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Abstract—In multimedia applications such as IPTV, it is nat-
ural to accommodate multiple coexisting peer-to-peer streaming
overlays, corresponding to channels of programming. With coex-
isting streaming overlays, one wonders how these overlays may ef-
ficiently share the available upload bandwidth on peers, in order
to satisfy the required streaming rate in each overlay, as well as to
minimize streaming costs. In this paper, we seek to design simple,
effective and decentralized strategies to resolve conflicts among
coexisting streaming overlays. Since such strategies of conflict are
game theoretic in nature, we characterize them as a decentralized
collection of dynamic auction games, in which downstream peers
submit bids for bandwidth at the upstream peers. With extensive
theoretical analysis and performance evaluation, we show that
the outcome of these local games is an optimal topology for each
overlay that minimizes streaming costs. These overlay topologies
evolve and adapt to peer dynamics, fairly share peer upload
bandwidth, and can be prioritized.

I. INTRODUCTION

Peer-to-peer streaming applications have recently become
a reality in the Internet, in which large numbers of peers
self-organize into streaming overlays. It is natural to con-
sider multiple coexisting streaming overlays (sessions) in
such applications, each of which corresponds to a channel
of television programming or live events. Generated with a
modern codec such as H.264, each overlay distributes a live
media stream with a specific streaming rate, such as 800
Kbps for a Standard-Definition stream and 1700 Kbps for a
480p (848×480 pixels) High-Definition stream. To meet such
exacting demands of bandwidth that have to be satisfied at
all participating peers, a streaming overlay relies on available
upload bandwidth supplies of both dedicated streaming servers
and regular participating peers. Smooth streaming playback
is not possible unless such supplies meet the demand for
streaming bandwidth.

It only becomes more challenging when coexisting stream-
ing overlays are considered, sharing the available upload band-
width in the peer-to-peer network. Consider a typical scenario
where multiple peers from different overlays are in conflict
with one another, competing for limited upload bandwidth at
the same streaming server or upstream peer in the network.
Apparently, the allocation of such upload bandwidth needs
to be meticulously mediated with appropriate strategies, such
that the streaming rate requirement of each overlay is satisfied
at all participating peers. It would be best if, at the same
time, fairness or prioritization can be achieved across different
overlays, and certain costs of streaming (e.g., latencies) can
be minimized. It goes without saying that if such tactical

strategies are not implemented, the conflict among streaming
overlays may not be resolved satisfactorily.

In this paper, we seek to design simple, decentralized,
but nonetheless effective tactical strategies to resolve inherent
conflicts among coexisting streaming overlays. Much inspired
by the seminal work of the Nobel Prize winner Thomas
Schelling “The Strategy of Conflict,” we believe that it is best
to characterize such conflicts in a game theoretic setting, and
with dynamic auction games. Such games evolve over time,
and involve repeated auctions in which bids are submitted
by competing downstream peers from different overlays to
the same upstream peer. In these dynamic auction games, an
upstream peer allocates its upload bandwidth based on bids
from downstream peers, and a downstream peer may optimize
and place its bids to multiple upstream peers, and subsequently
compete in multiple auctions. Each of these auctions is locally
administered, and leads to cleanly decentralized strategies.

With extensive theoretical analysis and performance evalua-
tion using simulations, we show that these decentralized game-
theoretic strategies not only converge to a Nash equilibrium,
but also lead to favorable outcomes: we are able to obtain an
optimal topology for each coexisting streaming overlay, in the
sense that streaming rates are satisfied, and streaming costs are
minimized. These topologies of coexisting overlays evolve and
adapt to peer dynamics, fairly share peer upload bandwidth,
and can be prioritized. In contrast to existing game theoretic
approaches that are largely theoretical in nature, we show
that our proposed strategies can be practically implemented
in realistic streaming overlays. Indeed, our focus in this paper
is not on reasoning about the rationality and selfishness of
peers, nor on incentive engineering to encourage contribution.
We seek to devise practical strategies that may be realistically
implemented, and use game theoretic tools only to facilitate
the design of such conflict-resolving strategies.

The remainder of this paper is organized as follows. In
Sec. II, we present our network model and motivate the design
of distributed auction games. In Sec. III, we discuss in details
the bidding and allocation strategies, prove their convergence,
and then discuss their practical implementation issues. Sec. IV
is dedicated to an in-depth study of the proposed strategies
in realistic settings, with respect to interactions of multiple
dynamic streaming overlays. We then discuss related work and
conclude the paper in Sec. V and Sec. VI, respectively.

II. MODEL

In this paper, we consider multiple coexisting streaming
overlays, each consisting of streaming servers and participating
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Fig. 1. Two concurrent peer-to-peer streaming overlays: an example.

peers. Each server may serve more than one overlay, while
each peer may also participate in multiple overlays. In each
streaming overlay, participating servers and peers form a mesh
topology, in which any peer is served by its upstream peers
(servers can be deemed as special upstream peers), and may
serve one or more downstream peers at the same time. Fig. 1
shows an example of two coexisting streaming overlays, each
with two streaming servers and four participating peers.

Let S denote the set of all coexisting streaming overlays.
The topology of each overlay s ∈ S can be modeled as a
directed graph Gs = (Vs,Ns,As), where Vs is the set of
servers serving overlay s, Ns represents the set of participating
peers, and As denotes the set of application-layer links in
overlay s. Let Rs be the required streaming rate of the
media stream distributed in overlay s. Let V be the set of all
streaming servers in the network, i.e., V = ∪s∈SVs, and N
be the set of all existing peers, i.e., N = ∪s∈SNs. Ui denotes
the upload bandwidth at peer i, ∀i ∈ V ∪ N . Realistically,
we assume that the last-mile upload bandwidth on each peer
constitutes the “supply” of bandwidth in the overlays. We are
not concerned with insufficient peer download bandwidth, as
it is not possible to achieve required streaming rates in case
of such lack of bandwidth, with any solution.

Each upstream peer i, ∀i ∈ V ∪ N , organizes a dynamic
auction game, referred to as auction i, in order to mediate
competition for its upload bandwidth — the “goods” for sale,
with a total quantity Ui. The players in auction i are all the
downstream peers of peer i in each overlay it participates in.
Let js represent peer j in overlay s. The set of players in
auction i can be expressed as {js,∀j : (i, j) ∈ As,∀s ∈ S}.
A player js may submit its bids to multiple upstream peers
in their respective auction games. In case a downstream peer
j participates in multiple overlays, it is viewed as multiple
players, each for one overlay.

The dynamic auction games at the peers are repeatedly
carried out over time. In each bidding round of auction game
i, each player submits its bid to peer i, declaring its requested
share of upload bandwidth, as well as the unit price it is willing
to pay. The upstream peer i then allocates shares of its upload
capacity Ui to the players based on their bids. Let xs

ij denote
the upload bandwidth that player js requests from peer i, and
ps

ij denote the unit price it is willing to pay to peer i. The
bid for player js in auction i can be represented as a 2-tuple
bs
ij = (ps

ij , x
s
ij).

Such a distribute game model can be illustrated with the
example in Fig. 2. In the example, there are 7 auction games,
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Fig. 2. Decentralized auction games in the example streaming overlays.

two of which are marked: auction 1 at v1 with 5 players 31

(peer n3 in overlay 1), 51, 52, 61 and 62, auction 2 at v2, with
4 players 42, 51, 52 and 71, respectively.

III. THE AUCTION GAME

We are now ready to propose the allocation strategy taken
by an upstream peer, and the bidding strategy by downstream
peers in distributed auction games. We show these game-
theoretic strategies can be readily implemented in practical
streaming overlays, and analyze their convergence to a Nash
equilibrium.

A. Allocation strategy

In auction i, the seller, upstream peer i, aims to maximize
its revenue by selling its upload bandwidth Ui at the best
prices. Given bids bs

ij = (ps
ij , x

s
ij)’s from all the players js

(∀j : (i, j) ∈ As,∀s ∈ S), upstream peer i’s allocation
strategy can be represented by the following revenue maxi-
mization problem. Here, as

ij (∀j : (i, j) ∈ As,∀s ∈ S) is the
bandwidth share to be allocated to each downstream peer j in
each competing overlay s.

Allocation i:

max
∑
s∈S

∑
j:(i,j)∈As

ps
ija

s
ij (1)

subject to∑
s∈S

∑
j:(i,j)∈As

as
ij ≤ Ui,

0 ≤ as
ij ≤ xs

ij , ∀j : (i, j) ∈ As,∀s ∈ S.

Such an allocation strategy can be achieved in the following
fashion:

Upstream peer i selects the highest bid price, e.g., ps
ij from

player js, and allocates bandwidth as
ij = min(Ui, x

s
ij) to it.

Then if it still has remaining bandwidth, it selects the second
highest bid price and assigns the requested bandwidth to the
corresponding player. This process repeats until peer i has
allocated all its upload capacity, or bandwidth requests from
all the players have been satisfied. ��

The above allocation strategy can be formally stated in the
following formula:

as
ij = min(xs

ij , Ui −
∑

ps′
ik≥ps

ij ,ks′ �=js

as′
ik),

∀j : (i, j) ∈ As,∀s ∈ S. (2)



B. Bidding strategy

In each overlay s ∈ S, a peer j may place its bids to
multiple upstream peers. As a common objective, it wishes
to acquire the required streaming rate for the overlay, and
experience minimum costs. We consider two parts of costs
when peer j streams from peer i in overlay s: streaming cost
— denoted by streaming cost function Ds

ij(x
s
ij) — represents

the streaming latency actually experienced by j; bidding cost
— calculated by ps

ijx
s
ij — represents the bid peer j submits

to peer i in overlay s. The bidding cost reflects the degree of
competition and demand for bandwidth in the auction games
at upstream peers. The overall cost at player js is the sum of
the two parts from all its upstream peers, ∀i : (i, j) ∈ As.

In this way, the preference for player js in deciding its bids
in the auctions can be expressed by the following cost mini-
mization problem. Practically, we assume cost functions Ds

ij

are non-decreasing, twice differentiable and strictly convex.
Bidding js:

min
∑

i:(i,j)∈As

(Ds
ij(x

s
ij) + ps

ijx
s
ij) (3)

subject to ∑
i:(i,j)∈As

xs
ij ≥ Rs, (4)

xs
ij ≥ 0, ∀i : (i, j) ∈ As. (5)

The bidding strategy of player js consists of two main
components: bandwidth requests and price adjustments.

1) Bandwidth requests: If the bid prices ps
ij’s are given, the

requested bandwidths at player js towards each of its upstream
peers in overlay s, i.e., xs

ij ,∀i : (i, j) ∈ As, can be optimally
decided by solving the problem Bidding js. This can be done
efficiently with a water-filling approach, in which player js

acquires the required streaming rate Rs by requesting from
upstream peers that incur minimum marginal costs:

Let fs
j (x) denote the overall cost at player js, i.e., fs

j (x) =∑
i:(i,j)∈As

(Ds
ij(x

s
ij)+ps

ijx
s
ij). The marginal cost with respect

to xs
ij is

dfs
j (x)

dxs
ij

= D
′s
ij(x

s
ij) + ps

ij . Beginning with xs
ij = 0

(∀i : (i, j) ∈ As), the player identifies one xs
ij that achieves

the smallest marginal cost and increases its value. As Ds
ij(x

s
ij)

is strictly convex, D
′s
ij(x

s
ij) increases with the increase of xs

ij .
The player increases the xs

ij until its marginal cost is no longer
the smallest. Then it finds a new xs

ij with current smallest
marginal cost and increases its value. This process repeats
until the sum of all xs

ij’s (∀i : (i, j) ∈ As) reaches Rs. ��

pij
s

Dij(0)
‘s

i

Dij(xij) - Dij(0)
‘s s ‘s

d fj(x)
 d xij

s

s

Fig. 3. Bandwidth requesting strategy at player js: an illustration of the
water-filling approach.

The water-filling approach can be illustrated in Fig. 3, in

which the height of each bin represents the marginal cost for
player js to stream from each upstream peer i. To fill water at
a total quantity of Rs into these bins, the bins with the lowest
heights are flooded first, until all bins reach the same water
level. Then the same water level keeps increasing until all the
water has been filled in.
Theorem 1. Given bid prices ps

ij ,∀i : (i, j) ∈ As, the water-
filling approach obtains a unique optimal requested bandwidth
assignment at player js, i.e., (xs∗

ij ,∀i : (i, j) ∈ As), which is
the unique optimal solution to the problem Bidding js.

Due to space constraints, interested readers are referred to
our technical report [1] for a complete proof of Theorem 1.

2) Price adjustments: The next critical question to address
is how each player is to determine the bid price to each of
its upstream peers. A price adjustment scheme is designed for
this purpose, by which each player tactically adjusts its prices
in participating auctions based on bids placed by its opponents
in the previous bidding round.

When player js first joins the auction at an upstream peer
i, it sets its bid price ps

ij to 0. Together with its prices
towards other upstream peers in overlay s, it calculates the
current optimal requested bandwidth assignment with the
water-filling approach, and then sends its bids to upstream
peers. After upstream peer i allocates its upload capacity with
the allocation strategy, it sends allocated bandwidth values to
corresponding players. Upon receiving an allocated bandwidth,
player js increases the corresponding bid price if its “demand”
is higher than the “supply” from the upstream peer, and
otherwise decreases the price. Meanwhile, it recomputes its
requested bandwidth assignment for all its upstream peers with
the water-filling approach. Such price adjustment is carried out
in an iterative fashion, until the player’s bandwidth requests
may all be granted if the new prices are bid.

Using the water-filling approach as a building block, the
price adjustment scheme is summarized in the bidding strategy
to be carried out by player js in each round of its participating
auctions, as presented in Table I.

TABLE I
BIDDING STRATEGY AT PLAYER js

1. Receive allocated bandwidths as
ij from all upstream peers

i, ∀i : (i, j) ∈ As.

2. Adjust prices and bandwidth requests by:
Repeat
(a) For each upstream peer i

– If xs
ij > as

ij , increase price ps
ij by a small amount δ;

– If xs
ij ≤ as

ij and ps
ij > 0, decrease price ps

ij by δ.
(b) Adjust requested bandwidth assignment (xs

ij , ∀i :
(i, j) ∈ As) with the water-filling approach.

(c) For each upstream peer i
– Calculate new allocation as

ij that can be acquired from
i if the current price ps

ij is bid, based on Eqn. (2), with queried
bids of some other players in the previous round of auction i.

Until: all requested bandwidths xs
ij’s, are to be achieved

with current prices ps
ij’s, i.e., xs

ij ≤ as
ij , ∀i : (i, j) ∈ As, and

prices ps
ij’s are the lowest possible to achieve it.

3. Submit new bids bs
ij = (ps

ij , x
s
ij), ∀i : (i, j) ∈ As, to

respective upstream peers.

4. Go to 1.



We next briefly remark on the computation and messaging
complexity of implementing the bidding strategy.

First, although the requested bandwidths xs
ij’s are to be

recomputed each time the prices change, the water-filling ap-
proach does not need to be executed from the very beginning.
To illustrate this based on Fig. 3, when the price ps

ij to up-
stream peer i is raised, the water level of its corresponding bin
(i.e., marginal cost for xs

ij) rises; when the price is decreased,
the water level is lowered. Therefore, xs

ij corresponding to a
raised bin is reduced while that of a lowered bin is increased,
in order to achieve a same water level again. Such local
adjustments of xs

ij’s are small in magnitude, and involve low
computation overhead.

Second, to calculate the new achievable allocation as
ij ,

player js needs to know bids placed by some of its opponents
in the previous bidding round in auction i. Instead of asking
upstream peer i to send all received bids, player js can
query such information gradually only when necessary. If
ps

ij is to be increased, it asks for the bid of opponent ms′

whose price ps′
im is immediately higher than ps

ij in auction i.
While ps

ij is still below ps′
im, player js’s achievable bandwidth

is unchanged; only when ps
ij exceeds ps′

im, its achievable
bandwidth is increased by as′

im, and player js queries upstream
peer i again for the bid containing a price immediately higher
than the current value of ps

ij . Similar bid inquiries can be
implemented for the case that ps

ij is to be reduced. In this
way, the price adjustments can be achieved practically with
little messaging overhead.

The intuition behind the bidding strategy is that, each
player places different bid prices to different upstream peers,
considering both the streaming cost and the overall demand
at each upstream peer. If the streaming cost is low from an
upstream peer, the player is willing to pay a higher price and
strives to acquire more upload bandwidth from this peer. On
the other hand, if the bandwidth competition at an upstream
peer is intense such that the bidding cost becomes excessive,
the player will forgo its price increases and request more
bandwidths from other peers. At all times, the marginal cost
of streaming from each upstream peer is kept the same, as
achieved by the water-filling process.

C. Convergence analysis

The distributed auction games in the coexisting streaming
overlays are carried out in a repeated fashion, as these are
dynamic games. They are correlated with each other as each
player optimally places its bids in multiple auctions. A critical
question to investigate is: Does there exist a stable “operating
point” of the decentralized games, that achieves efficient
partition of network upload bandwidths? In what follows, we
seek to investigate the convergence of the dynamic resource
allocation from the global point of view.

We consider upload bandwidth competition in the entire
network as one extended dynamic non-cooperative strategic
game (referred to as Gext), containing all the distributed
correlated auctions. The set of players in the extended game
can be represented as

I = {js,∀j ∈ Ns,∀s ∈ S}. (6)

The action profile taken by player js is a vector of bids, in
which each component is the bid to place to one upstream peer.
Formally, the set of action profiles for player js is defined as

Γs
j = {Bs

j |Bs
j = (bs

ij ,∀i : (i, j) ∈ As),

bs
ij = (ps

ij , x
s
ij) ∈ [0,+∞) × [0, Rs],

∑
i:(i,j)∈As

xs
ij ≥ Rs}. (7)

Then, let B denote the bid profile in the entire network, i.e.,
B = (Bs

j ,∀j ∈ Ns,∀s ∈ S) ∈ ×j,sΓs
j . The preference

relation �s
j for player js can be defined by the following

overall cost function, which is the objective function in the
problem Bidding js in (3)

Costsj(B) =
∑

i:(i,j)∈As

(Ds
ij(x

s
ij) + ps

ijx
s
ij). (8)

Therefore, we say two bid profiles B �s
j B′ if Costsj(B) ≤

Costsj(B
′).

Definition 1. A bid profile B in the network, B = (Bs
j ,∀j ∈

Ns,∀s ∈ S) ∈ ×j,sΓs
j , is feasible if its bandwidth requests

further satisfy upload capacity constraints at all the upstream
peers, i.e.,

∑
s∈S

∑
j:(i,j)∈As

xs
ij ≤ Ui, ∀i ∈ V ∪ N .

When a bid profile is feasible, from the allocation strategy
discussed in Sec. III-A, we can see the upload bandwidth
allocations will be equal to the requested bandwidths.

Using B̃s
j to represent action profiles of all players other

than player js in I, i.e., B̃s
j = (Bk

m,∀mk ∈ I \ {js}), we
have the following definition of Nash equilibrium.

Definition 2. A feasible bid profile B∗ = (Bs∗
j ,∀j ∈

Ns,∀s ∈ S) is a Nash equilibrium of the extended game
Gext〈I, (Γs

j), (�s
j)〉 if for every player js ∈ I, we have

Costsj(B
s∗
j , B̃s∗

j ) ≤ Costsj(B
′s
j , B̃s∗

j ) for any other feasible bid

profile B′ = (B
′s
j , B̃s∗

j ).
We next show the convergence of the extended game to such

an equilibrium. We focus on feasible streaming scenarios as
stated in the following assumption:

Assumption 1. The total upload bandwidth in the peer-to-peer
network is sufficient to support all the peers in all overlays to
stream at required rates, i.e., there exists a feasible bid profile
in the peer-to-peer network.

Theorem 2. In the extended game Gext〈I, (Γs
j), (�s

j)〉 in
which distributed auctions are dynamically carried out with
the allocation strategy in (2) and the bidding strategy in Table
I, there exists a Nash equilibrium under Assumption 1.

For a detailed proof of Theorem 2, interested readers are
referred to our technical report [1] due to space constraints.

The next theorem shows that at equilibrium, the upload
bandwidth allocation in the network achieves the minimization
of the global streaming cost.

Theorem 3. At Nash equilibrium of the extended game
Gext〈I, (Γs

j), (�s
j)〉, upload bandwidth allocation in the

entire network achieves streaming cost minimization, as
achieved by the following global streaming cost minimization
problem:



min
∑
s∈S

∑
j∈Ns

∑
i:(i,j)∈As

Ds
ij(y

s
ij) (9)

subject to
∑

s∈S
∑

j:(i,j)∈As
ys

ij ≤ Ui, ∀i ∈ V ∪ N , (10)∑
i:(i,j)∈As

ys
ij ≥ Rs, ∀j ∈ Ns,∀s ∈ S, (11)

ys
ij ≥ 0, ∀(i, j) ∈ As,∀s ∈ S.(12)

Theorem 3 can be proven by showing that the set of KKT
conditions for the global streaming cost minimization problem
is the same as that satisfied by the equilibrium bid profile
B∗ = ((ps∗

ij , xs∗
ij ),∀(i, j) ∈ As,∀s ∈ S), and the equilibrium

bid prices at each upstream peer i (i.e., ps∗
ij ,∀j : (i, j) ∈

As,∀s ∈ S) have the same value as the Lagrangian multiplier
associated with the upload capacity constraint (10) at peer i.
Again, interested readers are referred to our technical report
[1] for the detailed proof of Theorem 3. From Theorem 3, we
can derive the following corollary:
Corollary. At Nash equilibrium, the bid prices to each up-
stream peer i from all competing players that are allocated
non-zero bandwidths are the same, i.e., ∃t∗i , p

s∗
ij = t∗i if

xs∗
ij > 0, ∀j : (i, j) ∈ As,∀s ∈ S.
This corollary can also be intuitively illustrated: If a player

in auction i is paying a price higher than some other player
who is also allocated non-zero bandwidth, the former can
always acquire more bandwidth from the latter with a price
lower than its current price. Thus at equilibrium, when no one
can unilaterally alter its price, all players must be paying the
same price.

D. Implementation concerns

Towards a practical implementation of the distributed auc-
tions in realistic peer-to-peer networks, two scenarios need to
be considered:

1) Peer asynchrony: With different processing speeds and
message passing latencies, peers in real world are inherently
asynchronous. As bids and allocated bandwidth updates may
arrive at each upstream or downstream peer at different times,
each auction is carried out in a completely asynchronous
fashion.

In our design, bids and allocation updates are passed by
messages sent over TCP, such that their arrival is guaranteed.
In each auction, the upstream peer allocates bandwidth after it
has received new bids from all its existing downstream peers
in all the overlays it participates in, or a timeout value, T , has
passed since the previous allocation. If a bid does not arrive
before the timeout, the upstream peer assumes the correspond-
ing downstream peer is not interested in requesting bandwidth
from itself in this round. Similarly, at each downstream peer
in each streaming overlay, it starts its price adjustment and
requested bandwidth reallocation after all allocated bandwidth
updates have arrived from all its requested upstream peers, or
time T has passed since the last time it placed all the bids.

In this way, each upstream peer only needs to synchronize
its allocation across its own upload links, and each downstream

peer synchronizes its bid updates across its own download
links in each overlay. No synchronization is required among
different upstream or downstream peers.

2) Peer dynamics: In a practical network, the players in
each auction may change dynamically, due to new peers
joining the network, existing peers switching upstream peers,
or peer failures and departures. Our asynchronous implemen-
tation design can readily adapt to all such dynamics.

When a new peer joins a streaming overlay, it initiates bid
prices towards all known upstream peers to 0 and calculates its
initial bandwidth requests. Then it sends bid to each upstream
peer from which it requests a non-zero bandwidth. Similarly,
in the case that an existing peer in an overlay decides to
bid at a new upstream peer, it initializes the bid price to 0,
computes requested bandwidth together with those to other
upstream peers, and then forwards its bid to the new upstream
peer. In this way, new peers can immediately participate in the
respective auctions.

When a peer fails or departs from an overlay, its upstream
peer(s) can detect this based on the broken connections; when
a peer quits the auction at an upstream peer, the upstream
peer will not receive its new bids within the time bound T .
In either case, a corresponding upstream peer allocates upload
bandwidth in a new round to the bidding peers only, naturally
excluding the departed peer from the auction game. At the
downstream side, after detecting the failure or departure of
an upstream peer, or discovering that an upstream peer can no
longer provide new media content of an overlay, a downstream
peer simply excludes it from its bandwidth request calculation.

IV. PRACTICALITY OF PROPOSED STRATEGIES:
AN EMPIRICAL STUDY

We dedicate this section to in-depth investigations of how
the proposed auction strategies perform in practical scenarios.
Using simulations under real-world asynchronous settings,
the focus of this study is to show that, as an outcome of
our proposed strategies, coexisting overlay topologies can
fairly share network bandwidth, evolve under various network
dynamics, and be prioritized.

A. Limited visibility of upstream peers

In Assumption 1 of our convergence analysis in Sec. III-C,
we assume that upload capacities in the network can be fully
utilized to support all the peers to stream at required rates.
This is generally achievable when each peer knows a lot of
other peers in each overlay it participates in. However, in
practical scenarios, a peer only has knowledge of a limited
number of upstream peers in each overlay. We now study the
convergence and optimality of the proposed strategies in such
practical cases. The set of all known upstream peers to a peer
is henceforth referred to as the upstream vicinity of the peer.

In our investigations, peers in each upstream vicinity are
randomly selected by a bootstrapping server from the set of
all possible upstream peers. We seek to answer the following
questions with empirical studies. First, what is the appropriate
size of the upstream vicinity, such that the required streaming
rate can be achieved at all peers in an overlay? Second, if the
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Fig. 4. Outcomes of distributed auctions in networks of different sizes, and with various numbers of upstream peer candidates in the upstream vicinities.

upstream vicinity is smaller, do peers need to bid for more
rounds before the auction games converge? Finally, if auction
game strategies are used with upstream vicinities of limited
sizes, how different is the resulting topologies from the ones
achieved when upstream vicinities contain all the other peers
in the overlay, with respect to total streaming cost?

Evaluation. We investigate by experimenting in networks
with 100 to 10, 000 peers with various sizes of upstream
vicinities. We set up the following realistic environment for our
forthcoming experiments: Each network includes two classes
of peers, 30% Ethernet peers with 10 Mbps upload capacities
and 70% ADSL/Cable modem peers with heterogeneous up-
load capacities in the range of 0.4−0.8 Mbps. There exists one
server — which is an Ethernet peer — serving a 1 Mbps media
stream to all the peers (we now consider a single overlay).
We use delay-bandwidth products to represent streaming costs
(M/M/1 delays), with streaming cost functions in the form of
Ds

ij = xs
ij/(Cij − xs

ij). Here, Cij is the available overlay
link bandwidth, chosen from the distribution of measured
capacities between PlanetLab nodes [2].

Fig. 4 illustrates the outcome of our distributed auction
strategies, either when they converge, or when a maximum
number of bidding rounds per peer, 100, has been reached.
In the latter case, we can assume the games have failed to
converge, as there exist peers that cannot achieve the required
streaming rate with their current size of upstream vicinities.
Decreasing the size of upstream vicinities from n − 1 where
n is the total number of peers in each network, we discover
that with 15 − 20 peers in the upstream vicinity, the games
can still converge and the streaming rate can still be satisfied
at all peers in most networks, as shown in Fig. 4(A) and
(B). Fig. 4(B) further reveals that convergence is always
carried out rapidly in all networks with different sizes of
upstream vicinities, as long as these games converge at all
with a particular upstream vicinity size. Fig. 4(C) compares the
optimality of resulting topologies in terms of streaming costs.
Compared to the ultimate minimum streaming cost achieved
when upstream vicinities contain all other peers in the overlay,
costs experienced by using upstream vicinities of a much
smaller size (20) are only 10% higher. Not shown in Fig. 4,
another observation we made during the experiments is that
the number of upstream peers selected from the upstream
vicinities to serve a particular peer (with non-zero upload
bandwidth allocation) is at most 4, with an average of 1 − 2.

Summary. From these empirical observations, it appears
that the appropriate size of upstream vicinities is relatively

independent of network sizes, and only a very small number
of upstream peers are actually selected, which leads to sparse
overlay topologies. Both are good news when our game
strategies are to be applied in realistic large-scale networks.

B. The case of multiple coexisting overlays

We now proceed to study how our game strategies re-
solve the bandwidth competition among multiple coexisting
streaming overlays. In particular, how does the topology of
each overlay evolve, if coexisting overlays are started in the
network? Do multiple coexisting overlays fairly share network
bandwidth, and experience similar streaming costs?

Evaluation 1. We introduce more and more streaming
overlays onto a 1000-peer network, constructed under the
same settings as used in previous experiments, and with 20
peers in the upstream vicinities. At the beginning, all peers
participate in one overlay and start to bid for their streaming
bandwidths. Then every 50 seconds (each bidding round takes
approximately one second), the peers join one more new
streaming overlay. To clearly show the effects of an increasing
number of coexisting overlays on the achieved streaming rate
of each overlay, the required streaming rates for all overlays
are set to the same 1 Mbps.

Fig. 5 illustrates the evolution of the average achieved peer
streaming rate in each overlay, when 5 overlays are sequen-
tially formed in the network. We see that upload capacities in
the network can support up to 3 overlays to stream at their
required rates, and become insufficient when the 4th and 5th

overlay join.
In the former case with 1 − 3 overlays, every time a new

overlay is formed, the games converge again to new equilibria
very quickly. Fig. 6 further shows the costs experienced
by coexisting overlays when their topologies stabilize. We
observe both streaming and bidding costs are very similar
across the multiple coexisting overlays.

In the latter case with 4− 5 overlays in the network, Fig. 5
shows that the games fail to converge. We observed during the
experiment that peers in each overlay bid higher and higher
prices at their upstream peers, but were nevertheless unable
to achieve the required streaming bandwidths. Similar rate
deficits can be observed in all coexisting overlays from Fig. 5.

In practical peer-to-peer applications, some streaming over-
lays might expect to receive better service quality than others.
For example, live streaming of premium television channels
should enjoy a higher priority and better quality than regular
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Fig. 5. The evolution of streaming rates in multiple coexisting overlays, with
an increasing number of overlays over time.
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Fig. 6. A comparison of costs among multiple coexisting overlays.

ones. Since our game strategies can achieve fairness among
various overlays (as observed from Fig. 5 and Fig. 6), we
wonder if it is further possible to introduce a practical priori-
tization strategy in our games, such that differentiated service
qualities can be provided to different overlays.

In our previous experiment, we have observed that overlays
fairly share bandwidth for a simple reason: peers in different
overlays are not constrained by a bidding budget, and they can
all raise bid prices at will to acquire more bandwidth from their
desired upstream peers, which leads to relative fair bandwidth
allocation at the upstream peers.

Motivated by such insights, we introduce a budget-based
strategy to achieve service differentiation, by offering higher
budgets to peers in higher priority overlays. To introduce
such budgets, we only need to make the following minor
modification to the bidding strategy proposed in Sec. III-B:

When a peer j joins a streaming overlay s, it obtains a bid-
ding budget Ws from its bootstrapping server. Such a budget
represents the “funds” peer j can use to acquire bandwidth
in overlay s, and its total bidding cost to all upstream peers
cannot exceed this budget, i.e.,

∑
i:(i,j)∈As

ps
ijx

s
ij ≤ Ws. All

peers in the same overlay receive the same budget, and the
bootstrapping server assigns different levels of budgets to
different overlays based on their priorities. During its price

0 50 100 150 200 250
0

0.5
1

1.5  Overlay 1

0 50 100 150 200 250
0

0.5
1

1.5  Overlay 2

0 50 100 150 200 250
0

0.5
1

1.5
 Overlay 3

0 50 100 150 200 250
0

0.5
1

1.5  Overlay 4

0 50 100 150 200 250
0

0.5
1

1.5  Overlay 5

time (seconds)

A
ve

ra
ge

 p
ee

r 
st

re
am

in
g 

ra
te

 (
M

bp
s)

Fig. 7. The evolution of streaming rates for multiple coexisting overlays
with different budgets, and with an increasing number of overlays over time.
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Fig. 8. A comparison of streaming costs among multiple coexisting overlays
with different budgets.

adjustments in overlay s, peer j may only increase its bid
price if the incurred total bidding cost does not exceed Ws.

Evaluation 2. Applying the budget-based bidding strategy,
we perform the previous experiment again and show our new
results in Fig. 7 and Fig. 8. The levels of budgets assigned to
peers in overlay 1 to 5 range from low to high.

Comparing Fig. 7 with Fig. 5 in the cases when 1 to 3
overlays coexist, we see that overlays can still achieve their
required streaming rates within their budgets. However, when
comparing Fig. 8 to Fig. 6(A), we observe that the streaming
costs are differentiated across overlays, i.e., overlays with
larger budgets achieve lower streaming cost than those with
smaller budgets. This is because the former can afford to pay
higher prices and thus eclipse the latter in auctions at their
commonly desired upstream peers.

A further comparison between Fig. 7 and Fig. 5 (when 4 or
5 overlays coexist) shows that, when upload capacities become
insufficient, the overlay with the highest budget, overlay 4 or
overlay 5 in respective phases, always achieves the highest
and most stable streaming rates, while those for overlays with
smaller budgets become less sufficient and less stable.

Summary. With respect to fairness without budgets, we have
observed that, no matter if upload capacities are sufficient



or not, our game strategies achieve fair bandwidth sharing
among multiple coexisting overlays. When overlays are able
to achieve their required streaming rates, they also experience
similarly costs, which further reveal their fair share of lower
latency paths. Further, we show that by introducing budgets
to our bidding strategy, we are able to differentiate service
qualities among coexisting overlays.

C. Overlay interaction under peer dynamics

Finally, we study how coexisting streaming overlays evolve
with peer arrivals and departures, with or without differentiated
budgets.

Evaluation. We simulate a dynamic peer-to-peer streaming
network, in which 2 servers concurrently broadcast 4 different
60-minute live streaming sessions, at the streaming rate of 300
Kbps, 500 Kbps, 800 Kbps and 1 Mbps, respectively. Starting
from the beginning of the live broadcasts, 1000 peers join the
network following a Poisson process. The inter-arrival times
follow an exponential distribution with an expected length of
INTARRIV seconds. Upon arrival, each peer randomly selects
2 broadcast sessions and joins the respective overlays; then the
peer stays in the network for a certain period of time, following
an exponential lifetime distribution with an expected length of
LIFETIME seconds. In this way, we simulate 4 dynamically
evolving streaming overlays with approximately the same
number of participating peers at any time. All other settings of
the experiment are identical to those in previous experiments.
Applying our game strategies, we monitor achieved streaming
rates at existing peers in each dynamic overlay during the 60-
minute broadcasts.

The experiment was repeated with different values of IN-
TARRIV and LIFETIME. First, when the bidding strategies
are applied without budgets, Fig. 9 shows the results under
two representative settings. For the scenario in Fig. 9(A), we
observed during the experiment that with expected inter-arrival
time of 1 second, 1000 peers have all joined the network in
the first 10 minutes; with an expected lifetime of 30 minutes,
approximately half of all the peers remain till the end of the
broadcasts. For the scenario in Fig. 9(B), we observed peer
arrivals last for 45 minutes with an expected inter-arrival time
of 3 seconds, and most peers have left the network before the
end with the expected lifetime of 10 minutes.

Comparing the two scenarios, the second represents more
severe peer dynamics, as peers keep joining and leaving all the
time during the broadcast; the overlays are more stable in the
first scenario, as peer joins only occur at the beginning and
each peer stays longer in the network. Therefore, Fig. 9(B)
represents higher level of rate fluctuations than Fig. 9(A). In
each scenario, a careful comparison of the rate fluctuation
across different overlays reveals slightly larger fluctuations
for overlays with larger streaming rate requirements. This is
because different overlays fairly share upload capacities at
common upstream peers, and the larger the required rate is,
the harder it is to achieve.

However, when overlays with higher rate requirement are
prioritized with higher budgets, Fig. 10 shows a different out-
come. Compared to Fig. 9 under both settings, the prioritized

(A) INTARRIV=1 second, LIFETIME=30 minutes (B) INTARRIV=3 second, LIFETIME=10 minutes
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Fig. 9. Achieved streaming rates for 4 coexisting overlays: under peer
dynamics without budget.
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Fig. 10. Achieved streaming rates for 4 coexisting overlays: under peer
dynamics with different budgets.

high-rate overlays always enjoy more stable rates, while low-
rate overlays experience more severe rate fluctuations.

Summary. We have clearly demonstrated the effectiveness
of our game strategies under high degrees of peer dynamics,
which achieve stable streaming rates for all overlays at all
times during such dynamics. Together with the budget-based
strategy, they can further guarantee better streaming quality
for prioritized overlays.

V. RELATED WORK

There exists very little literature that studies interactions and
competitions among multiple coexisting overlays in a same
peer-to-peer network. Recent work from Jiang et al. [3] and
Keralapura et al. [4] is the most related, focusing on multiple
overlay routing. In Jiang et al. [3], interactions among multiple
selfish routing overlays are studied with a game theoretic
model, where each overlay splits its traffic onto multiple
paths and seeks to minimize its weighted average delay. In
Keralapura et al. [4], route oscillations are investigated when
multiple routing overlays inadvertently schedule their own
traffic without knowledge of one another. Comparably, our
work is significantly different, as we consider multiple peer-
to-peer streaming overlays featuring many-to-many traffic,
instead of point-to-point traffic in routing overlays.

Touching upon the topic of coexisting live streaming over-
lays, two recent pieces of work [5], [6] propose to encourage
peers in different overlays to help each other by relaying
media belonging to other overlays. While it is beneficial to
improve network resource utilization at a specific time, there
are questions remaining to be answered: How should each
peer carefully allocate its upload capacity among concurrently
requesting peers from different overlays? If new requests from
peers in the same overlay come later, should the bandwidth



allocated to other overlays be deprived? From a more practical
perspective, our work considers the case that each overlay
consists of only receiving peers but each peer may participate
in multiple overlays, and investigates bandwidth competition
among the overlays at their common upstream peers.

Auction-based approaches have been proposed to allocate
network bandwidth based on the demand and willingness to
pay from competing users [7], [8], [9], [10]. A majority of
such work are based on Progressive Second Price auctions,
in which competitors decide their bids based on their true
valuation. Aiming to solve the congestion problem on a single
link or path, such existing work deals with elastic traffic,
and competitors bid for their bandwidth share to maximize
their utilities. In comparison, we design bandwidth auctions
in a more complicated and practical scenario of constructing
multiple streaming overlay topologies. Demanding an inelastic
streaming rate at a lowest possible cost, each peer bids in
multiple auctions, and adjusts its bid prices and requested
bandwidths judiciously based on the current marginal cost of
streaming from different upstream peers.

In peer-to-peer content distribution, game theory has been
widely used to characterize peer selfishness and to provide
incentives for peers to contribute their upload capacities (e.g.,
[11], [12], [13], [14]). As players in non-cooperative overlay
construction games, each peer aims to maximize its own
utility and tends to contribute if its utility is contingent on its
contribution. Rather than modeling peer selfishness, our work
utilizes the distributed and dynamical nature of auction games
to design effective mechanisms for demand-driven dynamic
bandwidth allocation, in which local games achieve globally
optimal topology construction.

As the core of incentive mechanisms, service differentiation
approaches are proposed to provide differentiated service qual-
ity to different peers, in terms of peer selection and bandwidth
allocation [11], [12], [15]. Comparably, our work considers
prioritization of an overlay as a whole and proposes an
effective budget-based overlay service differentiation scheme,
for which we are not aware of any existing studies.

Finally, pricing mechanisms [16], [17], [18] are proposed for
a bandwidth provider to establish bandwidth prices to charge
users, in order to regulate the behavior of selfish users and
achieve social welfare maximization. Such pricing schemes are
different from our auction games, in the sense that bandwidth
prices are determined solely by the provider to maximize its
revenue, rather than from bid prices placed by users.

VI. CONCLUDING REMARKS

This paper considers conflict-resolving strategies among
coexisting overlays for streaming in peer-to-peer networks.
Our objective is crystal clear: we wish to devise practical
and completely decentralized strategies to allocate peer upload
capacities, such that (1) the streaming rate can be satisfied in
each overlay; (2) streaming costs can be globally minimized;
and (3) overlays fairly share available upload bandwidths in
the network. Most importantly, we wish to achieve global
properties using localized algorithms. We use dynamic auction
games to facilitate our design, and use game theory in our

analysis to characterize the conflict among coexisting overlays.
Different from previous work, incentive engineering, selfish-
ness and strategyproofness are not parts of our focus in this
paper, whereas practicality, simplicity and global optimality
are. We finally show that our proposed algorithm adapts well
to peer dynamics, and can be augmented to provision service
differentiation. Encouraged by our conclusions in this paper,
we intend to work towards a real-world deployment of our
proposal in coexisting streaming overlays in the near future.
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