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Abstract

Background: Machine learning techniques are starting to be used in various health care data sets to identify frail persons who
may benefit from interventions. However, evidence about the performance of machine learning techniques compared to conventional
regression is mixed. It is also unclear what methodological and database factors are associated with performance.

Objective: This study aimed to compare the mortality prediction accuracy of various machine learning classifiers for identifying
frail older adults in different scenarios.

Methods: We used deidentified data collected from older adults (65 years of age and older) assessed with interRAI-Home Care
instrument in New Zealand between January 1, 2012, and December 31, 2016. A total of 138 interRAI assessment items were
used to predict 6-month and 12-month mortality, using 3 machine learning classifiers (random forest [RF], extreme gradient
boosting [XGBoost], and multilayer perceptron [MLP]) and regularized logistic regression. We conducted a simulation study
comparing the performance of machine learning models with logistic regression and interRAI Home Care Frailty Scale and
examined the effects of sample sizes, the number of features, and train-test split ratios.

Results: A total of 95,042 older adults (median age 82.66 years, IQR 77.92-88.76; n=37,462, 39.42% male) receiving home
care were analyzed. The average area under the curve (AUC) and sensitivities of 6-month mortality prediction showed that
machine learning classifiers did not outperform regularized logistic regressions. In terms of AUC, regularized logistic regression
had better performance than XGBoost, MLP, and RF when the number of features was ≤80 and the sample size ≤16,000; MLP
outperformed regularized logistic regression in terms of sensitivities when the number of features was ≥40 and the sample size
≥4000. Conversely, RF and XGBoost demonstrated higher specificities than regularized logistic regression in all scenarios.

Conclusions: The study revealed that machine learning models exhibited significant variation in prediction performance when
evaluated using different metrics. Regularized logistic regression was an effective model for identifying frail older adults receiving
home care, as indicated by the AUC, particularly when the number of features and sample sizes were not excessively large.
Conversely, MLP displayed superior sensitivity, while RF exhibited superior specificity when the number of features and sample
sizes were large.
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Introduction

Frailty is a syndrome characterized by an increased vulnerability
to adverse health outcomes, including falling, hospitalization,
physical decline, and mortality [1]. Frailty should be detected
as early as possible since it is potentially preventable and
treatable [2]. In community settings, timely identification of
frailty allows the implementation of early interventions that
could reduce care costs and improve the “ability of older persons
to age in place” [3]. In clinical and long-term care settings,
identifying frail older adults could facilitate more individualized
and tailored health care planning [4,5]. Therefore, efficient and
accurate clinical tools are pivotal to the early identification of
frailty among at-risk older adults.

Numerous methods have been applied to measure frailty. A
recent systematic review identified 21 conceptual definitions
and 59 operational definitions of frailty from 68 studies [6].
This review concluded that definitions of frailty can be classified
into 3 categories focusing on different dimensions. The first is
represented by the Cardiovascular Health Study (CHS) Index
based on Fried’s “frailty phenotype” model, which focuses on
the physical dimensions of frailty [7-10]. The second category
is represented by the Frailty Index, originally proposed by
Rockwood and Mitnitski [11,12], which considers frailty as a
syndrome capturing the accumulative gradient of deficits. This
category of definitions covers other dimensions of frailty,
including cognitive, psychological, nutritional, and social factors
[11,13]. The third category considers the social dimension of
frailty, which has a significant relationship with undesirable
adverse health outcomes [14-16]. Despite differences in
theoretical frameworks adopted by different frailty measures,
existing frailty indices are typically constructed by summing
up the number of deficits or scores of assessment items using
equal weighting. Arguably, different deficits from various
domains may impact overall frailty status differently, and these
differences should be considered when measuring frailty. In
addition to accounting for the multifactorial nature of frailty, a
successful definition of frailty [12] must demonstrate satisfactory
criterion validity. Since frailty is noncontroversially linked with
vulnerability, a valid measure of frailty must accurately predict
adverse outcomes, such as death, institutionalization,
hospitalization, physical decline, and falls. Mortality is the most
objective measure that is less susceptible to measurement error
and, thus, is the most widely used outcome for assessing the
predictive validity of frailty measures [9,17-20].

Routinely collected data from health information systems have
become increasingly available in recent years, and clinical big
data analytics featured by machine learning techniques are
ever-evolving [21-23]. In contrast to conventional regression
approaches, classifiers used in machine learning, such as random
forest (RF), support vector machines, and neural networks, have
the advantages of learning and generating predictions by
examining large-scale databases of complex clinical information
[18,20,24-26]. Therefore, it is reasonable to hypothesize that

applying machine learning techniques to large-scale data
collected from health information systems can improve the
accuracy of mortality prediction for identifying frail older
persons who may benefit from early interventions. However,
the literature remains unclear whether machine learning
techniques can outperform conventional regression models in
identifying frail older adults [18,19,27].

In this study, we used routinely collected health information of
people receiving home care in New Zealand from
interRAI-Home Care (interRAI-HC) assessment to examine the
performance of various machine learning classifiers in mortality
prediction for identifying frailty. In this study, we conducted a
simulation study to address the following research questions:
(1) does the performance of machine learning models exceed
that of the interRAI-HC Frailty Scale, which was developed
using conventional regression models [28], in identifying frailty?
(2) what are the performances of different machine learning
models? and (3) what are the effects of sample size, number of
features, and the ratio of training to test data on predictive
accuracy?

Methods

Data Source and Participants
In this retrospective observational study, we used deidentified
health information routinely collected from older adults assessed
using the interRAI-HC assessment (version 9.1). The
interRAI-HC assessment was developed by a network of health
researchers in over 35 countries [29]. interRAI assessments are
mandatory in aged residential care and home and community
services for older people living in the community in New
Zealand. Our participants were from all 20 District Health
Boards in New Zealand and included all community-dwelling
older adults who were receiving public-funded home care or
assessed for long-term aged residential care. Trained interRAI
assessors collect comprehensive health information on older
adults, including their demographic, clinical, psychosocial, and
functional details. The interRAI-HC assessment embeds over
100 potential deficits of older adults that can be used to identify
frailty. Table S1 in Multimedia Appendix 1 summarizes the
variables used for identifying frail older adults. Ethnicity was
not included to increase generalizability beyond New Zealand.

We included adults 65 years of age or older for whom at least
1 interRAI-HC assessment had been completed between January
1, 2012, and December 31, 2016. Only the most recent
interRAI-HC assessment (defined as the index assessment) of
each individual within this period was used in the analysis and
the date of the most recent assessment was defined as the index
date. The individuals were followed from the index date until
the date of death or December 31, 2019, whichever came first.

Ethical Considerations
The University of Auckland Human Participant Ethics
Committee provided ethics approval for this study (023801).
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Measures

Outcomes
Outcomes of interest were 6-month and 12-month mortality.
Mortality data were retrieved from the Ministry of Health
Mortality Dataset that contains information of all registered
deaths in New Zealand. These two-time points were chosen
because (1) older adults receiving home care are associated with
a higher risk of mortality and shorter survival compared with
their counterparts who are not receiving home care and (2) these
are outcomes commonly used in previous studies examining
the association between frailty and mortality [30-33] and few
previous studies using interRAI data [34-36].

Features Used in Machine Learning Models
Features of interest included 138 interRAI-HC assessment items
covering 11 broad domains, demographics, cognition,
communication and vision, mood and behavior, psychosocial
well-being, functional status, continence, disease diagnoses,
health conditions, oral and nutrition status, and skin conditions.
Table S1 in Multimedia Appendix 1 presents the details of
features used to identify frail older individuals.

Assessment items that had a missing percentage of over 10%
were excluded from this study. Multiple interRAI-HC
assessment variables with a response indicating that the activity
did not occur during the assessment were considered missing,
and the missing data imputation was implemented for these
responses.

Established Frailty Scales (Benchmark)
The interRAI-HC Frailty Scale was used as the benchmark for
evaluating the predictive performance of machine learning
algorithms. The interRAI-HC Frailty Scale was developed and
validated using assessments collected from multiple and diverse
countries worldwide [28]. Table S2 in Multimedia Appendix 1
summarizes the variables used in constructing the interRAI-HC
Frailty Scale.

Machine Learning and Logistic Regression Models
We applied 3 state-of-the-art machine learning models and
regularized logistic regression to predict 6-month and 12-month
mortality using the features available from interRAI-HC. The
RF is a machine learning algorithm that uses decision trees [37].
The RF provides highly accurate predictions with a very large
number of input variables [38]. The eXtreme Gradient Boosting

(XGBoost) is an optimized algorithm designed to implement
parallel tree boosting that can predict results extremely
efficiently and accurately based on its scalability and efficiency
in all scenarios [39]. Multilayer perceptron (MLP) is one of the
most popular paradigms of artificial neural networks. MLP
decreases the output error by adjusting the weights of predictive
variables through an iterative learning process [40].

Regularized logistic regression is a variant of logistic regression
using regularization to prevent overfitting and improve the
performance of logistic regression. Two popular types of
regularized logistic regressions are Least Absolute Shrinkage
and Selection Operator (LASSO) regularization with the L1
penalty [41] and Ridge regularization with the L2 penalty [42].

In this study, we implemented hyperparameter tuning to
regularize logistic regression (hereafter referred to as logistic
regression), RF, MLP, and XGBoost by performing a
randomized grid search using all home care (HC) assessment
items. The best hyperparameters for each classifier were
determined by 10-fold cross-validation (Table S5 in Multimedia
Appendix 1). We used iterative imputation [43] to handle the
missing values and the default threshold of 0.5 was used in
training [27]. We conducted a sensitivity analysis to compare
the performance of the models with and without imputation in
selected conditions, that is, only the minimum and maximum
sample sizes and the number of features were selected for
comparison due to the expensive computation power required.

The preliminary results suggested that our data are imbalanced,
as the majority of individuals survived within 6 or 12 months.
We therefore rebalanced the training data (but not the test data)
using random oversampling [44], while keeping the test data
unchanged. Our primary findings are presented with the results
obtained after rebalancing the data. The results using the original
imbalanced data set can be found in Multimedia Appendix 1.
Specifically, to initiate the hyperparameter tuning process, we
performed hyperparameter tuning using grid search. For each
combination of hyperparameters, within each iteration of the
10-fold cross-validation loop, we applied oversampling to the
training set, and the model was trained on the oversampled
training set using the current combination of hyperparameters.
The model’s performance was evaluated on the validation set.
After all combinations of hyperparameters have been evaluated,
we selected the combination that gave the best average
performance. The process of data preprocessing, training,
prediction, and evaluation is illustrated in Figure 1.
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Figure 1. Illustration of the process of data preprocessing, training, prediction, and evaluation.

Simulation Design
We conducted a Monte Carlo simulation to compare the
performance of different machine learning methods and logistic
regression under different experimental conditions, characterized
by different sample sizes, the number of features, and training
test split ratios. There were 72 experimental conditions for each
model (4 sample sizes, 6 feature numbers, and 3 training test
split ratios). Each of these conditions was repeated 1000 times
to assess their variability. We used sample sizes equaling 1000,
4000, 16,000, and 95,042; the number of features equaling 10,
20, 30, 40, 80, and 138; and training test split ratios equaling
7:3, 8:2, and 9:1 in our simulation. We selected these sample
sizes and feature numbers because they are commonly
encountered in existing studies on frailty measurement
[17,19,45-48] and are values that are testable using the current
database. The training split ratios are widely used in studies
using machine learning [18,27,36,49,50]. We chose a limited
number under each domain to keep the simulations to a
manageable scale.

Evaluation of Model Performance
We randomly split the data into a training sample and a test
sample with different training test ratios. We evaluated model
performances using the test sample. The discrimination ability
of each classifier was measured by the area under the curve
(AUC) [51], sensitivity, (also referred to as the true positive
rate), and specificity (also known as the true negative rate) as

the primary criteria because these are criteria widely accepted
by the clinicians. Since frailty is reversible and may be
attenuated by noninvasive interventions such as exercise,
reduction of polypharmacy, and adequate nutrition [52], high
sensitivity is viewed as more important than high specificity in
this context if a trade-off needs to be made. F1-score [53],
accuracy and precision (also called positive predictive value)
[47,54,55] were also constructed and assessed to allow
comparisons with studies that reported only these outcomes.
Note, that as each experimental condition was repeated 1000
times to address the potential impact of randomization, we
computed the mean and SDs of all performance indices across
1000 replications. The 95% CI for the performance metrics was
computed from 1000 runs for each scenario.

Results

We included 95,042 older adults after excluding 4676
individuals who were younger than 65 years of age and 51
individuals with incorrect records (eg, the date of death was
earlier than the assessment date, invalid date of birth, or an
incorrect assessment date). Table 1 summarizes the
characteristics of study subjects, stratified by whether the person
died within 6 months. About half of the subjects were aged
between 80 and 89 years (80-84 years: n=21,947, 23.09%; 85-89
years: n=23,906, 25.15%). Women accounted for 57,580
(60.58%) of the sample, and 83,590 (87.95%) were European.
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A total of 12,401 (13.05%) subjects died within 6 months
following the index assessment. Table S19 in Multimedia
Appendix 1 documents the characteristics of the study subjects,
stratified by whether the person died within 1 year.

Table S4 in Multimedia Appendix 1 presents the results of the
sensitivity analysis comparing the performance of the models
with and without imputation. The findings suggest that the data
imputation was necessary as the imputed data set outperformed
the unimputed data set in most of the conditions tested.

After comparing the performance of penalty terms none, L1,
and L2, the LASSO regression regularization (L1) and Ridge
regularization (L2) were used in 6-month and 12-month
mortality prediction, respectively. We compared the average
AUC of each classifier as the number of features increased for
6-month mortality prediction (Figure 2). Overall, the
performance of all methods improved considerably as the
number of features increased. Specifically, in most scenarios,
when the number of features increased to 30, four classifiers
demonstrated significantly higher AUC than the interRAI-HC
Frailty Scale. LASSO regression generally demonstrated higher
or comparable AUC than RF, MLP, and XGBoost. However,
in the specific scenario where the sample size was 95,042 and
the number of features was 40 or less, MLP showed a slightly
better average AUC than LASSO regression. In addition, when
the sample size was 95,042, and the number of features
increased to 138, XGBoost achieved the highest average AUC
of 0.79 (95% CI 0.79-0.80).

Figure 3 shows the average sensitivities across all experimental
conditions. The 3 machine learning classifiers and LASSO
regression had lower sensitivities than the interRAI-HC frailty
scale when the sample size was 1000. As the sample size
increased to 4000 and the number of features increased to 20,
MLP and LASSO regression outperformed the benchmark scale
with the highest average sensitivity of 0.77 (95% CI 0.72-0.79)
observed in MLP when the sample size was 95,042, and the
number of features was 138. Meanwhile, all classifiers
demonstrated higher average specificities than the interRAI-HC

Frailty Scale in all scenarios (Figure 4). The RF and XGBoost
demonstrated higher specificities than LASSO regression, with
RF achieving the highest average specificities of 0.98 (95% CI
0.98-0.98) when the sample size was 95,042 and the number of
features was 138.

Based on the simulation results, it was observed that the test
size ratios did not have a significant impact on the average AUC,
sensitivities, and specificities, as shown in Figure 5. The
12-month and 6-month mortality predictions were comparable
(Figures S1-S4 in Multimedia Appendix 1). However, the
overall performance of logistic regression on the 12-month
mortality prediction was worse than the 6-month prediction.
Compared to the 6-month mortality prediction, machine learning
classifiers performed slightly better average sensitivities and
worse average AUCs and specificities on 12-month mortality
prediction. Tables S5-S18 and S20-S33 in Multimedia Appendix
1 summarize AUC, sensitivity, specificity, F1-score, accuracy,
and precision.

Our simulation was also conducted on the imbalanced data set,
and we observed a similar result in terms of average AUCs.
Regularized logistic regression had a higher AUC than
XGBoost, MLP, and RF, especially when the number of features
was less than or equal to 80 and the sample size was less than
or equal to 16,000. However, as the number of features and
sample sizes increased, XGBoost slightly outperformed
regularized logistic regression. In terms of sensitivities,
regularized logistic regression significantly outperformed
machine learning classifiers in all scenarios, while machine
learning classifiers had higher specificities than regularized
logistic regression in all scenarios. Additionally, the findings
for 12-month and 6-month mortality prediction were similar.
However, machine learning classifiers performed slightly better
in average sensitivities, but worse in average AUCs and
specificities for 12-month mortality prediction compared to
6-month mortality prediction. Multimedia Appendix 1 has been
included to summarize the results of the imbalanced data set
(Tables S34-S62 and Figures S9-S12 in Multimedia Appendix
1).
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Table 1. Sample characteristics of 6-month mortality.

6-month survived (n=82,641)6-month deceased (n=12,401)HCa (N=95,042)Characteristics

Age (years)

5213 (6.31)693 (5.59)5906 (6.21)65-69, n (%)

8558 (10.36)1065 (8.59)9623 (10.12)70-74, n (%)

13,514 (16.35)1770 (14.27)15,284 (16.08)75-79, n (%)

19,285 (23.34)2662 (21.47)21,947 (23.09)80-84, n (%)

20,594 (24.92)3312 (26.71)23,906 (25.15)85-89, n (%)

12,210 (14.77)2160 (17.42)14,370 (15.12)90-94, n (%)

2940 (3.56)654 (5.27)3594 (3.78)95-99, n (%)

327 (0.40)85 (0.69)412 (0.43)≥100, n (%)

82.52 (7.59)83.59 (7.71)82.66 (7.61)Mean (SD)

Gender, n (%)

51,218 (61.98)6362 (51.30)57,580 (60.58)Female

31,423 (38.02)6039 (48.70)37,462 (39.42)Male

Ethnicity, n (%)

72,462 (87.68)11,128 (89.73)83,590 (87.95)European

4591 (5.56)730 (5.89)5321 (5.60)Maori

2681 (3.24)267 (2.15)2948 (3.10)Pacific Island

2107 (2.55)197 (1.59)2304 (2.42)Asian

327 (0.40)25 (0.20)352 (0.37)Middle eastern or Latin American or African

473 (0.57)54 (0.44)527 (0.55)Other ethnicity

Marital status, n (%)

71,465 (86.48)10,936 (88.19)82,401 (86.70)Married or civil union or de facto

3947 (4.78)539 (4.35)4486 (4.72)Never married

1876 (2.27)240 (1.94)2116 (2.23)Widowed

5316 (6.43)683 (5.51)5999 (6.31)Separated or divorced

37 (0.04)3 (0.02)40 (0.04)Others

aHC: home care.

Figure 2. Average AUCs of classifiers and frailty scale for 6-month mortality prediction on balanced data set. AUC: area under the curve; HC: home
care; LR: logistic regression; MLP: multilayer perceptron; XGBoost: extreme gradient boosting.
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Figure 3. Average sensitivities of classifiers and frailty scale for 6-month mortality prediction on balanced data set. HC: home care; LR: logistic
regression; MLP: multilayer perceptron; XGBoost: extreme gradient boosting.

Figure 4. Average specificities of classifiers and frailty scale for 6-month mortality prediction on balanced data set. HC: home care; LR: logistic
regression; MLP: multilayer perceptron; XGBoost: extreme gradient boosting.

Figure 5. Average AUCs, sensitivities, and specificities of frailty scales for 6-month mortality prediction by test sizes on balanced data set. AUC: area
under the curve; LR: logistic regression; MLP: multilayer perceptron; XGBoost: extreme gradient boosting.
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Discussion

Principal Findings
In this retrospective study of older adults with the mandated
standardized interRAI-HC assessment in New Zealand, we
performed a series of simulations to evaluate the role of machine
learning classifiers, features, and sample sizes on mortality
prediction in identifying frail older individuals. We found that
in most scenarios, particularly when dealing with large sample
sizes and large numbers of features, 4 classifiers demonstrated
significantly higher AUCs and sensitivities compared to the
interRAI-HC Frailty Scale. All classifiers showed higher average
specificities than the interRAI-HC Frailty Scale across all
scenarios. Our simulation results showed that the predictive
performance differed significantly by using different numbers
of randomly selected features, varied sample sizes, and
performance measures. Compared to machine learning
classifiers, that is, RF, MLP, and XGBoost, logistic regressions
provided higher average AUCs on 6-month mortality prediction
when the number of features and sample sizes were not
excessive. Even with a high number of features and very large
samples, only slight improvements in average AUCs were
observed in MLP and XGBoost. However, when the number
of features and sample sizes were large, MLP demonstrated
superior sensitivity, whereas RF exhibited superior specificity.

Interpretation in the Light of the Published Literature
In recent years, machine learning techniques have started to be
used in various large-scale health care data sets to develop
predictive algorithms for various adverse health outcomes,
including hospitalization, mortality, and frailty in different
populations [18,20,24,56]. For example, a recent study showed
that by using only 10 or 11 features and 592 study subjects, the
machine learning classifier support vector machines identified
frail older adults with over 75% accuracy [45]. Another study
also showed that by using 16 features, the machine learning
classifier gradient boosting achieved 90% AUC on 30-day
mortality prediction in patients with heart failure [19]. However,
due to limitations in sample size and the number of available
features, no study has systematically examined the role of
methodological and database factors in the performance of
various machine learning techniques. To our knowledge, our
study is the first to use high-quality health care data of older
adults receiving home care to investigate the performance of
machine learning classifiers in identifying frail persons
compared to an existing clinical scale and conventional logistic
regressions. It is also the first to elucidate to what extent the
performance is associated with the choice of classifier, sample
size, and the number of features.

Contrary to our hypothesis, the application of machine learning
classifiers did not improve the performance of mortality
prediction for identifying frail older adults, as evaluated by
AUC. This finding indicates that regularized logistic regression
can perform sufficiently well and save computational resources
when a well-structured, high-quality data source is used. One
possible explanation for this result could be the nature of the
features, as most of the items used to identify frail older adults
are binary. Another reason may be the high reliability of

interRAI-HC data [21,57]. In a previous study that also used
machine learning to predict frailty status, logistic regression
demonstrated comparable or higher performance in various
scenarios [27]. This previous study suggested that the tree-based
classifiers performed better if the data set was of low quality
and contained bad features, and that MLP could generally show
a greater performance if the data set is large enough and has
complex structure with many layers. In our study, the reason
why MLP did not show superior performance on average AUCs
could be due to only 1 hidden layer being used.

On the other hand, when the number of features and sample
sizes were large, machine learning models demonstrated better
performance than logistic regression on both sensitivity and
specificity. Specifically, MLP exhibited superior sensitivity,
which means that it was more effective at accurately identifying
frail older adults receiving home care and were at high risk of
adverse health outcomes. In contrast, RF demonstrated superior
specificity, which means that it was better at correctly
identifying those who were not at high risk of adverse health
outcomes. In the context of frailty, where interventions such as
exercise, reduction of polypharmacy, and adequate nutrition
can attenuate and even reverse the condition [52], high
sensitivity is considered more important than high specificity
if a trade-off between the 2 measures is required.

Our study revealed that the RF and XGBoost classifiers had
significantly lower sensitivities and higher specificities than
logistic regression, while MLP had higher sensitivities and lower
specificities. This finding is consistent with previous studies on
identifying frailty. For example, a study using various machine
learning methods to develop predictive models for frailty
conditions in older individuals based on an administrative health
database [18] observed lower sensitivities and higher
specificities for RF when predicting urgent hospitalization, and
higher sensitivities and lower specificities for MLP when
predicting various health outcomes, including mortality, fracture,
and preventable hospitalization. Another similar study that
developed a validated case definition of frailty using machine
learning classifiers [27] found significantly lower sensitivities
and higher specificities for XGBoost and RF compared to
logistic regression on balanced data using the default threshold.
These findings collectively suggest that identifying frailty using
machine learning techniques remains challenging and future
research is warranted to investigate the performance of machine
learning models in other populations and care settings.

Implications for Research, Policy, and Practice
We did not identify any machine learning classifier that
performed consistently better than the others. The best classifier
differed across experimental conditions. Our results demonstrate
that the advantages of using machine learning techniques to
identify frail older adults become more apparent as the sample
size and number of features increase. The logistic regression
demonstrated higher or comparable AUC compared to machine
learning classifiers in most scenarios. This differs from previous
studies that show that machine learning classifiers outperformed
logistic regression or its variants in predicting adverse health
outcomes [18,20,24-26]. With a sample size of 95,042 and 138
features, Ridge logistic regression achieved an average AUC
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of 0.77 for 12-month mortality prediction. A logistic
regression-based model developed by a previous study using
interRAI-HC assessments of older persons in the New Zealand
cohort targeting older individuals with complex comorbidities
achieved an average AUC slightly higher (<0.01) than our result
for 12-month mortality prediction [36]. The previous study used
a slightly larger sample size of 104,436 and used a feature
selection process to include only the features contributing over
1% to the performance. This may imply that a larger sample
size and a feature selection process could further improve the
predictive performance of logistic regression.

Strengths and Limitations
Our study used data collected from the interRAI instruments,
standardized assessment instruments that have been developed
by a collaborative network of health care professionals [21].
The interRAI instruments have been adopted in several
jurisdictions to improve the quality of care for long-term care
recipients, including Canada, Finland, Belgium, Italy, and Hong
Kong. Therefore, the findings from this study may inform the
identification of frail older adults for early interventions in
similar care settings using interRAI assessments.

Our study has limitations. First, a successful measure of frailty
should demonstrate satisfactory criterion validity against various
adverse outcomes such as mortality, disability, hospitalization,
and nursing home placement. Our study considered only
mortality; therefore, it did not examine the accuracy of machine
learning algorithms in predicting other adverse outcomes.
Furthermore, we considered only 6- and 12-month mortality,
resulting in an imbalanced data set that may yield higher
specificity when using machine learning algorithms. It is also
unclear whether the results can be extrapolated to other time
intervals, such as 2 and 3 years. Further studies are needed to
evaluate the prediction power of frailty against other critical
outcomes. Second, the samples used in this study were limited
to older adults receiving home care in New Zealand and most

participants were Europeans. Future studies are warranted to
assess the generalizability of this study’s findings. Third, we
applied only 3 machine learning classifiers, chosen because
they demonstrated better performance in several previous
studies. The performance of other machine learning algorithms
compared to regularized logistic regression was not investigated.
Therefore, our conclusions are limited to the 3 algorithms
examined. Fourth, calibration was not performed when training
a machine learning classifier due to its additional computational
costs, which may have affected the evaluation of model
performance. The purpose of this study is to examine the impact
of sample size and feature selection on the overall performance
of each classifier in identifying frailty in older adults, rather
than focusing on probability estimation or the quality of
explanations provided by each model. It is worth noting that a
recently published study [58] found that uncalibrated RF and
XGBoost models performed similarly or even better than
calibrated models in terms of accuracy and AUC. Therefore,
the impact of calibration on our findings may not be severe.
Finally, comparing the main features that affect the performance
of different algorithms may improve the understanding of the
construct of frailty. However, since the features in our simulation
design were randomly selected across 1000 replications, the
most important features identified from each run-in condition
were not directly comparable. Therefore, we did not carry out
further investigation on feature importance under different
conditions.

Conclusions
Machine learning classifiers demonstrate considerable variability
in prediction performance when assessed using different metrics.
Regularized logistic regression is a reliable model for identifying
frail older adults receiving home care, as indicated by the AUC,
especially when the number of features and sample sizes are
not excessively large. Conversely, MLP shows superior
sensitivity, while RF demonstrates superior specificity when
the number of features and sample sizes is large.
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