign. The OpenCV library [42] is used to record video streams of
device cameras in two different representations and to transcode
the streams. In addition, we deploy six Linux-based EC2 in-
stances in different regions. These virtual machines are used as
the cloud agents in our prototype. A software is implemented
and installed on the virtual machines to run our solutions and to
stream the videos and also transcode different representations.
Conferencing users are located in ten regions (five in the US
and Canada, three in Asia, one in Middle-east, and one in Eu-
rope). We install a lightweight video conferencing application
on the user devices. This software only transfers the conferenc-
ing videos to/from the virtual machines.

Unless otherwise mentioned, the bandwidth and transcoding
capacities of the cloud agents are considered sufficiently large.
In addition, the transcoding latency of agents are in [30, 60]
ms, which varies based on the processing capability of each
EC2 virtual machine. We remark that the agent associated with
the initiator of each session is responsible for executing Algo-
rithm V-B and AgRank, hence by migrating the execution of the
algorithms to the cloud agents, no additional overhead is im-
posed to the client devices. Finally, each session is established
among 3–5 participants and there are in total ten sessions.

2) Implementation Details of Algorithm V-B: As for the
main parameter in Algorithm V-B, we set β = 400. This value is
in order of the logarithm of the state space of the problem [19].
Moreover, we set timer expiration to [0, 10] seconds based
on exponential distribution. The migration transparency (See
Section VII for details) is done as follows. First, we remark that
at each iteration one assignment is migrated. In this way, if the
previous assignment is teared down immediately, there would
be an interruption on the receiving streams of the other partic-
ipants. In the prototype system, we can see a frozen screen for
2–3 frames, which is less than a second. Our solution to mitigate

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on June 23,2020 at 09:35:32 UTC from IEEE Xplore. Restrictions apply.

2770 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 12, DECEMBER 2017

Fig. 6. Evolution of traffic and delay over time (200 s) by executing Algo-
rithm 1 with β = 400 and Nrst for initial assignment. (a) Inter-agent traffic. (b)
Conferencing delay.

Fig. 7. Evolution of traffic and delay over time (200 s) by executing Algo-
rithm 1 with β = 200 and Nrst for initial assignment. (a) Inter-agent traffic. (b)
Conferencing delay.

Fig. 8. Evolution of traffic and delay over time by executing Algorithm 1 with
β = 400 in the presence of session arrival/departure. (a) Inter-agent traffic. (b)
Conferencing delay.

this negative effect is as follows. The migrated device streams
its video to both the previous and the new agents for a period of
less than 30 ms, on average, according to the distance between
user and agent. We note that this overhead, whose volume is
around 13.2 Kb is negligible compared to the amount of traffic
reduction after migration due to the execution of our algorithm.

In Figs. 6–11, the initial traffic/delay values at time 0 are
results of either the Nrst or AgRank assignment policies, and
running Algorithm 1following the initial assignment reduces
them over time.

3) Traffic and Delay Reduction of Algorithm 1: The results
in Fig. 6 clearly show that Algorithm 1reduces traffic and de-
lay of the initial assignment by Nrst significantly. In addition,
after around 180 seconds it converges to the final assignment.
To explore the impact of parameter β on the evolution of Al-
gorithm 1, we also execute our algorithm with β = 200. The
result is shown in Fig. 7. Algorithm 1with a lower value of β
is highly fluctuating and converges to the final solution more

Fig. 9. Evolution of traffic and delay over time (100 s) by executing Algo-
rithm 1 with β = 400 and AgRank with nngbr = 2 for initial assignment. (a)
Inter-agent traffic. (b) Conferencing delay.

Fig. 10. Per-session improvements of Algorithm 1 with Nrst as the initial
assignment. (a) Traffic per session. (b) Delay per session.

Fig. 11. Evolution of traffic and delay with Algorithm 1 for the case of
3 sample sessions with different number of users. (a) Inter-agent traffic. (b)
Conferencing delay.

slowly. Consequently, a larger value of β is preferable. In a
scenario with session arrival/departure (Fig. 8), six sessions are
initialized at time 0, four more sessions arrive at t = 40, and
three sessions depart at t = 80. The results show that the al-
gorithm adapts well to the dynamics and converges to the new
stable assignment quickly.

4) Effectiveness of AgRank: Now, we report the results of
Algorithm 1 when our proposed AgRank algorithm is used for
the initial solution of user-to-agent assignment. The results in
Fig. 9 demonstrate that AgRank outperforms Nrst by reducing
initial inter-agent traffic from 22 Mbps to 15 Mbps. In addi-
tion, the initial conferencing delays are almost similar for both
AgRank and Nrst. Also, the inter-agent traffic and conferenc-
ing delay values of AgRank at 100th second are the same as
those with Nrst at around 200th second. This shows that starting
from a good initial point by AgRank, Algorithm V-B converges
faster. Note that AgRank is a fast algorithm, and takes less than
200 ms to find the initial assignment of the users after session

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on June 23,2020 at 09:35:32 UTC from IEEE Xplore. Restrictions apply.

HAJIESMAILI et al.: COST-EFFECTIVE LOW-DELAY DESIGN FOR MULTIPARTY CLOUD VIDEO CONFERENCING 2771

initialization. In addition to AgRank, which is a proper algorithm
that reduces the convergence time of Algorithm V-B, the other
candidate parameter that can further reduce the convergence
is the countdown parameter which may, however, increase the
migration overhead of the algorithm.

5) Case Study: The previous experiments demonstrated the
average/aggregate results of ten sessions. In this experiment
shown in Figs. 10–11, we study the results of a particular session
in details. A comparison between the initial values in Fig. 10
with Nrst as initialization, and the average and last values of
executing Algorithm 1 clearly shows that Algorithm 1reduces
both inter-agent traffic and the conferencing delay of all of the
users. More specifically, in Fig. 11, the traffic and delay of
three random sessions are shown. In session 8, following Nrst
policy, four users are assigned to three different EC2 instances
in Tokyo, Singapore, and Ireland. However, by executing our
algorithm, all of the users are assigned to Tokyo agent, which
reduces the inter-agent traffic to zero. This migration eliminates
the inter-agent traffic and also reduces the average delay of the
users by 18% (388 to 318 ms). Finally, we note that because
of the probabilistic nature of our solution design, a session may
migrate to a worse assignment for some time, e.g., migration
of session 9 at t = 131, but can recover soon, e.g., session 9
migrates back to the optimal assignment at t = 141. As a “rule-
of-thumbs”, our solution recommends assigning the users as
much as possible to the same agents, but not if this increases the
user delay.

B. Large-Scale Trace-Driven Experiments

1) Experimental Setup: In this section, we scrutinize the per-
formance evaluation of solution using Internet-scale scenarios
where we set up trace-driven experiments using 256 PlanetLab
nodes as the users and the traces of seven EC2 instances as the
agents. The user-to-agent and inter-agent delay values (approx-
imately RTTs divided by 2) are from [43], [44]. We use four
different representations 360 p, 480 p, 720 p, and 1080 p. A
sparse transcoding matrix is considered such that 80% of users
use 720p as their representation. We generate 100 random sce-
narios for each set of experiments and the statistical results are
reported. In each experiment 200 out of 256 PlanetLab nodes
are randomly chosen, who join different sessions, each of which
with at most five users.

2) Trace Data Analysis: In this section, we briefly analyze
the trace data [43], [44] of the latency values between 256
PlanetLab nodes and seven EC2 instances. We have two goals.

First, to investigate the contribution of inter-agent latency
values in total end-to-end delays. Toward this, we report the
inter-agent latency values in Table II. The values clearly show
that the latency between some agents is quite large. On average,
inter-agent latency values are 101 ms, which is about 25% of
total end-to-end delay requirements (400 ms). This means that
the contribution of inter-agent latency to end-to-end delay is
not negligible in most cases. In addition, the results in Table II
further corroborate our decision to consider inter-agent prox-
imity values when ranking the potential agents in the AgRank
algorithm.

TABLE II
INTER-AGENT DELAY MATRIX (IN MILLISECONDS) FOR AMAZON EC2 VMS

[43], (VA: VIRGINIA, OR: OREGON, CA: CALIFORNIA, IR: IRELAND, SI:
SINGAPORE, TO: TOKYO, SY: SYDNEY, SP: SAO PAULO)

OR CA IR SI TO SY SP

VA 41.3 42.3 54 127 101 133 81.5
OR 11.5 85.5 117 67.5 100.5 104
CA 85 94 72 89.5 93
IR 117 138 168 120
SI 45.3 121.5 181.5
TO 72 150.5
SY 166.5

Fig. 12. Fraction of the number of users (among total 256 PlanetLab nodes)
whose ρu is lower than a threshold.

TABLE III
EFFECT OF DESIGN PARAMETER α ON ALGORITHM 1

Algorithm Cost Init. Algorithm 1

α2 = 0
(delay only)

α1 = α2 α1 = 0
(traffic only)

Nrst
Traffic 1443 979 829 521
Delay 166 149 150 209

AgRank
Traffic 384 499 335 296
Delay 176 162 163 214

Second, to further investigate the scenario in which some
conferencing users are quite close to more than one cloud
agent (e.g., the HK user in Fig. 2 is in the vicinity of both
the TO and the SG cloud agents). In such cases, by choos-
ing agents intelligently, both conferencing delay and inter-
agent traffic can be reduced simultaneously. We introduce
ρu = minl,k∈L|Hlu −Hku |,∀u ∈ U , i.e., the difference be-
tween the user-to-agent latency of user u and its top two closest
cloud agents (e.g., ρ4 = 27− 20 = 7, in Fig. 2). In Fig. 12, we
show the fraction of the number of PlanetLab nodes (among
all 256 nodes) whose ρu is lower than a threshold. The results
show that 76% of the PlanetLab nodes are close to two different
agents with a delay difference lower than 35 ms. Thus, in most
cases each user is close enough to at least two cloud agents, so
the design space for assignment is large.

3) Effect of Design Parameters: Parameters α1 and α2 are
the weighting parameters of the hybrid objective function. In
this experiment, we investigate the effect of these parameters
on the performance of our algorithm. For simplicity α3 = 0.
Table III and Figs. 13–14 show the highlights of the com-
parisons. The results in Table III demonstrate that when the
importance of cost and delay are the same, i.e., α1 = α2 , Algo-
rithm 1with Nrst (AgRank) as initialization reduces the traffic

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on June 23,2020 at 09:35:32 UTC from IEEE Xplore. Restrictions apply.

2772 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 12, DECEMBER 2017

Fig. 13. Comparison of conferencing delay of Algorithm 1 with two initial-
ization AgRank and Nrst and with different values of design parameter α.

Fig. 14. Comparison of inter-agent traffic of Algorithm 1 with two initializa-
tion AgRank and Nrst and with different values of design parameter α.

Fig. 15. Comparison of AgRank and Nrst. (a) Different bandwidth capacities.
(b) Different transcoding capacities.

and the delay compared to Nrst by 42% (77%) and 10% (2%),
respectively. Moreover, initialization by AgRank reduces the
traffic by 73% at the expense of a 6% higher conferencing de-
lay compared to Nrst. Figs. 13–14 show the statistical results
for the conferencing delay and inter-agent traffic with different
values of α. The results in Fig. 13 demonstrate that the confer-
encing delay of AgRank is slightly higher than Nrst. However,
the inter-agent traffic of AgRank is significantly lower than in
Nrst, as shown in Fig. 14.

Above result clearly shows that the nearest policy yields nei-
ther minimal delay nor minimal traffic cost. Furthermore, it
signifies that our solution design improves the user experience
and reduce the operational cost.

4) Performance of AgRank When Bandwidth and Transcod-
ing Capacities of Agents Are Limited: The previous results
showed that AgRank significantly outperforms Nrst by re-
ducing the initial traffic cost. This reduction could be trans-
lated into an increased success rate of the initial assignment,
i.e., all users in the system can successfully subscribe to
agents, by serving more sessions with limited capacities of
the agents. In Fig. 15, we show the percentage of successfully
initialized scenarios (out of 100 random scenarios), with two

Fig. 16. Impact of nngbr on AgRank. (a) Inter-agent traffic. (b) Conferencing
delay.

versions of AgRank, AgRank#2 with nngbr = 2 and AgRank#3
with nngbr = 3, and Nrst under different average bandwidth
capacities (Fig. 15(a), unlimited transcoding capacity) and
transcoding capacities of the agents (Fig. 15(b), unlimited band-
width capacity). We observe that with AgRank#3, all 100 random
scenarios can be successfully initialized under average band-
width capacity 750 Mbps, while with the resource-oblivious
Nrst, only 8% of the randomly generated scenarios can be suc-
cessfully initialized. The higher success rates of AgRank#3 than
AgRank#2 show that picking among a larger number of potential
agents provides a larger feasible set. To explore this further, we
compare the performance of AgRank under different values of
nngbr in Fig. 16. Clearly, nngbr = 1, by which AgRank is equiv-
alent to Nrst, yields the highest traffic cost. With nngbr = L, all
users of each session are subscribing to one agent and hence
suffer from long conferencing delays.

IX. CONCLUSION AND FUTURE DIRECTIONS

This study addresses the problem of user-to-agent assign-
ment and transcoding task assignment in cloud video confer-
encing architecture. Considering the challenges of the problem
due to the underlying large-scale combinatorial problem, we
devise a parallel and adaptive solution to optimize the assign-
ment tasks. The algorithm achieves a suboptimal solution with
a bounded performance guarantee. Observations on prototype
system implementation corroborate our claim that user assign-
ment is a critical design issue in cloud architecture that can lead
to a big difference in entire system performance. In addition,
trace-driven simulations demonstrate that our solution design
outperforms the existing solutions in terms of reduced delay
and cost, and thus demonstrates its viability as a win-win solu-
tion for both users and conferencing service provider. Finally,
in future research, a promising direction to tackle is the more
general problem in which other tasks, rather than transcoding
are performed at the cloud agents. The problem could be fur-
ther generalized to consider other types of communication and
computation cloud resources for general interactive real-time
multimedia applications.

APPENDIX

A. Proof of Theorem 1

To prove, first we should prove that the stationary distribution
of the perturbed Markov chain is (13), this part is very similar
to the proof in [35] and hence we proceed to prove (14)–(15).

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on June 23,2020 at 09:35:32 UTC from IEEE Xplore. Restrictions apply.

HAJIESMAILI et al.: COST-EFFECTIVE LOW-DELAY DESIGN FOR MULTIPARTY CLOUD VIDEO CONFERENCING 2773

Let us define the dirac distribution as follows:

p̂f =
{

1, if f = fmin

0, otherwise

where fmin is the optimal solution of the UAP (i.e., fmin =
arg minf∈F Φf). In addition, p	

f as defined in (9) is the optimal
solution for the UAP-β. Hence, using the result is (11) we have
∑

f∈F
p	

f Φf +
1
β

∑

f∈F
p	

f log p	
f ≤

∑

f∈F
p̂f Φf +

1
β

∑

f∈F
p̂f log p̂f .

(16)
By Jensen’s inequality [36] we get

−
∑

f∈F
pf log pf =

∑

f∈F
pf log

1
pf

(17)

≤ log

⎛

⎝
∑

f∈F
pf

1
pf

⎞

⎠

= log |F|. (18)

Moreover, we have Φavg =
∑

f∈F p	
f Φf and Φmin =∑

f∈F p̂f Φf , by combining these equations, we get

Φavg ≤ Φmin +
1
β

log |F|. (19)

We know that |F| ≤ LU +θ s u m
, where U , θsum , and L are the

total numbers of the users, the transcoding tasks, and the agents,
respectively, hence

0 ≤ Φavg − Φmin ≤ (U + θsum) log L

β
. (20)

The above equation proves the inequality in (14).
In the next step, we prove the optimality gap of the perturbed

Markov chain as characterized in (15). By reformulating (14)
for the perturbed Markov chain we have

∑

f∈F
p̄f Φ′f −min

f ′∈F
Φ′f ≤

(U + θsum) log L

β
(21)

where Φ′f is the modified objective function of the UAP-β in

perturbed setting and is defined as Φ′f = Φf − log δf

β , then by
substituting the value of Φ′f in (21) we get

∑

f∈F
p̄f

(
Φf − log δf

β

)
−min

f ′∈F

(
Φf − log δf

β

)

≤ (U + θsum) log L

β
. (22)

In addition, since Δmax is the maximum perturbation error, we
have δf ≤ exp(βΔmax), f ∈ F and hence

log δf

β
≤ Δmax , f ∈ F . (23)

Finally, we have Φ̄avg =
∑

f∈F p̄f Φf and then by combining
(22) and (23), we get

0 ≤ Φ̄avg − Φmin ≤ (U + θsum) log L

β
+ Δmax . (24)

This proves the inequality in (15).

REFERENCES

[1] M. H. Hajiesmaili, L. T. Mak, Z. Wang, C. Wu, M. Chen, and A. Khonsari,
“Cost-effective low-delay cloud video conferencing,” in Proc. IEEE 36th
Int. Conf. Distrib. Comput. Syst., 2015, pp. 103–112.

[2] “Cisco VNI service adoption forecast, 2012–2017,” White Paper,
Feb., 2013.

[3] “Cisco VNI global mobile data traffic forecast update, 2013–2018,” White
Paper, Feb., 2014.

[4] Y. Wen, X. Zhu, J. J. Rodrigues, and C. W. Chen, “Cloud mobile me-
dia: Reflections and outlook,” IEEE Trans. Multimedia, vol. 16, no. 4,
pp. 885–902, Jun. 2014.

[5] Y. Hu, D. Niu, and Z. Li, “A geometric approach to server selection
for interactive video streaming,” IEEE Trans. Multimedia, vol. 18, no. 5,
pp. 840–851, May 2016.

[6] Y. Feng, B. Li, and B. Li, “Airlift: Video conferencing as a cloud service
using inter-datacenter networks,” in Proc. IEEE Int. Conf. Netw. Protocols,
2012, pp. 1–11.

[7] Y. Wu, C. Wu, B. Li, and F. C. Lau, “vSkyConf: Cloud-assisted multi-
party mobile video conferencing,” in Proc. ACM SIGCOMM Work-
shop Mobile Cloud Comput., 2013, pp. 33–38. [Online]. Available:
http://doi.acm.org/10.1145/2491266.2491273

[8] Y. Xu, C. Yu, J. Li, and Y. Liu, “Video telephony for end-consumers:
measurement study of Google+, iChat, and Skype,” in Proc. ACM Internet
Meas. Conf., 2012, pp. 371–384.

[9] E. Kurdoglu, Y. Liu, and Y. Wang, “Dealing with user heterogeneity in
P2P multi-party video conferencing: Layered distribution versus parti-
tioned simulcast,” IEEE Trans. Multimedia, vol. 18, no. 1, pp. 90–101,
Jan. 2016.

[10] X. Chen, M. Chen, B. Li, Y. Zhao, Y. Wu, and J. Li, “Celerity:
A low-delay multi-party conferencing solution,” in Proc. ACM Mul-
timedia, 2011, pp. 493–502. [Online]. Available: http://doi.acm.org/
10.1145/2072298.2072362

[11] “One-way transmission time,” ITU-T Recommendations, G.114, 2003.
[Online]. Available: https://www.itu.int/rec/T-REC-G.114-200305-I/en

[12] S.-P. Chuah, Y.-P. Tan, and Z. Chen, “Rate and power allocation for joint
coding and transmission in wireless video chat applications,” IEEE Trans.
Multimedia, vol. 17, no. 5, pp. 687–699, May 2015.

[13] A. Khalek, C. Caramanis, and R. Heath, “Delay-constrained video trans-
mission: Quality-driven resource allocation and scheduling,” IEEE J. Sel.
Topics Signal Process., vol. 9, no. 1, pp. 60–75, Feb. 2015.

[14] Y. Liu, F. Li, L. Guo, B. Shen, and S. Chen, “A server’s perspective of
internet streaming delivery to mobile devices,” in Proc. IEEE INFOCOM,
2012, pp. 1332–1340.

[15] G. Gao, W. Zhang, Y. Wen, Z. Wang, and W. Zhu, “Towards cost-
efficient video transcoding in media cloud: Insights learned from user
viewing patterns,” IEEE Trans. Multimedia, vol. 17, no. 8, pp. 1286–1296,
Aug. 2015.

[16] J. Liao, P. Chou, C. Yuan, Y. Hu, and W. Zhu, “Online allocation of com-
munication and computation resources for real-time multimedia services,”
IEEE Trans. Multimedia, vol. 15, no. 3, pp. 670–683, Apr. 2013.

[17] Y. Jin, Y. Wen, and K. Guan, “Toward cost-efficient content placement in
media cloud: Modeling and analysis,” IEEE Trans. Multimedia, vol. 18,
no. 5, pp. 807–819, May 2016.

[18] D. G. Andersen, “Theoretical approaches to node assignment,” Comput.
Sci. Dept., Carnegie Mellon Univ., Pittsburgh, PA, USA, 2002.

[19] M. Chen, S. C. Liew, Z. Shao, and C. Kai, “Markov approximation for
combinatorial network optimization,” IEEE Trans. Inf. Theory, vol. 59,
no. 10, pp. 6301–6327, Oct. 2013.

[20] “Amazon elastic compute cloud,” 2017. [Online]. Available: http://aws.
amazon.com/ec2/

[21] B. Chun et al., “Planetlab: An overlay testbed for broad-coverage ser-
vices,” ACM SIGCOMM Comput. Commun. Rev., vol. 33, no. 3, pp. 3–12,
2003.

[22] S. Zhang, D. Niu, Y. Hu, and F. Liu, “Server selection and topology
control for multi-party video conferences,” in Proc. ACM Netw. Oper.
Syst. Support Digital Audio Video, 2014, pp. 43–48.

[23] H. Bobarshad, M. van der Schaar, A. Aghvami, R. Dilmaghani, and
M. Shikh-Bahaei, “Analytical modeling for delay-sensitive video over
WLAN,” IEEE Trans. Multimedia, vol. 14, no. 2, pp. 401–414, Apr. 2012.

[24] S. Wang, Y. Liu, and S. Dey, “Wireless network aware cloud scheduler for
scalable cloud mobile gaming,” in Proc. IEEE Int. Conf. Commun., 2012,
pp. 2081–2086.

[25] M. H. Hajiesmaili, M. S. Talebi, and A. Khonsari, “Multi-period network
rate allocation with end-to-end delay constraints,” IEEE Trans. Control
Netw. Syst., to be published. [Online]. Available: http://ieeexplore.ieee.
org/document/7869285/

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on June 23,2020 at 09:35:32 UTC from IEEE Xplore. Restrictions apply.

2774 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 12, DECEMBER 2017

[26] M. H. Hajiesmaili, A. Khonsari, A. Sehati, and M. S. Talebi, “Content-
aware rate allocation for efficient video streaming via dynamic net-
work utility maximization,” J. Netw. Comput. Appl., vol. 35, no. 6,
pp. 2016–2027, 2012.

[27] M. S. Talebi, A. Khonsari, and M. H. Hajiesmaili, “Utility-proportional
bandwidth sharing for multimedia transmission supporting scalable video
coding,” Comput. Commun., vol. 33, no. 13, pp. 1543–1556, 2010.

[28] S. T. Maguluri, R. Srikant, and L. Ying, “Stochastic models of load bal-
ancing and scheduling in cloud computing clusters,” in Proc. IEEE INFO-
COM, 2012, pp. 702–710.

[29] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach, “Vir-
tual network embedding: A survey,” IEEE Commun. Surv. Tut., vol. 15,
no. 4, pp. 1888–1906, Jul.–Sep. 2013.

[30] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: Substrate support for path splitting and migration,” ACM
SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 17–29, 2008.
[Online]. Available: http://doi.acm.org/10.1145/1355734.1355737

[31] E. Rodriguez, G. Alkmim, D. Batista, and N. da Fonseca, “Live migration
in green virtualized networks,” in Proc. IEEE Int. Conf. Commun., 2013,
pp. 2262–2266.

[32] X. Chen, Y. Luo, and J. Wang, “Virtual network embedding with border
matching,” in Proc. IEEE COMSNETS, 2012, pp. 1–8.

[33] Y. Jin, Y. Wen, H. Hu, and M.-J. Montpetit, “Reducing operational costs
in cloud social TV: An opportunity for cloud cloning,” IEEE Trans. Mul-
timedia, vol. 16, no. 6, pp. 1739–1751, Oct. 2014.

[34] B. Alinia, M. H. Hajiesmaili, and A. Khonsari, “On the construction of
maximum-quality aggregation trees in deadline-constrained WSNs,” in
Proc. IEEE INFOCOM, 2015, pp. 226–234.

[35] S. Zhang, Z. Shao, M. Chen, and L. Jiang, “Optimal distributed P2P
streaming under node degree bounds,” IEEE/ACM Trans. Netw., vol. 22,
no. 3, pp. 717–730, Jun. 2014.

[36] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ., 2004.

[37] M. Bianchini, M. Gori, and F. Scarselli, “Inside PageRank,” ACM Trans.
Int. Tech., vol. 5, no. 1, pp. 92–128, 2005.

[38] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang,
“Virtual network embedding through topology-aware node ranking,” ACM
SIGCOMM Comput. Commun. Rev., vol. 41, no. 2, pp. 38–47, 2011.
[Online]. Available: http://doi.acm.org/10.1145/1971162.1971168

[39] P. J. Van Laarhoven and E. H. Aarts, Simulated Annealing. New York, NY,
USA: Springer, 1987.

[40] P. Bremaud, Markov Chains: Gibbs Fields, Monte Carlo Simulation, and
Queues. New York, NY, USA: Springer, 1999, vol. 31.

[41] N. D. Doulamis, P. Kokkinos, and E. Varvarigos, “Resource selection
for tasks with time requirements using spectral clustering,” IEEE Trans.
Comput., vol. 63, no. 2, pp. 461–474, Feb. 2014.

[42] “OpenCV,” 2017. [Online]. Available: http://opencv.org/
[43] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I.

Stoica, “Highly available transactions: Virtues and limitations,” in Proc.
Very Large Databases, 2014, pp. 181–192.

[44] Z. Wu and H. V. Madhyastha, “Understanding the latency benefits of
multi-cloud webservice deployments,” ACM SIGCOMM Comput. Com-
mun. Rev., vol. 43, no. 1, pp. 13–20, 2013.

Mohammad H. Hajiesmaili received the B.Sc. de-
gree in computer engineering from the Department
of Computer Engineering, Sharif University of Tech-
nology, Tehran, Iran, in 2007, and the M.Sc. and
Ph.D. degrees in computer engineering from the Elec-
trical and Computer Engineering Department, Uni-
versity of Tehran, Tehran, Iran, in 2009 and 2014,
respectively.

He was a Postdoctoral Fellow with the Department
of Information Engineering, The Chinese University
of Hong Kong, Shatin, Hong Kong, from 2014 to

2016. He is currently a Postdoctoral Fellow with the Department of Electrical
and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA.
His research interests include optimization, algorithm, and mechanism design
in communication, energy, and transportation networks.

Lok To Mak received the B.Eng. degree from the Department of Information
Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, in
2014, where he is currently working toward the M.Phil. degree.

His research interests include multimedia networking and electric vehicle
scheduling.

Zhi Wang (S’10–M’14) received the B.E. and Ph.D.
degrees in computer science from Tsinghua Univer-
sity, Beijing, China, in 2008 and 2014, respectively.

He is currently an Assistant Professor with
Tsinghua University. His research areas include mul-
timedia big data, mobile cloud computing, and large-
scale multimedia systems.

Prof. Wang was the recipient of the China Com-
puter Federation Outstanding Doctoral Dissertation
Award in 2014, the ACM Multimedia Best Paper
Award in 2012, and the MMM Best Student Paper

Award in 2015.

Chuan Wu (SM’16) received the B.Eng. and M.Eng.
degrees from the Department of Computer Sci-
ence and Technology, Tsinghua University, Beijing,
China, in 2000 and 2002, respectively, and the Ph.D.
degree from the Department of Electrical and Com-
puter Engineering, University of Toronto, Toronto,
ON, Canada, in 2008.

Since September 2008, she has been with the De-
partment of Computer Science, University of Hong
Kong, Pokfulam, Hong Kong, where she is currently
an Associate Professor. Her research interests include

cloud computing, data center networking, distributed machine learning, and big
data analytics.

Dr. Wu is a member of ACM, and was the Chair of the Interest Group on
Multimedia services and applications over Emerging Networks of the IEEE
Multimedia Communication Technical Committee from 2012 to 2014. She has
also served as TPC member and reviewer for international conferences and jour-
nals, including IEEE INFOCOM, IEEE ICDCS, ACM MM, IEEE ICC, IEEE
GLOBECOM, TPDS, TON and TMM. She was the co-recipient of the best
paper awards of HotPOST 2012 and ACM e-Energy 2016.

Minghua Chen (S’04–M’06–SM’13) received the
B.Eng. and M.S. degrees from the Department of
Electronic Engineering, Tsinghua University, Bei-
jing, China, in 1999 and 2001, respectively, and the
Ph.D. degree from the Department of Electrical En-
gineering and Computer Sciences, University of Cal-
ifornia at Berkeley (UC Berkeley), Berkeley, CA,
USA, in 2006.

He spent one year visiting Microsoft Research
Redmond as a Postdoctoral Researcher. In 2007, he
joined the Department of Information Engineering,

Chinese University of Hong Kong, where he is currently an Associate Pro-
fessor. He is also an Adjunct Associate Professor with the Institute of Inter-
disciplinary Information Sciences, Tsinghua University. His current research
interests include energy systems (e.g., smart power grids and energy-efficient
data centers), intelligent transportation system, networked systems, online com-
petitive optimization, distributed optimization, and delay-constrained network
coding.

Prof. Chen was the recipient of the Eli Jury award from UC Berkeley in 2007
(presented to a graduate student or recent alumnus for outstanding achievement
in the area of Systems, Communications, Control, or Signal Processing) and The
Chinese University of Hong Kong Young Researcher Award in 2013. He also
received several best paper awards, including the IEEE ICME Best Paper Award
in 2009, the IEEE Transactions on Multimedia Prize Paper Award in 2009, and
the ACM Multimedia Best Paper Award in 2012. He is currently an Associate
Editor of the IEEE/ACM TRANSACTIONS ON NETWORKING. He serves as TPC
Co-Chair of ACM e-Energy 2016 and General Chair of ACM e-Energy 2017.

Ahmad Khonsari received the B.Sc. degree in
electrical and computer engineering from Shahid-
Beheshti University, Tehran, Iran, in 1991, the
M.Sc. degree in computer engineering from Iran Uni-
versity of Science and Technology, Tehran, in 1996,
and the Ph.D. degree in computer science from the
University of Glasgow, Glasgow, U.K., in 2003.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineer-
ing, University of Tehran, Tehran, and a Researcher
with the School of Computer Science, Institute for

Research in Fundamental Sciences, Tehran. His research interests include per-
formance modeling/evaluation, wired/wireless networks, distributed systems,
and high-performance computer architectures.

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on June 23,2020 at 09:35:32 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

