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Abstract

Cloud computing has been widely adopted to support vari-
ous computation services. A fundamental problem faced by
cloud providers is how to efficiently allocate resources upon
user requests and price the resource usage, in order to max-
imize resource efficiency and hence provider profit. Exist-
ing studies establish detailed performance models of cloud
resource usage, and propose offline or online algorithms to
decide allocation and pricing. Differently, we adopt a black-
box approach, and leverage model-free Deep Reinforcement
Learning (DRL) to capture dynamics of cloud users and better
characterize inherent connections beween an optimal alloca-
tion/pricing policy and the states of the dynamic cloud sys-
tem. The goal is to learn a policy that maximizes net profit of
the cloud provider through trial and error, which is better than
decisions made on explicit performance models. We combine
long short-term memory (LSTM) units with fully-connected
neural networks in our DRL to deal with online user arrivals,
and adjust the output and update methods of basic DRL algo-
rithms to address both resource allocation and pricing. Eval-
uation based on real-world datasets shows that our DRL ap-
proach outperforms basic DRL algorithms and state-of-the-
art white-box online cloud resource allocation/pricing algo-
rithms significantly, in terms of both profit and the number of
accepted users.

Introduction
Cloud computing has proliferated in recent years. Large
public cloud platforms are available for various users to
run computation jobs; enterprises are building on-premise
clouds for internal usage, where users from different depart-
ments submit and run their jobs. A fundamental problem
faced by the cloud provider/operator, no matter in public or
private clouds, is how to efficiently allocate and price cloud
resources, provisioned by physical servers in clusters, to the
requesting users, such that resource utilization is most effi-
cient and profit of the provider is maximized. 1

The most common form of resource provisioning in to-
day’s cloud platforms is to run virtual machines (VMs) (or
containers) with different resource configurations, and lease

Copyright © 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1In case of a private cloud, the prices may serve as gauges of job
values to decide job admission, and the profit can be interpreted as
total value of executed jobs.

them to the users. For example, Microsoft Azure provides
Burstable VMs (1 CPU core and 1GB RAM), Compute opti-
mized VMs (2 CPU cores and 4GB RAM), General Purpose
VMs (2 CPU cores and 8GB RAM), and a number of other
types of VMs (Azu ). Upon a user’s VM request, the cloud
provider should decide on which server to run the asked VM
and how to price it.

Most cloud providers post prices which do not change
in months, e.g., Microsoft Azure (Azu ) and Google Cloud
(Goo ) publish hourly pay-as-you-go prices for different
types of VMs, leaving users to decide whether to use the
cloud service, according to their budgets. Such static posted
pricing does not adapt well to demand and supply changes in
the cloud system, and may well jeopardize cloud provider’s
profit (Mazrekaj, Shabani, and Sejdiu 2016). We advocate
dynamic resource pricing according to demand and supply
in the cloud, which is closely related to VM placement in
the server cluster, to maximize cloud provider’s profit.

Dynamic resource allocation and pricing is challenging,
as users may submit their VM requests at any time, ask-
ing for different types of VMs for different durations. The
resource allocation problem is essentially an online, multi-
dimensional packing problem, well known for its hardness,
not to mention that an associated pricing scheme is also in
need. There have been recent studies proposing online al-
gorithms for dynamic resource pricing and allocation upon
user arrivals (Zhang et al. 2015). These studies formulate re-
source allocation into detailed optimization problems, and
compute allocation and pricing decisions based on online
optimization techniques. Due to the complexity of a cloud
system, simplification assumptions often have to be made,
in order to convert the optimization problems to linear or
convex problems, allowing efficient solutions.

Aiming to capture richer characteristics of the problem
and derive better resource allocation and pricing decisions,
we adopt a black-box approach and leverage deep reinforce-
ment learning (DRL) to learn a better policy. DRL uses
neural networks (NNs) as function approximators to de-
scribe connections between complex system input and op-
timal decisions. The success of DRL in playing games such
as Go (Silver et al. 2016) and Atari (Mnih et al. 2015) shows
that combining deep learning with reinforcement learning
to directly learn Q-values for discrete actions from sampled
data is a promising approach for solving real-world prob-



lems in a model-free manner. The Deep Deterministic Policy
Gradient (DDPG) method, which is based on the actor-critic
model (Lillicrap et al. 2015), further enables DRL to handle
problems with continuous action spaces. We employ DRL
for obtaining a good cloud resource allocation and pricing
policy, as DRL is potentially more suitable to model the
complex dynamic cloud system than existing white-box ap-
proaches, as its NN may capture more inherent connections
than a simplified linear/convex model.

The key challenges of designing a DRL approach for
cloud resource allocation and pricing include: (i) our deci-
sions include both discrete actions (VM placement) and con-
tinuous actions (pricing); (ii) the online user arrivals render
non-Markovian time-variant dynamics. Basic DRL methods
such as DQN (Mnih et al. 2015) or DDPG (Lillicrap et al.
2015) are not directly applicable, since their update meth-
ods are based on the Markovian Decision Process (MDP) as-
sumption and they can handle either a discrete action space
or a continuous one, instead of a mixed one. We adopt a
number of techniques, in combination with a DDPG-based
approach, to address the above challenges. Our main contri-
butions are as follows:

1. We novelly use a model-free DRL approach to make
cloud resource pricing and allocation decisions for profit
maximization, rather than relying on white-box perfor-
mance models of the cloud system.

2. We jointly consider VM pricing and placement of VMs in
our DRL model, to maximize the profit of cloud provider
to the largest extent.

3. We consider time-variant user dynamics, rather than sim-
ply assuming user arrivals are i.i.d.

4. We combine LSTM with DDPG to deal with time-variant
user dynamics to resolve the non-MDP issue, and use
a new update method to allow them to work together
smoothly, to learn optimal decisions directly from input
states.

5. We train our DRL model using real-world workload from
Azure and Google clouds. Extensive validation experi-
ments show that our DRL approach outperforms basic
DRL algorithms and state-of-state-the-art white-box on-
line cloud resource allocation/pricing algorithms signifi-
cantly, in terms of both provider profit (by at least 30%)
and the number of accepted users (by about 15% to 25%
in majority of the cases).

Background and Related Work
Deep Reinforcement Learning. In reinforcement learn-
ing (RL), the learning agent observes a state st from the
environment in each step t, and then chooses one action
at according to its policy π(st); after the action is taken,
the state transits to the next state st+1, and the agent re-
ceives a reward rt. The goal of the agent is to learn the
best policy to maximize its accumulated discounted reward
Rt =

∑T
t=1 γ

t−1rt, where γ ∈ [0, 1] is the discount fac-
tor. DRL uses deep neural networks in RL, enabling itself
to handle large state and action spaces (Mnih et al. 2015;
Lillicrap et al. 2015).

Handling a discrete action space, Deep Q-Network
(DQN) (Mnih et al. 2015) outputs Q-values for all actions
when receiving an input state, and chooses an action with
the highest Q value; its Q-values are estimated using tem-
poral difference learning. Double DQN (Van Hasselt, Guez,
and Silver 2016) improves over DQN to alleviate its Q-value
over-estimation issue.

For problems with continuous action spaces, the DQN
type of approaches are not sufficient, due to the need of
producing Q-values for all possible actions. The DDPG ap-
proach (Lillicrap et al. 2015) uses policy gradients for model
training, to handle continuous control problems, which
is built on the actor-critic architecture. In the actor-critic
model, an actor network (the policy network) learns the pol-
icy π and produces actions, while a critic network (the value
network) estimates the Q-value, Q(s, a) = Eπ(Rt|st =
s, at = a), for each state-action pair; Q-values produced by
the critic network are used in the update of the actor network
(to evaluate performance of the current policy), in order to
stablize policy learning, especially in case of a large action
space (e.g., a continuous acton space).

For a RoboCup game with both discrete and continuous
actions to take, Hausknecht et al. (Hausknecht and Stone
2015) use DRL to teach a robot how to kick the ball and
score a goal, in order to win the game: each time a dis-
crete action is chosen from an action set (Dash, Turn, Tackle,
Kick), and then a real value is specified, representing direc-
tion or power, for the chosen action. They divide the output
of the actor NN into two parts: one to produce a probability
distribution over all discrete actions, and the other to out-
put the real values corresponding to the discrete actions; in-
verting gradients are used to constrain the output continuous
values within a specific range. We organize our actions in a
similar fashion, while we do not constrain our action space
for prices as such, and can still achieve good results with a
much larger action space.
Reinforcement Learning for Resource Allocation. RL has
been applied in resource allocation problems in recent years.
Tesauro et al. (Tesauro et al. 2006) train a hybrid RL model
for server allocation among multiple Web applications, to
maximize the total payment. Galstyan et al. (Galstyan, Cza-
jkowski, and Lerman 2004) study grid resource allocation
using multi-agent RL, by treating users as heterogeneous RL
agents, which learn by submitting requests for resources and
using job completion time as rewards. Wang et al. (Wang
et al. 2017) use tabular, dueling double deep Q-learning for
cloud provisioning, aiming at balancing resource cost and
performance. Bega et al. (Bega et al. 2017) use RL for net-
work resource allocation in future 5G networks, for rev-
enue maximization. These studies largely assume the envi-
ronment is Markovian and apply existing DRL algorithms.
Instead, we produce both VM provisioning and pricing de-
cisions, and consider online user arrivals which may break
the MDP assumption, if not properly handled.
Machine Learning for Pricing. In the context of a web-
site selling online advertisement slots by auction, Shen et
al. (Shen et al. 2017) use an LSTM network to predict
advertiser bid distribution and a Monte Carlo tree search
method to learn the best reserve prices for the website. Wu



et al. (Wu, Joseph, and Russell 2016) use tabular Q-learning
to set prices for Uber-type on-demand economies, by dis-
cretizing prices into ranges as actions. Kim et al. (Kim et
al. 2014) use tabular Q-learning to decide the electricity
prices in smart grids, for charging users’ energy consump-
tion. These studies mostly consider simpler models and use
tabular RL to handle the relatively small state and action
spaces. Our NN-based DRL model is more realistic and han-
dles many more possible states and actions.

Problem Model
We consider a cloud data center with S physical servers, of-
fering M types of virtual machines (VMs) to users. Each
type of VM, m = 1, 2, . . . ,M , are composed of R types
of resources (e.g., CPU, memory, disk storage) at pre-
configured amounts. Let Vmr be the demand of type-r re-
source in a type-m VM. Csr is the capacity of type-r re-
source on server s, ∀s = 1, . . . , S, r = 1, . . . , R. Let fsr(·)
be the cost function of server s on the amount of type-r re-
source used on the server in time t, as indicated by Usrt.
The cost is mainly due to power consumption of the server:
in practice, most cloud data centers keep their servers on,
which remain in the low-power idle mode if no VMs are
running (to avoid boot-up delay from the off state); the
power usage increases with the increase of resource con-
sumption on the server. We define the cost function as fol-
lows (Zhang et al. 2015), where parameter ξsr indicates the
relative weight of the cost due to consumption of type-r re-
source in the overall server cost.

fsr(Usrt) =

{
ξsrUsrt, Usrt ∈ [0, Csr]
+∞, Usrt > Csr

(1)

In totalN users submit VM requests to the cloud provider
in a potentially large system timespan T . Without loss of
generality, we assume the users arrive at different times
in T . Upon arrival at ti, user i requests one VM of type
mi ∈ {1, . . . ,M}, and specifies how long it will use the VM
for, denoted by >i. The cloud provider releases to the user
a unit-time-usage price Pi for running the VM; the user de-
cides if he is to accept the price and run his VM in the cloud,
or leave without taking the price, according to his budget
bi. The budget information is private to the user and not re-
vealed to the cloud provider. If the user takes the price, the
VM will be immediately launched on a server ki (that the
cloud provider decides) and run for >i without interruption
(i.e., we practically do not consider VM preemption in the
cloud). Upon completion of the VM usage at ti + >i, the
occupied resources will be returned to the cloud pool and
can be used to create other VMs.

The cloud provider sets the prices for VMs dynamically
according to demand and supply, i.e., costs of the servers
due to current resource consumption on the servers and es-
timated user budgets. The goal is to maximize the cloud
provider’s accumulated profit in T . Let binary variable xi
indicate whether user i accepts price Pi: xi = 1 if yes and
xi = 0 otherwise. Overall profit of the cloud provider is
computed by total payment minus overall cost, as follows:

Table 1: Notation

Vmr demand of type-r resource in a type−m VM
Csr capacity of resource r on server s
mi type of VM requested by user i
ki server to deploy VM of user i
Pi unit-time-usage price for user i’s VM
>i VM duration of user i
T timespan of the cloud system
Usrt amount of used type-r resource on server s at t

fsr(Usrt) cost function of type-r resource on server s
ξsr weight in cost function fsr(·)
xi indicator of user i’s acceptance

ωµ, dµ, eµ parameters of actor network
ων parameters of critic network
L # of sampled transitions from one episode

ti arrival time of user i bi budget of user i
S # of servers R # of resource types
N total # of users M # of VM types
ν critic network µ actor network
ui current observation upon

user i
hi−1 history before user i

ri reward due to user i D experience memory
si state for user i ai action for user i

Total Profit =

N∑
i=1

Pi>ixi −
S∑
s=1

R∑
r=1

T∑
t=1

fsr(Usrt) (2)

We seek to derive an online VM placement and pricing
policy based on DRL, using which the cloud provider de-
cides ki and Pi upon the arrival of each user i, without know-
ing bi. Table 1 summarizes key notation in the paper.

DRL Algorithm for Resource Allocation and
Pricing

We first present our approaches to address the two DRL de-
sign challenges.
Joint Discrete and Continuous Actions. For each VM re-
quest, the cloud provider decides the server with available
capacity to host the VM and the price for running the VM on
the selected server, both are related to profit maximization.
Hence, the action space of our DRL agent includes both dis-
crete actions (server selection) and continuous actions (pric-
ing). We base our DRL approach on the DDPG algorithm
using the actor-critic model. The output of the actor neural
network (NN) is divided into two parts: one gives the prob-
ability distribution for choosing among different servers and
the other produces the corresponding unit-time-usage prices
on the servers, if the asked VM is to be hosted on each. We
choose the server according to the probability distribution
and post the price of the corresponding server. We revise the
actor-critic DDPG algorithm according to such a joint action
space.
Non-Markovian Time-variant Dynamics. The online ar-
rival of user requests may well be irrelevant with current re-
source availability in the cloud and previous user requests.



That is, the next state of the system is not completely de-
cided by the previous state and action, violating the basic
MDP assumption of RL algorithms. To render an MDP pro-
cess, we add an LSTM module into our DRL NNs, and
include the history into our state representation. The his-
tory encodes states and actions in the past. Existing stud-
ies have shown patterns in cloud workload (Han, Chan, and
Leckie 2013)(Cortez et al. 2017); the LSTM module, well
known for encoding time series (Hochreiter and Schmidhu-
ber 1997), is useful for learning arrival patterns of the re-
quests for different types of VMs, and user budget distribu-
tions.

DRL Model
In our problem, a transition occurs (i.e., state transits to the
next state) upon the arrival of a new user request.

State si = [ui, hi−1]: the first part ui =
[{U1rti , · · · , USrti}∀r=1,...,R,mi,>i] includes the cur-
rent resource availability on all servers and information of
the new VM request i; the second part hi−1 is the history
encoded by LSTM. h0 is initialized to an all-zero vector.

Action ai = [vi1, vi2]: the first part vi1 = [o1, · · · , oS ] is
a vector including probabilities of selecting the respective
servers; the second part, vector vi2 = [pi1, · · · , piS ], contains
the respective prices on the S servers, where pis is the unit-
time-usage price if VM i is to be run on server s. The DRL
agent outputs the server ki with the highest probability in
vi1, and the corresponding price piki from vi2. The price is
posted to user i, i.e., Pi = piki .

Reward If user i accepts the posted price, the reward
is the payment of user (i.e., Pi>i) minus the increased
cost of server ki due to running user i’s VM; other-
wise, the reward is 0. Specifically, reward ri = Pi>i −
(
∑R
r=1

∑ti+>i
t=ti

[fkir(Ukirt + Vmir)− fkir(Ukirt)]).
Fig. 1 illustrates the architecture of our DRL model. The

input to the actor network includes state ui and history hi−1;
the output from the actor network is action ai. The actor
network contains two fully-connected layers followed by
one LSTM layer, and then two output layers, for produc-
ing vi1 and vi2, respectively. The input to the LSTM layer
contains output from the second fully-connected layer (pro-
duced based on ui), and the history vector hi−1 it pro-
duced in the previous step. hi−1 encodes information of
u1, . . . , ui−1. When producing vi1, we further use masks
to ensure zero probabilities for choosing servers without
enough resources to host the VM; for producing vi2, we use
masks to make sure that each price can at least cover the in-
creased cost of the respective server, if the VM is to be run
on the server.

The input to the critic network includes state ui, actions
vi1 and vi2 produced by the actor network, and history hi−1;
the output is the corresponding Q-value. The input ui, vi1
and vi2 are each connected to a fully-connected layer, and
output from the three is concatenated and fed into an LSTM
layer, followed by an output layer. The fully-connected lay-
ers are meant for extracting different features from the three
types of input, which will then be combined to estimate the
Q-value. The history hi−1 produced by the LSTM in the
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Figure 1: DRL Architecture

critic network encodes both states u1, . . . , ui−1 and actions
a1, . . . , ai−1 from the actor network.

DRL Algorithm
To leverage the DDPG algorithm for DRL model training,
we store all the transitions within an episode (containing all
N transitions in T , i.e., one epoch in repeated training) in
an experience memory D. However, if we update the actor
and critic networks using all transitions in an episode, the
strong correlation between transitions will make the training
process unstable (Mnih et al. 2015). We adopt the experi-
ence replay technique, and randomly pick several transitions
from an episode to use for updating the actor and critic net-
works. For each picked transition i, we cannot use its saved
history hi−1 for updating the current actor (critic) NN, as it
is produced using previous LSTM model parameters which
have been updated all the time; to obtain the correct hi−1
produced by the current LSTM layer, we use all the histor-
ical states before i as input to the current LSTM model and
obtain hi−1 accordingly (Song et al. 2017).

The update of the critic network, ν, is done by mini-
mizing the mean square error between the output Q-value
of the critic network and the target Q-value yi = ri +
Q(ui+1, hi, ai+1|ων , ai+1 ∼ µ), where ων is the set of pa-
rameters in the critic NN and µ represents the actor network.
The loss function for critic network update is as follows,
where history hi is used, making it different from the stan-
dard form (Mnih et al. 2015)(Lillicrap et al. 2015):

L(ων) = Eui [(Q(ui, hi−1, ai|ων)− yi)2] (3)

Let ωµ represent the set of parameters in the actor NN
(i.e., µ), excluding the parameters in its two output layers.
Let dµ and eµ be the set of parameters in the output layer
for producing vi1 and vi2, respectively. Each step of ac-
tor network update includes two parts, updating parameters
(ωµ, dµ) and (ωµ, eµ), respectively, by applying the chain
rule to the expected Q-value from the critic network:

∆(ωµ, dµ) = Eui [∂Q(ui, hi−1, vi1, vi2)|vi1,vi2∼µ(ui,hi−1|ωµ,dµ,eµ)]

= Eui [
∂Q(ui, hi−1, vi1, vi2)

∂vi1

∂µ(ui, ht − 1)

∂ωµ∂dµ
]

(4)



∆(ωµ, eµ) = Eui [∂Q(ui, hi−1, vi1, vi2)|vi1,vi2∼µ(ui,hi−1|ωµ,dµ)]

= Eui [
∂Q(ui, hh−1, vi1, vi2)

∂vi2

∂µ(ui, ht − 1)

∂ωµ∂eµ
]

(5)

Further, we adopt the target network technique (Mnih et
al. 2015), where a target network is a slightly older version
of an NN, used to provide target values for loss computation
in training the NN, for stabilizing the training process.

Our complete DRL algorithm, LAPP, is given in Alg. 1.
Max Episode indicates the maximum number of epochs
we train the DRL model for. We sample Batch Size
episodes from the experience replay buffer (line 13), and
further prepare a batch of L transitions sampled from each
selected episode (lines 16-22); we update the actor and critic
networks once using each batch (lines 23-25).

Performance Evaluation
Algorithm Implementation. We implement LAPP using
TensorFlow on a server equipped with one Nvidia GTX
1080 GPU, Intel Xeon E5-1620 CPU with 4 cores, and
32GB memory. The actor NN we use has 300 and 400 neu-
rons in the two fully-connected layers, respectively, and the
output from the LSTM is a vector of 256 units (Ming et
al. 2017); the activation function is softmax for outputting
vi1 and rectifier for outputting vi2. The critic NN has 400
neurons in each fully-connected layer and the output of the
LSTM layer has a size of 256; the activation function is rec-
tifier for its output layer. The learning rates in the actor net-
work and the critic network are 10−4 and 10−4, respectively.
We set Batch Size = 32, γ = 0.99, and L = 4.
Datasets. We make use of two sets of public traces: (i) Mi-
crosoft Azure dataset (Cortez et al. 2017), which contains
VM workload information (including VM request arrival
time, VM lifetime, VM size in terms of CPU and memory
configurations) for several subscriptions in one geographi-
cal region over a 30-day span, where a subscription includes
logically related workload, as a unit for billing and access
control (Cortez et al. 2017). (ii) Google cluster-usage dataset
(Reiss, Wilkes, and Hellerstein 2011), which provides infor-
mation about MapReduce type of jobs (start time, end time,
maximum CPU and memory usage, etc.) in one datacenter
in U.S. east over a one-month period; we map each job to
one VM in our experiments.
DRL Training. We extract one week’s workload of a sub-
scription from the Azure dataset for training our DRL
model. This subscription includes about 6000 VMs of 4
types: a type-1 VM uses 1 CPU core and 1.75GB RAM, a
type-2 VM has 2 CPU cores and 3.5GB RAM, a type-3 VM
has 4 CPU cores and 7GB RAM, and a type-4 VM occupies
8 CPU cores and 14GB RAM. For faster training conver-
gence, we extract a workload of 320 VM requests from the
subscription (i.e., scale down the VM arrival rate by about
20), while retaining the same arrival pattern as in the com-
plete workload.

Algorithm 1: DRL Algorithm for VM Placement and
Pricing, LAPP

Initialize: parameters ωµ, dµ, eµ, ων in actor network µ
and critic network ν

Initialize: parameters ωµ
′

= ωµ, dµ
′
= dµ, eµ

′
= eµ,

ων
′

= ων for target actor network µ′ and
target critic network ν′

Initialize: Experience Replay Memory D
1 for episode = 1 to Max Episode do

Initialize: history h0
2 for user i = 1 to N do
3 Observe current observation ui, set si =

[ui, hi−1];
4 Inference on actor network to obtain ai =

[vi1, vi2] and hi;
5 Produce ki and Pi from ai;
6 if Pi>i ≤ bi (user accepts the price) then
7 Allocate VM of user i on server ki;
8 Receive reward ri = Pi>i -

(
∑R
r=1

∑ti+>i
t=ti

[fkir(Ukirt + Vmir)−
fkir(Ukirt)]);

9 else
10 Reward ri = 0;
11 end
12 Store transition (ui−1, ai−1, ui, ri−1) into

D[episode];
13 for Batch = 1 to Batch Size do
14 Sample an episode D[ep] from D randomly;
15 Sample L transitions from D[ep] randomly;
16 for l = 1 to L do
17 For transition (ui, ai, xi+1, ri)

corresponding to the lth sampled
transition:

18 Calculate hi−1 using transitions before
i;

19 Calculate hi using hi−1;
20 Calculate target Q-value:
21 yi = ri + γQ′(ui+1, hi, µ

′(ui+1, hi));
22 end
23 Update the critic network using SGD by

minimizing loss in (3) with the Batch
data;

24 Update the actor network using SGD with
gradients computed using (4) and (5) with
the Batch data;

25 Update target actor and critic networks
using standard method as DDPG (Lillicrap
et al. 2015) with the Batch data;

26 end
27 end
28 end

In training, we set the unit-time-usage budgets of users
according to normal distributions N (µ, σ2) (Agmon Ben-
Yehuda et al. 2013): µ and σ are set to (1.5, 0.1), (3.0, 0.2),
(6.0, 0.3), and (12, 0.4) for the four types of VMs, respec-



tively. The number of physical servers to host the VMs is
30. By default, each server is equipped with 8 CPU cores
and 30GB RAM. ξsr in the server cost functions is set to
0.5 and 0.02 for CPU and RAM, respectively (Kansal et al.
2010).

The one-week workload is trained repeatedly for about
2000 times (i.e., Max Episode = 2000) until model con-
vergence, which takes about 15 hours.
Validation data. We evaluate our trained DRL model using
a workload of more than 500 VM requests in another week
from the same subscription in the Azure dataset, as well
as a workload of about 200 VM requests from the Google
dataset (we map each VM to the closet VM type in the Azure
dataset, according to its resource composition). We use two
types of distributions to produce user budgets in model vali-
dation: one is the normal distribution used in model training,
and the other is a Pareto distribution, commonly used to de-
scribe wealth distribution in the real world (Souma 2002).
Especially, we set the minimal value of the Pareto distribu-
tion to 0.5 and Pareto index to 2, and use this Pareto distribu-
tion to produce unit-time-usage budgets for users requesting
type-1 VMs; we scale the budgets for type-1 VMs up, to
produce user budgets for other types of VMs, according to
resource configurations of those VMs as compared to those
of type-1 VMs.
Baselines. We compare LAPP with 5 baselines:

(1) Basic DDPG algorithm (DDPG) (Lillicrap et al.
2015), with the same output as in our DRL algorithm.

(2) RPD2 from (Zhang et al. 2015), which is a state-
of-the-art online resource allocation and pricing algorithm
based on the primal-dual optimization framework. It sets
VM prices on each server based on an exponentially increas-
ing function on the amount of consumed resources on the
server, and places a VM on a server that leads to the largest
profit gain. The rationale is to produce low unit prices when
the system has abundant resources, in order to accept more
user requests, and raise the prices to filter out low-value re-
quests when the resources are rare, to save the resources for
upcoming high-value requests.

(3) Twice − the − Cost(TC) and (4) Twice − the −
Index(TI), which are similar to the online algorithm
RPD2, but set the unit price on a server to twice of the cur-
rent marginal cost of the server, and the marginal cost of the
server on twice of the current resource consumption (Blum
et al. 2011)(Zhang et al. 2015), respectively.

(5) An algorithm (Spot) which uses prices similar to
the Spot instance prices on Amazon EC2 (Agmon Ben-
Yehuda et al. 2013), and places VMs in a round-robin fash-
ion on servers with sufficient capacities. Especially, we use
the AR(1) Reserve Price Algorithm devised in (Agmon
Ben-Yehuda et al. 2013) to approximate EC2 Spot Instance
pricing, which takes the smallest and the largest user bud-
gets for a certain VM type as input to produce prices for
VMs of the type. For each of our four types of VMs, we in-
voke theAR(1)Reserve Price Algorithmwith the small-
est/largest budget values according to our budget distribu-
tion in use.
Evaluation results. Fig. 2 and Fig. 3 show the overall profit
(computed using Eqn. (2)) and the total number of accepted

user requests achieved by LAPP and the first four baselines,
using Azure workload trace, under different user budget dis-
tributions. LAPP achieves 25% more profit and accepts 5%
more users requests, as compared to the basic DDPG algo-
rithm, which does not include an LSTM module. This shows
that including a history-based pattern prediction module in
our DRL helps making better decisions. Compared with on-
line algorithms RPD2, TI , and TC, LAPP improves the
profit by at least 40% (though accepting less user requests
under the Pareto budget distribution than RPD2). This re-
veals the effectiveness of a DRL-based approach, as com-
pared to white-box online optimization approaches. When
Google trace is used, Fig. 4 shows that LAPP still achieves
the largest overall profit.

Since online algorithms are designed to work well in
worst-case scenarios, we construct a sequence of VM re-
quests that the online algorithms should be able to handle
well, and investigate performance of LAPP in such a worst-
case scenario. 40 VM requests arrive sequentially, one in a
minute, each requesting to use a VM of 8 CPU cores and
14-GByte RAM (one server can only host one such VM) for
300 minutes; the unit-time-usage budget of the first 30 users
is the same, 5, and that of the later 10 users is 13. If the
first 30 low-value VM requests were accepted, with one VM
on one server, then the next 10 high-value requests would
be rejected due to lack of available resources. Fig 5 shows
that LAPP still outperforms other algorithms by about 30%,
implying that our DRL approach can handle worse-case sce-
narios better as well.

We next compare LAPP with the fifth baseline, Spot, with
Azure and Google traces under two types of budget distribu-
tions, respectively. In Fig 6, N and P stand for Normal dis-
tribution and Pareto distribution, respectively; LAPP always
obtains more overall profit.

For more detailed investigation, Fig. 8a shows the unit-
time-usage prices produced by LAPP and Spot, respectively,
using the Azure validation dataset and Pareto user budget
distribution. Note that the Spot prices are produced given
the largest and smallest budgets in the budget distribution,
while LAPP is oblivious of the budget distribution. We ob-
serve that the majority of prices produced by LAPP are in
similar ranges as the Spot prices, exhibiting LAPP’s ability
in learning user budget distribution.

Fig. 8b further zooms into the sub sequence of the first
100 user requests, and illustrates the unit-time-usage prices
produced by LAPP and the unit-time-usage budget of these
users. Fig. 8c shows the number of available CPU cores on
the server selected by LAPP to deploy the asked VM in each
user request (no matter whether the corresponding prices
are accepted or not), where the types of the VMs are also
indicated. In Fig. 8c, for example, we can see that many
user requests with indices near 50 ask for type-1 VMs (1
CPU core), followed by requests asking for type-3 or type-
4 VMs (requesting 4 or 8 CPU cores each). Although the
resources on the selected servers to host those type-1 VMs
are sufficient (8 cores available as shown in Fig. 8c), the
output prices on the chosen servers are largely higher than
the respective user budgets (as shown in Fig. 8b). Hence,
users submitting those type-1 VM requests do not accept
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Figure 2: Profit: Azure trace

Normal Pareto0.00

0.25

0.50

0.75

1.00

# 
of

 a
cc

ep
te

d 
us

er
s 1e2

LAPP
DDPG
RPD_2
TI
TC

Figure 3: # of accepted user requests
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Figure 4: Profit: Google trace
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Figure 7: Heterogenous servers

the posted prices, and cloud resources are saved for serv-
ing upcoming VMs requiring more resources, from users
with larger budgets. This shows that our DRL approach can
learn/predict VM request patterns and make better online de-
cisions.
Heterogenous Servers. We further evaluate our DRL ap-
proach in a more heterogenous setting with two types of
servers: 15 servers each have 8 CPU cores and 30GB RAM,
and the rest 15 each have 12 CPU cores and 25GB RAM. ξsr
is set to 0.6 and 0.02 for CPU and RAM, respectively, for the
first type of servers, and to 0.5 and 0.01 for the second type
of servers. We train our DRL model under this heterogenous
setting and validate the model using different Azure datasets.
Fig. 7 shows that LAPP outperforms other algorithms by at
least 25% in this more complex environment.

Conclusion

This paper studies a deep reinforcement learning approach
for cloud resource allocation and pricing, targeting provider
profit maximization. We combine LSTM with basic DRL
to handle online user arrivals, ensuring the MDP assump-
tion, and design new update methods for model training. We
validate our DRL approach using real-world cloud work-
load, and compare it with state-of-the-art online cloud re-
source allocation and pricing algorithms. The results are
quite promising: in majority of the cases, our DRL approach
achieves significantly more profit and accommodate more
user requests, under various user arrival patterns and budget
distributions, even in worst-case scenarios which online op-
timization algorithms are designed to handle. We believe this
an interesting attempt in comparing DRL approach with on-
line optimization approaches, and plan to do more in-depth
investigation of the pros and cons of both approaches in
making online scheduling decisions in our future work.
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