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Abstract—Graph Convolutional Networks (GCN) proposed re-
cently have achieved promising results on various graph learning
tasks. Federated learning (FL) for GCN training is needed
when learning from geo-distributed graph datasets. Existing FL
paradigms are inefficient for geo-distributed GCN training since
neighbour sampling across geo-locations will soon dominate the
whole training process and consume large WAN bandwidth. We
derive a practical federated graph learning algorithm, carefully
striking the trade-off among GCN convergence error, wall-
clock runtime, and neighbour sampling interval. Our analysis
is divided into two cases according to the budget for neighbour
sampling. In the unconstrained case, we obtain the optimal
neighbour sampling interval, that achieves the best trade-off
between convergence and runtime; in the constrained case, we
show that determining the optimal sampling interval is actually
an online problem and we propose a novel online algorithm
with bounded competitive ratio to solve it. Combining the two
cases, we propose a unified algorithm to decide the neighbour
sampling interval in federated graph learning, and demonstrate
its effectiveness with extensive simulation over graph datasets
from real applications.

Index Terms—Graph Neural Network, Federated Learning

I. INTRODUCTION

Many data generated in various online services can be
naturally expressed as graphs, such as social networks [1],
knowledge graphs [2], networks of web pages [3], etc. Graph
Convolutional Network (GCN) [4] has been proposed as a
learning model to exploit structure information and node
features of graphs for various tasks such as node classification
[5], link prediction [6] and graph representation learning [7],
achieving the state-of-the-art performance. Similar to the need
for federated learning over traditional datasets (e.g., images)
across multiple edge devices [8] [9], graph datasets may well
be collected on multiple geo-distributed sites (or devices),
while a global model is expected to be learned. For example,
social networks stored at geo-distributed data centers can all
contribute to a joint learning task.

In classical federated learning [10], for tasks such as image
classification or next word prediction for keyboard typing,
each device trains a local copy of the DNN model using
the local dataset, and updates model parameters by periodi-
cally exchanging gradients with other devices. Only gradient
communication is involved, but not training data exchange.

In federated learning of a GCN on a geo-distributed graph,
differently, training data communication across devices1 is
often unavoidable: there may well be edges between nodes
stored on different devices, and embedding calculation of one
node usually requires information of its recursive neighbours
from several hops away, which may well be stored on other
devices. Training by treating sub-graphs at different devices as
independent would lead to bias and unacceptable performance
degradation of the global model learned.

With federated learning, we can achieve similar benefits
as classical federated learning [12] for graph datasets, e.g.,
in terms of data privacy preservation (with less data sharing
across sites) and much reduced network bandwidth costs
(by avoiding transmitting large volumes of training samples).
Graph datasets produced in different geo-sites in practice
can be very large and dynamic. Collecting the whole dataset
centrally and constantly updating it would be too bandwidth-
consuming and more easily privacy infringing than keeping
the distribution of sub-graphs and just sampling neighbour
features/embeddings across devices when needed.

The numbers of nodes and edges in graphs from real
applications are on the order of millions, e.g., the citation
network ogbn-paper100M contains more than 100 million
nodes and edges [13]. The distribution of nodes/edges across
devices can be quite arbitrary. Even with a small batch size for
graph learning and sampling only part of the neighbourhood
for output node embedding computation, the key overhead
in federated graph training is still due to fetching neighbour
information from other devices. Neighbour sampling incurs
large network bandwidth, and leads to long wall-clock runtime
for model training convergence.

Fig. 1 gives the time consumed for training a three-layer
GCN over ogbn-products dataset (with average node degree
50) randomly distributed over 16 devices. The numbers of
sampled nodes for 1-hop, 2-hop and 3-hop neighbours are
15, 10 and 5 respectively for each output node. Neighbour
sampling is initiated locally by each device. When sampled
neighbour nodes are not at the current device, the current
device would send neighbour sampling requests and other
necessary information to devices with these sampled nodes.

1Privacy-preserving methods can be applied to training samples before
sample communication across devices [11].978-1-6654-6824-4/22/$31.00 c©2022 IEEE
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Fig. 1: Wall-clock time for computation, cross-device neigh-
bour sampling and gradient communication

These devices would continue neighbour sampling and trans-
mit needed information back to the requesting device. The
computation time is derived by averaging model training time
per training iteration on the devices; gradient communication
time and cross-device neighbour sampling (NS) time are
computed by averaging gradient transmission time per model
aggregation and neighbour information transmission time per
neighbour sampling over multiple training steps, respectively.
Under different batch sizes, the neighbour sampling time
always remains 6 to 8 times larger than training time, and
the gradient communication time is negligible since the size
of the GCN model is only about 1-2MB [14]. Therefore,
it is critical to reduce the overhead caused by cross-device
neighbour sampling in federated graph learning.

In this paper, we propose efficient federated graph learn-
ing algorithms by carefully analyzing the trade-off between
convergence error and sampling interval. Specifically:
. We analyze the convergence of federated GCN training

with distributed neighbour sampling, and formulate the con-
nection between convergence error, wall-clock runtime and
neighbour sampling interval. The biased gradients and the
variance of node embedding caused by neighbour sampling
make the convergence analysis of GCN training more complex
than other neural networks with unbiased gradients. Taking
cross-device neighbour sampling time into account, we derive
a close-form expression of optimal sampling interval when
there is no explicit budget for neighbour sampling, which
achieves the best trade-off between convergence error and
wall-clock time of neighbour sampling.
. We further extend our analysis to the constrained case,

where an explicit budget/upper bound for total numbers of
neighbour samplings that could be conducted is given. We
show that derivation of optimal sampling interval in this case
is actually an online problem. We propose a novel light-weight
online algorithm achieving a bounded competitive ratio, based
on the interpretation of optimal Lagrangian multiplier derived
from KKT conditions, which measures the change of optimal
objective given relaxed constraint. We also provide a numerical
analysis of our competitive ratio, to facilitate better under-
standing of performance of the proposed online algorithm.
. Based on these analysis, we summarize a unified algo-

rithm for deciding neighbour sampling interval in federated
graph learning. Experiments on training federated GCN over

real-world graphs with millions of nodes and edges for dif-
ferent tasks demonstrate the effectiveness of our algorithm.
The adaptive sampling interval returned by our algorithm
achieves a good trade-off between convergence and runtime,
test accuracy and the ratio of sampling time over computation
time.

II. PRELIMINARIES

Graph Convolutional Networks are learning models de-
signed for structured graph data, which generate embeddings
for each node by recursively aggregating neighbour infor-
mation. We introduce basics of GCN based on the example
of a semi-supervised node classification problem. Given an
undirected graph G = (V,E), where V is the node set and E
is the edge set. Each node v ∈ V has a feature vector xv , and
each node v ∈ VL has a corresponding label yv , where VL ∈ V
is the set of labelled nodes. Let X denote the feature matrix
of all nodes. Matrix A and matrix D represent the adjacency
matrix and degree matrix of G, respectively. The embedding
H(l+1) of layer l + 1 produced by the GCN is in (1). Here
P = D̃−

1
2 ÃD̃−

1
2 is the propagation matrix, with Ã = A+ I ,

D̃vv =
∑
u Ãvu, ∀v ∈ V,∀u ∈ V . H(0) = X , w(l+1) is the

trainable parameter of layer l + 1, and φ(·) is the activation
function to introduce non-linearity:

Z(l+1) = PH(l)w(l+1), H(l+1) = φ(Z(l+1)) (1)

Given the embedding computation (1) in GCN and
the one-hop neighbour set n(v) of node v, we have
z

(l+1)
v = (PH(l))vw

(l+1) = (
∑
u PvuH

(l)
u )w(l+1) =

(
∑
u∈n(v) PvuH

(l)
u )w(l+1). That is, one GCN layer computes

the embedding of one node by aggregating its one-hop neigh-
bour embeddings from the previous layer.

The full-batch and mini-batch based training loss of an
L-layer GCN is defined as follows, respectively, where B is
a mini-batch of training samples uniformly sampled from VL,
z

(L)
v is the embedding of node v from the L-layer GCN, which

requires the information of L-hop neighbours of node v as in
(1), and f(·) can be any feasible loss function (e.g., cross
entropy [15], l2-norm [16]):

L =
1

|VL|
∑
v∈VL

f(yv, z
(L)
v ), LB =

1

|B|
∑
v∈B

f(yv, z
(L)
v )

(2)
Even though mini-batch based training could reduce compu-

tation, LB is still expensive to compute. Suppose the average
degree in a graph is d. In order to compute the embedding
for one node in an L-layer GCN, on average the number
of neighbours involved would be dL [17]. The exponentially
growing number of sampled neighbours with L leads to
substantial computation and memory resource demand for
GCN training.

The exponential neighborhood expansion problem in GCN
training has been mitigated by neighbour sampling strate-
gies: a small number of neighbours are sampled from the
complete neighbour set at each training step according to
some probability distributions over neighbour set [5] [18]



[19], instead of using the entire neighbor set. The propagation
matrix Ps, instead of P , is constructed according to sampled
neighbours at each layer. A neighbour sampling strategy can
commonly ensure unbiased embedding with E[PsH

(l)] =
PH(l). However, due to non-linearity of activation function
φ(·), the unbiased gradient estimation E[∇LB ] = ∇L does
not hold for neighbour sampling-based GCN training.

III. NEIGHBOUR SAMPLING FOR FEDERATED GRAPH
LEARNING

In this section, we present our methods for reducing cross-
device neighbour sampling overhead in federated graph learn-
ing. We assume each node has a unique ID and a feature
vector. Also, each node has a list of node IDs (whose fea-
ture vectors may well reside in other devices), with whom
it connects. This is consistent with real-world graph data
distribution. Take a social network graph as an example:
each user only maintains his/her friend list locally while
the details/activities of his/her friends may well reside with
other agents. When conducting neighbour sampling, each
device first locally samples a mini-batch of output nodes
whose embeddings would be computed as the output of the
neural network. Features/embeddings from L-hop neighbours
of output nodes are needed according to (1) for a L-layer GCN.
Neighbor sampling is then conducted locally according to the
preset sampling strategy. Once features of sampled neighbour
nodes are not residing with the same device as the output
node, the device would send a request (via a central server)
to the corresponding devices to continue neighbour sampling,
and cross-device feature/embedding transmission would occur
afterward (privacy-preserving method can be applied [11]).

We take Fig. 2 as an example for better illustration of
neighbour sampling in a federated learning scenario. The blue
dotted lines indicate different devices. Suppose we use a three-
layer GCN to compute the embedding of node A, which
is denoted as z

(3)
A according to (1). Given sampled 1-hop

neighbour node B, the sampling procedure would continue
sampling the neighbours of node B to compute H(2)

B . If node
C and node D are sampled afterwards, which are not residing
on the same device as node A, the device of node A would
send a request to device of node D/C, which would continue
sampling 1-hop neighbours of nodes D and C according to the
sampling strategy to compute the embeddings H(1)

D and H(1)
C

for D and C based on (1). Then privacy-preserved embeddings
H

(1)
D and H

(1)
C would be transmitted to device of node A to

finish the computation of H(2)
B and z(3)

A .
Our method is to advocate sparse cross-device neighbor

sampling: each device conducts neighbour sampling from
other devices once per τ training iterations (referred to as the
cross-device neighbour sampling interval), and re-uses most
recent cross-device samples in other iterations. Let Iτ denote
the set of training iterations when cross-device neighbour
sampling is conducted, i.e., Iτ = {t|t mod τ = 0}. In
an iteration t ∈ Iτ , sampled device participating training
carries out neighbour sampling process described above and
communicates with other devices for transmitting features and

A

B C

D

Fig. 2: Neighbour sampling in federated graph learning

embeddings of sampled nodes; in all other iterations, each
device re-uses information of most recently sampled nodes for
last training step to conduct updates in the current iteration.

We investigate the best τ that balances the trade-off between
training convergence and actual runtime. We divide our results
in two cases, without and with a limitation on the number of
neighbour samplings allowed during GCN training. The scarce
WAN bandwidth and privacy consideration make it desirable
to consider the case with limited cross-device neighbour
sampling budget.

A. Case without cross-device neighbour sampling constraint

We begin with the unconstrained case. To find an appropri-
ate value of τ , we follow similar idea from [20] to establish the
trade-off between convergence error and cross-device neigh-
bour sampling interval τ . The work of [20] focuses on dis-
tributed DNN training with an unbiased gradient estimator and
derives the optimal parameter aggregation interval according
to the trade-off between convergence error and wall-clock time
of parameter aggregation. As Fig. 1 shows, the key overhead in
federated GCN training is due to neighbour sampling, instead
of parameter communication. The main challenges in federated
graph learning lie in biased gradients in sampling-based GCN
training and the need to incorporate neighbour sampling time.

To analyze neighbour sampling-based training, taking mini-
batch based loss for example, we rewrite the loss function in
(2) to include propagation matrix explicitly:

F (w,P (B)X) =
1

|B|
∑
v∈B

fv(w, [P (L−1), P (L−2), · · · , P (0), X])

(3)
where w represents the set of parameters in GCN and B
is the mini-batch of the output nodes, whose embeddings
based on L-hop neighbours would be computed. P (B)X =
[P (L−1), P (L−2), · · · , P (0), X] is the concatenation of propa-
gation matrix of different layers and the node feature matrix,
which serves as the input to f(·) and is related to the output
node set B and neighbour sampling strategy. Let n and P(i,j)

denote the total number of nodes across devices and the
entry (i, j) of matrix P , respectively. P (l) ∈ Rn×n is the
propagation matrix for embedding computation of layer l+ 1
with P (l) = P in equation (1) when there is no neighbour
sampling. We use P

(l)
s , instead of P (l), to better denote

neighbor sampling-based propagation matrix when neighbour
sampling is conducted. Normally P (l)

s would be re-scaled P (l)



by multiplying P(i,j) by a coefficient related to the sampling
distribution and the number of samples.
N is the number of geo-distributed devices. Based on the

above formulation, the objective of federated graph leaning
can be written as

min
w
F (w,P (V )X) =

N∑
k=1

pkFk(w,P (Vk)Xk) (4)

where Vk is the node set stored on device k. pk = nk
n ,∀k and

nk = |Vk|. We use F (w) as a shorthand for F (w,P (V )X).
We adopt stochastic gradient descent and sample mini-batch
Bkt from Vk uniformly randomly to compute the gradient of
parameters w in iteration t, at each device k. Suppose all
devices participate in each training iteration and synchronize
their parameters once every E iterations, and IE = {t|t
mod E = 0} is the set of iterations for parameter communica-
tion. We first state our assumptions for convergence analysis.

Assumption 1. Each function Fk(w,P (·)X),∀k ∈ [N ],2

has an L-Lipschitz gradient with respect to w, and
∇wFk(w,P (·)X) is Le-Lipschitz with respect to P (·)X .

Assumption 2. If no sampling is performed and all neigh-
bors of a node are used for embedding generation, the gradient
computed using the mini-batches w.r.t w is an unbiased estima-
tor of the true gradient and has a bounded variance at each de-
vice k. That is, E[∇Fk(w,P (Bk)X)] = ∇Fk(w,P (Vk)X)
and E[||∇Fk(w,P (Bk)X) − ∇Fk(w,P (Vk)X)||2] ≤
σ2,∀k.

The first two assumptions are commonly used in non-convex
optimization for convergence analysis.

Assumption 3. The parameter synchronization interval satis-
fies E = Kτ .

For a fixed τ , we can always find a K making this
assumption hold.

Assumption 4. The expected gradient norm of full neigh-
bour set training across all devices is upper bounded
by the norm of expected gradient of neighbour sampling-
based training:

∑N
k=1 pkE[||∇Fk(wkt ,P (Bk

t )X)||2] ≤
βE[||

∑N
k=1 pk∇Fk(wkt ,Ps(B

k
t )X)||2].

This assumption can be easily satisfied with a large enough
β. Parameter update at device k in neighbour sampling-based
GCN training goes as follows:
wkt+1 =

{
wkt − η∇Fk(wkt ,Ps(B

k
t )X), t+ 1 /∈ IE∑N

k=1 pk(wkt − η∇Fk(wkt ,Ps(B
k
t )X)), t+ 1 ∈ IE

(5)
To facilitate convergence analysis, we introduce an interme-

diate variable w̄t =
∑N
k=1 pkw

k
t . We have w̄t+1 = w̄t −

η
∑N
k=1 pk∇Fk(wkt ,Ps(B

k
t )X),∀t. We follow the conven-

tion in non-convex optimization and use expected gradient
norm as the convergence metric [21].

Theorem 1. Let g̃t denote
∑N
k=1 pk∇Fk(wkt ,Ps(B

k
t )X) and

C =
∑N
k=1 pkE[||Ps(Bk) − P (Bk)||2]. Suppose the total

2We use [X] to denote the set of integers from 1 to X .

training iteration number is T and the optimal value of F (w)
is F ∗. When learning rate η ≤ min{ 1

2L , η̃}, where η̃ is the
solution satisfying 6L3η3Kτβ + 3L2η2Kτβ − 1

2 ≤ 0 and
Assumptions 1 to 4 hold, we have the following bound on
convergence error∑T

t=1 E[||∇F (w̄t)||2]

T
≤ F (w̄1)− F ∗

T (η2 − Lη2)

+3
(Lη2 + η

2 )

(η2 − Lη2)
[σ2 + (L2

e + 8K2τ2η2L2L2
e)C]

(6)

All missing proofs can be found in the Appendix.
Given a fixed η, the last term in (6) would not be 0

even when training iteration T is large enough. This matches
previous observation and analysis that fixed learning rate
would lead to a higher error floor [22]. A similar result also
holds for mini-batch variance σ2. Increasing the batch size to
make σ2 smaller in the training process would also lead to
a small error floor [23]. From (6), we can also observe that,
GCN training with neighbour sampling can also reach a lower
error floor if we increase the sampled neighbour size during
the training process to make the value of C smaller.

We consider wall-clock runtime instead of training iteration
number, since cross-device neighbour sampling mainly causes
more bandwidth consumption and larger transmission time.
Suppose the average per-minibatch processing time among
all devices is C̄, average neighbour sampling time is S and
parameter synchronization time is P .3 The average runtime
for a training iteration is C̄ + S

τ + P
Kτ and the total runtime

for T iterations is CT = T (C̄ + S
τ + P

Kτ ).
Replacing T in (6) by T = CT

(C̄+S
τ + P

Kτ )
, we can get the

convergence error bound in terms of the runtime:∑T
t=1 E[||∇F (w̄t)||2]

T
≤ F (w̄1)− F ∗

CT (η2 − Lη2)
(C̄ +

S

τ
+

P

Kτ
)

+3
(Lη2 + η

2 )

(η2 − Lη2)
[σ2 + (L2

e + 8K2τ2η2L2L2
e)C]

(7)

There exists a trade-off between τ and the convergence error
in (7). Larger τ would make sampling runtime per iteration,
S
τ , smaller, but will also introduce a larger coefficient for
neighbour sampling related term C, which would cause a
higher convergence error. So we need to carefully decide the
value of τ . (7) itself is a convex function on τ . By setting
its derivative to 0, we can obtain the optimal cross-device
neighbor sampling interval:

τ∗ = 3

√
(F (w̄1)− F ∗)(KS + P )

CT (Lη2 + η
2
)K(48L2η2L2

eK2C)
(8)

From (8), we know that τ∗ is a function of CT , whose
optimal value would vary with the change of current training
iteration T and runtime CT . To make calculation tractable,
we can calculate the optimal τ every fixed Ĉ runtime and
treat the training after each Ĉ runtime as a re-started training

3We consider constant values of C̄, S and P in this work. More complicated
setting is left as future work.



with initial parameter w̄Tl and initial loss value F (w̄Tl), where
Tl denotes the training iteration at the start of the l-th Ĉ
runtime. When Ĉ is small enough, the value of τ∗ is accurate.
We use A and Bl to denote 24(Lη2 + η

2 )K2η2L2L2
eC and

F (w̄Tl )−F
∗

Ĉ
(KS+P

K ), respectively. The optimal τ∗l for the l-

th Ĉ runtime can be simplified as τ∗l = 3

√
Bl
2A . We find

the value of τ∗1 by grid search since we do not know the
value of L,Le and C in A. The value of B1 can be easily
computed by treating F ∗ = 0. Based on τ∗1 and B1, we can
estimate the value of A, which will be used for calculating
τ∗l , l > 1, in both the current unconstrained case and the
following constrained case.

B. Case with cross-device neighbour sampling constraint

We next study a more complicated setting where there is
an explicit budget for the number of neighbour samplings that
could be conducted throughout the GCN training process. Sim-
ilarly, we use A and Bl to denote 24(Lη2 + η

2 )K2η2L2L2
eC

and F (w̄Υl
)−F∗

CΥl
(KS+P

K ), the coefficient before τ2
l and 1

τl
in

(7), respectively. We update τ every Υ training iterations (Υ
training iterations are one decision slot, with CΥl runtime for
the l-th decision slot), not every Ĉ runtime to simplify the
formulation in this setting. Suppose the number of decision
slots for re-calculating τ is M . l denotes the index of a
decision slot, l ∈ [M ], and w̄Υl denotes the parameter at
the start of the l-th decision slot. The budget for neighbour
sampling is denoted as Λ. We have

max
τl

M∑
l=1

−Aτ2l −
Bl
τl

s.t
M∑
l=1

Υ

τl
≤ Λ, τl ≥ 1, ∀l ∈ [M ] (9)

The goal is to minimize the convergence error across all
decision slots while respecting the neighbour sampling budget.
(9) is a convex problem with a concave objective over a convex
set. We introduce Lagrangian multiplier λ for the budget
constraint and µl for constraint τl ≥ 1,∀l ∈ [M ]. According
to the KKT conditions [24], we have the following offline
optimal solution:
• For τl > 1, µl = 0,−2Aτl + Blτ

−2
l + λΥτ−2

l =
0,which denotes τ3

l = Bl+λΥ
2A . Since λ ≥ 0 and Υ > 0, we

have −2A+Bl > −2Aτl +Blτ
−2
l = −λΥτ−2

l > −λΥ.
• For τl = 1, µl ≥ 0,−2A+Bl = −λΥ− µl ≤ −λΥ.
The value of λ in the above solution would not be known

unless we have the complete sequence of Bl,∀l ∈ [M ], which
is related to the loss value F (w̄Υl) experienced during training.
Therefore, deciding optimal τ in this constrained case renders
an online problem, as Bl would only be known when the
training proceeds to the l-th decision slot.

The key idea in our online algorithm design is that if we
can estimate the value of λ in the offline optimal solution, then
we can solve the online problem (9) according to the offline
solution above, based on the relationship between −2A+Bl
and −λΥ.

We make the assumption that Bl in the objective func-
tion is non-increasing. We wish to emphasize that Bl =
F (w̄Υl

)−F∗

CΥl
(KS+P

K ) includes the actual runtime CΥl = Υ(C̄+

S
τl

+ P
Kτl

) of Υ iterations and the loss value F (w̄Υl) at the start
of decision slot l. The loss value should follow a decreasing
trend when training progresses. CΥl is related to the value of
τl. In the training process, normally τl should follow a non-
increasing trend to minimize the variance caused by neighbour
sampling and ensure better convergence, which would make
CΥl non-decreasing. The increasing trend of CΥl matches the
assumption of decreasing Bl, which justifies our assumption
on Bl.

Towards online algorithm design to solve for τl’s, we first
discuss the value of λ in the offline optimal solution based
on the interpretation of Lagrangian multipliers [25], that an
optimal Lagrangian multiplier evaluates the rate of change of
the optimal objective value if the constraint corresponding to
the multiplier is relaxed by an infinitesimal value.4 In our case,
the optimal value of λ should correspond to the greatest value
increase in the optimal objective value when an infinitesimal
amount of neighbour sampling budget (i.e., smaller τ ) can be
used, which corresponds to the additive inverse of the smallest
gradient of the offline optimal solution among all decision slots
due to the concave objective.

Under the non-increasing assumption of Bl, we can con-
clude from offline optimal solution that the gradient of objec-
tive in (9) with respect to decision variable τl for decision slot
l is −2Aτl +Blτ

−2
l , which is monotonically decreasing with

respect to l and implies that the smallest gradient is achieved
at the last decision slot M . Hence, the value of λ in the
offline optimal solution would resume the additive inverse of
−2AτM +BMτ

−2
M .

We next discuss possible values of λ under different offline
optimal solutions of the last slot M .

Suppose τM > 1, λ = 2AτM − BMτ
−2
M = λΥτ−2

M =

λΥ( 3

√
BM+λΥ

2A )−2; after solving this equation, we have λ1 =

Υ
1
2 2A − BM

Υ or λ1 = 0. Suppose τM = 1; we have λ2 =
2A−BM .

Training would achieve a small loss value at convergence
(small F (w̄ΥM )−F ∗) and CΥM would be larger than S+P/K
since we only calculate τ periodically, which would make
BM = (F (w̄ΥM ) − F ∗)KS+P

KCΥM
close to 0, so that we can

estimate the value of λ by treating BM = 0 and derive
the online solution as in the offline optimum. Our proposed
method is to first use a heuristic (introduced in Sec. III-C) to
classify problem (9) into three cases:

(i) λ = 0. λ = 0 indicates that the sampling times budget is
abundant, so that each τl resumes the optimal solution of (8).

(ii) τM > 1 and λ > 0. We use estimated λ̃1 = Υ
1
2 2A.

(iii) τM = 1 and λ > 0. We use estimated λ̃2 = 2A.
λ̃1 and λ̃2 are upper bound of λ1 and λ2, respectively, so

that the sampling budget constraint can always be satisfied.
Let π be the ratio of the objective value of the offline
optimal solution over the objective value achieved by our
online algorithm. We have π ∈ (0, 1] since the objective is
a negative value. Larger π indicates a better performance with

4We provide the proof in the Appendix for completeness.



our algorithm. We use πl to denote the performance ratio for
decision slot l; τl and τ̃l represent the offline optimal solution
and the solution of our online algorithm, respectively. We have
π ≥ minl πl.
Lemma 2. Given correct classification from the heuristics, we
use λ̃1 = 2AΥ

1
2 and λ̃2 = 2A to solve for τ̃l in each decision

slot l as follows:

τ̃l =
3

√
Bl + λ̃1Υ

2A
, if τM > 1 and λ > 0 (10)

τ̃l =
3

√
Bl + λ̃2Υ

2A
, if τM = 1 and λ > 0 (11)

Since λ̃2 = 2A,Bl ≥ 0,Υ ≥ 1 and Bl + λ̃2Υ > 2A always
hold, we would not have online solution of τ̃l = 1. Suppose
BM of the last decision slot is no larger than ε and Bl in the
objective is non-increasing. The algorithm achieves a bounded
competitive ratio as follows:

π ≥

{
1− ε

3ε+2AΥ
3
2
, if τM > 1 and λ > 0

1− εΥ
3ε+2AΥ , if τM = 1 and λ > 0

(12)

Furthermore, assuming A ≥ 2ε and Υ ≥ 1, we have a lower
bound to the value of the competitive ratio:

π ≥

{
0.86, if τM > 1 and λ > 0

0.75, if τM = 1 and λ > 0
(13)

We can see that our algorithm performs better and achieves
close-to-1 performance ratio when the neighbour sampling
budget is small, i.e., the communication resources are scarce
(τM > 1 and λ > 0). The ratio is worse when τM =
1 and λ > 0. This is because λ̃1 is a close estimation to
λ1 with BM

Υ difference while the gap between λ̃2 and λ2 is
BM . However, since λ̃1 ≥ λ1 and λ̃2 ≥ λ2, there would be
sampling budget left in both situations. We can improve the
performance ratio in practice by setting smaller τl for later
slots, to use up all the budget.

C. Unified solution

Next, we elaborate the heuristic used to classify problem (9)
into the three different cases, given the neighbour sampling
budget Λ, to provide a unified solution to federated graph
learning. The key component of this heuristic is a loss pre-
diction function

loss(t, τ) =
β0

β1t
+ β2τ

2 + β3 (14)

where β0, β1, β2, β3 are coefficients to be learned and t
indicates the training iteration. The loss prediction function
takes the above form based on the convergence rate in (6).
To learn this function, we collect data points (loss, t, τ) 5 for
different τ values, and then use the Lmfit package [26] for
curve fitting. With the help of this loss prediction function, we

5To reduce overhead, data points can be collected during the grid search
phase. The loss function fitting results of different tasks based on data points
from the grid search are given in the Sec. IV-C

can stimulate the training process beforehand so that the value
of Bl and hence the value of τl returned from our method in
different cases can be roughly estimated. With the value of τl,
we can estimate the number of neighbour samplings conducted
in different cases.

For λ = 0, we estimate the optimal value of τ∗1 by grid
search and estimate each τ∗l with (8) and (14). Then we can
compute a lower bound Λ

(1)
l of the neighbour sampling budget

needed for case (i) by summing up the result of the number of
iterations in the l-th run-time Ĉ divided by τ∗l for all l ∈ [M ],
which would classify problems with Λ ≥ Λ

(1)
l into class of

λ = 0. If estimated τ∗M > 1 in this case, we do need to
consider the class with τM = 1 and λ > 0, so we are left
with only one class of τM > 1 ∧ λ > 0 when Λ < Λ

(1)
l .

If estimated τ∗M = 1 for case λ = 0, we estimate an
upper bound Λ

(2)
l of the neighbour sampling budget needed

for the case (ii) of τM > 1 and λ > 0. Similarly, we take

λ̃ = Υ
1
2 2A, and estimate each τl by τl =

3

√
Bl+λ̃Υ

2A and (14).

With the estimated value of τl, we could calculate Λ
(2)
l easily

by summing up the values of Υ
τl

for all l ∈ [M ].
Then given a problem of (9) with sampling times budget Λ,

its classification result is as follows:
case (i) with λ = 0, if Λ ≥ Λ

(1)
l

case (ii) τM > 1 ∧ λ > 0, if Λ < Λ
(2)
l

case (iii) τM = 1 ∧ λ > 0, if Λ
(2)
l ≤ Λ < Λ

(1)
l

We present the unified algorithm in Algorithm 2.

IV. EVALUATION

A. Experimental Setup

Dataset We train GCNs on two large graphs: (1) ogbn-
products, an undirected and unweighted graph from Amazon,
whose nodes represent products while edges indicating a co-
purchased relationship; the task is to predict the category of
products. (2) ogbn-arxiv, a directed citation network among
papers; the learning task is to predict missing citations. Details
of the two datasets are in Table I.
Model and Hyper-parameters We implement the most
widely used neighbour sampling-based GCN model, graph-
SAGE [5]. The number of layers in the GCN is 3, each
with 128 hidden neurons except the output layer. We choose
a neighbour sampling strategy that leads to less number of
neighbour nodes sampled, while the performance remains
similar to that with more neighbour nodes being sampled.
For the products dataset, its neighbour sampling strategy
is to uniformly sample 15, 10 and 5 neighbors for output
layer, hidden layer and input layer, respectively, for each
node. For the arxiv dataset, the number of neighbour nodes
being sampled at each layer for each node is fixed to 4. To
simulate federated learning, we partition each dataset to 16
devices. At each round of federated training, we randomly
sample 4 devices to conduct local model update. We consider
two partition strategies: random (uniformly randomly partition
nodes among devices) and label/time-based. We conduct label-
based partition on products dataset, which partitions nodes



Algorithm 2: Federated graph learning

Input: B,Λ, Ĉ,Υ,K, S, P, T
1 Initialize t = 1, r = 1, s = 0, r′ = 0;
// t,r,s for tracking iterations,
runtime and numbers of conducted
update of τ ;

2 Grid search τ∗1 , calculate A, collect points (loss, t, τ),
loss(t, τ) curve fitting by Lmfit;

3 Estimate Λ
(1)
l by loss(t, τ) and (8). Estimate Λ

(2)
l by

loss(t, τ) and τl =
3

√
Bl+2AΥ

3
2

2A ;
4 while t ∈ [T ] do
5 if Λ ≥ Λ

(1)
l then

6 if r%Ĉ == 0 then
7 B = F (w̄t)∗(KS+P )

ĈK
, τ = 3

√
B
2A ;

8 end
9 else if Λ ≤ Λ

(2)
l then

10 if t%Υ == 0 then
11 B = F (w̄t)∗(KS+P )

(r−r′)K ,

τ =
3

√
B+2AΥ

3
2

2A , r′ = r;
12 end
13 else if t%Υ == 0 then
14 B = F (w̄t)∗(KS+P )

(r−r′)K , τ = 3

√
B+2AΥ

2A , r′ = r ;
15 end
16 Sample workers for current iteration;
17 if t%τ == 0 then
18 Conduct neighbour sampling, r+ =S, s += 1;
19 Sampled workers update model locally, r+ = C̄;
20 if t%Kτ == 0 then
21 Conduct parameter averaging, r+ =P ;
22 end
23 if s ≥ Λ then
24 break ;
25 end
26 end

belonging to the first 20 classes to the first 8 devices with 0.8
probability, and nodes of other classes to other devices with
0.8 probability, to simulate a non-iid distribution. For the arxiv
dataset, we partition papers according to the publication dates
so that different devices hold papers with different publication
time ranges. We set Ĉ = 10s in the unconstrained case and
Υ = 100 iterations for the constrained case. Learning rate and
mini-batch size are fixed to 0.01, 256 for products and 0.01,
1024 for arxiv, respectively. K is set to 10.

We implement our algorithm on Pytorch [27] and DGL [28],
and simulate the federated learning scenario on a machine
with four NVIDIA Tesla V100 GPU. In the experiment, we
run sampling and training for 100 iterations to calculate the
average number of nodes sampled residing on other devices
per neighbour sampling and average computation time C̄ per
iteration. The cross-device network bandwidth is set to 1Gbps.

Given the average number of nodes sampled residing on
other devices per neighbour sampling, the feature/embedding
dimensions and bandwidth, we can calculate the value of S.
The detailed statistics about sampling time and computation
time are summarized in Table I.

TABLE I: Details of graph datasets

Dataset # of nodes # of edges degree S C̄
products 2,449,029 61,859,140 50.5 0.51s 0.06s

arxiv 169,343 1,166,243 13.7 0.27s 0.07s

B. Experimental Results

Fig. 3 and Fig. 4 present losses during training of the GCN
on ogbn-products dataset with random graph partition among
devices. τ = 1 denotes the baseline solution which conducts
neighbour sampling in each training iteration. τ = 40 is the
optimal neighbour sampling interval identified by grid search
after running training for a few iterations and choosing the τ
with the best loss reduction/runtime value, which is also the
solution to τ∗1 for unconstrained case. In the unconstrained
case in Fig. 3, training is run until model convergence. Our
method (‘Adaptive’) can achieve about 2× speed-up than
τ = 1 for reaching the same error floor. Besides, with τ = 40,
training loss decreases rapidly at the start of training, but
the error it converges to is larger than the error floor found
by adaptive τ and τ = 1. This implies grid search is not
sufficient for finding a good τ in federated graph learning. In
the unconstrained case, Λ

(1)
l is about 3000 for each device.The

value of τ∗M estimated for unconstrained case is about 20,
which means when Λ < Λ

(1)
l , λ > 0 and τM > 1. So in the

constrained case, we give each device a neighbour sampling
budget of 2000, and run training until the budget is used
up. λ in the offline optimum is estimated by BM and A
from the unconstrained case according to KKT conditions.
In Fig. 4, we observe that our online algorithm (‘Online’)
can achieve comparable performance as the offline optimum,
and outperforms the baseline and grid-searched τ in terms of
convergence speed and error. Similar results can be observed
under label-based partitioning of the graph across devices
in Fig. 6 and Fig. 7. The test accuracy and ratio between
neighbour sampling runtime and computation runtime of the
training process are shown in Fig. 5 and Fig. 8, for random
partition and label-based partition separately (Adaptive refers
to the unconstrained case while other methods are compared
under constrained case).

The results on the arxiv dataset of time-based partition are
given in Fig. 9 to Fig. 11. The estimated Λ

(1)
l is about 3000 for

each device. For constrained case, we give each device a more
stringent neighbour sampling budget of 1000. From the results
we can see that our methods achieve the best trade-off between
training error and actual runtime in both unconstrained and
constrained cases. τ = 40 leads to similar performance as our
method since the number of cross-device nodes is small in
this scenario. Test accuracy and the ratio between neighbour
sampling runtime and computation runtime are in Fig. 11.
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Fig. 3: Unconstrained random partition
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Fig. 4: Constrained random partition
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Fig. 5: Test accuracy and ratio
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Fig. 6: Unconstrained label-based
partition
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Fig. 7: Constrained label-based partition
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Fig. 8: Test accuracy and ratio
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Fig. 9: Unconstrained time-based
partition
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Fig. 10: Constrained time-based
partition
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Fig. 11: Test accuracy and ratio

C. Impact of Heuristics and Assumptions

To unify the solutions to τ under unconstrained and con-
strained case, we propose a heuristic method for estimating the
number of neighbour samplings conducted in different cases
so that given sampling budget Λ, we could classify problems
and solve the value of τ accordingly. Next, we explain all the
experimental details about this heuristic.

Recall that the accuracy of this heuristic relies on accurate
loss prediction. To avoid extra communication and compu-
tation resource consumption for leaning the parameters in
function (14), we collect (loss, t, τ) data points during the
grid search phase of τ∗1 , whose value set for conducting grid
search is [10, 20, 30, 40, 50]. [0, 10] turns out to be a good
value range for β0, β1 and β2 and [0, l] would be a good value
range for β3 when curve fitting is conducted by Lmfit, here
l is the smallest loss value from grid search. Initial value of

these parameters are all set to min(1.0, l). Fig. 15 shows the
comparison between estimated loss and loss returned by real
training process when τ is updated by (8). Since our loss curve
fitting is only based on data points from grid search phase,
the estimated loss value would be larger than real loss value
when training proceeds, which remains about 1.7 times higher
than the real loss for products dataset and about 1.3 times
higher than the real loss for arxiv datset. However, this larger
estimated loss would only have very small effect to the value
of estimated τ given the cubic root in the solutions to τ in both
unconstrained and constrained case. For example, τ calculated
by (8) (τ∗l = 3

√
Bl
2A , Bl =

F (w̄Υl
)

Ĉ
(KS+P

K )) using estimated
loss would only be about 1.2 times of the τ calculated by real
loss.

Given estimated value of τ , the number of neighbour
samplings Λ

(1)
l and Λ

(2)
l conducted in different cases can be
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Fig. 12: Products dataset(random)
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Fig. 13: Products dataset(label-based)
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Fig. 14: Arxiv dataset(time-based)

Fig. 15: Loss estimation results
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Fig. 16: K = 1
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Fig. 17: K = 10
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Fig. 18: K = 100

Fig. 19: Training result by varying K

estimated to classify problems.
Next, we discuss the value of BM =

F (w̄ΥM
)

CΥM
(KS+P

K ),
which is assumed to be close to 0 when estimating λ for
constrained case under the assumption of F ∗ = 0. The
parameter averaging time P is negligible in GCN training
process and the value of S is shown in Table I. In our
experiment, we set Υ = 100 because we do not need to
update τ too frequently, then CΥM would be larger than 7s
in both products and arxiv dataset given the computation in
each iteration takes about 0.06 to 0.07 seconds (C̄ in Table I),
which renders the value of BM less than 0.05.

D. Impact of K

We test the performance of our method under different
choices of K, which is used in Assumption 3 to define the
relationship between neighbour sampling interval and param-
eter synchronization interval for federated learning. We test a
small value of K = 1, a medium value of K = 10 and a large
value of K = 100 to show that the effectiveness of our method
does not rely on specific value of K. The experimental results
on products dataset are shown in Fig. 19, where the optimal
τ∗1 for K = 100 returned by grid search is 20. We can see
that, under different choices of K, it always takes a longer
time to converge with frequent neighbour sampling interval
τ = 1, and the grid search returned neighbour sampling

interval always leads to higher loss. Our method decides
neighbour sampling interval adaptively and finds a good trade-
off between convergence error and actual runtime.

V. RELATED WORK

Few studies focus on graph training across geo-distributed
devices. Most existing works consider distributed graph train-
ing in one data center [29] [30]. Wu et al. [11] address privacy
issues in federated graph learning by applying differential
privacy to local gradients and proposing a privacy-preserving
method for sampling neighbour nodes. Zheng et al. [31]
address the non-IID data issue and jointly optimize hyper-
parameters across devices in federated GCN training with
Bayesian optimization. Wang et al. [32] propose a federated
learning framework for semi-supervised node classification
tasks on geo-distributed graphs. They utilise a model-agnostic
meta-learning based method to deal with non-IID data, new
label domain issue and unlabelled data. In the federated graph
learning algorithm proposed by [33], predicted results and
embeddings are sent to the server along with local gradients for
global model learning. Sending these can consume large WAN
bandwidth. There is no existing work explicitly considering
communication overhead in federated graph learning.

For communication reduction in GCN training, the most
common approach is to perform neighbour sampling [5] [18].
As we show in Fig. 1, even when neighbour sampling is



enabled, the communication overhead is still overwhelming
in the federated learning setting. Ramezani et al. [34] propose
periodic neighbour sampling when training GCN in one GPU-
equipped machine to reduce the time consumed by trans-
mitting neighbour nodes from CPU to GPU. They use a
fixed sampling interval and do not take actual runtime into
consideration. Parallel GCN training to reduce communica-
tion is considered by [35]. In this work, propagation and
embedding matrices are partitioned to parallelize training and
reduce unnecessary communication, which is prohibited in
federated learning. Other works for reducing communication
in distributed GCN training manipulate training data, such as
collecting and re-partitioning the complete graph [29] [36].
None of the above approaches can be applied to federated
learning directly, which motivates the study in this paper.

VI. CONCLUSION

This paper presents a federated graph learning framework to
reduce the communication overhead incurred by cross-device
neighbour sampling. We propose to conduct neighbour sam-
pling periodically and derive the optimal neighbour sampling
interval based on the trade-off between convergence error and
actual runtime. We both theoretically and empirically show the
effectiveness of our methods.
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E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” 2019.

[28] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma,
L. Yu, Y. Gai, T. Xiao, T. He, G. Karypis, J. Li, and Z. Zhang, “Deep
graph library: A graph-centric, highly-performant package for graph
neural networks,” 2020.

[29] Z. Jia, S. Lin, M. Gao, M. Zaharia, and A. Aiken, “Improving the
accuracy, scalability, and performance of graph neural networks with
roc,” Proceedings of Machine Learning and Systems, vol. 2, pp. 187–
198, 2020.

[30] L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou, and Y. Dai,
“Neugraph: parallel deep neural network computation on large graphs,”
in 2019 {USENIX} Annual Technical Conference ({USENIX}{ATC}
19), 2019, pp. 443–458.

[31] L. Zheng, J. Zhou, C. Chen, B. Wu, L. Wang, and B. Zhang, “Asfgnn:
Automated separated-federated graph neural network,” Peer-to-Peer Net-
working and Applications, vol. 14, no. 3, pp. 1692–1704, 2021.

[32] B. Wang, A. Li, H. Li, and Y. Chen, “Graphfl: A federated learn-
ing framework for semi-supervised node classification on graphs,”
arXiv:2012.04187, 2020.

[33] C. Chen, W. Hu, Z. Xu, and Z. Zheng, “Fedgl: Federated graph learning
framework with global self-supervision,” arXiv:2105.03170, 2021.

[34] M. Ramezani, W. Cong, M. Mahdavi, A. Sivasubramaniam, and M. Kan-
demir, “Gcn meets gpu: Decoupling “when to sample” from “how to
sample”,” Advances in Neural Information Processing Systems, vol. 33,
2020.

[35] A. Tripathy, K. Yelick, and A. Buluc, “Reducing communication in
graph neural network training,” arXiv:2005.03300, 2020.

[36] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh,
“Cluster-gcn: An efficient algorithm for training deep and large graph
convolutional networks,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
2019, pp. 257–266.


