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Abstract—Feature-only partition of large graph data in dis-
tributed Graph Neural Network (GNN) training offers advantages
over commonly adopted graph structure partition, such as mini-
mal graph preprocessing cost and elimination of cross-worker
subgraph sampling burdens. Nonetheless, performance bottle-
neck of GNN training with feature-only partitions still largely lies
in the substantial communication overhead due to cross-worker
feature fetching. To reduce the communication overhead and
expedite distributed training, we first investigate and answer two
key questions on convergence behaviors of GNN model in feature-
partition based distribute GNN training: 1) As no worker holds
a complete copy of each feature, can gradient exchange among
workers compensate for the information loss due to incomplete
local features? 2) If the answer to the first question is negative,
is feature fetching in every training iteration of the GNN model
necessary to ensure model convergence? Based on our theoretical
findings on these questions, we derive an optimal communication
plan that decides the frequency for feature fetching during the
training process, taking into account bandwidth levels among
workers and striking a balance between model loss and training
time. Extensive evaluation demonstrates consistent results with
our theoretical analysis, and the effectiveness of our proposed
design.

I. INTRODUCTION

Graph neural networks (GNN) [1] have been proposed in
recent years that operate on graph structured data, generate
low-dimensional embeddings for nodes by aggregating infor-
mation from neighborhoods, and have catalyzed breakthroughs
in many graph-related tasks (e.g., node classification [2], link
prediction [3] [4], and graph classification [5]). The success of
GNNs stems from efficiently exploiting the following graph
information [6]: (i) graph structure, which describes inter-
dependencies among nodes and gives the L-hop neighbor-
hoods involved in embedding calculation of a single node; (ii)
high-dimensional node feature, which is an extensive array of
attributes that provides detailed descriptions of each node and
serves as input for node embedding calculation. For example,
a 602-dimensional feature is used for each node (post), when
training GraphSage model [2] on the Reddit posts dataset for
topical community prediction.
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Real-world graph datasets are large, often including millions
to billions of nodes and edges. For example, the user-to-
item graph collected by Pinterest consists of 3 billion nodes
and 18 billion edges, with an approximate size of 18TB [7].
Storing and computing such a large graph may well exceed
the memory and computation capacities of a single device or
physical machine (i.e., a worker). Distributed GNN training
has thus been adopted [8] [9], which partitions a large graph
among multiple workers, trains embeddings of a subset of
the graph nodes on each worker, and synchronizes model
gradients among GNN model replicas on the workers. The
current distributed GNN training systems commonly adopt
structure partition of the large graph [9] [10], that partitions
the graph structure among workers and stores features of nodes
in each partition on the respective worker. The goal is to
balance worker workload and minimize cross-worker edges.
This graph partition scheme ensures that each node, along with
its feature vector, is assigned to at least one worker.

Upon a thorough analysis of this graph partition paradigm,
we have made three key observations: (1) Graph structure
partitioning consumes considerable time especially on large
graphs. For example, it takes the widely adopted balanced min-
edge-cut partitioning method, METIS [11], about an hour to
partition the ogbn-papers100M dataset [12]. (2) Cross-worker
subgraph sampling combined with feature fetching signifi-
cantly slows down the training process and results in low GPU
utilization [13]. The feature communication among workers
can be unbalanced too, when one worker hosts a large number
of nodes requested by other workers in a training iteration,
creating throughput bottlenecks. (3) The aforementioned issue
is further exacerbated with the increase of GNN layers. As
the number of GNN layers increases, the number of nodes
involved in sampled subgraphs increases exponentially, leading
to significantly larger communication overhead.

A real-world graph dataset typically consists of the ad-
jacency matrix denoting the graph structure and a high-
dimensional feature matrix of all nodes. The size of the graph
structure is usually much smaller than that of the features,
e.g., the structure information of ogbn-papers100M occupies
24GB, while its feature matrix consumes 53GB memory [12].
Therefore, the graph structure is more likely to fit within the



memory of a physical machine [14].
Given the drawbacks of structure partition and the fact

that graph structure can usually fit within the memory of
a machine, an alternative graph data partition scheme for
distributed GNN training has been advocated [14]: instead of
partitioning the graph structure and storing complete features
of nodes with the respective partitions, the feature vector
of each node is partitioned and dispersed evenly among all
workers, i.e., each worker holds d

K dimensions of feature
vectors of all nodes where d is the total dimension number of
each node’s feature vector and K is the number of workers,
while the complete graph structure is stored in each physical
machine. This paradigm sidesteps the hassle of graph structure
partitioning, avoids the communication overhead for cross-
machine subgraph sampling, and can achieve strictly balanced
communication among workers for feature fetching.

Nevertheless, the average feature transfer size among work-
ers in this feature-partition based distributed GNN training
remains similar compared to structure-partition based dis-
tributed GNN training. Therefore, feature communication still
renders the major bottleneck during the training process. A
natural question is: how can we further reduce the commu-
nication overhead due to feature fetching in feature-partition
based distributed GNN training?

The main challenge to answer this question is that both the
convergence behavior of the GNN model and its relation with
feature communication have not been explored under feature-
partition based paradigm. In this paper, we investigate the
effect of feature communication on the convergence perfor-
mance of GNN models in feature-partition based distributed
GNN training and propose an optimal feature communication
plan based on our findings, to hit the sweet spot between
model convergence error and training time. The contributions
we make in this paper can be summarized as follows.

▷ We analyze the convergence behavior of the GNN model
in the extreme case of “gradient only communication”, where
only gradients calculated on incomplete local features are
exchanged among workers during the feature-partition based
distributed GNN training, and corroborate that the convergence
bound of the GNN model is subject to a non-vanishing term
closely related to the incomplete feature information at each
worker. This result indicates that the communication of feature
dimensions scattered across all workers is indispensable;
otherwise, the GNN model fails to converge.

▷ To guarantee the desired convergence, we enable each
worker to periodically invoke feature fetching from all other
workers for constructing complete feature vectors of nodes
in its sampled subgraphs. Through establishing a relationship
between convergence error and training completion time, we
ascertain that the model’s convergence error follows a convex
function with respect to the feature communication frequency.
Based on the insights obtained, we derive an optimal feature
communication plan, which achieves the best tradeoff between
model performance and training completion time.

▷ We thoroughly evaluate our theoretical analysis and op-
timal feature communication plan via extensive experiments,

by training representative GNN models on various real-world
large graph datasets under different settings. The results are
consistent with our theoretical implications and demonstrate
that feature-partition based distributed GNN training with our
optimal feature communication plan can achieve an average
speedup of 1.5× for model convergence to the same accuracy.

II. MOTIVATIONS AND RELATED WORKS

A. Graph Neural Networks

Let G = (V, E) be a graph with vertex set V and edge
set E . Each vertex v ∈ V has a feature vector xv ∈ Rd,
where d is the feature dimension. The feature vectors of all
nodes constitute the feature matrix X ∈ RN×d, where N is
the number of vertices. We use N1(v) to represent the set
of one-hop neighbor nodes of node v. A GNN calculates the
embedding of a node in a recursive manner [15]:

h(l)
v = Update(h(l−1)

v ,Aggregate(h(l−1)
u ,∀u ∈ N1(v))) (1)

where h
(l)
v is the representation (aka embedding) of node v

after computing by l layers of the GNN, and h
(0)
v = xv,∀v ∈

V . GNNs differ in their choices of Update(·) and Aggregate(·)
in (1) [16]. For example, GraphSage [2] uses mean, LSTM or
pooling for Aggregate(·) and a linear layer for Update(·).

In each training iteration, subgraphs enclosing sampled
L-hop neighbors of the training nodes (i.e., nodes whose
embeddings are to be computed) are constructed, each serving
as a sample in the training. The sampled subgraphs and
features of nodes in the subgraphs are fed as input to the
GNN model.

B. Distributed GNN Training

In distributed GNN training, the graph data is partitioned
among multiple devices or physical machines. Each worker
(usually on one device such as a GPU) hosts a copy of the
GNN model and processes a subset of the training nodes in
each training iteration, i.e., a mini-batch, by sampling L-hop
subgraphs, fetching node features, and learning embeddings.

1) Structure-partition based Distributed GNN Training:
The current distributed GNN training frameworks such as
DGL [17] and BGL [13] mostly adopt structure partition of
the graph data. The workflow of these system goes as follows:
(1) graph partition, where the graph structure and features are
partitioned (Fig. 1(a)), with every node, along with its feature
vector, allocated to at least one worker.1 The training proceeds
through many iterations, each with three stages at each worker:
(2.1) subgraph sampling, where every worker communicates
with others to construct L-hop neighborhood subgraphs of
training nodes in its mini-batch, which may well reside on
other workers; (2.2) feature fetching, where feature vectors of
remotely stored nodes in sampled subgraphs are retrieved from
other workers; (2.3) model computation, where forward and
backward computation is performed on the local GNN model,

1We obfuscate the implementation intricacies, deliberately omitting the
mention of components such as graph store server and sampler, to accentuate
the overarching concept at a higher level.



Fig. 1: Distributed GNN Training Paradigms

and gradients of the GNN model are synchronized among the
workers for global model update. We identify two key issues
in structure-partition based distributed GNN training that have
not been fully addressed or been overlooked by existing works.

Problem 1: Extra cost due to graph partitioning. We
evaluate three widely adopted graph partitioning algorithms
in existing distributed GNN/graph processing systems: (a)
random partitioning supported by Euler [18] and DGL [17];
(b) METIS [11], the default partitioning strategy in DGL,
which is a balanced min-edge-cut method; (c) Block-based
Deterministic Greedy (BDG) partitioning algorithm proposed
by G-Miner [19], where multiple breadth-first searches (BFS)
are performed starting from randomly selected source nodes.
Each node traversed by a BFS is then assigned to a specific
block/partition. Table I gives the partitioning time (Tpar),
peak memory consumption and job completion time (training
time required to achieve a model test accuracy greater than
76%, under the condition that the accuracy variance over
30 consecutive training iterations is smaller than 0.0001)
when training a GraphSage model on ogbn-products dataset
using DGL [2] across 4 workers with our proposed method
under a 10Gbps inter-connect bandwidth. The partition process
imposes significant computation overhead and memory con-
sumption, and its corresponding runtime may well exceed the
total training time. This inspires us to reconsider the necessity
of graph structure partition in distributed GNN training.

TABLE I: Performance of Graph Partition Methods
Dataset Method Tpar(s) Memory(GB) JCT(s)

ogbn-products
Random 92.84 36.04

11.2METIS 106.34 32.33
BDG 57.99 25.16

In addition, quite a few partitioning algorithms, including
RandomVertexCut [20] and GRID [21], fail to scale to large
graphs [13] [14] of similar sizes as ogbn-papers100M, due to
high memory consumption. The objective of graph partitioning
is typically to minimize cross-worker edges. However, the
reduction of cross-worker communication offered by graph
partitioning diminishes quickly as the number of GNN layers
increases. Recall that a L-layer GNN computes a node’s
embedding recursively using information of L-hop neighbor
nodes. Nodes needed in sampled subgraphs may well cover
the complete graph as the number of GNN layer increases, and
any graph partitioning algorithm would fall short in reducing
the heavy cross-worker communication overhead then.

Problem 2: Performance bottlenecks owing to cross-
worker subgraph sampling and node feature transmission.
Fig. 2 shows the training time breakdown of one mini-
batch with different batch sizes, when training the GraphSage
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model with structure partitioning of ogbn-products dataset [12]
across 4 workers. More than 80% of the training time is
spent on cross-worker subgraph sampling and feature fetching.
This excessive communication overhead originates primarily
from inter-dependencies among nodes in algorithmic design
(Eqn. (1)) of GNN. Moreover, if a substantial portion of nodes
in sampled subgraphs reside on a single worker, the worker
can become a communication bottleneck, further prolonging
the feature fetching time. In Fig. 3, the average GPU utilization
is computed as the mean value of real-time GPU utilization
over several 5-second intervals; the approximate 20% GPU
utilization aligns with the time breakdown findings.

Reducing the cost associated with cross-worker subgraph
sampling and feature transmission is the key to improve the
efficiency of distributed GNN training.

2) Feature-partition based Distributed GNN Training: In
feature-partition based distributed GNN training (Fig. 1(b)),
feature partition is conducted, with the dimensions of feature
vectors evenly partitioned and distributed among all workers.
That is, each worker holds d

K dimensions of the feature
vectors of all nodes. The complete graph structure is stored
within each physical machine, accessible by workers on the
same machine. The training process is similar to structure-
partition based distributed GNN training, except that the L-hop
subgraphs can be solely sampled at each worker, and missing
dimensions of the needed node features are fetched from other
workers in each training iteration.

This paradigm exhibits superiority in the following three
aspects: (1) little extra overhead for graph preprocessing. This
feature partition is performed on regular vectors instead of the
irregular graph structure, very easy to achieve and requiring
minimal extra time and memory space; (2) evenly distributed
communication in each training iteration. Given that the fea-
ture dimensions are evenly distributed among workers, the size
of feature data transmitted from each of the other workers to
a specific worker is the same, i.e., nk

d
K , where nk is the

number of nodes in the subgraphs sampled at this worker;
(3) eliminated overhead for cross-worker subgraph sampling,
since the graph structure is stored locally for each worker.

On the other hand, the substantial overhead of cross-
worker feature transmission still exits in feature-partition
based distributed GNN training. The average size of cross-
worker feature transfers in each training iteration is the same
between feature-partition based and structure-partition based
paradigms, if the nodes are uniformly distributed among
workers in structure-partition based distributed GNN training.
Suppose the total number of nodes involved in sampled
subgraphs of all workers in a training iteration is N . Then
the total feature transfer size is (K−1)Nd

K for both paradigms.



This naturally leads to the key question that we are addressing
in this paper: Can we further minimize the overhead of cross-
worker feature fetching in feature-partition based distributed
GNN training paradigm?

Providing a definitive answer to this question is not straight-
forward. While feature caching and neighborhood sampling
(sample only a subset of L-hop neighbor nodes) can alleviate
this overhead, their benefits are constrained by the cache
size and the number of GNN layers. We aim to propose
a novel approach that can independently reduce the feature
fetching overhead effectively while synergizing seamlessly
with caching and neighbor sampling. The approximate 80%
of GPU waiting time in Fig. 3 suggests that, if feature
fetching is carried out periodically, e.g., every τ iterations with
τ ≥ 4, then the communication time could potentially be fully
overlapped with computation time. Inspired, we explore the
feasibility of omitting some feature fetching steps in feature-
partition based distributed GNN training.

III. IMPACT OF FEATURE FETCHING

We first identify the impact of remote feature fetching on
the performance of the trained GNN model. We consider a
distributed GNN training job compromising K workers. For
presentation simplicity, we assume each worker is running on
a physical machine with a GPU for model computation and
host memory to store the graph structure and feature partitions.
Recall that the graph dataset G = (V, E) consists of N nodes,
and provides a feature matrix X ∈ RN×d, with each row being
the feature vector of node v, xv ∈ Rd.

The feature-partition paradigm is employed in the dis-
tributed GNN training job, with the feature matrix X evenly
partitioned column-wise and distributed among the K workers.
As a result, each worker k ∈ [K] ([K] = {1, 2, ...,K}) locally
retains a feature matrix Xk ∈ RN× d

K , that includes columns
[ dK ∗ (k− 1) : d

K ∗ k) in the complete feature matrix X . Each
row of Xk, denoted as xk

v ∈ R d
K , is the local feature vector of

node v,∀v ∈ V . The goal of the distributed GNN training job
is to collectively learn a GNN model, minimizing the following
loss function, where w denotes GNN model parameters and
h
(L)
v is calculated according to (1).

min
w

L(w) =
1

N
∑
v∈V

L(h(L)
v , w) (2)

Commonly in each training iteration t of distributed GNN
training, every worker fetches features from others to re-
construct the complete feature vectors for nodes involved in
its sampled subgraphs, and the GNN model parameters are
updated in the following unbiased manner:

wt+1 = wt − ηgt = wt − η
1

K

K∑
k=1

1

|Bk
t |

∑
v∈Bk

t

∇L(h(L)
v , wt) (3)

where gt represents the average gradients of model parameters
among all workers computed on complete feature vectors, η is
the learning rate, and Bk

t represents the mini-batch of training
nodes at worker k in training iteration t.

We examine the feasibility of reducing feature fetching
frequency during iterative GNN training, through a compre-
hensive understanding of how feature fetching affects the

convergence behavior of the GNN model in feature-partition
based distributed training. We investigate two questions:
(1) Considering that model gradients containing local fea-

ture information are exchanged among workers in each train-
ing iteration for global GNN model update, is feature fetching
truly indispensable?

(2) If feature fetching is indispensable, is it feasible not to
conduct it in every training iteration?

A. The Case without Cross-worker Feature Fetching

To answer the first question, we examine the extreme case
that each worker k trains the GNN model and computes
the model gradients solely based on its local feature matrix
Xk throughout the training process, with gradients being the
only exchanged information among workers. Model parameter
update in this case is:
wt+1 = wt − ηg̃t = wt − η

1

K

∑
k∈[K]

1

|Bk
t |

∑
v∈Bk

t

∇L(h̃(L)
v (k), wt) (4)

where g̃t denotes the average gradients of model parameters
across all workers computed based on locally retained feature
vectors, and h̃

(L)
v (k) is calculated following (1) using feature

vector x̃k
u ∈ Rd,∀u ∈ V . x̃k

u is a d-dimensional vector with
locally maintained feature dimensions of worker k filled into
their corresponding positions as in the complete feature vector
xu and all other dimensions filled with 0. Specifically, x̃k

u[i] =
xk
u[i− d

K×(k−1)], if i ∈ [ dK×(k−1), d
K×k), and 0, otherwise.

X̃k represents the feature matrix composed by x̃k
u, ∀u ∈ V .

We only make the basic assumption used in standard analysis
of stochastic gradient descent (SGD) algorithm [22] [23], to
derive convergence of the GNN model2.

Assumption 1 (Smoothness). The loss objective function is
Lipschitz smooth with respect to model parameters, that is,
L(y) ≤ L(y′) + ⟨∇L(y′), y − y′⟩ + Lf

2 ||y − y′||2,∀y, y′ ∈
dom L, where Lf is the Lipschitz constant.

We derive the following theorem on model convergence of
GNN training without cross-worker feature fetching.
Theorem 1 (Convergence with Non-vanishing Errors). Under
Assumption 1, the minimum average gradient norm of GNN
training that follows the update rule in (4) is bounded by a
non-vanishing bias term, even with sufficiently many training
iterations and a learning rate close to zero. Specifically, if the
learning rate η ≤ 1

Lf
, then optimization error is bounded as:

min
t∈[T ]

E[||∇L(wt)||2] ≤
2

√
T
(L(w1)−L(w∗)) +

Lf√
T
σvar + σbias (5)

where T is the number of training iterations, w1 denotes
the initial model parameters and w∗ represents the opti-
mal model parameters minimizing loss function (2). σvar =
maxt∈[T ] E[||g̃t − E[g̃t]||2] is the gradient variance caused
by mini-batch sampling and equal to 0 if Bk

t = V , and
σbias = maxt∈[T ] E[||∇L(wt) − E[g̃t]||2] is the bias repre-
senting the difference between the gradients computed on h

(L)
v

and h̃
(L)
v (k) ∀k ∈ [K], respectively.

2All the theoretical results presented below do not depend on the specific
method used to partition features among workers.



Proof. We provide a proof sketch here and leave the full proof
in appendix. Conditioned on wt and η ≤ 1

Lf
, we could derive

the following relationship based on assumption 1 by letting
σt
bias = ∇L(wt)− E[g̃t] and σt

var = g̃t − E[g̃t].
E[L(wt+1)] ≤ L(wt) + ⟨∇L(wt), E[wt+1 − wt]⟩ +

Lf

2
E[||wt+1 − wt||2F ]

(a):η ≤ 1
Lf

≤ L(wt) +
η

2
(−2⟨∇L(wt),∇L(wt) − σ

t
bias⟩

+ E[||∇L(wt) − σ
t
bias||

2
F ]) +

η2Lf

2
E[||σt

var||
2
F ] (6)

Summing up (6) from t = 1 to T and taking expectation
with respect to the randomness in mini-batch sampling,

1

T

T∑
t=1

E[||∇L(wt)||2F ] ≤
2

ηT
(L(w1) − L(w

∗
)) + σbias + ηLfσvar

(b)
=

2
√
T
(L(w1) − L(w

∗
)) + σbias +

Lf√
T
σvar (7)

where (b) holds when T is sufficiently large and η = 1√
T

.

Indispensable Feature Fetching. Theorem 1 reveals that
without cross-worker feature fetching, the GNN training can-
not be guaranteed to converge to a stationary point, i.e., the
local optimum,3 of the objective function (2), due to the
bias error σbias that does not decrease over model update
iterations. This implies that gradient exchange among workers
cannot compensate for the information loss of incomplete local
features. Feature fetching is indispensable to ensure model
training convergence to optimality.

We further establish an upper bound of σbias to clarify the
direct relationship between this irreducible error and incom-
plete local features. σbias also acts as a lower bound of the
gradient norm and hence genuinely affects model convergence.

1) Upper Bound of σbias: Here we restrict our discussion to
the representative GNN model, graph convolutional networks
(GCNs) [24] of the following form

Z(l) = PH(l−1)w(l) H(l) = σ(Z(l)) (8)
where H(l) is the layer-l representation matrix, each row of
which, h

(l)
v , is the layer-l embedding of a graph node v.

P is the propagation matrix defining the inter-dependencies
among nodes, which is a normalized version of the adjacency
matrix, and σ(·) is the activation function. We use some mild
assumptions to establish a connection between the gradients
and the feature matrix X on which the gradients are computed.

Assumption 2 (Lipschitz Continuity of Loss and Activation).
There exist Ll > 0 and Sl > 0 such that

||L(h(L)
v , w)− L(h̃(L)

v , w)||2 ≤ Ll||h
(L)
v − h̃

(L)
v ||2

||∇
h
(L)
v

L(h(L)
v , w)−∇

h̃
(L)
v

L(h̃(L)
v , w)||2 ≤ Sl||h

(L)
v − h̃

(L)
v ||2

(9)

There exist Lc > 0 and Sc > 0 such that
||σ(z(l)v )− σ(z̃

(l)
v )||2 ≤ Lc||z(l)v − z̃

(l)
v ||2

||σ̇(z(l)v )− σ̇(z̃
(l)
v )||2 ≤ Sc||z(l)v − z̃

(l)
v ||2

(10)

where z̃
(l)
v is layer-l pre-activation of node v and σ̇(·) denotes

the derivative of the activation function with respect to z̃
(l)
v .

Assumption 3 (Bounded Norm). The (Frobenius) norm of
parameter matrix, propagation vector, and node feature vector

3Convergence to global optimum with SGD in non-convex optimization
cannot be ensured.

are bounded as ||w(l)||2F ≤ Bw,∀l ∈ [L], ||Pv||2 ≤ Bp,∀v ∈
V, ||xv||2 ≤ Bx,∀v ∈ V .

Lemma 2 (Upper Bound of σbias). Under Assumptions 2 and
3, σbias = maxt∈[T ] E[||∇L(wt) − E[g̃t]||2] in Theorem 1 is
upper bounded by 1

K

∑
k∈[K] O(||X̃k −X||2F ).

All missing proofs can be found in the appendix.
Discussion. Lemma 2 shows that the irreducible bias error
in the convergence of update method (4) would diminish
to zero if local feature matrix at each worker is complete,
i.e. X̃k = X . Further, with the increase of the number of
feature dimensions at each worker, the value of this error term
decreases. This validates that the error term σbias, that prevents
correct convergence of the GNN model, is attributed to the
incomplete feature matrix at each worker.

2) Lower Bound of Gradient Norm: We establish a conver-
gence lower bound of the gradient norm in a strongly convex
setting, and demonstrate that while σbias only appears in the
upper bound of the gradient norm in Theorem 1, it indeed
prevents the gradient norm from approaching 0 and the model
from converging to the optimum of the objective (2). The
intrinsic existence of the irreducible error in the convergence
of update method (4) is not an artifact of our analysis.

Lemma 3 (Lower Bound of E||∇L(wt)||2). Consider-
ing a strongly convex optimization objective L(w) =
1

2N
∑

v∈V ||w −
∑

u∈N1(v)
xu||2, the gradient norm resulting

from the update method (4) respects

lim
T→∞

||∇L(wT )||2 = lim
T→∞

||
1

K

K∑
k=1

1

N
∑
v∈V

∑
u∈N1(v)

(x̃k
u − xu)||2

= ||∇L(wT )− g̃T ||2 = σbias (11)

Discussion. In Lemma 3, we derive the exact gradient norm
using the update method of (4) without any scaling. The
precise gradient norm analysis reveals that the gradient norm is
indeed affected by σbias and fails to approach 0 with arbitrary
feature partition method. Even though a neural network is
normally non-convex and we can not derive such an exact
gradient norm value for it, this result, in the context of a
strongly convex objective, provides evidence for the inherent
existence of convergence error when each worker uses an
incomplete feature vector x̃k

u .

B. The Case with Cross-worker Feature Fetching

Having obtained an affirmative answer to the first question,
we now turn our attention to the second question and explore
the frequency of feature fetching during GNN training. Let
Tw/o and Tw denote the set of training iterations without and
with cross-worker feature fetching, respectively. Suppose there
are a total of Λ training iterations with cross-worker feature
fetching, i.e., |Tw| = Λ, where parameters of GNN model are
updated following (3). Between every two training iterations
that involve cross-worker feature fetching, there are sev-
eral training iterations without cross-worker feature fetching,
where the GNN model is updated using (4). Specifically, we
use τλ to represent the number of training iterations without
feature fetching performed between the λ-th and (λ + 1)-th



model update steps (i.e., training iterations) with cross-worker
feature fetching. Then we have the following expressions:

Tw/o(λ) = {λ+

λ−1∑
j=1

τj + s, s ∈ [τλ]}, Tw(λ) = {λ+

λ−1∑
j=1

τj}, ∀λ ∈ [Λ]

where Tw/o(λ) denotes the set of training iterations without
cross-worker feature fetching after the λ-th model update with
cross-worker feature fetching, and Tw(λ) represents the index
of the training iteration corresponding to the λ-th model update
step with cross-worker feature fetching. Training iterations
with and without cross-worker feature fetching are indexed
together as 1, 2, . . . , T . The complete set of training iterations
T = Tw ∪ Tw/o, with Tw = Tw(1) ∪ ... ∪ Tw(Λ) and
Tw/o = Tw/o(1)∪ ...∪Tw/o(Λ). In training iteration t, model
parameters are updated using (3) if t ∈ Tw, or using (4) if
t ∈ Tw/o. We refer to this as distributed GNN training with
periodic feature fetching. Solely based on assumption 1, we
derive the following convergence result for it.

Theorem 4 (Convergence of Periodic Feature Fetching).
Feature-partition based distributed GNN training with peri-
odic feature fetching converges as long as:

τλ ≤
(1− ηLf )E[||∇L(wt∈Tw(λ))||2]

σbias
, ∀λ ∈ [Λ] (12)

Proof. We give the proof sketch here and leave the full proof
to appendix. The main idea is to analyze the convergence
behavior of the GNN model during the two sets of training
iterations, Tw/o and Tw, so that the convergence of GNN
model for each training iteration t ∈ T = Tw ∪ Tw/o can
be derived as follows:∑

t∈T
E[||∇L(wt)||2] ≤

2

η
(L(w1)− L(w∗)) +

∑
t∈Tw/o

σbias +
∑

t∈Tw/o

ηLfσvar +
∑
t∈Tw

ηLf σ̂var +
∑
t∈Tw

(ηLf − 1)E[||∇L(wt)||2] (13)

where σ̂var is the variance upper bound of E[||∇L(wt)−gt||2]
with gt =

1
K

∑
k∈[K]

1
|Bk

t |
∑

v∈Bk
t
∇L(h(L)

v , wt), which is an
unbiased estimator of ∇L(wt), and σ̂var = 0 if Bk

t = V .
The last term

∑
t∈Tw

(ηLf − 1)E[||∇L(wt)||2] in the above
result is less than 0 due to the requirement of η ≤ 1

Lf
in the

convergence result of the GNN model in t ∈ Tw/o (Theorem
1), then we could remove the non-vanishing bias error and
ensure model convergence by adjusting the value of τλ to
make

∑
t∈Tw/o

σbias and
∑

t∈Tw
(ηLf − 1)E[||∇L(wt)||2]

cancel out each other, i.e.,
∑

t∈Tw/o
σbias +

∑
t∈Tw

(ηLf −
1)E[||∇L(wt)||2] ≤ 0, which gives us the solution to τλ in
(12). Then the subsequent convergence result follows:

min
t∈T

E[||∇L(wt)||2] ≤
1

T

∑
t∈T

E[||∇L(wt)||2]

(a)

≤
2

ηT
(L(w1)− L(w∗)) +

ηLf

T
(

∑
t∈Tw/o

σvar +
∑
t∈Tw

σ̂var) (14)

(b)

≤
2

√
T
(L(w1)− L(w∗)) +

Lf√
T
σ

T→∞
= 0

where (a) holds because
∑

t∈Tw/o
σbias +

∑
t∈Tw

(ηLf −
1)E[||∇L(wt)||2] ≤ 0 and (b) is valid when σ =
max(σvar, σ̂var) and η = 1√

T
.

Remark 1 Although cross-worker feature fetching is unavoid-
able, we offer a positive response to the second question.
Feature fetching in every training iteration is superfluous;
as long as the number of training iterations without fea-
ture fetching between two consecutive model update steps
with cross-worker feature fetching is no larger than (1 −
ηLf )E[||∇L(wt∈Tw(λ))||2]/σbias, the GNN model is ensured
to converge to the stationary point of the objective (2).
Remark 2 The derived solution to τλ in (12) indicates
that to ensure model convergence, a larger bias σbias due
to incomplete local features allows less model update steps
without cross-worker feature fetching. It also implies that
during distributed GNN training, the frequency of cross-
worker feature fetching (indicated by τλ, the number of
model updates without feature fetching) should increase (τλ
should decrease) over time, as the gradient norm in the upper
bound of τλ typically follows a non-increasing trend. This
aligns well with intuition: as training gradually approaches
convergence/stationary point, even small biases can have a
significant impact on the optimization dynamics, necessitat-
ing more frequent cross-worker feature fetching to maintain
accurate and reliable updates.

IV. FEATURE COMMUNICATION PLAN

Built upon the insights obtained in Sec. III, we devise
an optimal feature fetching communication plan. Intuitively,
frequent feature fetching can reduce the bias and aid model
convergence, while increasing the communication time. We
identify an optimal feature fetching frequency to strike the
right balance and minimize model training convergence time.

We establish a relationship between the model convergence
error and training runtime under our periodic feature fetching,
using a similar approach as in [25]. We consider every training
iteration with cross-worker feature fetching is followed by
τ subsequent training iterations without cross-worker feature
fetching. Following the convergence result in (13), the model
convergence under this feature fetching frequency setting is:

1

T

∑
t∈T

E[||∇L(wt)||2] ≤
1

T
{
2

η
(L(w1)− L(w∗)) + Λτσbias

+ ΛτηLfσvar + ΛηLf σ̂var +
∑
t∈Tw

(ηLf − 1)E[||∇L(wt)||2]} (15)

The convergence error on the right hand side (RHS) of (15)
is related to the total number of training iterations. We further
convert the iteration number T into the total training runtime.
We use C̄ and Tcommu = B̄d

Kb to denote the average per-mini-
batch model computation time and the average communication
time for each worker’s feature fetching in one training itera-
tion, respectively, where B̄ is the average number of nodes
involved in the subgraphs of a mini-batch and b represents
the inter-worker bandwidth. We use the dimension number of
feature vectors in communication time computation, assuming
each dimension using a constant number of bytes. We can
establish the relation between the number of training iterations
T and the training runtime CT as

CT = T (C̄ +
Tcommu

τ + 1
) ≈ T (C̄ +

Tcommu

τ
) = T (C̄ +

B̄d

τKb
) (16)



Here we omit the communication time for gradient sychro-
nization in each training iterations, as the GNN parameter size
is typically much smaller than feature size.

By substituting T in the RHS of (15) by CT /(C̄ + B̄d
τKb )

according to (16), we derive the GNN convergence error with
respect to training runtime CT :
1

T

∑
t∈T

E[||∇L(wt)||2] ≤ C +
C̄τ

CT
{Λσbias + ΛηLfσvar}+

B̄d

τKbCT

{
2

η
(L(w1)− L(w∗)) + ΛηLf σ̂var +

∑
t∈Tw

(ηLf − 1)E[||∇L(wt)||2]}

(17)
where C = C̄

CT
( 2
η
(L(w1) − L(w∗)) + ΛηLf σ̂var +

∑
t∈Tw

(ηLf −
1)E[||∇L(wt)||2]) + B̄d

KbCT
(Λσbias + ΛηLfσvar), a constant term

independent of τ . The convergence error in (17) aligns
with our intuitions, as frequent cross-worker feature fetching
(smaller τ ) introduces less bias (smaller coefficient before
σbias), but incurs longer communication time (larger B̄d

τKb ).
Thus striking the optimal trade-off between convergence
error and feature communication time is to find the
optimal τ∗ minimizing both terms at the same time,
which is equivalent to minimizing the RHS of (17). The
convexity of (17) on the feature fetching frequency τ (bold
in (17)) makes it possible to find an optimal solution of τ ,
that achieves the best trade-off between convergence error and
feature communication time. By setting the derivative of (17)
with respect to τ to 0, we derive the optimal feature fetching
frequency as follows:

τ∗ =

√√√√ B̄d( 2
η
L(w1) + ΛηLf σ̂var +

∑
t∈Tw

(ηLf − 1)E[||∇L(wt)||2])
C̄Kb(Λσbias + ΛηLfσvar)

(18)

Here we assume L(w∗) = 0, which is reasonable since the
loss value gets close to 0 when the model converges in most
training scenarios (see training curves in Fig. 4 and Fig. 5).

The optimal τ∗ involves ∑
t∈Tw

(ηLf − 1)E[||∇L(Wt)||2], the
gradient norm of all training iterations with cross-worker fea-
ture fetching, which cannot be known without completing the
entire training process. To circumvent the need of computing
gradient norm of all training iterations, we treat the training,
starting from the λ-th (∀λ ∈ [Λ]) model update step with
cross-worker feature fetching, as a training re-start from model
parameter wtλ . The re-started training between the λ-th and
λ+1-th model update step with cross-worker feature fetching
follows the same convergence property as (15) during the
training interval with Λ = 1 (there is only one training
iteration with cross-worker feature fetching during the re-
started training, which begins from the λ-th model update
step with cross-worker feature fetching and continues with
τλ model update steps without cross-worker feature fetching).
Thus the optimal τ∗λ follows the same form as (18) except
Λ = 1 and |Tw| = 1. We derive the following optimal
feature fetching frequency to use starting from the λ-th model
update step, by replacing the sum of gradient norm of all
training iterations with cross-worker feature fetching in (18)
by E[||∇L(Wtλ )||2], since tλ is the only model update step with
cross-worker feature fetching during this re-started training:

τ∗λ =

√√√√ B̄d( 2
η
L(wtλ ) + ηLf σ̂var + (ηLf − 1)E[||∇L(wtλ )||2])

C̄Kb(σbias + ηLfσvar)

(19)

This optimal feature fetching frequency τ∗λ achieves the best
trade-off between model error and feature communication time
for the training between λ-th and λ+1-th model update steps
with cross-worker feature fetching.

While the above τ∗λ ensures the right trade-off in each
such training interval, it does not necessarily guarantee the
minimum gradient norm will converge to 0 over time. Thus
we combine our analysis result of τλ ≤ (1−ηLf )E[||∇L(wtλ

)||2]
σbias

in Sec. III-B, which ensures a minimum gradient norm value
of 0 for GNN models, and obtain the optimal feature fetching
frequency to use starting from the λ-th model update step
with cross-worker feature fetching by ensuring that the optimal
solution to τ∗λ at least guarantees the model convergence.

τ∗λ = min


(1−ηLf )E[||∇L(wtλ

)||2]
σbias

,√
B̄d( 2

η
L(wtλ

)+ηLf σ̂var+(ηLf−1)E[||∇L(wtλ
)||2])

C̄Kb(σbias+ηLfσvar)


(20)

The complete training process is in Alg. 1.

Algorithm 1 Distributed GNN Training with Optimal Feature
Fetching Plan (perspective of each worker k ∈ [K])

INPUT: Adjacency matrix A ∈ RN×N , feature matrix
Xk ∈ RN× d

K , initial model parameters w1, number of
training iterations T
OUTPUT: Model parameter wT

1: Set number of model updates with feature fetching to λ =
1, training iteration number to t = 1;

2: while t ≤ T do
3: Calculate τ∗λ based on (20) and wt;
4: Sample mini-batch Bk

t and associated subgraphs Gk
t ;

5: Fetch features for nodes u ∈ Gk
t and recover xu ∈ Rd;

6: Compute h
(L)
v ,∀v ∈ Bk

t with (1) and xu,∀u ∈ Gk
t ;

7: Update GNN model with (3) to obtain wt+1;
8: t = t+ 1;
9: for ζ ∈ [τ∗λ ] do

10: Sample mini-batch Bk
t and associated subgraphs Gk

t ;
11: Compute h̃

(L)
v (k),∀v ∈ Bk

t with (1) and x̃k
u,∀u ∈ Gk

t

12: Update GNN model with (4) to obtain wt+1;
13: t = t+ 1;
14: end for
15: λ = λ+ 1;
16: end while

Remark 1 The value of τ∗λ can be efficiently calculated: (1)
Lf can be estimated according to the property of Lipschitz
smoothness [26]. (2) B̄, C̄, σvar, σbias, and σ̂var can be in-
ferred based on their definitions, by calculating the respective
terms from several trials of training iterations before actual
training starts. (3) All other terms are either constant, such as
d, η, or can be obtained during the training process, including
L(wtλ ) and ∇L(wtλ ).



TABLE II: Training Time to Reach a Target Accuracy (seconds). × indicates the speedup obtained by dividing the convergence time of each
baseline by the convergence time of our method. / means the respective baseline converges to an accuracy lower than the target accuracy.

Dataset Reddit ogbn-arxiv ogbn-products
Model (Target Test Accuracy) GraphSage(96%) GAT(94%) GraphSage(70%) GAT(68%) GraphSage(75%) GAT(70%)

With neighbor
Sampling

feat-(τ=0) 25.95 (1.07×) 32.70 (0.94×) 4.54 (1.60×) 3.72 (0.51×) 14.99 (1.34×) 23.46 (0.67×)
struc-(τ=0) 38.92 (1.60×) / 9.14 (3.21×) 10.19 (1.41×) 47.09 (4.20×) /
feat-(τ=∞) / / / / / /
feat-(τ=8) 12.46 (0.51×) 45.91 (1.15×) / / 12.05 (1.07×) 39.04 (1.11×)

feat-(τ=128) 50.98 (2.10×) 60.57 (1.52×) / / 32.10 (2.86×) 58.80 (1.67×)
Ours 24.27 39.78 2.85 7.23 11.2 35.17

Without neighbor
Sampling

feat-(τ=0) 29.86 (1.12×) 38.84 (0.97×) 7.22 (1.18×) 13.79 (1.57×) 330.00 (1.90×) 53.21 (1.01×)
struc-(τ=0) 45.05 (1.68×) / / 13.53 (1.54×) / /
feat-(τ=∞) / / / / / /
feat-(τ=8) 13.63 (0.51×) 22.19 (0.55×) / / 343.87 (1.98×) /

feat-(τ=128) 28.52 (1.07×) 60.47 (1.51×) / / / /
Ours 26.76 40.07 6.10 8.76 173.91 52.88
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Fig. 4: GNN Training Convergence with Neighbor Sampling
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Fig. 5: GNN Training Convergence without Neighbor Sampling

V. PERFORMANCE EVALUATION

A. Methodology

Settings. We implement distributed GNN training over four
fully-connected machines, using Pytorch 1.13.1 [27] on DGL
1.1.1 [17]. Each machine is equipped with one NVIDIA RTX
3090 Ti GPU, one Intel i9-12900KS CPU and 126 GB host
memory. The default bandwidth between each pair of workers
is 10Gbps and the mini-batch size at each worker is 1024.
GNN Models and Datasets. We train two representative
GNN models, GraphSage [2] (two layers with hidden size
256 and the mean aggregator) and GAT [28] (two layers with
hidden size 256 and 4 heads of dropout 0.5), on three large
graph datasets: the reddit dataset (0.23 million nodes, 114.61
million edges, and 602-dimensional node features), the ogbn-
arxiv dataset (0.16 million nodes, 1.16 million edges, and
128-dimensional node features), and the ogbn-products dataset
(2.44 million nodes, 61.85 million edges, and 100-dimensional
node features) [12]. In experiments with neighborhood sam-
pling, we adopt uniform neighbor sampling [2] with a fanout
(number of neighbor nodes to be sampled at each layer) of
10-15. The learning rate is set to 0.005 in all experiments.
Baselines. We compare our design with four baselines. (1)
feat-(τ=0): feature-partition based distributed GNN training
with cross-worker feature fetching in every training iteration.
(2) struc-(τ=0): structure-partition based distributed GNN
training with cross-worker subgraph sampling and feature
fetching in every iteration; nodes in a graph dataset are
evenly distributed among all workers. (3) feat-(τ=∞): feature-

partition based distributed training without cross-worker fea-
ture fetching during the whole training process; the only in-
formation exchanged among workers are gradients calculated
based on local incomplete features. (4) feat-(τ=#): feature-
partition based distributed training with fixed feature fetching
frequency, where one model update step with cross-worker
feature fetching is performed after every fixed number (spec-
ified by #) of training iterations without feature fetching.

B. GNN Training Convergence
We first evaluate the convergence behavior of GNN training

with neighborhood sampling and without (complete L-hop
neighbor nodes are used). Table II records the model con-
vergence time required to reach a target test accuracy. Fig. 4
and Fig. 5 plot the training convergence curves.

The following observations are made: (1) GNN training
with only gradients exchanged among workers (feat-(τ=∞))
leads to the largest training loss and the lowest test accuracy,
consistent with our theoretical results on the non-vanishing
bias error in this case in Sec. III-A. (2) In feature-partition
based distributed training, as the feature fetching frequency
decreases (larger τ ), test accuracy of GNN models decreases,
verifying our theoretical result in Sec. III-B (the smaller τ
is, the more feasible for it is to cancel out the irreducible
error). (3) Our optimal feature fetching frequencies leads to an
average 1.5× training speed-up as compared to the baselines,
reducing about 30% convergence time to the target accuracy.
The speedup can be further improved when overlapping model
computation and feature fetching, as feature fetching is only
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Fig. 6: Feature Data Transfer Size Comparison. (w) and (w/o) denote training with and without neighbor sampling, respectively.
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Fig. 7: GNN Training Convergence: diff. bandwidth among workers

periodically performed in our method. Although our frequen-
cies are theoretically optimal, the presence of estimation
errors in computing the optimal solution τ∗λ may affect its
performance: our method outperforms more than 85% of the
different cases that we evaluated, and achieves a comparable
test accuracy as feature fetching in every iteration (feat-(τ=0)).
(4) As compared to structure-partition based training, feature-
partition based training achieves faster convergence due to
eliminating cross-worker subgraph sampling; the advantages
are more evident when considering the additional graph par-
titioning time required by structure partitioning.

C. Communication Overhead

We next compare the average feature data transfer volumes
among all workers per training iteration. The data transfer size
is normalized against the feature data transfer volume of our
method. Fig. 6a and Fig. 6b show that the communication
overhead for cross-worker feature fetching using our method
is consistently lower than that of feature fetching in every itera-
tion (feat-(τ=0) and struc-(τ=0)), with an average reduction of
more than 25%. The value of τ∗λ computed by our method has
initial value of several dozens, and gradually decreases over
time during the training process. For example, when training
GraphSage on obgn-products, τ∗λ starts at 18, and gradually
decreases and becomes 0 eventually.

D. Impact of Bandwidth between Workers

We train the GraphSage model on ogbn-arxiv dataset with
neighbor sampling, using different bandwidth levels between
workers. With a higher bandwidth level, we expect the optimal
τ∗λ to decrease (cross-worker feature fetching frequency to
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Fig. 9: GPU Utilization: ratio between our method and feat-τ=0

increase), as the communication overhead of cross-worker
feature fetching is less significant with higher bandwidth. This
trend can be observed from the training convergence curves
in Fig. 7: when the bandwidth between workers is larger, our
method derives smaller τ∗λ , approaching the performance of
feat-(τ=0) (feature fetching in every iteration).

E. Impact of the Number of GNN Layers
We train the GraphSage model on ogbn-arxiv dataset with

10Gbps inter-worker bandwidth with neighbor sampling, and
vary the number of layers in the GNN model. Fig. 8 plots
the convergence curves of distributed GNN training using
our method and feat-(τ=0). Our method exhibits consistent
improvement of convergence speed with more GNN layers,
different from neighbor sampling and caching, whose benefits
become marginal as the number of GNN layers increases [29]
[30]. This is because feature transfer volumes per iteration in-
crease exponentially with the number of GNN layers; omitting
some feature fetching steps brings more benefits.

F. GPU Utilization
We train the GraphSage model on the ogbn-products dataset

and record the ratio of GPU utilization between our method
and (feat-τ=0). The results in Fig. 9 show that our method
enhances GPU utilization, starting with a 2-3× improvement,
which gradually approaches 1 as τ∗λ approaches 0 over time.

VI. CONCLUSION

This paper focuses on feature fetching communication re-
duction in feature-partition based distributed GNN training.
We thoroughly study the convergence behaviour of GNN
models and design an optimal feature fetching communication
plan. We evaluate our design extensively and demonstrate its
effectiveness.
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