
13

Adversarial Deep Learning for Online Resource Allocation

BINGQIAN DU, ZHIYI HUANG, and CHUAN WU, The University of Hong Kong

Online algorithms are an important branch in algorithm design. Designing online algorithms with a bounded

competitive ratio (in terms of worst-case performance) can be hard and usually relies on problem-specific

assumptions. Inspired by adversarial training from Generative Adversarial Net and the fact that the competi-

tive ratio of an online algorithm is based on worst-case input, we adopt deep neural networks (NNs) to learn

an online algorithm for a resource allocation and pricing problem from scratch, with the goal that the per-

formance gap between offline optimum and the learned online algorithm can be minimized for worst-case

input.

Specifically, we leverage two NNs as the algorithm and the adversary, respectively, and let them play a

zero sum game, with the adversary being responsible for generating worst-case input while the algorithm

learns the best strategy based on the input provided by the adversary. To ensure better convergence of the

algorithm network (to the desired online algorithm), we propose a novel per-round update method to handle

sequential decision making to break complex dependency among different rounds so that update can be done

for every possible action instead of only sampled actions. To the best of our knowledge, our work is the first

using deep NNs to design an online algorithm from the perspective of worst-case performance guarantee.

Empirical studies show that our updating methods ensure convergence to Nash equilibrium and the learned

algorithm outperforms state-of-the-art online algorithms under various settings.

CCS Concepts: • Computing methodologies→ Planning under uncertainty; Artificial intelligence;

Additional Key Words and Phrases: Neural networks, adversarial learning, online algorithm

ACM Reference format:

Bingqian Du, Zhiyi Huang, and Chuan Wu. 2022. Adversarial Deep Learning for Online Resource Allocation.

ACM Trans. Model. Perform. Eval. Comput. Syst. 6, 4, Article 13 (February 2022), 25 pages.

https://doi.org/10.1145/3494526

1 INTRODUCTION

Traditional algorithm design assumes that input will be revealed to the algorithm all at once. How-
ever, a great number of problems arising from reality do not fall into this category. Consider the
resource allocation problem in a cloud computing platform. Users’ requests for renting resources
can arrive at any time; the platform needs to decide whether to rent resources out to the current
user without the knowledge of future requests. Such a problem depicts an online setting, where
decisions are made for partial inputs that have been revealed so far. Decisions are hard to make in

This work was supported in part by grants from Hong Kong RGC under contracts HKU 17204619, 17208920, and C5026-18G

(CRF).

Authors’ address: B. Du, Z. Huang, and C. Wu, Department of Computer Science, The University of Hong Kong, Pokfulam,

Hong Kong, China; emails: bqdu@hku.hk, {zhiyi, cwu}@cs.hku.hk.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

2376-3639/2022/02-ART13 $15.00

https://doi.org/10.1145/3494526

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 6, No. 4, Article 13. Publication date: February 2022.

https://doi.org/10.1145/3494526
mailto:permissions@acm.org
https://doi.org/10.1145/3494526

13:2 B. Du et al.

such online settings because of future uncertainty. Still considering the cloud resource allocation
problem, renting resource to the current user can be beneficial but may also take up resources that
could be allocated to later users with much higher budgets. To deal with online problems, online
algorithms have been studied for decades. One common metric to evaluate an online algorithm is
the competitive ratio, which measures the gap between the performance of the offline optimum
and the online algorithm in the worst case (i.e., under the adversary input) [36].

Inspecting an online algorithm from the competitive ratio perspective, we can view the relation-
ship between the online algorithm and the adversary input as two players at the Nash equilib-

rium (NE) of a zero sum game. For the “algorithm” player, it aims to minimize the gap between
offline optimum and its own performance to achieve a good competitive ratio; for the “adversary”
player, it targets maximizing this gap by generating hard cases for the algorithm to handle. When
both of them arrive at the NE, any strategy change of the adversary will not cause worse perfor-
mance of the algorithm than its performance at the NE (which corresponds exactly to the worst
case in online algorithm analysis). The policy of the algorithm network at the NE is thus the online
algorithm with worst-case performance guarantee.

Generative Adversarial Net (GAN) [14] has been a remarkable attempt to combine game the-
ory and deep learning. In GAN architecture, there are two neural networks (NNs): a generative

NN G and a discriminative NN D. G learns to map latent variables to data distribution � while D

tries to distinguish real data from � and data generated from G. G and D have opposite goals; the
training process of G and D is equivalent to having G and D play a two-player zero-sum game.
GAN has been proved effective in generating data distributions similar to real data in a number of
successful applications to computer vision [6, 31] and natural language processing [43] [42].

Inspired by competitive ratio analysis of the online algorithm and the GAN model, we inves-
tigate designing online algorithms using a deep learning method instead of standard theoretical
frameworks such as primal-dual [7, 9]. In this article, we focus on online resource allocation and
pricing for social welfare maximization, a classic category of online problems. Representing the
online algorithm and the adversary input generation as two NNs, we formulate their interaction
as dynamics of two players in a zero sum game: the adversary generates worst-case input while
the algorithm learns the best strategy based on the input provided by the adversary. The goal of
the algorithm is to minimize the difference between offline optimal social welfare and the social
welfare obtained by the online algorithm; the adversary maximizes this difference so that the worst
case is ensured. Traditional online algorithm design typically considers the performance ratio be-
tween offline optimal solution and online solution; we use performance difference as the objective
to ease problem formulation and update design, which also reflects the performance gap between
an offline optimal solution and an online solution, and has been used in online algorithm litera-
ture [15]. Since an online algorithm produces sequential decisions, the original NN architectures
and update methods of GAN cannot be applied to our problem. The standard method for dealing
with sequential decision making in deep learning literature is Reinforcement Learning (RL).
We do not utilize RL as most of the existing works do since RL is known to heavily rely on the
exploration-exploitation trade-off and can easily be trapped in sub-optimal solutions. To deal with
sequences and achieve better convergence (to a good online algorithm), we carefully design a per-
round update method for both algorithm and adversary NNs from their respective optimization
formulations, to break the strong correlation between different timesteps in a sequence so that
no more exploration-exploitation heuristics are needed and update can be done for every possible
action instead of just sampled actions during the training process. To the best of our knowledge,
our work is the first to design worst-case-based online algorithms using a deep learning approach.

We carefully analyze the NE achievable by our approach. We also carry out careful empirical
studies under different numbers of arriving users and resource units, and different user budget

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 6, No. 4, Article 13. Publication date: February 2022.

Adversarial Deep Learning for Online Resource Allocation 13:3

distributions. The results show the convergence to NE with our update methods and the superior
performance of our learned algorithm compared with existing state-of-the-art online resource al-
location and pricing algorithms. In this article, we explore the possibility of designing a worst-
case-based algorithm using a deep learning framework. We are aware that existing deep learning
based methods cannot provide formal theoretical guarantee and worst cases are rare in practice.
However, the learned online algorithm and worst cases can provide insights to algorithm designer
for better understanding the problem when worst cases are not obvious. We verify the effective-
ness of our learning-based approach through empirical studies under both worst cases and random
(common) cases.

2 RELATED WORK

2.1 Deep Learning for Game Playing

Game playing is a classic area that has been investigated by researchers for decades. With the
prevalence of deep learning, it is natural to ask whether deep learning can be applied to solving
complicated games. There have been several attempts in this regard. AlphaGo [33] masters the
game of Go without relying on any human knowledge; it combines Monte Carlo Tree Search
and RL to improve its policy quality and policy evaluation accuracy with continuous self-play.
Green Security Game has been studied by Wang et al. [40], by training a Deep Q-Network (a
kind of RL model) to learn an approximate best response. Yu et al. [42] apply a GAN model for
text generation; policy gradient and the REINFORCE algorithm are used for the training of their
generator, whereas the same training method of the discriminator as in the original GAN work
[14] is used in their discriminator training. Multi-agent deep RL is utilized by Celli et al. [10] to
solve a sequential zero-sum game. Solving the zero-sum game in a linear discrete-time system is
investigated by Luo et al. [24]. They develop a data-based policy iteration Q-learning algorithm to
learn the optimal Q-function from data collected in real systems. A regret-based RL algorithm is
proposed by Steinberger et al. [37] for an imperfect information multi-agent model-free setting to
find the equilibrium. We can see that existing deep learning methods for game playing are mostly
based on RL, but as pointed out in the work of Arulkumaran et al. [2], the main challenge faced by
RL is that long-range time dependencies make the consequences of a single action unclear after
many transitions of the environment, and its observations are limited by its sampled actions.

We use a GAN-like framework; however, unlike GAN’s one-shot output, our model deals with
sequential decision making, which makes the training even more challenging. Based on the draw-
backs of RL described earlier, we do not utilize the RL method as most of the existing studies
do; instead, we design a novel per-round update method to tackle challenges in training of both
algorithm and adversary NNs, to ensure better convergence.

2.2 Online Resource Allocation Problems

Online allocation and pricing for single-type, non-recycled resources is a fundamental online prob-
lem. It is equivalent to the classic online knapsack problem when pricing is not considered [17].
The online knapsack problem was first studied by Marchetti-Spaccamela and Vercellis [27], and
they considered the average case analysis. Following that, Buchbinder and Naor [8] proposed a
general framework for design and analysis of online algorithms for packing problems (the knap-
sack problem falls into this category) based on two assumptions: (1) the budget per unit of resource
of all users is lower bounded by L and upper bounded by U , and (2) the resource demand of a sin-
gle user is infinitesimal compared to total resource number. Their algorithm gives an O (log(U /L))
competitive ratio with a fractional solution; however, how to round the solution to integers is not
clear. Based on the same assumptions, Zhou et al. [45] cast the online single ad slot auction problem

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 6, No. 4, Article 13. Publication date: February 2022.

13:4 B. Du et al.

as an online knapsack problem and propose a KP-Threshold algorithm that achieves a competitive
ratio of ln(U /L) + 1.

There have been recent studies on online resource allocation and pricing algorithm design. On-
line posted price and resource allocation under the same setting as ours was studied by Zhang et
al. [44]. Their deterministic online posted pricing and resource allocation algorithm is proved to
be optimal under the same two assumptions as earlier. Unlike Zhang et al. [44], we do not make
assumptions with respect to the relationship between resource demand and total resource supply
and approach the online problem using a deep learning method. In addition, we provide a random-
ized algorithm, which can potentially capture more complicated features of the problem for better
decision making than deterministic ones.

Some deep learning methods have been applied to solving online resource allocation and pric-
ing problems. Tesauro [38] uses a decompositional RL method to learn a strategy for online server
allocation. They empirically show that an RL-based method is comparable to a performance model
framework based on queuing theory. Resource management in an online scenario is investigated
by Mao et al. [26]. They translate the packing problem with resource constraints to a learning
problem and propose to use RL for the learning process. Wang et al. [41] aim at achieving auto-
mated balance of performance and cost for cloud provisioning. By analyzing the performance of
RL under tabular, deep, and dueling double deep Q-learning with the CloudSim simulator, they
show the effectiveness of RL. Du et al. [11] use a Long Short-Term Memory (LSTM) NN and a
deep deterministic RL algorithm to learn resource allocation and pricing strategy for cloud com-
puting platform, based on the assumption that user request sequences follow a fixed time series
distribution. Existing learning-based methods typically make assumptions on the distribution of
user requests, which contradicts worst-case input in competitive analysis of online algorithms.
We approach online resource allocation and pricing using a deep learning method without mak-
ing any assumption regarding user request sequence distribution, and worst-case performance is
considered in this article.

2.3 Deep Learning for Classic Theoretical Problems

Deep learning has been a new trend for solving classic optimization problems and has shown
superior performance in computing time and solution quality. Khalil et al. [18] propose a combi-
nation of RL and the graph embedding method to design algorithms for NP-hard combinatorial
optimization problems. Empirical results show the effectiveness of their learning-based method.
The Traveling Salesman Problem is investigated via the neural approach by Bello et al. [4]. They
utilize the recurrent NN and policy gradient method to tackle such a learning problem and achieve
close-to-optimal results on Euclidean graphs with up to 100 nodes. Kool et al. [19] propose new
models and training methods for routing problems, such as the Traveling Salesman Problem and
the Vehicle Routing Problem. They design model-based attention layers to better capture the un-
derlying problem structure and a greedy rollout-based REINFORCE algorithm to find optimal so-
lutions. Evaluation shows that their method outperforms a large number of baselines and obtains
results close to highly optimized and specialized algorithms. Graph-based combinatorial optimiza-
tion problems are further studied by Li et al. [22] via a graph convolutional network. The trained
graph convolutional network is used to guide a tree search to generate a large number of good
candidate solutions. Evaluation shows that their method performs on par with highly optimized
state-of-the-art heuristic solvers. Unsupervised learning methods are considered by Karalias and
Loukas [16]. By carefully designing the loss, they bridge the gap between the discrete feasible so-
lution for the combinatorial optimization problem and the continuous output of the NN, which
provides a performance guarantee for the solution found by the NN. Empirical results show that
their method outperforms heuristics and solvers in both solution quality and computation time.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 6, No. 4, Article 13. Publication date: February 2022.

Adversarial Deep Learning for Online Resource Allocation 13:5

Existing literature has shown the ability of neural approaches in solving classic optimization
problems, mainly due to the powerful computation and the generalization ability of the NN. By
carefully designing the training method and the model, the NN is a promising way to find a high-
quality solution for hard optimization problems. Based on this observation, we believe the neural
approach can be a novel tool for online algorithm design, with the goal of finding better solutions.
To the best of our knowledge, our work is the first to tackle online optimization through an NN-
based method.

2.4 Online Algorithm with Advice

Online algorithms usually assume no knowledge about future input, but with accumulated his-
torical traces, it is likely that some information about the input can be incorporated to improve
the performance of online algorithms. Medina and Vassilvitskii [28] utilize a predictor for reserve
price optimization, which is the first work to relate the revenue gain with the quality of a machine
learning predictor. Following this work, Lykouris and Vassilvtiskii [25] study the caching problem
with the augmentation of a machine learning oracle and prove an improved bound when the ora-
cle has a low error rate, as compared with an unconditional worst case. They propose robustness

and consistency to evaluate the model performance with respect to the worst case and best pre-
diction, respectively. Kumar et al. [20] improve the ski-rental algorithm and non-clairvoyant job
scheduling using machine learning predictions. Their proposed algorithm achieves a good trade-
off between robustness and consistency, improves the performance with better predictions, and
does not degrade much when predictions are worse. Gollapudi and Panigrahi [12] also study the
ski-rental problem. The main difference is that they consider multiple machine learning experts.
They prove the improvement of their algorithm with the aid of prediction.

Another line of works consider incorporating historical data traces directly to improve the per-
formance of online algorithms. Prodan and Nae [32] propose a prediction-based method for re-
source provisioning, with predictions produced by a neural net trained using historical data traces.
On top of the NN, they design generic analytical game load models for resource allocation. Vera
et al. [39] propose a framework based on Bellman inequalities for designing online allocation and
pricing algorithms. Following this work, Banerjee et al. [3] utilize approximate dynamic program-
ming based on Bellman inequalities, which resolve offline relaxations to make the controller reduce
its sensitivity to estimation error.

Our work differs from these studies. In our work, we do not consider incorporating an online
algorithm with machine learning prediction of input based on historical traces. Instead, we directly
use the machine learning approach to learn the online algorithm and worst cases, still respecting
the assumption that no information about the input is known to the online algorithm beforehand.

2.5 Convergence Rate Analysis for Differentiable Games

There have been some recent efforts to study the convergence behavior of GAN and other learning-
based games. Singh et al. [35] analyze the two-player two-action iterative general-sum game,
where each agent updates its strategy through gradient descent. They prove that the strategies
may not always converge, but the average payoffs always converge to the expected payoffs of NE.
Nagarajan and Kolter [30] study the convergence dynamics of GAN by showing that the equilib-
rium point is locally asymptotically stable for GAN formulation. Based on this result, they further
propose a regularization term to speed up convergence. Letcher et al. [21] argue that gradient
descent does not always converge to the local optimum of objective in GANs, when there are
multiple interacting losses. By decomposing the game Jacobian, they propose Symplectic Gradi-
ent Adjustment to find stable fixed point. The non-asymptotic local convergence of a two-player

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 6, No. 4, Article 13. Publication date: February 2022.

13:6 B. Du et al.

Fig. 1. System overview.

smooth game was studied by Liang and Stokes [23]. They prove that the iteration needed for the
Simultaneous Gradient Ascent to converge is dependent on the off-diagonal interaction term.

3 MODEL AND TRAINING METHODS

An overview of our method is given in Figure 1. We adopt two NNs, namely the algorithm NN and
the adversary NN. The output (colored circle) of the algorithm NN is a probability distribution over
the price set for each user, whereas the output from the adversary NN is probability distributions
over the budget set for all users. The input (colored square) to the algorithm NN or the adversary
NN is decided by the learned strategy of the other NN. To be more specific, in each training it-
eration, the price sequence as the input to the adversary NN and the budget sequence fed into
the algorithm NN are sampled according to the output of the algorithm NN and the adversary
NN, respectively. The price set A and the budget set B are assumed to be known and finite in our
formulation, which can be estimated based on historical traces if not given.

We now formulate our problem, model the algorithm and adversary NNs, and derive the NN up-
date methods for learning the online algorithm. Importance notations are summarized in Table 1.

3.1 Online Resource Allocation and Pricing Problem

We consider social welfare maximization for single-type non-recycled resource allocation and pric-
ing. There are R units of resource supply in total. N users arrive over time, each requesting one
unit of the resource. The budget of user i ∈ N is bi , denoting how much the user is willing to pay
for buying one unit of the resource. When user i arrives, the online algorithm posts its price pi

for one unit of the resource. We assume the algorithm is not aware of the current user’s budget
bi but knows posted prices and budgets of past users. If pi is no larger than bi , user i accepts the
price and receives one unit of the resource. The portion of social welfare due to accepting user i
is (bi − pi) + pi = bi .

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 6, No. 4, Article 13. Publication date: February 2022.

Adversarial Deep Learning for Online Resource Allocation 13:7

Table 1. Notation Table

i User index N No. of users

R No. of resource units bi Budget of user i
B Budget set pi Posted price for user i
A Price set Ω Budget sequence set

πθ (·) Algorithm NN πω (·) Adversary NN

τo Joint mixed strategy C Payoff matrix of the game

τp Mixed strategy of algorithm τb Mixed strategy of the adversary

yi No. of available resources when user i arrives

Xi Random variable denoting user i is accepted or not

xi Realized acceptance decision for user i
li Indicator on whether budget i will be accepted in offline optimum

Gap Difference between offline optimum and online solution

up (·) Utility of algorithm: additive inverse of the expected gap

ub (·) Utility of adversary: the expected gap

3.2 Algorithm

In the posted price scenario, the accept or reject decision would normally be made by a user by
comparing its budget to the current price. However, when formulating the optimization prob-
lem for the algorithm NN, to allow the NN to adjust its pricing strategy, we instead consider
the probability of a user being accepted or rejected by the NN as the decision variable. For the
online algorithm, upon arrival of a user, the decision variable is a probability distribution over
all possible prices. We use Xi as the random variable denoting whether user i is accepted or
not. xi is the realized acceptance decision of random variable Xi : xi = 1 if bi ≥ pi and there
exists available resource, and xi = 0 otherwise. xi = 1 implies that one unit of resource is
allocated to user i, whereas xi = 0 indicates that user i does not consume any resource. Let
P (Xi = 1|X1 = x1, . . . ,X j = x j , 1 ≤ j < i) denote the probability of user i being accepted con-
ditioned on the realized acceptance of previous users, which is also the probability for choosing
prices no larger than bi . Similarly, P (Xi = 0|X1 = x1, . . . ,X j = x j , 1 ≤ j < i) is the probability of
not allocating resource to user i conditioned on the realized decisions of previous users—that is, the
probability for choosing prices larger than bi . For simplicity of notation, we use P (Xi = 1|x1 . . . x j)
and P (Xi = 0|x1 . . . x j) as a shorthand for P (Xi = 1|X1 = x1, . . . ,X j = x j , 1 ≤ j < i) and
P (Xi = 0|X1 = x1, . . . ,X j = x j , 1 ≤ j < i), respectively.

The goal of the online algorithm is to minimize the gap between offline optimal social welfare
and the social welfare achieved by the algorithm, which is equivalent to maximizing the social
welfare of the algorithm solely because the offline optimum is a constant for a given user budget
sequence. The social welfare maximization problem to solve upon arrival of user i can be formu-
lated as follows (it is the offline optimization problem if user i is the first user). Note that since
rejecting one user will bring 0 social welfare increment and will not affect resource consumption,
the terms related to P (Xi = 0|x1 . . . x j) are not shown in the following formulation and their
gradient will be 0:

max
P(Xj=1 |x1 ...xi−1),
∀j ∈[i,N]

f =
N∑

j=i

bjP (X j = 1|x1 . . . xi−1), (1)

subject to

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 6, No. 4, Article 13. Publication date: February 2022.

13:8 B. Du et al.

x1 + x2 + · · · + xi−1 +

N∑

j=i

P (X j = 1|x1 . . . xi−1) ≤ R, (1a)

P (X j = 1|x1 . . . xi−1) ∈ [0, 1],∀j ∈ [i,N]. (1b)

The objective function (1) is the expected social welfare achieved by the algorithm conditioned
on the decisions before user i . (1a) is the resource constraint, which bounds the expected resource
consumption by the number of available resources, due to the randomization nature of our al-
gorithm NN. The conditional probability based on previous realized decisions would ensure the
optimality of the complete sequence, that users with the largest R budgets would be accepted. (1b)
presents the decision variables in the problem.

The preceding problem is a linear program (LP), where strong duality holds. We can relax con-
straint (1a) by introducing Lagrangian multiplier λ and obtain the following Lagrangian function:

L (P (X j = 1|x1 . . . xi−1), λ) =
N∑

j=i

bjP (X j = 1|x1 . . . xi−1) + λ(R − x1 − · · · − xi−1 −
N∑

j=i

P (X j = 1|x1 . . . xi−1))

=

N∑

j=i

(bj − λ)P (X j = 1|x1 . . . xi−1) + λ(R − x1 − · · · − xi−1).

(2)

The dual function is then

G (λ) = max
P(Xj=1 |x1 ...xi−1),
∀j ∈[i,N]

L (P (X j = 1|x1 . . . xi−1), λ).

LetOPT be the optimal objective value of the primal problem, and let λ∗ represent (λ∗ |x1 . . . xi−1).
Since strong duality holds, we have

OPT = G (λ∗) = max
P(Xj=1 |x1 ...xi−1),
∀j ∈[i,N]

L (P (X j = 1|x1 . . . xi−1), λ∗)

= max
P(Xj=1 |x1 ...xi−1),
∀j ∈[i,N]

N∑

j=i

(bi − λ∗)P (X j = 1|x1 . . . xi−1) + λ∗ (R − x1 − · · · − xi−1).

Given λ∗, λ∗ (R − x1 − · · · − xi−1) is a constant, and solving the primal problem is equivalent to
solving

max
P(Xj=1 |x1 ...xi−1),
∀j ∈[i,N]

N∑

j=i

(bi − λ∗)P (X j = 1|x1 . . . xi−1), (3)

subject to

P (X j = 1|x1 . . . xi−1) ∈ [0, 1],∀j ∈ [i,N]. (3a)

The gradient of function (3) on P (X j = 1|x1, . . . xi−1) is bi − (λ∗ |x1 . . . xi−1). According to Si-

mon and Blume [34], (λ∗ |x1 . . . xi−1) =
∂f (P ∗ (X j=1 |x1 ...xi−1))

∂R
measures the rate of the change of the

optimal value of problem (1) with respect to resource capacity (in constraint (1a))—that is, how
much the objective function value will increase if another unit of resource is available. We will use
this gradient in the stochastic gradient descent (SGD) method in solving the optimization problem,
via training an algorithm NN. For algorithm NN training, we know complete budget sequences,

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 6, No. 4, Article 13. Publication date: February 2022.

Adversarial Deep Learning for Online Resource Allocation 13:9

as provided by the adversary NN. Given an acceptance decision sequence xi , . . . ,xN and the ob-
servation that optimal Lagrangian multiplier represents the infinitesimal change in the optimal
social welfare with one more unit of resource, (λ∗ |x1 . . . xi−1) can take any value between the yth
budget and the (y + 1)th budget in the ordered budget sequence in decreasing budget order, with
y = yi = R −∑i−1

l=1 xl being the current amount of available resources upon arrival of user i . We set
(λ∗ |x1 . . . xi−1) to be the average of the yth budget and the (y + 1)th budget.

We provide more discussions to better justify our update method for the algorithm NN:

• Conditional probability: The problem formulation (1) for the algorithm considers the proba-
bility of accepting a user, conditioned on the acceptance realization of previous users. The
conditional probability is to avoid the situation that Rth budget and the (R + 1)th budget
are the same so that the update signal for both of them would be 0, which would result in
sub-optimal solution. Specifically, if the decision variable is P (Xi), denoting the probability
of accepting user i , the problem can be formulated as

max
P (Xi),∀ in[1,N]

N∑

i=1

bjP (Xi) subject to:

N∑

i=1

P (Xi) ≤ R, Pi ∈ [0, 1],∀i ∈ [1,N].

Recall that given available resource number R, λ∗ can take the average of the Rth budget and
the (R + 1)th budget. If the Rth budget and the (R + 1)th budget are the same, the gradient
(bi − λ∗) for both of them would be 0 while the optimal solution should accept one of them.
To avoid this case, we realize the acceptance decision xi for the current user i and consider
conditional probability so that optimal solution of the algorithm formulation can be ensured
for the current budget sequence.
• Greedily optimizing w.r.t. sampled budget sequence: The problem the algorithm tries to solve

is minalд maxadv Gap. In the framework proposed, the adversary is adjusting its strategy to
provide a worst sequence with the largest gap. To solve this problem, the algorithm should
adjust its strategy to minimize the gap/maximize social welfare for the worst case sampled by
the adversary. We note that the NE strategy may not be the optimal solution for each single
sequence, so the optimizing step taken for each sequence could make the strategy of the NN
deviate from the NE strategy; but on average, the value achieved by algorithm NN would be
equivalent to the value of NE when the two NNs are playing the zero sum game (which is
also the reason we save the last 1k training results to obtain the average performance in the
evaluation section).

3.3 Adversary

We consider an oblivious adversary, which generates the complete worst-case input sequence be-
fore the sequence is handled by the online algorithm [5]. Oblivious adversary is the most studied
type of adversary, which is popular in practical settings since most of the time, the input sequence
is independent of the algorithm. For example, in the ski rental problem, the weather is independent
of the choice of buying or renting skis.

Given the pricing strategy of the online algorithm, the goal of our adversary is to generate the
user arrival sequence (a.k.a. budget sequence) to maximize the gap between the offline optimal
social welfare and the social welfare achieved by the online algorithm. The complete budget se-
quence has a length of N ; for the ith slot in the sequence, the adversary produces a probability
distribution Pi (·) over budget set B = {b1,b2, . . .bm }, which contains all possible budget choices,
wherem is the number of possible budget values. For each user, the budget is independently chosen
according to the probability distribution Pi (·) over all budgets.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 6, No. 4, Article 13. Publication date: February 2022.

13:10 B. Du et al.

Given the price sequence produced by the algorithm, p1,p2, . . . ,pN , the optimization problem
of the adversary can be formulated as follows:

max
Pi (b

(j)
i

)
i ∈[1,N], j ∈[1, |Ω |]

∑

j ∈[1, |Ω |]

N∏

i=1

Pi

(
b (j)

i

)
Gap (j), (4)

subject to

Gap (j) =

N∑

i=1

(
b (j)

i l (j)
i − b

(j)
i 1
(
b (j)

i ≥ pi

)
1
(
y (j)

i > 0
))
,∀j ∈ [1, |Ω |] (4a)

l (j)
i =

⎧⎪⎨⎪⎩
1, i f b (j)

i ∈ benchmark

0, otherwise
,∀i ∈ [1,N], j ∈ [1, |Ω |] (4b)

y (j)
i = R −

i−1∑

l=1

1(b (j)
l
≥ pl), ∀i ∈ [1,N], j ∈ [1, |Ω |] (4c).

Here, (b (j)
1 . . .b

(j)
N

) is a combination of N elements from set B. We use Ω to denote the set of all
such combinations, which is also the set of all possible complete budget sequences of the adversary.
j ∈ [1, |Ω |] is used to denote one specific combination/budget sequence, where |Ω | is the number of

all possible combinations. For the complete budget sequence with index j, b (j)
i is the budget choice

for user i . Pi (b (j)
i) denotes the probability of choosing budget valueb (j)

i for user i . The probability of
choosing the complete budget sequence j equals the product of the probabilities of choosing each

budget b (j)
i in the sequence. The objective function in (4) gives the expected gap over all possible

budget sequences of the adversary. Note that since different budget sequences are generated using

the same adversary NN, we have Pi (b (j)
i) = Pi (b (j′)

i) as long as b j
i = b

(j′)
i .

Gap (j) is defined in (4a), with l (j)
i and y (j)

i defined in (4b) and (4c), respectively. l (j)
i = 1 indicates

that budget b (j)
i is counted into the offline optimal social welfare (referred to as the benchmark),

which implies that b (j)
i is among the top-R largest budgets in sequence j—that is, user i with this

budget is allocated with one unit of resource in the offline optimal solution, and l (j)
i = 0 otherwise.

y (j)
i is the number of available resource units upon arrival of user i when budget sequence j is

discussed. A user will be allocated one unit of resource by the algorithm if and only if (1) his budget

is no smaller than the posted price by the algorithm (i.e., b (j)
i ≥ pi) and (2) there are available

resources to allocate (i.e., y (j)
i > 0). The gap between the offline optimal social welfare and the

social welfare of the online algorithm can be computed by summing up the difference between
the chosen budget for each user (if it is in the benchmark) and the budget if it is accepted by the
algorithm in the respective slot, as in (4a).

Unlike the optimization problem on the algorithm side, it is hard to relax constraints to derive the

gradient of the objective function on Pi (b (j)
i) in the preceding adversary’s optimization problem.

This is because the numbers of accepted users in the benchmark and by the algorithm are both
constrained by the resource number, and directly enumerating all possible combinations in Ω to

obtain the gradient on Pi (b (j)
i) can soon be intractable when the user sequence becomes long and

the budget set becomes large. Nonetheless, the algorithm-side gradients can be used as a reference
for the derivation of gradients on the adversary side. Since (λ∗ |x1 . . . xi−1) measures the change of
the optimal objective value of the algorithm when one more unit of resource is available, it is a tight

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 6, No. 4, Article 13. Publication date: February 2022.

Adversarial Deep Learning for Online Resource Allocation 13:11

lower bound of all accepted user budgets from user i to N in the optimal solution of the algorithm,
derived upon user i’s arrival. So the gradient on the probability P (X j = 1|xi . . . xi−1) of accepting
user i , bi − λ∗, measures the difference between the objective value computed when the decision
of accepting user i is made by the algorithm and the objective value calculated when the optimal
choice for user i is made, assuming optimal choices were adopted in all later slots (j > i) (so we
only need to compare bi with λ∗). We provide a simple example for better illustration. Consider the
following user budget sequences: {1, 3, 3, 3}. Suppose the available resource number is 2, and then
λ∗ = 3. The gradient for accepting the first user is 1 – 3, which equals the difference between (1 +
3) – (3 + 3)—that is (the objective value when accepting the first user and taking optimal solution
for latter slots) – (the objective value of the optimal solution).

Since the gradient of the algorithm’s objective function on the probability of choosing a price at
slot i measures the effect of the price choice at slot i to the objective value when all later slots are
fixed to optimal choices, following this principle, on the adversary side, the gradient on the prob-
ability of choosing budget bl for user i (Pi (bl)) should reflect the objective value of the adversary
when budgets of all later slots after i are fixed to optimal budgets and the budget of user i is set
to bl . We hence adopt such a heuristic approach for more efficiently computing gradients of the
adversary’s optimization problem. To derive such gradients, the next question is how to compute
the optimal budgets for unrealized slots, since solving the adversary’s optimization problem for
those slots is not as obvious as solving the algorithm’s optimization problem.

Given a partially realized budget sequence and complete price sequence, we can calculate the
optimal budget choices for unrealized slots in polynomial time (i.e., solving the optimization
in (4) with budgets in the first i − 1 slots realized). We only need to consider two cases for gap
maximization:

(a) For each user j ∈ [i,N], set the budget to be the largest budget in B that is smaller than price
pj in the algorithm’s price sequence, or post the smallest budget in B if no budget in B is
smaller than price pj .

(b) Suppose the number of unrealized slots is U = N − i + 1 and k is the current number of
available resource units. Consider each slot index j ∈ [k + i,N]: for slots between [i, j − 1],
find k slots with the smallest prices according to the algorithm’s price sequence and set the
smallest budget from B that is no less than the respective price for each of these slots (such
that these users will be accepted but with smallest social welfare increment)1; supposing the
index of the last slot among these k accepted slots is j ′, for slots after j ′, set the largest budget
from B, and for slots before j ′ other than the k slots picked earlier, set the respective budget
the same way as described in case (a) (such that corresponding users are maximally rejected
to increase benchmark value). In this way, we obtain (U −k) budget sequences, and the one
with the largest gap will be the budget sequence output in this case.

Case (a) represents the case that almost no resource is allocated starting from user i onward;
case (b) corresponds to the case that all remaining resources are allocated in the following. We
do not need to consider other scenarios where part of the remaining resources are allocated in
the unrealized slots, which will always lead to a smaller gap than that in case (a). Consider the
following situation when one budget value is different from that in the respective slot in case (a)
and the corresponding user is accepted by the algorithm, resulting in one more unit of resource
usage (or the same amount of resource usage if case (a) has already used up all resources) as
compared to (a): (i) if the slots whose budgets are counted into the benchmark are not affected,

1If all budget values are smaller than respective prices at these k slots, we will not consider the current j anymore and will

continue to the next j .

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 6, No. 4, Article 13. Publication date: February 2022.

13:12 B. Du et al.

since social welfare achieved by the algorithm is increased by the accepted budget value, then
the gap between the benchmark and the algorithm will be smaller; (ii) if the new budget value
allows the corresponding slot to be counted into the benchmark, replacing another slot with a
smaller budget, no matter whether the user of this replaced budget is accepted or rejected by
the algorithm, the gap will always not be larger after replacement. Suppose a user’s budget b ′ is
replaced by another user’s budget b∗ in the benchmark; b∗ > b ′ due to the replacement in the
benchmark. If the user with budget b ′ is accepted by the algorithm after replacement (it definitely
was accepted by the algorithm before replacement due to the same price and budget for this slot
before replacement), the change of the gap is (b∗ − b ′ − b∗) − (b ′ − b ′) = −b ′; if b ′ is rejected
by the algorithm after replacement, there are two possible scenarios: (1) b ′ is also rejected before
replacement, and then the change of the gap in this scenario is (b∗−b∗)−b ′ = −b ′; (2)b ′ is accepted
before replacement but is rejected due to resource exhaustion by b∗ after replacement, and then
the corresponding gap is (b∗ − b∗) − (b ′ − b ′) = 0.

The complete algorithm for computing optimal budget sequence of adversary given the price
sequence of algorithm is Algorithm 1. The input contains the complete price sequence from the
algorithm side, the partially realized budget sequence, the total number of resource units, and the
budget set. Lines 4 and 5 compute the number of available resources and social welfare of the
algorithm for the partially realized budget sequence part. Case (a) is considered in lines 7 through
12, and case (b) is implemented from line 13 to line 26: every possible resource running out situation
is considered (line 13), where the available resource number of slots with the smallest prices will
be accepted with the smallest possible budgets (lines 14–18) while the highest possible budgets
causing algorithm rejection will be set for other slots (line 14); the highest budgets will be set for
slots after using up resources (lines 21 and 22). Among all situations, the one with the largest gap
will be the final solution in case (b) (lines 25 and 26).

3.4 Training NNs

Let πθ (hi−1,xi) represent the NN model of the algorithm, where θ is the set of parameters in this
algorithm NN, and hi−1 is the history information before user i and xi have received information
of new user i . hi−1 and xi are input to the algorithm NN πθ (·). In our implementation, xi consists
of the current index i , the current available resource number yi , the last user’s budget bi−1, and
the last realized price pi−1; hi−1 is the encoded history before user i using x1 to xi−1, computed by
hi−1 = vec[δ ([x1, . . . xi−1]∗W +b)], whereW is a matrix to give different weights to different slots
and information, b is a bias matrix, δ (·) is an activation function, andvec[·] is to flat the result to a
vector so that hi−1 and xi can be concatenated together as input to the algorithm NN. The output
of the algorithm NN Pθ

i is a probability distribution over all possible price choices for user i .
Let πω (v) represent the NN model of the adversary, where ω is the set of parameters in this

adversary NN and v is the input to the adversary NN. v is a vector of latent variables sampled
from some prior distribution p (v); we use the Gaussian distribution in our implementation, the
same as in GAN [29]. The output Pω is N probability distributions over budget set B, to produce
the budget sequence.

The complete algorithm for training the two NNs is given in Algorithm 2. Suppose the size of
the price set is n and the size of the budget set ism. At each iteration t , we first sample a batch of s
latent variables, budget sequences, and price sequences (lines 3–5). When updating the algorithm
NN (line 17), we calculate the gradient of f in (1) on parameter θ , to optimize f . According to the

chain rule,
∂f

∂θ
=

∂f

∂P θ (p)
× ∂P θ (p)

∂θ
, where Pθ (p) is the probability output of the algorithm NN. The

gradient of f on the probability of accepting user i is b (j)
i − (λ∗ |p (j)

1 . . .p
(j)
i−1) if pl ≤ b (j)

i and 0 if

pl > b (j)
i , as discussed in Section 3.2.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 6, No. 4, Article 13. Publication date: February 2022.

3.2

Adversarial Deep Learning for Online Resource Allocation 13:13

ALGORITHM 1: OPT_BUDGET

Input: Complete price sequence P : p1, . . . ,pN ; Partially realized budget sequence: b ′1, . . .b
′
l−1

;
Total resource number R; Budget set B = {b1,b2, . . .bm }
Output: Optimal budgets for unrealized slots b∗

l
, . . .b∗N so that the complete budget sequence

b ′1, . . .b
′
l−1
,b∗

l
, . . .b∗N with the largest gap can be produced

1: opt_gap = 0, res = R, alg_perf = 0, rej_b_seq = {b ′1, . . . ,b
′
l−1
, 0, . . . , 0} (with N slots)

2: Gapr e j = 0 {variables for case (a)}
3: acc_b_seq = {}, Gapacc = 0 {variables for case (b)}
4: for i = 1 to l − 1 do

5: If b ′i ≥ pi and res > 0: alg_perf += b ′i , res -= 1
6: end for

7: for i = l to N do

8: temp_b = min(B)
9: for j = 1 tom do

10: If bj < pi and temp_b < bj : temp_b = bj {make users rejected}
11: end for

12: rej_b_seq[i] = temp_b
13: if i − l + 1 ≥ res then

14: temp_b_seq = rej_b_seq, find res# of smallest price from pl , . . . ,pi , mark their index as
a1 to ar {use up resources}

15: for k = a1 to ar do

16: temp_b_seq[k] =∞
17: for j = 1 tom do

18: If bj ≥ pk and bj < temp_b_seq[k]: temp_b_seq[k] = bj

19: end for

20: end for

21: for o = ar to N do

22: temp_b_seq [o] = max(B)
23: end for

24: end if

25: Gap = Benchmark (temp_b_seq) - Alg (temp_b_seq, P)
26: If Gap > Gapacc : acc_b_seq = temp_b_seq, Gapacc = Gap
27: end for

28: Gapr e j = Benchmark (rej_b_seq) - Alg (rej_b_seq, P)
29: If Gapacc > Gapr e j :
30: return Gapacc , acc_b_seq
31: Else:
32: return Gapr e j , rej_b_seq

Similarly, fix a price sequence j, and the gradient of the adversary objective on the probability
of choosing budget bl at user i equals the gap value (line 10) when all slots after i are fixed to opti-
mal budget choices (line 9). Adversary NN update is performed based on the cumulative gradient
computed from the entire batch (line 12).

Note that in each training round, we can calculate the gradient of the objective on the probability
of any possible output price/budget choice so that all prices’/budgets’ probabilities can be updated,
instead of only sampled outputs as in standard RL.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 6, No. 4, Article 13. Publication date: February 2022.

13:14 B. Du et al.

ALGORITHM 2: Stochastic gradient descent training of algorithm and adversary NNs

1: for t = 1, 2, . . . do

2: for ξ steps do

3: Sample s latent variables {v (1), . . . ,v (s) } from prior p (v)
4: Sample s budget sequences {b (1), . . . ,b (s) } by feeding sampled latent variables to adversary

NN
5: Sample s price sequences {p (1), . . . ,p (s) } by feeding sampled budget sequences to algo-

rithm NN
6: Update adversary NN: дradient = 0
7: for j = 1 to s , i = 1 to N , l = 1 tom do

8: b (j)
i = bl

9: дap (j), seq (j) = OPT_BUDGET (p (j), {b (j)
1 , . . . ,b

(j)
i },R,B)

10: дradient += дap (j)∇ωt−1Pωt−1

i (bl)
11: end for

12: ωt−1 = ωt−1 + дradient
13: end for

14: ωt = ωt−1

15: Sample s latent variables {v (1), . . . ,v (s) } from prior p (v)
16: Sample s budget sequences {b (1), . . . ,b (s) } by feeding sampled latent variables to adversary

NN
17: Update algorithm NN: θ t = θ t−1 +

∑s
j=1

∑N
i=1

∑n
l=1 (b (j)

i − (λ∗ |p (j)
1 . . .p

(j)
i−1))1(pl ≤

b (j)
i)∇θ t−1Pθ t−1

i (pl)
18: end for

4 THEORETICAL ANALYSIS

4.1 Existence of NE

We next discuss the existence of NE of the game played by the algorithm and the adversary, and
the convergence to the NE by our algorithm and adversary NN training.

Suppose the price set of algorithm is A = {p1,p2, . . . ,pn } and the budget set of adversary is B =
{b1,b2, . . .bm }. There are in total N users. We use A = {α1,α2, . . . αnN } and B = {β1, β2, . . . , βmN }
to denote the pure strategy set of the algorithm and the adversary, respectively, where αl ,∀l ∈
[1, |A|], contains N prices chosen from set A and βl ,∀l ∈ [1, |B|], contains N budgets from set
B. A mixed strategy of a player is a random distribution over its pure strategies. The set of such
mixed strategies is denoted by τp and τb for the algorithm and the adversary, respectively. The
joint mixed strategy set is τo = τp ⊗ τb .

For ease of presentation, we use up (·) to represent the additive inverse of the expected gap as
the algorithm’s utility and ub (·) to represent the expected gap as the adversary’s utility so that the
goal for both algorithm and adversary is to maximize their own utility (recall that the algorithm’s
objective is to maximize the expected social welfare it achieves, which is equivalent to maximizing
the additive inverse of the expected gap).

A joint mixed strategy τ ∗o ∈ τo is the NE, if the following holds, where τ ∗po (τ ∗
bo

) represents the

mixed strategy of the algorithm (adversary) in the joint mixed strategy τ ∗o : ∀τ l
p ∈ τp ,up (τ ∗o) ≥

up (τ ∗
bo
,τ l

p), and ∀τ l
b
∈ τb ,ub (τ ∗o) ≥ ub (τ l

b
,τ ∗po), or equivalently, ∀ pure strategy α l ∈ A,up (τ ∗o) ≥

up (τ ∗
bo
,α l), and ∀ pure strategy β l ∈ B,ub (τ ∗o) ≥ ub (β l ,τ ∗po). It indicates that at NE, neither the

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 6, No. 4, Article 13. Publication date: February 2022.

Adversarial Deep Learning for Online Resource Allocation 13:15

algorithm player nor the adversary player can have better utility by unilaterally changing its strat-
egy.

Proposition 1. There exists a mixed NE in the game played by the algorithm and the adversary.

Proof. The existence of the mixed NE is based on Brouwer’s lemma: a continuous function F (·),
which maps a non-empty, compact, convex set to the set itself, always has a fixed point x∗ such
that x∗ = F (x∗). Since the probability simplex is non-empty, compact, and convex, all we need to
show is to find such a F (·).

We first define a functionдl
p (τo) =max (up (τbo ,Al)−up (τo), 0), where τbo means the adversary’s

strategy in τo . Given joint mixed strategy τo , this function evaluates by fixing the mixed strategy
of adversary τbo , whether the pure strategy Al ∈ A would be better than the mixed strategy of
algorithm in τo for the algorithm.

Next, we define a continuous function Fp : τo → τo , with Fpl (τo) =
τ l

po+дl
p (τo)

1+
∑|A|

j=1 д
j
p (τo)
,∀l ∈ [1, |A|],

where τ l
po is the algorithm’s probability of choosing pure strategy Al in its mixed strategy in τo .

The denominator is to normalize Fpl (τo) so that
∑ |A |

l=1
Fpl (τo) = 1—that is, the values of Fpl (τo) for

all l form a probability distribution. Hence, F (τo) for all l maps the non-empty, compact, convex
set to the set itself, with only the algorithm’s mixed strategy updated. Based on Brouwer’s lemma,
there exists a fixed point, which is a joint mixed strategy, τ ∗o , satisfying

τ ∗lpo =
τ ∗lpo + д

l
p (τ ∗o)

1 +
∑ |A |

j=1 д
j
p (τ ∗o)

,∀l . (5)

There are the following two possible cases regarding Equation (5). Case (i): if
∑ |A |

l=1
дl

p (τ ∗o) = 0 (i.e.,

fixing the adversary’s mixed strategy according to the definition of дl
p (·)), varying the algorithm’s

strategy cannot obtain larger utility for the algorithm: no pure strategy of the algorithm is better
than this mixed strategy; deviating this mixed strategy toward any pure strategy cannot lead to a
larger utility. By the definition of Nash equilibrium, the mixed strategy τ ∗o in this case is already

an NE. Case (ii): if
∑ |A |

l=1
дl

p (τ ∗o) > 0, then for ∀l ,дl
p (τ ∗o) > 0, as otherwise τ ∗lpo cannot be the same.

дl
p (τ ∗o) > 0 is equivalent toup (τ ∗

bo
,Al) > up (τ ∗o). Taking expectation of both sides of this inequality

over τ ∗po , we can derive
∑ |A |

l=1
τ ∗lpoup (τ ∗

bo
,Al) >

∑ |A |
l=1

τ ∗lpoup (τ ∗o). For the right-hand side of this new

inequality, we have
∑ |A |

l=1
τ ∗lpoup (τ ∗o) = up (τ ∗o)

∑ |A |
l=1

τ ∗lpo = up (τ ∗o), whereas for the left-hand side,

we can get
∑ |A |

l=1
τ ∗lpoup (τ ∗

bo
,Al) = up (τ ∗o) by definition. Combining both sides together, we reach a

contradiction up (τ ∗o) > up (τ ∗o); so this case is impossible. Therefore, we are only left with case (i),
which indicates NE. Similar discussion can be applied to the adversary side. �

4.2 Convergence

4.2.1 Convergence Proof. We next show that the strategies of the algorithm and the adversary
converge to NE. We follow an idea similar to Goodfellow et al. [14].

Proposition 2. If in each round t of training in Algorithm 2 the adversary is allowed to reach

its optimal strategy given the current strategy of the algorithm, the algorithm NN converges to the

NE strategy. At the same time, the optimal strategy of the adversary given the NE strategy of the

algorithm is also the adversary’s NE strategy.

Proof. Given the strategy of the adversary, the algorithm’s problem (1) is equivalent to problem
(3), which is a convex function of the algorithm strategy. According to Goodfellow et al. [14],
we know that for a function д(x) = supα ∈Aдα (x) with дα (x) convex in x for every α , we have

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 6, No. 4, Article 13. Publication date: February 2022.

13:16 B. Du et al.

∂дα ∗ (x) ∈ ∂д(x) if α∗ = arдsupα ∈Aдα (x). In other words, the gradient of дα (x) on x when α is
optimally calculated based on the value of x is equivalent to the gradient of function supα ∈Aдα (x).
In our case, we can solve for the NE by calculating the gradient on the algorithm strategy when the
adversary strategy is optimally calculated based on the algorithm strategy. Due to the convexity
of objective (3) for computing the algorithm strategy, sufficiently small gradient descent updates
of the algorithm strategy can lead to convergence to the optimal algorithm strategy.

The training process will not end until both the algorithm and the adversary converge to NE
strategy, as otherwise one of them would keep changing its strategy to get better utility and the
updating process would continue. �

To allow the adversary to reach its optimal strategy given the current strategy of the algorithm,
in each training iteration, ξ would be very large in theory and the gradient of adversary’s objective

function on Pi (b (j)
i) should be computed exactly by enumerating all possible budget sequences in

optimization (4). In addition, when an NN is used, we are optimizing θ instead of the strategy itself,
as in the proof of convergence, and we may not ensure that the adversary is allowed to reach its
optimal strategy. However, we will show in our empirical studies even when using ξ = 1 and our
heuristic approach in computing the gradient (see Section 3.3), the algorithm and adversary NNs
converge close to NE.

4.3 Calculation of NE Strategies

We first describe how to compute a NE strategy in our zero-sum game, given mixed strategy τp

for the algorithm, τb for the adversary, and the payoff matrixC with dimension B×A, where each
entry (i, j) corresponds to the gap achieved by the budgets-prices pair (Bi ,Aj). If τp is known,
the expected gap with pure strategy Bi of the adversary is the ith element in C × τp (the vector
containing expected gaps corresponding to all possible pure strategies of the adversary). The ad-
versary wants to maximize the gap, so it will play strategies corresponding to the largest value in
Cτp . To minimize the gap, the best strategy of the algorithm is to minimize the maximum value
in Cτp : vp = minτp

max {(Cτp)1, . . . , (Cτp) |B | }. In contrast, the best response of the adversary is to
maximize the minimum value in τbC: vb =maxτb

min((τbC)1, . . . , (τbC) |A |).
The computation of τp , NE strategy of the algorithm, can be formulated into the following LP,

where ci is the ith row of matrix C:

Minτp
vp , (6)

subject to

τ j
p ≥ 0,∀j ∈ [1, |A|]

τ 1
p + τ

2
p + · · · + τ

|A |
p = 1,

ciτp ≤ vp ,∀i ∈ {1, |B|}.

The computation of τb , NE strategy of the adversary, can be formulated into the following LP,
where c j represents the jth column of C:

Maxτb
vb , (7)

subject to

τ i
b ≥ 0,∀i ∈ [1, |B|]

τ 1
b + τ

2
b + · · · + τ

|B |
b
= 1,

τbc j ≥ vb ,∀j ∈ {1, |A|}.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 6, No. 4, Article 13. Publication date: February 2022.

Adversarial Deep Learning for Online Resource Allocation 13:17

LPs (6) and (7) are duals of each other. This can easily be verified by the Lagrangian function:

Maxτb ,vb
L = vb +

∑ |A |
j=1 τ

j
p (τbc j − vb) + vp (1 − τ 1

b
− · · · − τ |B |

b
) +
∑ |B |

i=1 ziτ
i
b
. The gap at the NE is

v∗ = vp = vb given strong duality of LPs. We can see that solving the NE strategies of our zero-sum
game is equivalent to solving two LPs.

Next, we discuss the gap and strategies at NE of our system in two cases.

4.3.1 Resource Number No Smaller Than Job Number (R ≥ N). In this case, pricing/budgeting
strategies for different users are the same because the resource is always abundant upon arrival of
each user. So we only need to focus on one user. For any user, the pure strategies for the algorithm
and the adversary are sets A and B, respectively; τp and τb denote the mixed strategy over set A
and B, respectively, and pl and bl are the probability of choosing a respective pure strategy. The
payoff matrix C of a single user is as follows (since the resource is enough to accept the user):

Cm×n =
[
ci j = bi1(bi < pj)

]
∀i ∈{1,m }, j ∈{1,n }

.

We can derive the NE value using (6) (or (7)).
If the smallest price from set A is no larger than any budget in set B, one of the columns of C

is a zero vector (because 1(bi < pj) will always be zero if pj is the smallest price), and we can get
z∗ = 0—that is, the optimal strategy of the algorithm is to accept all users with the smallest price.

4.3.2 Resource Number Smaller Than Job Number (R < N). The principle of calculating NE in
this case is the same as in the previous case, by replacing the pure strategy set from A to A and
B to B because we cannot calculate NE by a single slot now. τp and τb denote the mixed strategy
over set A and B; αl and βl are pure strategy l in each set, respectively. The payoff matrix C is

C |B |× |A | =
[
ci j = Benchmark (βi) −Alд(βi ,α j),

]
∀i ∈{1, |B | }, j ∈{1, |A | }

.

We note that the number of pure strategies of both the algorithm and the adversary is increasing
exponentially with the length of user sequence, causing computation complexity in solving the
corresponding LP due to enormous numbers of decision variables and constraints.

5 EMPIRICAL STUDIES

Through empirical studies, we seek to further answer two questions. First, are our algorithm and
adversary NN update methods effective in converging to NE? Second, how is the performance of
our learned online algorithm compared to state-of-the-art online algorithms on the same problem?

The algorithm NN consists of three parts: the history encoding layer, the fully connected layers
to process input from the encoding layer, and the output layer. The activation function of the first
two parts is Leaky ReLU, and Softmax is used as the output layer function. The adversary NN is
composed of fully connected layers and an output layer. Activation function for the fully connected
layers is Leaky ReLU, and Softmax is the output layer function.

In our experiments, the algorithm NN has three fully connected layers following history encod-
ing and input concatenation, and then the output layer follows; the adversary NN has four fully
connected layers before the output layer. The number of neurons in each layer is adjusted accord-
ingly under different experimental settings, within the range of [30, 80]. ξ in Algorithm 2 is set
to 1 (same as in the work of Goodfellow [13]). One episode indicates training with one complete
price/budget sequence.

5.1 NN Training Effectiveness

We evaluate our training of algorithm NN and adversary NN separately by replacing the other
NN by a multiplicative weight (MW) updated player and compare the strategy learned by the

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 6, No. 4, Article 13. Publication date: February 2022.

13:18 B. Du et al.

respective NN and the NE strategy calculated with standard game theory methods. MW is a com-
monly used algorithm in playing zero-sum games to approximately converge to the NE [1], which
maintains weights over all pure strategies and the probability of choosing each pure strategy is
proportional to the corresponding weight. In the training process, weights are updated as follows:
wt+1 (a) = wt (a) ∗ (1 + ηr t (a)), where η is the learning rate (set to 0.01 in our experiments) and
r t (a) is the utility of pure strategy a in updating iteration t (normalized between 0 and 1 to limit
the change of weights). We set s = 10 (Algorithm 2) in this set of experiments.

5.1.1 Algorithm NN. Consider a scenario where the total number of units of resources is 5; both
the price set and the budget set are {1, 2, 3, 4, 5}. The adversary has 25 pure strategies, each includ-
ing the first i slots in the sequence seq = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5],
i ∈ [1, 25]. Such pure adversary strategies represent worst-case user request sequences in standard
online algorithm analysis [44]: different sequence lengths lead to different final resource utiliza-
tion levels, and increasing budgets make online algorithm perform worst as compared to the offline
optimum, as the online algorithm may well exhaust resources by allocating them to earlier users
with small budgets, whereas the offline optimum allocates resources to latecomers. In deciding the
mixed strategy of the adversary, r t (a) represents the expected gap of budget sequence a.

Given the adversary strategies, we can derive the NE of the game by formulating the zero-sum
game into an LP (8) and solve it using standard method (e.g., an interior point method), and obtain
that the expected gap and the probability of accepting each user at NE is 7.834 and [0, 0, 0, 0, 0,
0, 0, 0.083, 0.5, 0.5, 0.333, 0.333, 0.333, 0.333, 0.333, 0.25, 0.25, 0.25, 0.25, 0.25, 0.2, 0.2, 0.2, 0.2, 0.2],
respectively. Note that this strategy is not the only NE strategy of the algorithm: for example,
a probability of 0.75 for accepting the 9th user and a probability of 0.25 for accepting the 10th
user also constitute a NE strategy, as long as the gap between the algorithm strategy and each
pure strategy of the adversary is no larger than 7.834. The formulation of effectiveness test of
algorithm NN is as follows. The problem formulation is similar to (6). Instead of computing the
probabilities of choosing different prices, we let decision variables in the LP be the probabilities
of accepting different users so that the number of decision variables is only 25 (we assume the
algorithm knows the maximum length of user request sequence only when computing this NE).
Pi denotes the probability of accepting user i . The LP is as follows:

min
Pi ,i ∈[1,25]

z, (8)

subject to

P1 + P2 + · · · + P25 ≤ 5, (8a)

0 ≤ Pi ≤ 1,∀i ∈ [1, 25] (8b)

j∑

i=1

seq[i]Pi ≤ z,∀j ∈ [1, 25] (8c).

(8a) is the resource constraint. (8c) corresponds to all pure strategies of the adversary, where seq[i]
denotes the ith budget in the budget sequence. We can then solve this LP to get NE. The training
curve of the algorithm NN is shown in Figure 2. We can see that the time-averaged gap (averaged
over the last 500 episodes) converges to around 8 after 40k episodes of training, very close to the
computed gap at NE, showing effectiveness of our update method of training the algorithm NN in
ensuring convergence to NE. We note that in this experiment, even though the size of the price set
is only 5, when there are 25 users, the number of pure strategies of algorithm is as many as 525.

We can then compute the probability of accepting each user from the NN output (averaged over
the last 9k episodes): [0, 0, 0, 0, 0, 0.226, 0.222, 0.213, 0.173, 0.115, 0.523, 0.36, 0.324, 0.212, 0.153,

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 6, No. 4, Article 13. Publication date: February 2022.

Adversarial Deep Learning for Online Resource Allocation 13:19

0.534, 0.352, 0.226, 0.203, 0.113, 0.345, 0.221, 0.209, 0.208, 0.091]. The largest gap resulted from the
preceding strategy under all pure strategies of the adversary is within 0.5 from the gap value at
NE (i.e., 7.835), showing closeness of our strategy with the computed NE strategy of the algorithm.
The running time for completing 100k episodes of algorithm NN training is less than 15 minutes.

5.1.2 Adversary NN. When testing the effectiveness of adversary NN, the mixed strategy of the
algorithm is updated by MW. There is an exponential number of decision variables in the LP ((7) in
Section 4.3) to solve for the adversary’s NE strategy using a standard game theory method (as its
probability distribution is over all combinations of N element from the budget set). To make this
problem computable (without causing out-of-memory error when solving the LP using Python
linprog on a server with 64 GB of memory), we set the sequence length to 7, price/budget set as
A = {1, 2, 3}, and the total number of resource units to 3. The pure strategies of the algorithm
are the following three price sequences: seqs = [1, 1, 2, 2, 3, 3, 3], [1, 1, 1, 2, 2, 2, 3], [1, 2, 2, 2, 3, 3, 3],
which are chosen following pricing function design in existing online algorithms [44], which posts
lower prices at the start when resources are abundant so that more users can be accepted while
raising the prices with the consumption of resources. In computing mixed strategy of the algorithm
using MW, r t (a) is the additive inverse of the expected gap for choosing price sequence a.

By solving LP (7) in our concrete setting, we obtain that the expected gap is
4.333 and the mixed strategy of the adversary is to choose among budget sequences
[1, 1, 1, 1, 2, 2, 2], [1, 1, 2, 2, 3, 3, 3], [1, 2, 1, 2, 3, 3, 3] with a 1

3 probability each, at NE. Note that this
NE strategy of the adversary is not unique—any strategy leading to a gap between this strategy
and any pure strategy of the algorithm no smaller than 4.333 is an NE strategy.

Figure 3 shows the training curve of the adversary NN, which took about 8 minutes until conver-
gence. We can see that the time-averaged gap is around 4.33 after 60k episodes of training, close
to the NE gap value, exhibiting the NE learning ability of our update method for the adversary
NN. The strategy learned by our adversary NN is to choose budget 1 with probability of 1 for the
first four users and budget 2 with probability of 1 for the last three users, which corresponds to
the first budget sequence. Alhough different from the NE strategy computed earlier, only choosing
the first sequence is also an NE strategy since its expected gap is no less than the NE gap value,
given unilateral strategy change of the algorithm.

5.1.3 Training Algorithm and Adversary NNs Together. Next, we show the effectiveness of our
training methods when algorithm and adversary NNs are trained together, under the following
setting: the budget set is B = {2, 4, 6}, and the price set is A = {1, 3, 5, 7}; the maximal sequence
length is 7, and the total resource number is 3; and the pure strategy set of the adversary contains
all combinations of seven budgets from set B, and the pure strategy set of the algorithm contains
all combinations of seven prices from set A.

By solving the corresponding LPs in (6) and (7), we obtain that the gap at NE is 3.279. The
expected gap values throughout training of the algorithm and the adversary NNs are shown in
Figure 4, which are calculated using both algorithm and adversary strategies learned. We observe
that after about 80k episodes of training, the expected gap approaches the computed gap at NE,
further exhibiting the effectiveness of our training methods. The overall running time for 100k-
episode training of two NNs is about 20 minutes.

5.1.4 Training Efficiency. To better illustrate the convergence behavior of our method, we fur-
ther test the algorithm NN and the adversary NN with larger price/budget set and longer sequences.
Figure 5 and Figure 6 present the convergence results of the algorithm NN when the adversary is
updated by MWU. The price and budget can be any integers between 1 and 20. The budget se-
quence for Figure 5 is constructed by repeating each budget choice from 1 to 20 twice (sequence

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 6, No. 4, Article 13. Publication date: February 2022.

13:20 B. Du et al.

Fig. 2. Algorithm NN training

process.

Fig. 3. Adversary NN training

process.

Fig. 4. Two NNs training

process.

Fig. 5. Algorithm NN training

process.

Fig. 6. Algorithm NN training

process.
Fig. 7. Adversary NN training

process.

length = 40), whereas the budget sequence for Figure 6 is constructed in a similar manner by
repeating each value in the budget set from low to high for three times (sequence length = 60).
The total resource number is set to 10 for both budget sequences. The NE values computed by
solving similar LPs as (8) for these two budget sequences are 50.39 and 58.39, respectively. From
the training results, we can see that given larger budget/price sets and longer sequences, the up-
date method for the algorithm NN can still ensure the convergence to NE. The running times
for 100,000 episodes for Figure 5 and Figure 6 are about 20 minutes and 30 minutes, respectively.
As for the adversary NN, we extend its price and budget sets to integers between 1 and 10 (LP
with larger sets would be unsolvable due to memory error). The sequence length is 7, and the
resource number is 3. Pure strategies/price sequences of the algorithm (updated by MWU) are as
follows: [[1, 2, 3, 4, 5, 6, 7], [2, 4, 4, 6, 6, 9, 10], [1, 2, 2, 2, 2, 2, 3], [6, 6, 7, 7, 8, 9, 10]]. The LP is solved
on a server with 256 GB of RDIMM memory, and the NE value computed is 19. Figure 7 shows
the training convergence for the game described previously between the adversary NN and the
MWU-based algorithm, where the convergence took about 16 minutes.

Next, we evaluate the time needed for conducting training on NVIDIA GeForce 1080Ti and
compare the time consumed by our method with other online algorithms during the inference
stage. We report the time needed for running one episode in the training process, which starts
with sequence sampling according to the opponent’s strategy and ends with one update step based
on the gradient derived from Section 3. We also report the time needed to make decisions for
the same budget sequence with our algorithm NN and with other online algorithms (a.k.a. the
inference time) in Table 2. The sequence length is fixed to 100. We observe that the training process
would well take hours to complete if the sequence length is long. However, training is done offline.
However, the average inference time is less than 0.001 second with all methods. Even though
decision making with our NN-based method is slower than the other methods, the inference time
is still small enough.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 6, No. 4, Article 13. Publication date: February 2022.

Adversarial Deep Learning for Online Resource Allocation 13:21

Table 2. Average Processing Time

Training (in seconds) Inference (in seconds)

Alg NN Adv NN NN OPT-Online KP-Threshold Randomized Greedy

0.067 0.14 0.0008 0.00007 0.00007 0.00006 0.00004

5.2 Comparison with Existing Online Algorithms

To evaluate the pricing strategy learned by our algorithm NN, we compare its performance with
state-of-the-art online algorithms. LetU and L be the upper bound and lower bound of the user bud-
get per unit of resource, and let z denote the fraction of used resource. The baseline algorithms we
compare with are as follows. The first is OPT-Online [44], which is a deterministic online algorithm
for single-type, non-recycled resource pricing and allocation, obtaining optimal competitive ratio
based on two assumptions (see Section 2). Its pricing strategy is based on the relationship between
total resource demand and resource supply and uses U ,L, z; so does its competitive ratio. The op-
timality proofs of OPT-Online rely on continuous price/budget, whereas the price/budget set in
our setting is discrete. When budgets are discrete, some important properties, such as the largest
accepted budget by the offline optimum equals the largest accepted budget by the online algorithm
minus ϵ, do not hold any more, which indicates that the gap between the offline optimal and online
algorithm would be smaller when the price/budget set is discrete. We investigate a discrete price
set to facilitate the learning algorithm design and leave the continuous price function case as our
future work. The second is KP-Threshold [45], which uses price function ψ (z) = (Ue/L)z (L/e) (e
is the base of natural logarithm) to decide which job to accept. The third is the Randomized algo-
rithm (mentioned in the work of Zhou et al. [45]), with a competitive ratio of O (log2 (U /L)): for
each item, this algorithm samples an integer i uniformly randomly from [0, log2 (U /L)]; if the ratio
of user budget per unit resource over L is no smaller than 2i , the user is accepted. The fourth is the
Greedy algorithm, which accepts every arrived user until all resources have been allocated, with a
competitive ratio of U /L.

In our following evaluation, all results are averaged over 1,000 sequences. NN parameters
of the last 1k training episodes are saved and uniformly randomly chosen for evaluation. The
price/budget set is [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]. The s in Algorithm 2 is set between 32 and
64.

We first compare the competitive ratio achieved by our learned algorithm with the benchmark
algorithms. Competitive ratio is computed as the ratio of the offline optimum and performance of
the online algorithm under the worst-case user request (a.k.a. budget) sequence, for each algorithm.
For our algorithm, the worst-case budget sequence is provided by the adversary NN. For OPT-
Online and KP-Threshold, given the final resource utilization level, we can calculate the largest
posted price p∗ of the respective algorithm; we set the budget values for accepted user as close as
possible to the price that online algorithm posted upon its arrival so that the objective value of
online algorithm can be minimized, and budgets of other users to p∗ −ϵ so that the objective value
of offline optimum can be maximized [44]. For the Randomized online algorithm, the worst-case
sequence contains gradually increased budgets. For the Greedy algorithm, the worst-case sequence
starts with the lowest budget value, whereas after resources have been used up, the highest budget
value will follow.

Figure 8 shows the competitive ratio when the user sequence length is 100. The total resource
supply varies, representing different relationships between resource demand and supply [44]. We
can see that our algorithm always achieves the smallest competitive ratio. Especially when the
resource is more scarce, our competitive ratio is smaller—almost half of those of other algorithms.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 6, No. 4, Article 13. Publication date: February 2022.

13:22 B. Du et al.

Fig. 8. CR: same sequence length. Fig. 9. Social welfare: same sequence

length.

Fig. 10. Gap: same sequence length. Fig. 11. CR: same supply/demand ratio.

Fig. 12. Social welfare: same supply/

demand ratio.

Fig. 13. Gap: same supply/demand ratio.

Figures 9 and 10 compare the social welfare and gap achieved by the algorithms under uniformly
randomly generated budget sequences of length 100. Our algorithm achieves the best social welfare
and smallest gap to offline optimum. In the case that resource number is no smaller than the user
number, we see the gap achieved by our algorithm is zero, consistent with our analysis in Section 7.

Figure 11 compares the competitive ratios when the user sequence length varies while the ratio
between total resource supply and total resource demand is fixed to 10%. Our algorithm outper-
forms baselines with lower competitive ratios.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 6, No. 4, Article 13. Publication date: February 2022.

Adversarial Deep Learning for Online Resource Allocation 13:23

Fig. 14. ϵ-greedy exploration. Fig. 15. Guided exploration with sequence

length = 5.

Fig. 16. Guided exploration with sequence

length = 10.

Figures 12 and 13 further compare the performance when the user sequence length varies and
the ratio between total resource supply and total resource demand is fixed (10%). Similar observa-
tions can be made.

5.3 Comparison with RL

We next show the superior convergence performance of our method over the RL algorithm. The
budget and price sets are both [1, 2, 3] in this experiment, and the resource number is set to 5. For a
given budget sequence (each budget is chosen uniformly at random from the budget set), we train
two NNs with the same architecture by our update method and the REINFORCE update method,
separately. REINFORCE is a commonly used RL algorithm for sequential decision making in the
deep learning literature [19, 42], which updates sampled price values by gradient descent according
to the average performance gap of complete price sequences, which are formed by sampled price
values and following RL-learned strategy for unsampled slots. In Figure 14, the sequence length is
5; the exploration strategy for RL is a simple ϵ-greedy strategy (ϵ = 0.3)—that is, with probability
ϵ , the sampled price according to the RL strategy will be replaced by a random value from the
price set to encourage exploration. We can see that our method outperforms RL in both solution
quality and convergence speed. Next, we equip RL with an improved exploration strategy and
keep the sequence length at 5. Instead of replacing a sampled price with a random price from
the price set, we replace it with the optimal price with probability 0.3 in the training process, to

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 6, No. 4, Article 13. Publication date: February 2022.

13:24 B. Du et al.

guide the sample process to better decisions. Figure 15 plots the training process in this scenario.
We can see that RL heavily relies on a good exploration strategy and performs better when the
guided exploration strategy is applied, but our method is still better than RL. Last, we compare RL
plus the same guided exploration with our method with a longer sequence (sequence length = 10).
Figure 16 shows the training process. We can see that when the sequence becomes longer, training
convergence becomes harder for RL due to its larger exploration space and the difficulty to break
the correlation between steps.

6 CONCLUSION

To the best of our knowledge, our work presents the first attempt to design an online algorithm
addressing the worst-case input through NNs, with the case of a classic online problem. The ran-
domized strategy, our novel per-round update method, and the powerful learning ability of NNs
enable better online algorithms, as shown by our evaluation results. We also provide empirical
evidence showing that our methods ensure convergence to NE. As future work, we are working
on extending our method to algorithm design of other online problems.

REFERENCES

[1] Sanjeev Arora, Elad Hazan, and Satyen Kale. 2012. The multiplicative weights update method: A meta-algorithm and

applications. Theory of Computing 8, 1 (2012), 121–164.

[2] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. 2017. A brief survey of deep

reinforcement learning. arXiv preprint arXiv:1708.05866.

[3] Siddhartha Banerjee, Itai Gurvich, and Alberto Vera. 2020. Constant Regret in Online Allocation: On the Sufficiency of

a Single Historical Trace. https://people.orie.cornell.edu/ig264/Online_Optimization_with_Samples.pdf.

[4] Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. 2016. Neural combinatorial optimization

with reinforcement learning. arXiv preprint arXiv:1611.09940.

[5] Shai Ben-David, Allan Borodin, Richard Karp, Gabor Tardos, and Avi Wigderson. 1994. On the power of randomization

in on-line algorithms. Algorithmica 11, 1 (1994), 2–14.

[6] Andrew Brock, Jeff Donahue, and Karen Simonyan. 2018. Large scale GAN training for high fidelity natural image

synthesis. arXiv preprint arXiv:1809.11096.

[7] Niv Buchbinder, Kamal Jain, and Joseph Seffi Naor. 2007. Online primal-dual algorithms for maximizing ad-auctions

revenue. In Proceedings of the European Symposium on Algorithms. 253–264.

[8] Niv Buchbinder and Joseph Naor. 2009. Online primal-dual algorithms for covering and packing. Mathematics of

Operations Research 34, 2 (2009), 270–286.

[9] Niv Buchbinder. 2009. The design of competitive online algorithms via a primal–dual approach. Foundations and

Trends® in Theoretical Computer Science 3, 2–3 (2009), 93–263.

[10] Andrea Celli, Marco Ciccone, Raffaele Bongo, and Nicola Gatti. 2019. Coordination in adversarial sequential team

games via multi-agent deep reinforcement learning. arXiv preprint arXiv:1912.07712.

[11] Bingqian Du, Chuan Wu, and Zhiyi Huang. 2019. Learning resource allocation and pricing for cloud profit maximiza-

tion. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI’19).

[12] Sreenivas Gollapudi and Debmalya Panigrahi. 2019. Online algorithms for rent-or-buy with expert advice. In Proceed-

ings of the International Conference on Machine Learning. 2319–2327.

[13] Ian Goodfellow. 2016. NIPS 2016 tutorial: Generative adversarial networks. arXiv preprint arXiv:1701.00160.

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. 2014. Generative adversarial nets. In Advances in Neural Information Processing Systems. 2672–2680.

[15] Klaus Jansen and Roberto Solis-Oba. 2011. Approximation and Online Algorithms: 8th International Workshop, WAOA

2010, Liverpool, UK, September 9–10, 2010, Revised Papers. Vol. 6534. Springer.

[16] Nikolaos Karalias and Andreas Loukas. 2020. Erdos goes neural: An unsupervised learning framework for combina-

torial optimization on graphs. arXiv preprint arXiv:2006.10643.

[17] Hans Kellerer, Ulrich Pferschy, and David Pisinger. 2004. Multidimensional knapsack problems. In Knapsack Problems.

Springer, 235–283.

[18] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. 2017. Learning combinatorial optimization algo-

rithms over graphs. In Advances in Neural Information Processing Systems. 6348–6358.

[19] Wouter Kool, Herke Van Hoof, and Max Welling. 2018. Attention, learn to solve routing problems! arXiv preprint

arXiv:1803.08475.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 6, No. 4, Article 13. Publication date: February 2022.

https://people.orie.cornell.edu/ig264/Online_Optimization_with_Samples.pdf

Adversarial Deep Learning for Online Resource Allocation 13:25

[20] Ravi Kumar, Manish Purohit, and Zoya Svitkina. 2018. Improving online algorithms via ML predictions. In Proceedings

of the 32nd International Conference on Neural Information Processing Systems. 9684–9693.

[21] Alistair Letcher, David Balduzzi, Sébastien Racaniere, James Martens, Jakob Foerster, Karl Tuyls, and Thore Graepel.

2019. Differentiable game mechanics. Journal of Machine Learning Research 20, 1 (2019), 3032–3071.

[22] Zhuwen Li, Qifeng Chen, and Vladlen Koltun. 2018. Combinatorial optimization with graph convolutional networks

and guided tree search. In Advances in Neural Information Processing Systems. 539–548.

[23] Tengyuan Liang and James Stokes. 2019. Interaction matters: A note on non-asymptotic local convergence of gener-

ative adversarial networks. In Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics.

907–915.

[24] Biao Luo, Yin Yang, and Derong Liu. 2020. Policy iteration Q-learning for data-based two-player zero-sum game of

linear discrete-time systems. IEEE Transactions on Cybernetics 51, 7 (2020), 3630–3640.

[25] Thodoris Lykouris and Sergei Vassilvtiskii. 2018. Competitive caching with machine learned advice. In Proceedings of

the International Conference on Machine Learning. 3296–3305.

[26] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. 2016. Resource management with deep

reinforcement learning. In Proceedings of the 15th ACM Workshop on Hot Topics in Networks. 50–56.

[27] A. Marchetti-Spaccamela and C. Vercellis. 1995. Stochastic on-line knapsack problems. Mathematical Programming

68, 1 (Jan. 1995), 73–104. https://doi.org/10.1007/BF01585758

[28] Andrés Munoz Medina and Sergei Vassilvitskii. 2017. Revenue optimization with approximate bid predictions. arXiv

preprint arXiv:1706.04732 (2017).

[29] Mehdi Mirza and Simon Osindero. 2014. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784.

[30] Vaishnavh Nagarajan and J. Zico Kolter. 2017. Gradient descent GAN optimization is locally stable. arXiv preprint

arXiv:1706.04156 (2017).

[31] Dong Nie, Roger Trullo, Jun Lian, Caroline Petitjean, Su Ruan, Qian Wang, and Dinggang Shen. 2017. Medical im-

age synthesis with context-aware generative adversarial networks. In Proceedings of the International Conference on

Medical Image Computing and Computer-Assisted Intervention. 417–425.

[32] Radu Prodan and Vlad Nae. 2009. Prediction-based real-time resource provisioning for massively multiplayer online

games. Future Generation Computer Systems 25, 7 (2009), 785–793.

[33] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert,

et al. 2017. Mastering the game of go without human knowledge. Nature 550, 7676 (2017), 354–359.

[34] Carl P. Simon and Lawrence Blume. 1994. Mathematics for Economists. Vol. 7. Norton, New York, NY.

[35] Satinder Singh, Michael Kearns, and Yishay Mansour. 2013. Nash convergence of gradient dynamics in iterated

general-sum games. arXiv preprint arXiv:1301.3892.

[36] Daniel D. Sleator and Robert E. Tarjan. 1985. Amortized efficiency of list update and paging rules. Communications of

the ACM 28, 2 (1985), 202–208.

[37] Eric Steinberger, Adam Lerer, and Noam Brown. 2020. DREAM: Deep regret minimization with advantage baselines

and model-free learning. arXiv preprint arXiv:2006.10410.

[38] Gerald Tesauro. 2005. Online resource allocation using decompositional reinforcement learning. In Proceedings of the

20th National Conference on Artificial Intelligence (AAAI’05). 886–891.

[39] Alberto Vera, Siddhartha Banerjee, and Itai Gurvich. 2021. Online allocation and pricing: Constant regret via Bellman

inequalities. Operations Research 69, 3 (2021), 821–840.

[40] Yufei Wang, Zheyuan Ryan Shi, Lantao Yu, Yi Wu, Rohit Singh, Lucas Joppa, and Fei Fang. 2019. Deep reinforcement

learning for green security games with real-time information. In Proceedings of the AAAI Conference on Artificial

Intelligence, Vol. 33. 1401–1408.

[41] Zhiguang Wang, Chul Gwon, Tim Oates, and Adam Iezzi. 2017. Automated cloud provisioning on AWS using deep

reinforcement learning. arXiv preprint arXiv:1709.04305.

[42] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. 2017. SeqGAN: Sequence generative adversarial nets with policy

gradient. In Proceedings of the 31st AAAI Conference on Artificial Intelligence.

[43] Yizhe Zhang, Zhe Gan, and Lawrence Carin. 2016. Generating text via adversarial training. In Proceedings of the NIPS

Workshop on Adversarial Training, Vol. 21.

[44] Zijun Zhang, Zongpeng Li, and Chuan Wu. 2017. Optimal posted prices for online cloud resource allocation. Proceed-

ings of the ACM on Measurement and Analysis of Computing Systems 1, 1 (2017), 23.

[45] Yunhong Zhou, Deeparnab Chakrabarty, and Rajan Lukose. 2008. Budget constrained bidding in keyword auctions

and online knapsack problems. In Proceedings of the International Workshop on Internet and Network Economics.

566–576.

Received January 2021; revised August 2021; accepted October 2021

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 6, No. 4, Article 13. Publication date: February 2022.

https://doi.org/10.1007/BF01585758

