
LANCET: ACCELERATING MIXTURE-OF-EXPERTS TRAINING VIA WHOLE
GRAPH COMPUTATION-COMMUNICATION OVERLAPPING

Chenyu Jiang 1 * Ye Tian 1 * Zhen Jia 2 Shuai Zheng 3 † Chuan Wu 1 Yida Wang 2

ABSTRACT
The Mixture-of-Expert (MoE) technique plays a crucial role in expanding the size of DNN model parameters.
However, it faces the challenge of extended all-to-all communication latency during the training process. Existing
methods attempt to mitigate this issue by overlapping all-to-all with expert computation. Yet, these methods
frequently fall short of achieving sufficient overlap, consequently restricting the potential for performance
enhancements. In our study, we extend the scope of this challenge by considering overlap at the broader training
graph level. During the forward pass, we enable non-MoE computations to overlap with all-to-all through careful
partitioning and pipelining. In the backward pass, we achieve overlap with all-to-all by scheduling gradient
weight computations. We implement these techniques in Lancet, a system using compiler-based optimization to
automatically enhance MoE model training. Our extensive evaluation reveals that Lancet significantly reduces the
time devoted to non-overlapping communication, by as much as 77%. Moreover, it achieves a notable end-to-end
speedup of up to 1.3 times when compared to the state-of-the-art solutions.

1 INTRODUCTION

Recent research has prompted a continuous trend of con-
structing larger DNN models across application domains.
However, directly adopting wider or deeper network archi-
tecture typically leads to a proportional increase in computa-
tion. In contrast, Mixture of Experts (MoE) (Shazeer et al.,
2017; Lepikhin et al., 2020) has the ability to increase the pa-
rameter size without escalating the total computation. It has
enabled scaling model parameters to the trillion-level (Yang
et al., 2021; Lin et al., 2021; Fedus et al., 2022; Nie et al.,
2022), showcasing the superior performance compared to
dense counterparts (Fedus et al., 2022; Hwang et al., 2023;
Rasley et al., 2020).

Efficient parallelization of MoE models requires assigning
distinct experts to separate accelerator devices (Lepikhin
et al., 2020). Yet, distributing input samples to these scat-
tered experts demands resource-intensive all-to-all commu-
nication (Fig. 1). High communication volume in all-to-all
operations significantly hampers the training speed of MoE
models (up to 40% of training time).

For non-MoE models, communication scheduling (Jayara-
jan et al., 2019; Peng et al., 2019) is an effective way to

*Work done during internship at AWS. †Work done while at
AWS. 1The University of Hong Kong, Hong Kong 2Amazon Web
Services, USA 3Boson AI, USA. Correspondence to: Chenyu Jiang
<jchenyu@connect.hku.hk>.

Proceedings of the 7 th MLSys Conference, Santa Clara, CA, USA,
2024. Copyright 2024 by the author(s).

All-to-allAll-to-all

Gate
Expert 1

Input
tokens

Expert 2

Expert 3
Expert 2
Expert 1
Expert 4

Gate

Expert 2
Expert 4
Expert 3
Expert 1

Expert 3

Expert 4

Output
tokens

Device 1

Device 2

Gather

Gather

Input
tokens

Output
tokens

Figure 1. An example MoE layer with 4 experts scattered on 2
devices. Assume top-1 gating is used. Blue (green) boxes repre-
sent computation (communication) operators. Data dependency
between operators are highlighted by red arrows. The Gate assigns
each input token to an expert. All-to-alls fetch expert input/output
from other devices. Gather restores the received tokens back to
their original order, matching the input sequence.

overlap the communication (for synchronizing model pa-
rameters) and backward propagation. However, they are
inapplicable for MoE models, which have a direct data
dependency between all-to-all and other computations (ex-
perts and non-MoE computation like self-attention), as in
Fig. 1. For MoE models, existing studies (Hwang et al.,
2023; He et al., 2022; Wang et al., 2022; Li et al., 2023b)
focused on alleviating this problem by partitioning opera-
tors into finer-grained ones and overlapping communication
with computation between different partitions. Nonetheless,
their focus region is limited to encompass only the all-to-all
communication and expert computation. In this paper, we
define the focus region as the subset of operators within
the training graph responsible for concurrent (overlapping)

Lancet: Accelerating MoE Training via Whole Graph Computation-Communication Overlapping

computation and communication. We have observed that
the all-to-all communication time is usually much longer
than expert computation time, thus the overall execution
time is still bounded by the all-to-all communication despite
overlapping (Fig. 2). The small focus region considered in
existing works limits the overlapping possibilities and thus
results in the sub-optimal performance.

In this paper, we extend the focus region to the whole
training graph and identify two more types of operators
to overlap: 1) weight gradient computation in backward
pass, which does not depend on all-to-all communication
and thus is able to overlap with it directly. 2) non-MoE
model computation in forward pass, which has dependency
with all-to-all but can perform overlapping by properly parti-
tioning. However, extending the focus region also raises new
challenges: 1) Extending overlapping to non-MoE computa-
tion requires partitioning along batch dimension. A direct
partition may cause mathematical in-equivalency since the
routing decision of many gating methods can be affected
by batch size. 2) Partitioning introduces more smaller op-
erators, thereby incurring GPU kernel launching overhead
and under-utilization of streaming multiprocessors. Over-
partitioning computations can lead to excessive overhead,
negating the benefits of overlapping. Conversely, insuffi-
cient partitioning hinders the full utilization of potential
overlap with all-to-all communication. Additionally, gating
methods limit the types of operators that can be partitioned.
Hence, extending the focus region introduces complexity in
establishing the best partitioning range, which refers to the
number of computation operators preceding and succeeding
an all-to-all communication operator that need to be parti-
tioned (and overlapped with the all-to-all communication).

To overcome those challenges, we propose Lancet, a sys-
tem designed to enhance the throughput of MoE model
training by considering the entire training graph as focus
region. Lancet leverages a compiler-based approach, pro-
viding us with increased flexibility for controlling operator
partitioning and scheduling. Distinct mechanisms are ap-
plied for the forward and backward passes during training.
In the forward pass, where nearly all computations rely on
all-to-all dependencies, it becomes necessary to partition
both computation and all-to-all operators to achieve efficient
overlaps. In the backward pass, we employ scheduling to
ensure the weight gradient computation overlaps with all-
to-all operations. The rationale behind this approach lies
in the backward pass, where there are an ample number of
weight gradient computation operators that can be scheduled
to enable near-complete overlap with all-to-all operations.
As a result, there is no need to explore partitioning solu-
tions, as is required in the forward pass. The method we
designed to overlap all-to-all with entire training graph does
not conflict with non-MoE model communication schedul-
ing strategies (Jayarajan et al., 2019; Peng et al., 2019). And

all transformations (scheduling and partitioning) maintain
mathematical equivalence (i.e., the model accuracy remains
unaffected by the optimizations) and can be kept transparent
to users.

In summary, our contributions include:

▷ For the first time, we expand the focus region to encom-
pass the entire training graph, mitigating the prolonged all-
to-all communication’s impact on MoE model training. This
extension enables us to discover new operators that can be
overlapped with all-to-all communication.

▷ We adopt a greedy algorithm to schedule each weight gra-
dient computation operator to overlap with the appropriate
all-to-all.

▷ We devise a partitioning scheme for MoE layers that al-
lows for the extension of partitioning to non-MoE computa-
tions while maintaining mathematical equivalency.

▷ We apply a dynamic programming based algorithm to
identify the optimal range of non-MoE computation for
partitioning and overlapping.

Comprehensive evaluations demonstrate that Lancet can de-
crease non-overlapping communication time by as much
as 77% and deliver an up to 1.3x end-to-end speedup
when compared to state-of-the-art solutions, including Deep-
Speed (Rasley et al., 2020) and Tutel (Hwang et al., 2023).

2 BACKGROUND AND MOTIVATION

2.1 Mixture of Experts (MoE)

Most MoE models (Shazeer et al., 2017; Lepikhin et al.,
2020) replace the feed-forward module in every two Trans-
former layers with multiple independent sub-networks (ex-
perts), each activated by a subset of input data. Different
experts are usually placed on distinct devices for efficient
parallelization. In this work, we assume non-MoE parts of
the model are replicated across the devices while receiving
different partitions of the training data (i.e., data parallelism).
The assignment (routing) of inputs to experts is decided by
a gating function at runtime.

Expert-parallelism Once the gating function determines
expert assignments, all-to-all communication transmits in-
puts to the respective devices. After expert processing, an-
other all-to-all operation sends their output back to the orig-
inal devices. Due to dynamic expert assignment at runtime,
token distribution among experts varies. To maintain static
tensor shapes (essential for certain frameworks/hardware
like XLA/TPU (Lepikhin et al., 2020)) and ensure balanced
computation across experts, a common approach is to re-
strict the maximum tokens assigned to each expert (expert
capacity, C) on each device (Lepikhin et al., 2020; Fedus
et al., 2022). Any excess tokens assigned to an expert are

Lancet: Accelerating MoE Training via Whole Graph Computation-Communication Overlapping

Tutel DeepSpeed
Orig. Curr. Opt. Orig. Curr. Opt.

0
200
400
600
800

1000
1200
1400

E
xe

c.
 T

im
e

(m
s)

1.00x
1.16x

1.36x

1.00x
1.10x

1.29x

16 GPUs

Tutel DeepSpeed
Orig. Curr. Opt. Orig. Curr. Opt.

0
200
400
600
800

1000
1200
1400

E
xe

c.
 T

im
e

(m
s)

1.00x
1.16x

1.48x

1.00x
1.09x

1.37x

32 GPUs

All-to-All Expert Computation Others

Figure 2. Breakdown of execution time when running a GPT-2
model with MoE layers using Tutel and DeepSpeed on Amazon
EC2 p3dn instances. Orig.: unoptimized execution time. Curr.:
performance upper-bound when optimized using current overlap-
ping methods (expert computation completely hidden by all-to-all).
Opt.: ideal execution time (all-to-all fully overlapped by computa-
tion).

discarded, while experts receiving fewer than C tokens are
zero padded.

Routing algorithms Routing is often computed by assign-
ing a gating score for each expert using a trainable linear
layer, and choosing k experts with highest scores (top-k
routing) (Lepikhin et al., 2020; Fedus et al., 2022). Re-
cent works also propose other routing methods, such as
hash-based (Roller et al., 2021) or random expert assign-
ment (Zuo et al., 2022; Chen et al., 2023) and expert-choice
routing (Zhou et al., 2022) (experts choose top-k tokens with
highest scores). Routing algorithms significantly influence
MoE model training, impacting expert balance (Zhou et al.,
2022), communication costs (He et al., 2022) and more. The
upcoming sections also demonstrate how routing algorithms
affect feasible optimizations.

2.2 Overlapping all-to-all and experts

Existing techniques aim to mitigate long latency all-to-all
impacts on training by overlapping it with expert compu-
tation (Hwang et al., 2023; He et al., 2022). This involves
partitioning all-to-all and experts along the capacity dimen-
sion and forming a communication-computation pipeline
with (only) all-to-all and experts (Fig. 4b). As shown in
Fig. 2, we often observe the all-to-all time significantly sur-
passes that of the experts (up to 3.36x). Therefore, these
techniques can only conceal the execution time of experts,
while the bottleneck execution time for all-to-all communi-
cation remains unaffected.

2.3 Opportunities and Challenges

By extending the focus region to the whole training graph,
we identify more opportunities that can overlap with all-to-
all communications.

Opportunity 1: Weight gradient computation. Compu-
tation of the weight gradient in layer N , which is essential

𝑌 = 𝑋𝑊

𝑋

𝑊

MatMul 𝑌

𝜕𝐿
𝜕𝑋

=
𝜕𝐿
𝜕𝑌

⋅ 𝑊! ,
𝜕𝐿
𝜕𝑊

= 𝑋! ⋅
𝜕𝐿
𝜕𝑌

𝜕𝐿
𝜕𝑌

MatMul
(𝑑𝑊)

𝑋!

𝑊!

𝜕𝐿
𝜕𝑊

𝜕𝐿
𝜕𝑋

Forward Pass Backward Pass

MatMul
(𝑑𝑋)

ReLU𝑍

	𝑑𝑅𝑒𝐿𝑈

𝑋 = 𝑅𝑒𝐿𝑈(𝑍)

𝜕𝐿
𝜕𝑍

…

…

Weight
Update

… …

(a) Forward and backward pass of Z = ReLU(X);Y = ZW .
dX: activation gradient computation; dW : weight gradient com-
putation. Gray block: tensors; Blue block: operators. Note that
dReLU (and further back-propagation of ∂L

∂Z
, if needed) does not

depend on dW .

𝐴2𝐴!"#

time

schedule

Reduced execution time

𝑑𝑋!"#$%&' 𝑑𝑊!"#$%&'

𝐴2𝐴!"#

…

…𝑑𝑋!"#$%&' 𝑑𝑊!"#$%&'

𝑑𝑋()*%𝑑𝑊()*
%𝑑𝑋++,%𝑑𝑊++,%

𝑑𝑋++,% 𝑑𝑋()*%

𝑑𝑋-%𝑑𝑊-%

𝑑𝑋-% 𝑑𝑊++,% 𝑑𝑊-% 𝑑𝑊()*
%

𝐴2𝐴!"# 𝐴2𝐴!"#

(b) Overlapping all-to-all communication by scheduling weight
gradient computation (dW). Superscripts on operators indicate
the layer number, with the first layer after the MoE layer (during
forward) numbered layer N . Subscripts indicates the type of
operators: ffn: non-expert feed-forward; o: output projection
in self-attention; kqv: key, query and value projection; exps:
experts. Other operators are ignored. While the figure shows
overlapping all-to-all in layer N − 1 with dW s in layer N , in
general the all-to-all can be overlapped with any dW s in layer
N + k, k ≥ 0.

Figure 3. Scheduling weight gradient computation to overlap with
all-to-all.

for updating model parameters, is independent of all-to-all
communication of previous layers N − 1, N − 2, . . . , 1 in
the backward pass. Consequently, it can be scheduled to
overlap with all-to-all, allowing for flexibility in optimizing
the training time (Fig. 3).

Opportunity 2: Non-MoE computation. In existing sys-
tems (e.g., (Hwang et al., 2023; He et al., 2022)), computa-
tion before (e.g., self-attention) and after (e.g., the following
Transformer layer) the MoE layer does not overlap with
all-to-all communication since their limited focus region.
Nevertheless, if we partition non-MoE computations and in-
tegrate them into the computation-communication pipeline,
we can create additional opportunities to overlap operations
with the all-to-all communication (Fig. 4c, 4d).

Challenge 1: How to perform mathematically equivalent
partition. Consider feeding a tensor with dimension B×S
(B as batch size, S as sequence length) into an MoE layer
(in Fig. 5). The tokens are re-arranged according to their
target experts, undergoing an all-to-all with shape E × C
(E as the total number of experts, C as the expert capacity)
for distributing to the corresponding device. Each expert
processes the C received tokens, followed by a reciprocal
all-to-all (not shown in the figure). Reverting tokens to their
original order yields the MoE layer’s output. The existing

Lancet: Accelerating MoE Training via Whole Graph Computation-Communication Overlapping

𝑆𝑒𝑙𝑓𝐴𝑡𝑡𝑛!

𝐴2𝐴
𝐺𝑎𝑡𝑒! 𝐸𝑥𝑝𝑒𝑟𝑡𝑠 𝑆𝑒𝑙𝑓𝐴𝑡𝑡𝑛!"# 𝐹𝐹𝑁!"# …

𝐴2𝐴

(a) No overlapping
𝑆𝑒𝑙𝑓𝐴𝑡𝑡𝑛! 𝐺𝑎𝑡𝑒! 𝐸! 𝑆𝑒𝑙𝑓𝐴𝑡𝑡𝑛!"# 𝐹𝐹𝑁!"# …

𝐴2𝐴$ 𝐴2𝐴$𝐴2𝐴# 𝐴2𝐴#

𝐸"

(b) Overlapping all-to-all and expert computation

𝑆𝑒𝑙𝑓𝐴𝑡𝑡𝑛! 𝐺𝑎𝑡𝑒! 𝐸! …

𝐴2𝐴" 𝐴2𝐴"𝐴2𝐴# 𝐴2𝐴#

𝐸" 𝑆𝐴"!$# 𝐹𝐹𝑁!"#$ 𝐹𝐹𝑁$"#$𝑆𝐴#!$#

(c) Overlap all-to-all, experts and the non-MoE computation after
the current MoE layer.

𝑆𝐴!" 𝐺!" 𝐸!

𝐴2𝐴! 𝐴2𝐴!𝐴2𝐴# 𝐴2𝐴#

𝐸" 𝑆𝐴!"$# 𝐹𝐹𝑁!"#$ 𝐹𝐹𝑁$"#$𝑆𝐴#"$#𝑆𝐴#" 𝐺#" …

(d) Also overlap non-MoE computation before the current MoE
layer.

Figure 4. Performance gain of different overlapping types.

methods all partition the all-to-all and experts at the capacity
dimension (C), and thus the tokens in same partition appear
in irregular locations in the re-arranged MoE output, e.g.,
belong to different sequences across the batch (Fig. 5a).
Therefore, the following computation must wait until all
partitions finish execution, interrupting the pipeline.

In order to overlap forward pass non-MoE computation
with all-to-all, the MoE input and output must be partitioned
along the batch dimension. However, directly partitioning
the input (micro-batching) may result in extra token drop-
ping since the expert capacity also drops accordingly. For
example, consider a input batch (with corresponding ex-
pert capacity C) partitioned into two micro-batches, each
processed with expert capacity 1

2C. Assume the first micro-
batch contains 3

4C tokens for an expert, and the second
contains 1

4C tokens for that expert. If not partitioned, then
all tokens can fit into expert capacity C thus no token will
be dropped. When directly partitioned, 1

4C tokens will be
dropped from the first micro-batch since it now only has
expert capacity 1

2C(Fig. 5b). Such change in mathematical
equivalency is undesirable as it may affect model perfor-
mance.

To avoid this effect, we implement special gating operators
that pass capacity information between partitions (e.g., when
the first partition (micro-batch) uses 3

4C capacity, the second
partition will adjust its remaining capacity to 1

4C), preserv-
ing the exact token-to-expert mapping and token dropping
as the un-partitioned case. This however implies that any
partition can send any amount of token (ranging from 0 to
C) to an expert (while tokens sent from all partitions add up
to C) (Fig. 5c). We implement irregular-shaped all-to-all to
efficiently handle such a dynamic communication pattern
(details discussed in Sec. 6).

0 0 1 0

0 1 1 1

0 0 1 0

0 1 1 1

S

E

C
C

B

MoE Input All-to-All Experts MoE Output

B
0 0 0 0

1 1 1 1

0 0 0 0

1 1 1 1
S

(if partitioned)

(a) Operator partition dimensions of Tutel. All-to-all and experts
are partitioned at capacity dimension; tokens belong to different
partitions appear at irregular locations in the output of MoE layer.

0 0 1

0 1 1

0 0 1 0

0 1 1 1

S

E

C
C

B

MoE Input All-to-All Experts MoE Output

B
0 0 0

1 1 1

0 0 0

1 1 1
S

(b) Direct micro-batching. All-to-all and experts capacity also
drops proportionally, causing extra token dropping.

0 0 1 0

0 1 1 1

0 0 1 0

0 1 1 1

S

E

C
C

B

MoE Output

B
0 0 0 0

1 1 1 1

0 0 0 0

1 1 1 1
S

MoE Input All-to-All Experts

(c) Micro-batching with irregular expert capacity. All-to-all and
experts are irregularly partitioned, while MoE inputs and outputs
are partitioned at batch dimension (facilitating further pipelining).

Figure 5. Operator partitioning scheme in an MoE layer. Number
in each token shows their assigned expert. Tokens of the same
color belong to the same sequence.

Challenge 2: How to determine the optimal partition
range for non-MoE operators. GPU kernel launches in-
volve startup overhead (Rotem et al., 2018), which occurs
with each launch. Partitioned computation operators deal
with smaller input tensors, potentially leading to GPU core
under-utilization. Similarly, smaller communication opera-
tors might not fully utilize network bandwidth. So it is not
always optimal to partition the entire Transformer layer be-
fore and after MoE layer, which may increase training time
due to partition overheads. Fig. 6 shows this phenomena.
The optimal partition range (a set of computation ops around
all-to-all) depends on model specification, input size, the
underlying computation power and also network bandwidth.
Our extension of the focus region to whole training graph
makes the decision more challenging.

Furthermore, the gating methods limit the partitioning op-
portunities. Some gating methods assign target experts
based on the information calculated over the entire batch of
tokens. For example, Batch-prioritized Routing (Riquelme
et al., 2021) sorts tokens in a batch first by their “impor-
tance score” (the sum of top-k largest gating scores) and
then assigns tokens to experts. So tokens with lower scores
would be dropped first. Splitting along batch dimension
would thus cause differences in token dropping. For such
gating methods, we can only extend partitioning after the
MoE layer (Fig. 4c). For other gating methods whose ex-
pert assignment can be decided from partial batches (e.g.,
Switch (Fedus et al., 2022) or Random (Zuo et al., 2022;
Chen et al., 2023) gating), we can extend partitioning to
both after and before the MoE layer (Fig. 4d).

Lancet: Accelerating MoE Training via Whole Graph Computation-Communication Overlapping

Orig. 0 3 6 9 12 15 18
Partition Range (ms)

0.7
0.8
0.9
1.0
1.1

N
or

m
al

iz
ed

 T
im

e

DP Solution

8 Layers, Seq. Len. 512, Batch Size 64

(a) Less layers, large batch size

Orig. 0 3 6 9 12 15
Partition Range (ms)

0.7
0.8
0.9
1.0
1.1

N
or

m
al

iz
ed

 T
im

e

DP Solution

16 Layers, Seq. Len. 1024, Batch Size 12

(b) More layers, small batch size

Figure 6. Effect of partition range on GPT-2 MoE model forward
time on 16 A100 GPUs (32 experts). X axis shows how many ops
(measured in their execution time) before and after the MoE layer
is included in the partition. Orig.: no partitioning. 0: only partition
all-to-all and experts (as in Tutel).

Weight
Gradient

Computation
Labelling

Best Fit
Schedule

Caching Op Profiler

Model IR

Pipeline
Schedule

Partition Axis
Inference

Optimized Model IR

Weight Gradient
Computation
Schedule Pass

Operator Partition Pass

Comm. Cost Model

Partition Range Selection

Figure 7. Overview of Lancet modules.

3 LANCET OVERVIEW

To address the opportunities and challenges mentioned
above, we devised Lancet, a compiler-based solution de-
signed to optimize MoE model training. The key advan-
tage of this approach is the explicit extraction of a model’s
computation and communication through compilers’ inter-
mediate representation (IR), granting precise control over
operator execution and simplifying the implementation of
weight gradient computation scheduling and the partition of
operators.

Lancet adopts compiler passes to enhance MoE model train-
ing and resolve associated issues. At a higher level, it encom-
passes two primary optimization passes: weight gradient
computation scheduling and operator partitioning, modify-
ing the backward and forward pass of the model, respec-
tively. Fig. 7 gives an overview of Lancet.

1) Weight Gradient Computation Schedule Pass (§4)
takes the model IR as input, which is a sequence of instruc-
tions, and re-orders the instructions corresponding to weight
gradient computation operators to overlap with all-to-alls
during backward propagation. Dependency analysis is first
performed to identify the weight gradient computation in-
structions that can be overlapped with each all-to-all (§4.1).
Then for each all-to-all op, we employ a best-fit greedy al-
gorithm to choose a set of weight gradient computation ops
with comparable total execution time to maximize overlap

(§4.2).

2) Operator Partition Pass (§5) receives the IR with weight
gradient computation scheduled and further optimizes the
all-to-alls in the forward pass through partitioning and
pipelining. A dynamic programming algorithm is employed
to find the optimal partition range for non-MoE ops (§5.1).
During this process, a partition axis inferencer (§5.2) em-
ploys a constraint programming algorithm to deduce the
partition axis for each instruction, facilitating partitioning of
IR. Then, a pipeline scheduler (§5.3) estimates the cost of
the resulting computation-communication pipeline, guiding
the dynamic programming algorithm.

These optimizations are supported by a Caching Op Pro-
filer, which profiles and caches the execution time of all
ops in the model IR. Profiling is done once for each (parti-
tioned) operation with the same shape; the cached execution
time can be subsequently reused. Communication costs
(e.g., partitioned all-to-all) are estimated by a Communica-
tion Cost Model. The communication cost model is built
by profiling communication operations across various in-
put sizes (e.g., 1KB, 2KB, 4KB,· · · , up to the maximum
possible communication used in models), and the cost is
linearly interpolated among these points. Since Lancet uses
irregular-shaped all-to-alls (Fig. 10), their execution time
depend on the combination of actual amount of data to be
communicated, which is not known at compilation time.
Therefore, we resort to a static-shape approximation: the
cost of an n-partitioned all-to-all with original capacity C
is obtained by querying the profiled (uniform-shaped) cost
model at capacity C/n. We observe that such approxima-
tion suffices to produce a good prediction of overall iteration
time during our experiments (Fig. 14).

4 WEIGHT GRADIENT COMPUTATION
SCHEDULE PASS

The weight gradient computation schedule pass takes the
model IR describing the training iteration as input and re-
orders the instructions to overlap weight gradient compu-
tation with all-to-alls. The IR is represented as a sequence
of instructions I = [I1, I2, · · · , IN]; each instruction is
characterized by its input tensors x, output tensors y, and
operator f : In = (xn,yn, fn), representing the operation
yn1 , y

n
2 , · · · , yn|yn| = fn(xn

1 , x
n
2 , · · · , xn

|xn|).

4.1 Weight Gradient Computation Labelling

Due to the fine-grained nature of instructions, identifying
weight gradient computation instructions becomes challeng-
ing. While there is no direct dependency between weight
gradient computation and all-to-alls, the weight gradient
computations must adhere to the constraints imposed by the
chain rule, which imposes scheduling restrictions. There-

Lancet: Accelerating MoE Training via Whole Graph Computation-Communication Overlapping

fore, we first identify the set of weight gradient computation
instructions that can be overlapped with each all-to-all by
analyzing instruction dependencies. Consider a dependency
graph G = (I, E), where each directed edge Ei,j asserts
that Ij depends on Ii, i.e., Ij consumes the output of Ii
thus must be executed after it. Then, a weight gradient com-
putation instruction Ii can be overlapped with an all-to-all
instruction Ia if and only if there is no directed path between
Ii and Ia in G. Such paths can be discovered by a simple
Depth- or Breadth-first Search algorithm. For each all-to-all
instruction Ia, we compute the set of instructions that can
overlap with it as WIa , which is used in the scheduling
algorithm.

4.2 Weight Gradient Computation Scheduling

We then optimize the scheduling of labelled weight gradi-
ent computation operations to minimize the overall training
time. Determining the schedule of weight gradient computa-
tion is equivalent to deciding an assignment of each weight
gradient computation operator to an all-to-all with which it
will overlap. Let IW be the sub-sequence of I containing
all weight gradient computation instructions, and Ia be the
sub-sequence containing all all-to-alls. Let variable xi,j = 1
if IWi (the ith weight gradient computation instruction) is as-
signed to Iaj (the jth all-to-all), and otherwise xi,j = 0. The
execution time of IWi (Iai) is tWi (tai). Then maximization of
total overlapped all-to-all execution time can be formulated
as the following integer program:

max
x

|Ia|∑
j=1

min{taj ,
|IW |∑
i=1

tWi · xi,j}

s.t.
|Ia|∑
j=1

xi,j ≤ 1, ∀ i ∈ [1, |IW |] (1)

xi,j = 0, ∀ IWi /∈WIa
j (2)

The min{taj ,
∑|IW |

i=1 tWi · xi,j} gives the amount of over-
lapped time in each all-to-all. Constraint (1) states that each
weight gradient computation instruction can only be used
to overlap with at most one all-to-all. (2) restricts the as-
signment based on instruction dependency calculated during
weight gradient computation labelling.

Such a problem is a generalized assignment problem (GAP)
with non-linear objective and additional constraints (2).
Since GAP is already known to be NP-hard (Martello &
Toth, 1990), we resort to a greedy heuristic. We sequentially
iterate through Ia: for each Iai , weight gradient computa-
tion instructions are greedily chosen from WIa

i , that are not
already used to overlap with other all-to-alls and minimize
the absolute difference between the all-to-all execution time
and sum of all weight gradient computation to be overlapped
with it. We proceed to the next all-to-all when the current

Algorithm 1 Weight Gradient Computation Schedule Pass

Input: I - a sequence of instructions
Output: I ′ - scheduled instructions

1: G← CreateDependencyGraph(I)
2: /* Weight gradient computation labelling */
3: Ia ← [Ii ∈ I|f i is all-to-all]
4: WIi ← {} for each Ii ∈ Ia
5: for Ii ∈ Ia, Ij ∈ I, Ii ̸= Ij do
6: if no directed path between Ii and Ij then
7: WIi .insert(Ij)
8: end if
9: end for

10: /* Weight gradient computation scheduling */
11: ta, tW ← GetInstrExecTime(I)
12: Wused ← {}
13: Asg← {} /* map recording the assignment results */
14: for i ∈ |Ia| do
15: tu ← tai /* unoverlapped time of all-to-all i */
16: while tu > 0 and WIai ∩ (I −Wused) ̸= ∅ do
17: /* Find available instr that best matches tu */
18: jmin ← argminj{|tu−t

W
j |

∣∣IWj ∈WIai , IWj /∈Wused}

19: tu ← tu − tWjmin

20: Wused.insert(IWjmin
)

21: Asg.insert({IWjmin
: Iai })

22: end while
23: end for
24: I′ ← ReorderInstrs(Asg)

one is fully overlapped.

After deciding the assignment of weight gradient computa-
tion, we reorder the instructions, placing them right after
their overlapping all-to-all instructions. This ensures the
weight gradient computation start execution immediately
following the launch of all-to-all communication. Alg. 1
presents the entire weight gradient computation scheduling
process.

5 OPERATOR PARTITION PASS

With the scheduled instructions from the weight gradient
computation scheduling pass, we next hide all-to-alls in the
forward pass through extensive operator partitioning.

5.1 Partition Range Selection

Selecting a proper range of non-MoE computation to parti-
tion is crucial to maximize overlap and minimize overheads.
Different gating functions affect the type of non-MoE op-
erators we can partition (only ops after the MoE layer, or
both before and after the MoE layer). The number of par-
titions (how many parts each operator is partitioned into)
also affects model performance. We introduce a dynamic
programming-based algorithm to optimize the aforemen-
tioned decisions.

Lancet: Accelerating MoE Training via Whole Graph Computation-Communication Overlapping

Given an instruction sequence (for forward pass) I =
[I1, I2, · · · , IN], let T (n) denote the end-to-end execution
time (after considering overlapping) of instructions 1 to
n when we have optimally partitioned these instructions.
Then, we have

T (n) = min
1≤i≤n−1

{T (i) + min
1≤k≤K

P (i, n, k)}

where P (i, n, k) is the end-to-end execution time of instruc-
tions i to n if they are partitioned into k parts and their
computation and communication components (all-to-all)
arranged to overlap with each other. K is the maximum
allowed number of partitions which is a hyper-parameter.
If there is no valid way to partition instructions i to n
(e.g., if unsupported gating function is included), we let
P (i, n, k) = ∞. The partition axes (dimensions through
which the input and output tensors will be split) of each
instruction i, . . . , n is determined by our partition axis in-
ferencer. Then the partitioned instructions are scheduled
to overlap each other (form a computation-communication
pipeline) by our pipeline scheduler, which reports the end-to-
end execution time after partition as P (i, n, k). The optimal
end-to-end execution of the entire forward pass of the model
is thus T (N).

The dynamic programming algorithm requires O(N2K)
evaluations of cost P (i, n, k) in total, since there are N
T (n)s to evaluate and each T (n) requires K(n − 1) eval-
uations of P (i, n, k). In practice, the number of partitions
k is limited by the size of the partitioned dimension (e.g.,
if we are partitioning along the batch dimension and the
batch size is 4, we can have at most 4 partitions). Parti-
tion overhead also limits very fine-grained partitioning (in
our experiments, we never observed the optimal number
of partitions exceeding 4). Therefore, K can be safely set
to a relatively small value (e.g., 8). To further reduce op-
timization time, we group several consecutive instructions
together based on execution time (e.g., total execution time
sum up to 2ms) and perform dynamic programming on
these groups instead. Due to partition overhead, an optimal
communication-computation pipeline would likely be not
very long. Therefore we can also limit the range of i (i.e., set
a maximum length limit on the partition ranges). Suppose
there are N ′ instruction groups in total and the maximum
partition range is G groups. Then the algorithm requires an
O(N ′GK) number of P (i, n, k) evaluations in total.

5.2 Partition Axis Inference

To identify the partition axis of each instruction’s input and
output, we formulate a constraint satisfaction problem. For
the nth instruction in the input sequence, let anxi

represent
the partition axis of its ith input, and anyi

for its ith output.
For each different operator (f in the instructions), we define
function F f

Z : ax × ay 7→ Z which takes the input and out-

Gate

All-to-All

Experts

All-to-All

Gather

NP (Not
Partitioned)

1(capacity)

1

1

NP

NP

Experts
only

Gate

All-to-All

Experts

All-to-All

Gather

𝐴!""

0 (batch)

Experts + ops
after MoE layer

𝐴!""

𝐴!""

𝐴!""

Gate

All-to-All

Experts

All-to-All

Gather

0 (batch)

𝐴!""

0 (batch)

𝐴!""

𝐴!""

𝐴!""

pipeline continues

NP

Experts + ops
before and after

MoE layer

(a) Partition axis of data tensors
in different partition types. Or-
ange arrow indicates pipeline
begin and end locations, where
extra partition/reconstruction in-
structions are needed.

Pa
rt
iti
on

1 1 1

2 2 2 Re
co
ns
tr
uc
t

Partition

Pa
rt
iti
on

1 2 1 2 1 2

Re
co
n.

Schedule

Instruction Sequence

(b) Transforming an instruction
sequence to form a pipeline.
Yellow (orange) circles denote
input (output) tensors. Blue
rectangle: computation instruc-
tion; Green rectangle: commu-
nication.

Figure 8. Operator partitioning.

put axes of an instruction I as input and returns a constraint
ZI (a boolean expression). Such a constraint specifies how
the input and output axes of the instruction should relate
for a valid partition (i.e., the original output can be recon-
structed from the partitioned ones). Take matrix multiplica-
tion Y = X ·W as an example: we can split X along the
row (1st) dimension and not change W , resulting in Y parti-
tioned in the row axis (

[
X1

X2

]
W =

[
X1W
X2W

]
); or we can keep

X and split W along the column (2nd) axis, partitioning
Y in the column axis (X[W1,W2] = [XW1, XW2]). To
capture the above possible partition axes combinations, we
have the following constraint:

(ax1
= 0∧ax2

= −1∧ay1
= 0)∨(ax1

= −1∧ax2
= 1∧ay1

= 1)

ax1 , ax2 , ay1 are partition axes for X (the 1st input), W (the
2nd input) and Y (the 1st output) respectively (dimension
index starting from 0; -1 means not partitioned). We also
introduce a special partition axis Airr for each MoE-related
operator, to represent the irregular partition of all-to-all
and experts in our extended computation-communication
pipeline (Fig. 5c). The constraints for all-to-alls and experts
are written to accept partition at capacity axis if the partition
range (i, n) only covers the all-to-all and experts, and Airr,
otherwise. Correspondingly, we write FZ of the MoE gather
operator to only allow its input to be partitioned at Airr but
not the capacity axis, and FZ of the gating function (if it
can be partitioned) to allow batch-partitioned inputs and
generate Airr partitioned outputs (Fig. 8a).

If the constraints of all instructions are satisfied, every orig-
inal tensor can be reconstructed from the partitioned ones,
asserting correctness of the partition. We also require that
the partition axes of the same tensor cannot be changed,
since switching the partition axes requires data from other
partitions thus interrupting the computation-communication
pipeline. Putting the above together, we have the following
constraint satisfaction problem:

Lancet: Accelerating MoE Training via Whole Graph Computation-Communication Overlapping

1 1 1 2 2 2

1

1 1

2 1

2 2 1 1 1

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

2

2 2 2
Stage 1

Stage 2

Stage 3

Stage 4

Stage 5
Scheduled timeline

time

Figure 9. Pipeline schedule by stages. Blue rectangle: computation
instructions; Green: communication. Numbers indicate partition
index (i.e., the nth partition).

find a

s.t. F fi

Z (aix,a
i
y) = 1, ∀ i ∈ [1, N]

aiyj
= akxl

, ∀ (i, j, k, l) ∈ D

where D describes tensor dependency between operators:
indices (i, j, k, l) ∈ D if the jth output of instruction i is
fed to the lth input of instruction k.

Solving the problem (e.g., using an off-the-shelf solver like
OR-Tools (Perron & Furnon, 2019)) gives the partition axes
of all input/output tensors of the partitioned operators. The
corresponding partitioned instructions are generated and
sent to the pipeline scheduler (Fig. 8b).

5.3 Pipeline Scheduling

To organize the partitioned instructions into a computation-
communication pipeline, the instructions in each partition
are divided into stages. Each stage contains all computation
or communication that can be consecutively executed. In-
structions in each stage of a partition are always scheduled
together. Within each stage, instructions from the different
partition are ordered by partition index (e.g., the first parti-
tion always gets scheduled first, and then the second and so
on). The resulting schedule is demonstrated in Fig. 9.

To obtain the end-to-end (pipelined) execution time of parti-
tioned operators P (i, n, k), we simulate the execution time-
line by calculating the start and end time of each instruction
relative to pipeline start. Specifically, each instruction’s start
time is the maximum over (i) the end time of all instructions
that it depends on and (ii) the end time of the previous com-
putation/communication instruction (of the same type) in
the scheduled order. P (i, n, k) is thus the end time of the
last instruction, which is reported back to guide the dynamic
programming procedure.

6 IMPLEMENTATION

Lancet is generally applicable to any deep learning compiler
for training. We adopt RAF (Yu et al., 2023), an open-source
compiler extended from Apache TVM (Chen et al., 2018),
as our underlying compiler, which provides a comprehen-
sive compilation of DL models. We implement Lancet with

G

C

Input Tensor
2

3
1

4

2
3
1
4

All-To-All

sends

2
2
1
3

recvs

Send(2, tgt=0)
Send(3, tgt=1)
Send(1, tgt=2)
Send(4, tgt=3)

Recv(2, src=0)
Recv(2, src=1)
Recv(1, src=2)
Recv(3, src=3)

All-To-All

G

C

Output Tensor
2
2

1
3

Figure 10. Implementation of irregular all-to-all. G: number of
GPUs participating in the all-to-all, G = E/El (El: the number
of experts per GPU). On each device, an input and output buffer
of fixed shape (G × C) is allocated. Number in the Input/Output
Tensors indicate the actual size of the data to be sent/received on
the GPU. The first All-to-All communicates the data sizes to be
exchanged; the second All-to-All communicates the actual data.
Send/Recv(x, tgt/src=y) indicates an NCCL send/recv primitive
that sends/receives a data chunk of size x to/from y.

13K LoC in C++. Communication primitives such as all-
to-all are implemented based on NCCL (NVIDIA, 2021).
Lancet also implements partition constraints (FZ) for all
computation operators in common Transformer-based mod-
els. The MoE dispatching ops are implemented based on
Tutel’s (Hwang et al., 2023) kernel.

Since Lancet is fully implemented in two optimization
passes as IR transformations, users only need to enable them
in RAF’s optimization pass manager, without any modifica-
tion to the existing code-base. The three hyper-parameters
for speeding up the optimization process (i.e., ρ, the maxi-
mum number of partitions; γ, the group size; ι, maximum
partition range in dynamic programming) can be set through
environment variables.

Irregular all-to-all (all-to-allv in MPI (Message Passing In-
terface Forum, 2021) terminology) sends different amounts
of data to different target devices. In MoE layers, the amount
of data to send to each device depends on the gating function
and is only known at runtime (Fig. 5c). To implement such
dynamic communication scheme in a static-shaped system
like Lancet, we allocate the input and output tensors based
on the maximum amount of data to be sent (i.e., capacity
of each expert). As shown in Fig. 10, at runtime, the input
buffer is only partially filled based on the result of the gat-
ing function. A first all-to-all is performed to exchange the
amount of data to be sent and received across devices, fol-
lowed by a second all-to-all only sending and receiving the
required amount of data. The all-to-alls are implemented via
a grouped NCCL communication consisting of NCCLSends
and NCCLRecvs.

7 EVALUATION

Experiment Setup We evaluate Lancet on an Amazon
EC2 p4de.24xlarge cluster and a p3dn.24xlarge
cluster, each with 8 nodes. Each p4de node has 8 NVIDIA
A100 80GB GPUs and 4x100 Gbps NICs. Each p3dn
node has 8 NVIDIA V100 GPUs and one 100 Gbps
NIC. We refer to the cluster of p4de.24xlarge and

Lancet: Accelerating MoE Training via Whole Graph Computation-Communication Overlapping

p3dn.24xlarge nodes as A100 and V100 respectively,
for the rest of the paper. All nodes run in the same docker
environment where we used Ubuntu 20.06 with CUDA 11.3
and NCCL 2.12.12 with PXN enabled.

Benchmark Models and Datasets We conduct our evalu-
ations on MoE versions of the GPT-2 (Radford et al., 2019)
model (from Huggingface transformers (Wolf et al.,
2020) version 4.18.0). The base models are enhanced by re-
placing every other Transformer block’s feed-forward layer
with an MoE layer. Two variants of the model are used: the
smaller model (GPT2-S-MoE) has 12 layers with hidden
dimension size 768; the larger one (GPT2-L-MoE) has 24
layers with hidden size 1024. In all experiments, we scale
the number of experts along with the number of GPUs: each
GPU always hosts two experts. The SGD optimizer (with
momentum) is used for training the model.

For all experiments, we use the WikiText (Merity et al.,
2016) dataset as model inputs. We fix the input sequence
length to 512 and use the largest batch size that can fit
into the GPU memory for each model: on A100, we
use batch size 24 per GPU for GPT2-S-MoE and 48
for GPT2-L-MoE. On V100, we use batch size 16 for
GPT2-S-MoE and 8 for GPT2-L-MoE.

Baselines We compare Lancet’s training performance
with DeepSpeed (version 0.5.8, without Tutel’s ker-
nels) (Rasley et al., 2020) and Tutel (version 0.3) (Hwang
et al., 2023). Tutel implements overlapping between all-to-
all and expert computation. For each experiment with Tutel,
we search through the overlapping degree (the number of
partitions) of 1, 2, 4 and 8 and report the best result.Tutel
and DeepSpeed are both built on PyTorch (Paszke et al.,
2019), whose performance on computation ops may be
different from RAF (Yu et al., 2023). Therefore, we also
include results of RAF without Lancet’s modifications for
comparison.

Hyper Parameters We set the maximum number of par-
titions ρ to 8, except when excessive partitions cause out-
of-memory (OOM) errors. In that case, we reduce it to 4
(and 2 if still OOMs). We set the group size γ according to
the model execution time so that there are 5 groups between
each MoE layer. The maximum partition range ι is set to be
the execution time between two MoE layers, so one pipeline
will be formed per MoE layer.

7.1 Throughput

We compare Lancet’s training throughput against baselines
using different numbers of GPUs. We do weak scaling, i.e.,
keep the local batch size fixed at each GPU while the effec-
tive total batch size of the model scales linearly. Since gating
method constraints the available pipeline range, we run the

experiments with two different gating methods: Switch (Fe-
dus et al., 2022) gate which allows overlapping with com-
putation both before and after the MoE layer (Fig. 4d) and
Batch Prioritized (Riquelme et al., 2021) gate which only
allows overlapping with computation after the MoE layer
(Fig. 4c).

Fig. 11 shows that Lancet achieves up to 1.21x (1.17x on
average) speed up compared to the baselines on the A100
cluster, and up to 1.3x (1.22x on average) on V100 clus-
ter when using Switch gate. We find DeepSpeed exhibits
slightly higher memory requirements than other frameworks,
leading to OOM on A100 when running the GPT2-S-MoE
model (OOM does not happen on V100 since a smaller
batch size is used, i.e., 24 v.s. 16). When using Batch
Prioritized gate (Fig. 12), we observed up to 1.24x (1.17x
on average) speed up on the A100 cluster, and up to 1.24x
(1.21x on average) on V100 cluster. Despite more con-
straint pipeline range, the achieved speed up for Batch Prior-
itized gate is overall similar to that of the Switch gate. This
is because despite only pipelining with computation after
the MoE layer, significant amount of overlapping can still
happen. Our dW scheduling is also unaffected by the gating
methods. The maximum achieved speed up on V100 is
lower when using Batch Prioritized gate though, indicating
that partitioning may have a larger impact on V100.

As shown in Fig. 13, Lancet achieves a higher level of
computation-communication overlapping than baselines, re-
ducing non-overlapped communication time by up to 69%
(A100) and 83% (V100) compared to RAF, 66% (A100)
and 77% (V100) compared to Tutel. The trade-off of ap-
plying partition-pipeline is also clearly shown in Fig. 13.
While Lancet’s optimizations decrease the end-to-end exe-
cution time, the total execution time of computation (Non-
overlapped Computation + Overlapped) ops can be higher
than that of RAF, due to partition overheads. Since Lancet
implements irregular all-to-alls and do not transmit any
padding tokens between experts, the overall communication
time (Non-overlapped Communication + Overlapped) can
be lower than baselines.

7.2 Accuracy of cost model

Fig. 14 shows the accuracy of Lancet’s cost model, used to
predict the iteration time after applying each optimization.
The prediction error is very small (3.83%). Such an accurate
cost model provides useful information to guide our weight
gradient computation scheduling and DP-based operator
partitioning algorithms.

7.3 Optimization Time

Fig. 15 shows the time taken to optimize the models in our
experiments. Optimization time is dominated by the opera-
tor partition pass (Sec. 5) since weight gradient computation

Lancet: Accelerating MoE Training via Whole Graph Computation-Communication Overlapping

16 32 64
Number of GPUs

0

500

1000

1500

Ite
ra

tio
n

Ti
m

e
(m

s)

DeepSpeed RAF Tutel Lancet

(a) GPT2-S-MoE, V100.

16 32 64
Number of GPUs

0

500

1000

1500

Ite
ra

tio
n

Ti
m

e
(m

s)

DeepSpeed RAF Tutel Lancet

(b) GPT2-L-MoE, V100.

16 32 64
Number of GPUs

0

200

400

600

800

Ite
ra

tio
n

Ti
m

e
(m

s)

DeepSpeed RAF Tutel Lancet

(c) GPT2-S-MoE, A100.

16 32 64
Number of GPUs

0

500

1000

Ite
ra

tio
n

Ti
m

e
(m

s)

DeepSpeed RAF Tutel Lancet

(d) GPT2-L-MoE, A100.

Figure 11. Training iteration time when using Switch gate. Red cross indicates out-of-memory.

16 32 64
Number of GPUs

0

250

500

750

1000

Ite
ra

tio
n

Ti
m

e
(m

s)

RAF Tutel Lancet

(a) GPT2-S-MoE, V100.

16 32 64
Number of GPUs

0

500

1000

1500

Ite
ra

tio
n

Ti
m

e
(m

s)

RAF Tutel Lancet

(b) GPT2-L-MoE, V100.

16 32 64
Number of GPUs

0

200

400

600

800

Ite
ra

tio
n

Ti
m

e
(m

s)

RAF Tutel Lancet

(c) GPT2-S-MoE, A100.

16 32 64
Number of GPUs

0

500

1000

Ite
ra

tio
n

Ti
m

e
(m

s)

RAF Tutel Lancet

(d) GPT2-L-MoE, A100.

Figure 12. Training iteration time when using Batch Prioritized gate.

Lancet Tutel RAF DS
Framework

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Ite
ra

tio
n

Ti
m

e
(s

)

GPT2-S-MoE

Lancet Tutel RAF DS
Framework

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Ite
ra

tio
n

Ti
m

e
(s

)

GPT2-L-MoE

Non-overlapped Communication Overlap Non-overlapped Computation

(a) On 4 V100 nodes

Lancet Tutel RAF
Framework

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ite
ra

tio
n

Ti
m

e
(s

)

GPT2-S-MoE

Lancet Tutel RAF DS
Framework

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Ite
ra

tio
n

Ti
m

e
(s

)

GPT2-L-MoE

Non-overlapped Communication Overlap Non-overlapped Computation

(b) On 4 A100 nodes.
Figure 13. Iteration time decomposition. DS: DeepSpeed.

schedule (Sec. 4) uses a fast greedy algorithm. Since every
device shares the same computation graph, the optimization
time is less affected by the number of GPUs used and more
by the number of layers in the model. The optimization
time of most models bench-marked is below 20 minutes.
Our optimization also only requires one GPU to run (for
bench-marking execution time of partitioned computation
ops).

7.4 Ablation Study

To show the effects of weight gradient computation schedul-
ing and pipelining separately, we conduct an ablation study

600 700 800 900 1000 1100 1200
Predicted Time (s)

600

800

1000

1200

A
ct

ua
l T

im
e

(s
) Avg percentile error: 3.83%

Figure 14. Prediction accuracy of Lancet’s cost model. Data ag-
gregated from all models bench-marked on all clusters during our
experiments.

16 32 64
Number of GPUs

0

250

500

750

1000

O
pt

im
iz

at
io

n
Ti

m
e

(s
) GPT2-S-MoE

GPT2-L-MoE

(a) V100 cluster

16 32 64
Number of GPUs

0

250

500

750

1000

1250

O
pt

im
iz

at
io

n
Ti

m
e

(s
) GPT2-S-MoE

GPT2-L-MoE

(b) A100 cluster

Figure 15. Lancet’s optimization time when using Switch gate.

on 4 A100 and V100 nodes. In Fig. 16, the relative speed-
up is computed by dividing the training throughput under
each scheme by that of RAF without any Lancet optimiza-
tions. For both models, applying only scheduling or only
pipelining yields a lower speedup compared to using them
together. On both clusters, GPT2-L-MoE is affected more
by disabling weight gradient computation scheduling, while
the two optimizations have more similar performance gain
on GPT2-S-MoE. This is because GPT2-L-MoE has more
parameters and layers while using a smaller batch size, thus
having higher partition overheads, rendering weight gra-
dient computation scheduling more effective compared to
operator partition.

Lancet: Accelerating MoE Training via Whole Graph Computation-Communication Overlapping

Baseline -dW Schedule -Pipeline Full
Ablation Type

1.0
1.1
1.2
1.3

S
pe

ed
 U

p GPT2-S-MoE
GPT2-L-MoE

(a) on 4 V100 nodes

Baseline -dW Schedule -Pipeline Full
Ablation Type

1.00
1.05
1.10
1.15

S
pe

ed
 U

p GPT2-S-MoE
GPT2-L-MoE

(b) on 4 A100 nodes

Figure 16. Ablation study on 4 A100 and V100 nodes. dW :
weight gradient computation.

8 DISCUSSION AND RELATED WORKS

Compatibility with other large-scale training techniques
While Lancet is evaluated with data and expert parallelism,
the techniques are in principle compatible with most other
commonly used training optimizations. Weight gradient
scheduling only utilizes operator dependency during back-
ward propagation, thus unaffected by most distributed train-
ing sharding techniques. Some techniques introduce extra
communication which may interfere with partition-based
all-to-all overlapping. FSDP/ZeRO3 (Rajbhandari et al.,
2020) inserts additional all-gather communication in the
forward passes, which may require additional scheduling
to avoid interference with overlapped all-to-all. Tensor par-
allelism (Shoeybi et al., 2019) requires all-reduce commu-
nication after self-attention; Ring-attention (sequence par-
allelism) (Liu et al., 2023) communicates the key-value
blocks during the attention process. If different devices or
communication channels are used for expert and tensor/se-
quence parallelism (e.g., inter-node vs. intra-node), the
overlapped all-to-all communication can be arranged to exe-
cute concurrently with tensor/sequence parallelism traffic.
Investigating the efficient orchestration and overlapping of
communication arising from various sharding techniques,
particularly the intricate patterns generated by automatic
sharding (Zheng et al., 2022), remains future work.

Optimizing irregular communication and expert com-
putation Lancet’s partition produces irregular-shaped all-
to-alls and expert computation. While we use a simple
NCCL based implementation (Fig. 10), better communi-
cation implementations targeting such dynamic workload
may further improve the performance. Similarly, the shape
irregularity in expert computation may cause extra compu-
tation due to padding. Block-sparse expert kernels (e.g.,
MegaBlocks (Gale et al., 2023)) can be further applied to
accelerate the computation.

MoE architectures that facilitate overlapping PR-
MoE (Rajbhandari et al., 2022) and DeepSeek-MoE (Dai
et al., 2024) use a shared expert which all tokens are routed
to. The all-to-all communication (for non-shared experts)
can also be overlapped with the computation of such shared
expert. Lancet’s approach can be applied to a wider-range of
MoE models that use traditional architectures, e.g., (Jiang
et al., 2024).

Other MoE training optimization techniques Tu-
tel (Hwang et al., 2023) and FasterMoE (He et al., 2022) are
two popular frameworks optimizing for MoE models. Both
frameworks support overlapping all-to-all and expert com-
putation. Tutel (Hwang et al., 2023) also implements fast
dispatching kernels, better all-to-all algorithm, and adap-
tive parallelism switching for dynamic workloads. Faster-
MoE (He et al., 2022) proposes techniques to handle im-
balanced expert selection and to select experts based on
network topology. These optimizations are orthogonal to
ours and can potentially be used in conjunction. (Zhang
et al., 2022) proposes to run two copies of the model on the
same device, overlapping computation and communication
between different model replicas. However, splitting the
input among the two model replicas may result in mathe-
matical in-equivalence (e.g., due to extra token dropping).
(Li et al., 2023a) optimizes MoE training by prioritizing
all-to-all traffic over all-reduce traffic, avoiding bandwidth
contention and improving all-to-all latency. This method
can also be used in conjunction with Lancet.

9 CONCLUSION

This paper presents Lancet, a system to automatically op-
timize MoE model training. We extend the optimization
space of current methods and seek whole-training-graph-
level opportunities to overlap all-to-all communication. In
the forward pass, we overlap all-to-all with both expert
and non-MoE computation through proper partitioning and
pipelining. The optimal partition range is determined by a
dynamic programming algorithm. In the backward pass, we
schedule weight gradient computation to overlap all-to-all
using an best-fit greedy algorithm. Experimental evaluation
shows that Lancet reduces non-overlapped communication
time by up to 77%, and achieves up to 1.3x end-to-end speed
up compared to state-of-the-art solutions.

10 ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
valuable feedback. This work was supported by an Amazon
Research Award (ARA) on AWS AI and grants from Hong
Kong RGC under the contracts HKU 17208920, 17204423
and C7004-22G (CRF).

Lancet: Accelerating MoE Training via Whole Graph Computation-Communication Overlapping

REFERENCES

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen,
H., Cowan, M., Wang, L., Hu, Y., Ceze, L., Guestrin, C.,
and Krishnamurthy, A. TVM: An automated end-to-end
optimizing compiler for deep learning. In Proc. of OSDI,
pp. 578–594, 2018.

Chen, T., Zhang, Z., Jaiswal, A. K., Liu, S., and Wang,
Z. Sparse moe as the new dropout: Scaling dense and
self-slimmable transformers. In Proc. of ICLR, 2023.

Dai, D., Deng, C., Zhao, C., Xu, R. X., Gao, H., Chen,
D., Li, J., Zeng, W., Yu, X., Wu, Y., Xie, Z., Li, Y. K.,
Huang, P., Luo, F., Ruan, C., Sui, Z., and Liang, W.
DeepSeekMoE: Towards ultimate expert specialization
in mixture-of-experts language models. arXiv preprint
2401.06066, 2024.

Fedus, W., Zoph, B., and Shazeer, N. Switch transform-
ers: Scaling to trillion parameter models with simple
and efficient sparsity. The Journal of Machine Learning
Research, 23(1):5232–5270, 2022.

Gale, T., Narayanan, D., Young, C., and Zaharia, M.
MegaBlocks: Efficient Sparse Training with Mixture-
of-Experts. Proc. of MLSys, 5, 2023.

He, J., Zhai, J., Antunes, T., Wang, H., Luo, F., Shi, S.,
and Li, Q. FasterMoE: modeling and optimizing training
of large-scale dynamic pre-trained models. In Proc. of
PPoPP, pp. 120–134, 2022.

Hwang, C., Cui, W., Xiong, Y., Yang, Z., Liu, Z., Hu, H.,
Wang, Z., Salas, R., Jose, J., Ram, P., et al. Tutel: Adap-
tive mixture-of-experts at scale. Proc. of MLSys, 5, 2023.

Jayarajan, A., Jinliang, W., Gibson, G., Fedorova, A., and
Pekhimenko, G. Priority-based parameter propagation
for distributed dnn training. In Proc. of MLSys, 2019.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary,
B., Bamford, C., Chaplot, D. S., de las Casas, D., Hanna,
E. B., Bressand, F., Lengyel, G., Bour, G., Lample, G.,
Lavaud, L. R., Saulnier, L., Lachaux, M.-A., Stock, P.,
Subramanian, S., Yang, S., Antoniak, S., Scao, T. L.,
Gervet, T., Lavril, T., Wang, T., Lacroix, T., and Sayed,
W. E. Mixtral of experts. arXiv preprint 2401.04088,
2024.

Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang, Y.,
Krikun, M., Shazeer, N., and Chen, Z. GShard: Scaling
giant models with conditional computation and automatic
sharding. In Proc. of ICLR, 2020.

Li, J., Jiang, Y., Zhu, Y., Wang, C., and Xu, H. Accelerating
distributed MoE training and inference with Lina. In Proc.
of ATC, pp. 945–959, 2023a.

Li, S., Lai, Z., Hao, Y., Liu, W., Ge, K., Deng, X., Li,
D., and Lu, K. Automated tensor model parallelism with
overlapped communication for efficient foundation model
training. arXiv preprint 2305.16121, 2023b.

Lin, J., Yang, A., Bai, J., Zhou, C., Jiang, L., Jia, X., Wang,
A., Zhang, J., Li, Y., Lin, W., et al. M6-10t: A sharing-
delinking paradigm for efficient multi-trillion parameter
pretraining. arXiv preprint 2110.03888, 2021.

Liu, H., Zaharia, M., and Abbeel, P. Ring attention with
blockwise transformers for near-infinite context. arXiv
preprint 2310.01889, 2023.

Martello, S. and Toth, P. Knapsack problems: algorithms
and computer implementations. John Wiley & Sons, Inc.,
1990.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models. arXiv preprint 1609.07843,
2016.

Message Passing Interface Forum. MPI: A Message-
Passing Interface Standard Version 4.0, June 2021. URL
https://www.mpi-forum.org/docs/mpi-4.
0/mpi40-report.pdf.

Nie, X., Zhao, P., Miao, X., and Cui, B. HetuMoE: An effi-
cient trillion-scale mixture-of-expert distributed training
system. arXiv preprint 2203.14685, 2022.

NVIDIA. NCCL, 2021. https://developer.
nvidia.com/nccl.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. PyTorch: An imperative
style, high-performance deep learning library. In Proc. of
NeurIPS, pp. 8024–8035, 2019.

Peng, Y., Zhu, Y., Chen, Y., Bao, Y., Yi, B., Lan, C., Wu,
C., and Guo, C. A generic communication scheduler for
distributed dnn training acceleration. In Proc. of SOSP,
pp. 16–29, 2019.

Perron, L. and Furnon, V. OR-Tools. https:
//developers.google.com/optimization/,
2019.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language Models are Unsupervised Multi-
task Learners, 2019. https://openai.com/blog/
better-language-models/.

Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. ZeRO:
Memory optimizations toward training trillion parameter
models. In Proc. of SC, pp. 1–16, 2020.

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/

Lancet: Accelerating MoE Training via Whole Graph Computation-Communication Overlapping

Rajbhandari, S., Li, C., Yao, Z., Zhang, M., Aminabadi,
R. Y., Awan, A. A., Rasley, J., and He, Y. DeepSpeed-
MoE: Advancing mixture-of-experts inference and train-
ing to power next-generation AI scale. In Proc. of ICML,
volume 162, pp. 18332–18346, 2022.

Rasley, J., Rajbhandari, S., Ruwase, O., and He, Y. Deep-
Speed: System optimizations enable training deep learn-
ing models with over 100 billion parameters. In Proc. of
KDD, pp. 3505–3506, 2020.

Riquelme, C., Puigcerver, J., Mustafa, B., Neumann, M.,
Jenatton, R., Susano Pinto, A., Keysers, D., and Houlsby,
N. Scaling vision with sparse mixture of experts. Proc.
of NeurIPS, 34:8583–8595, 2021.

Roller, S., Sukhbaatar, S., Weston, J., et al. Hash layers for
large sparse models. In Proc. of NeurIPS, volume 34, pp.
17555–17566, 2021.

Rotem, N., Fix, J., Abdulrasool, S., Catron, G., Deng, S.,
Dzhabarov, R., Gibson, N., Hegeman, J., Lele, M., Lev-
enstein, R., et al. Glow: Graph lowering compiler tech-
niques for neural networks. arXiv preprint 1805.00907,
2018.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q. V., Hinton, G. E., and Dean, J. Outrageously large
neural networks: The sparsely-gated mixture-of-experts
layer. In Proc. of ICLR, 2017.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,
J., and Catanzaro, B. Megatron-lm: Training multi-
billion parameter language models using model paral-
lelism. arXiv preprint 1909.08053, 2019.

Wang, S., Wei, J., Sabne, A., Davis, A., Ilbeyi, B., Hecht-
man, B., Chen, D., Murthy, K. S., Maggioni, M., Zhang,
Q., et al. Overlap communication with dependent compu-
tation via decomposition in large deep learning models.
In Proc. of ASPLOS, pp. 93–106, 2022.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite,
Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame, M.,
Lhoest, Q., and Rush, A. M. Transformers: State-of-the-
art natural language processing. In Proc. of EMNLP, pp.
38–45, 2020.

Yang, A., Lin, J., Men, R., Zhou, C., Jiang, L., Jia, X.,
Wang, A., Zhang, J., Wang, J., Li, Y., et al. M6-t: Ex-
ploring sparse expert models and beyond. arXiv preprint
2105.15082, 2021.

Yu, C. H., Fan, H., Huang, G., Jia, Z., Liu, Y., Wang, J.,
Zheng, Z., Zhou, Y., Shen, H., Shao, J., et al. RAF:
Holistic compilation for deep learning model training.
arXiv preprint 2303.04759, 2023.

Zhang, S., Diao, L., Wu, C., Wang, S., and Lin, W. Acceler-
ating large-scale distributed neural network training with
SPMD parallelism. In Proc. of SoCC, pp. 403–418, 2022.

Zheng, L., Li, Z., Zhang, H., Zhuang, Y., Chen, Z., Huang,
Y., Wang, Y., Xu, Y., Zhuo, D., Gonzalez, J. E., et al.
Alpa: Automating inter- and intra-operator parallelism
for distributed deep learning. In Proc. of OSDI, pp. 559–
578, 2022.

Zhou, Y., Lei, T., Liu, H., Du, N., Huang, Y., Zhao,
V. Y., Dai, A. M., Chen, Z., Le, Q. V., and Laudon, J.
Mixture-of-experts with expert choice routing. In Proc.
of NeurIPS, 2022.

Zuo, S., Liu, X., Jiao, J., Kim, Y. J., Hassan, H., Zhang,
R., Gao, J., and Zhao, T. Taming sparsely activated
transformer with stochastic experts. In Proc. of ICLR,
2022.

