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Abstract—Peer-to-peer (P2P) streaming technologies can take
advantage of the upload capacity of clients, and hence can scale
to large content distribution networks with lower cost. A fun-
damental question for P2P streaming systems is the maximum
streaming rate that all users can sustain. Prior works have studied
the optimal streaming rate for a complete network, where every
peer is assumed to be able to communicate with all other peers.
This is, however, an impractical assumption in real systems. In
this paper, we are interested in the achievable streaming rate
when each peer can only connect to a small number of neighbors.
We show that even with a random peer-selection algorithm and
uniform rate allocation, as long as each peer maintains
downstream neighbors, where is the total number of peers in
the system, the system can asymptotically achieve a streaming
rate that is close to the optimal streaming rate of a complete
network. These results reveal a number of important insights
into the dynamics of the system, based on which we then design
simple improved algorithms that can reduce the constant factor
in front of the term, yet can achieve the same level of
performance guarantee. Simulation results are provided to verify
our analysis.

Index Terms—Distributed control, live streaming, peer-to-peer
(P2P) networks, sparse connectivity, streaming capacity.

I. INTRODUCTION

W ITH the proliferation of high-speed broadband ser-
vices, the demand for rich multimedia content over

the Internet, in particular high-quality video delivery over the
Internet, has kept increasing. Streaming video directly from
the server requires a large amount of upload bandwidth at
the server, which can be very costly. The service quality can
also be poor when the clients are far away from the server. In
addition, it may be difficult for the server bandwidth to keep
up when the demand is exceedingly high. There have been
different approaches to offload traffic from the server, using
either content distribution network (CDN) or peer-to-peer
(P2P) technologies. Deploying a large CDN can introduce a
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high fixed cost. In contrast, P2P technologies are particularly
attractive because they take advantage of the upload bandwidth
of the clients, which does not incur additional cost to the video
service provider. Several well-known commercial P2P live
streaming systems have been successfully deployed, include
CoolStreaming [2], PPLIVE [3], TVAnts [4], UUSEE [5], and
PPStream [6]. A typical P2P streaming system can now offer
thousands of TV channels or movies for viewing and may serve
hundreds of thousands of users simultaneously [5].
In contrast to the practical success of these P2P streaming sys-

tems, the theoretical understanding of the performance of P2P
streaming seems to be lagging behind, which may impede fur-
ther improvement of P2P live streaming. A basic question that
can be asked is what the maximum streaming rate that all users
can sustain for all possible policies is. This question has been
studied under the assumption of a complete network, where each
peer can connect to all other peers simultaneously. Under this
assumption, the maximum streaming capacity has been found
in [7], and both centralized and distributed rate allocation algo-
rithms to achieve this maximum streaming capacity have been
developed [7]–[10]. However, the assumption of a complete
network is impractical for any large-scale P2P streaming sys-
tems. In a real P2P streaming system, typically each peer is only
given a small list of other peers (which we refer to as neighbors)
chosen from the entire population, and each peer can only con-
nect to this subset of neighboring peers (neighbors may not be
close in terms of physical distance). The number of neighboring
peers is often much smaller than the total population, in order
to limit the control overhead.
When each peer only has a small number of neighbors, the

P2P network can be modeled as an incomplete graph with
node-degree constraints. In this case, the streaming capacity
of P2P systems becomes more complicated to characterize.
Liu et al. [11] investigate the case when the number of down-
stream peers in a single substream tree is bounded. However,
the number of neighbors that each peer could have over all
substreams can still be very large (in the worse case, it can
be connected to all the other peers simultaneously). Some
approximated and centralized solutions to solve the optimal
streaming capacity problem on a given incomplete network
have been proposed in [12]. However, for large-scale P2P
streaming systems, such a centralized approach will be difficult
to scale. Liu et al. [13] proposed a Cluster-Tree algorithm
to construct a topology subject to a bounded node-degree
constraint, which could achieve a streaming rate that is close
to the optimal streaming capacity of a complete network. This
result gives us hope that, even with node-degree constraints,
a P2P network may achieve almost the same streaming rate
as that of a complete network. However, the Cluster-Tree
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algorithm is not a completely decentralized algorithm because
it requires the tracker (a central entity) to apply the Bubble
algorithm at the cluster level. The Bubble algorithm is a central-
ized algorithm. Some other works such as SplitStream [14] and
Chainsaw [15] have also studied the problem of how to improve
the streaming capacity when there is a node-degree constraint.
However, these works did not provide theoretical results on
the achievable streaming rate. To the best of our knowledge,
there is no fully distributed algorithm in the literature that can
achieve close-to-optimal P2P streaming capacity in incomplete
networks.
In this paper, we are interested in the following question:

Without centralized control, how many neighbors does a peer
in a large P2P network need to maintain in order to achieve
a streaming capacity that is close to the optimal streaming ca-
pacity of an otherwise complete network? Furthermore, can we
develop fully distributed algorithms for peer selection and rate
allocation to achieve the close-to-optimal streaming capacity?
This paper provides some interesting and positive answers to
these questions. We first show that, if each peer has
neighbors, where is the total number of peers in the system,
close-to-optimal streaming rate can be achieved with proba-
bility approaching 1 as goes to infinity. Furthermore, in order
to achieve this goal, each peer only needs to choose
downstream neighbors uniformly and randomly from the en-
tire population, and simply allocates its upload capacity evenly
among all downstream peers. Only the server needs a slightly
different peer-selection policy (see Section II-B for details).
The results that we obtain have a similar flavor as scaling-law

results in wireless ad hoc networks [16]. Although such results
only hold when the size of the network is large, they do pro-
vide important insights into the dynamics of the system. For ex-
ample, our analysis indicates that, with a random peer selec-
tion strategy, for each user the most likely bottle neck for its
streaming capacity is at the “last hop,” i.e., the sum of the upload
capacity allocated to this user by its immediate upstream neigh-
bors. This insight suggests that we could focus on balancing the
capacity at the last hop when designing new distributed resource
allocation algorithms for P2P streaming. Based on this insight,
we then design an alternative algorithm that can substantially
reduce the number of neighbors required to achieve the same
probability of attaining the near-optimal streaming rate. This
improved algorithm is still very simple and can be implemented
in a distributed fashion. Hence, we believe that the insights from
these results can be very helpful for designing more efficient
control algorithms for P2P streaming. Finally, although due to
space constraints we focus in this paper on single-channel P2P
systems (i.e., only one video is served), we believe that the re-
sults and insights obtained here can also be generalized to multi-
channel P2P systems [17]. Readers can refer to [1] for examples.

II. SYSTEM MODEL AND MAIN RESULT

In this section, we will show that even without central-
ized control, neighbors are sufficient for large P2P
streaming networks. Specifically, we will show that just by
letting each peer select its neighbors randomly
and do uniform rate allocation among these neighbors, the
close-to-optimal streaming rate could be achieved with high
probability when the network size is large.

A. System Model

We consider a peer-to-peer live streaming network with
peers and one source . In the rest of the paper, we will use

the terms “source” and “server” interchangeably. Similarly,
we will use the terms “peer,” “node,” and “user” interchange-
ably. Denote the set of all peers and the source as (thus,

). We assume that the source has an infinitely
long video stream to be streamed to all peers and it has a
fixed upload capacity . Let denote the upload capacity of
peer . For ease of exposition, we use a simple ON–OFF model
to model the heterogeneity and random variation of the upload
capacity: each peer has an upload capacity of with
probability and an upload capacity of with probability

, i.i.d. across peers. Thus, an ON peer represents a user
with large upload capacity, while an OFF peer represents a user
with low upload capacity.We assume that . Like other
works [7], [12], [13], [18], we assume that the download ca-
pacity and the core network capacity are sufficiently large, and
hence the only capacity constraints are on the upload capacity.
Each peer has a fixed set of downstream
neighbors. Similarly, the source has a set of downstream
peers. We can then model the P2P network as a directed and
capacitated random graph [19]. If , assign a directed
edge from to . Let the set of all edges be . Note that
there may be multiple peers that have a common downstream
neighbor. Define and be the streaming rate from peer
and source , respectively, to peer .
Remark: The above model seems to assume that each peer’s

upload capacity is fixed in time. Nonetheless, we note that the
results in the paper can also be applied to the case when the up-
load capacity is time-varying. Specifically, assume that the up-
load capacity follows a time-varying but stationary stochastic
process. Then, the above model can be viewed as a snapshot of
such a system at any given time instant. Hence, the results re-
ported in the rest of the paper will also hold for each snapshot in
time for such a system with a stationary marginal distribution.
(Note that a similar “snapshot” assumption has also been used in
other prior work, e.g., [7], [12], [13], and [18].) In addition, we
note that the ON–OFF model can be viewed as the most extreme
case of heterogeneous upload capacity. In fact, among all pos-
sible distributions of the peers’ upload capacity that are between

and that have the same mean , the ON–OFF model has
the largest variance. Hence, the uncertainty/variability of the
ON–OFF model will be the largest, and the performance of the
system will also likely be the worst. Based on this relationship,
we can also generalize the main conclusions of this paper to
other distributions for the upload capacity (see also the numer-
ical results in Section IV). However, due to space constraints,
we have to omit the details. Interested readers can refer to our
online technical report [20].
The values of , , , and depend on the peer-se-

lection and rate-allocation algorithm. Given such an algorithm,
we can define the “streaming capacity” of the system as the
maximum rate that the source can distribute the streaming
content to all peers. For example, for a complete network,
we have and . Under such an
idealized setting, [7] shows that the optimal streaming capacity

is , and it can be achieved by setting
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Fig. 1. Illustration of the neighbor selection and a cut.

and for all . Note that the
function is a concave function. Therefore, the expecta-

tion of the above optimal streaming capacity satisfies

(1)

For ease of exposition, we refer to as “the optimal streaming
capacity” throughout the rest of this paper. For our ON–OFF
model of upload capacity, this optimal streaming capacity is
equal to . However, as we discussed
in Section I, the assumption of a complete network is imprac-
tical. In this paper, we are interested in the streaming capacity
of an incomplete network, which can be calculated by the min-
imum cuts. Specifically note that for a given user , a cut that
separates and is defined by dividing the peers in into a set
of size that contains the server, and the complemen-

tary set of size that contains the peer , i.e.,

The capacity of the cut is defined as
. See Fig. 1 for illustration.

Let denote the minimum-cut capacity, which is
the minimum capacity of all cuts that separate the source and
the destination . It is well known that this min-cut capacity is
equal to the maximum rate from to . Let
denote the min-min-cut that is the minimum cut of all individual
min-cut capacities from the source to each destination within
a set , i.e.,

The streaming capacity of the network is then equal to
[21]. Note that given the graph and

the capacity of each edge, this streaming capacity can be
achieved with simple transmission schemes, e.g., with network
coding [22], [23] or with a latest-useful-chunk policy [8]. How-
ever, it may require global knowledge and centralized control
in order to optimally construct the network graph and allocate
the upload capacity. A natural question is then the following:
Without centralized control, can the streaming capacity over an

incomplete network approach the optimal streaming capacity
of a complete network? In Section II-B, we will provide

a simple and distributed peer-selection and rate-allocation
algorithm that can achieve this with high probability when the
network size is large.

B. Algorithms
We will now give explicit description of our simple control

algorithm. First, we use a random peer-selection algorithm.
Specifically, each peer randomly selects downstream neigh-
bors uniformly from all other peers. On the other hand, the
server selects downstream neighbors uniformly and ran-
domly among the ON peers. We note that uniformly random
peer-selection is very easy to implement in practice, even with
dynamic peer arrivals and departures. Specifically, note that
the number of upstream neighbors of a peer will be a binomial
random variable (sum of Bernoulli random variables
with mean ). Note that the mean of is . Thus, when a
new peer joins the system, it simply contacts peers chosen
uniformly randomly among the existing peers. Then, each con-
tacted peer will choose one of its current downstream neighbor
uniformly randomly, break this downstream connection, and
take the new peer as the downstream neighbor. Furthermore,
the new peer selects downstream neighbors uniformly
randomly among the existing peers. On the other hand, when
a peer leaves the system, all of its upstream neighbors simply
reselect a new downstream neighbor randomly. With this
mechanism, it is easy to verify that, at any point in time, the
set of downstream neighbors of each peer is uniformly
distributed among the current set of active peer.
Second, we use a uniform rate-allocation algorithm, i.e., each

peer simply divides its upload capacity equally among all of
its downstream neighbors in . Therefore, each peer in the set
receives a streaming rate from peer . Similarly, each

downstream peer of the server receives from the server.
Under the above scheme, the link capacity is given by

if ,
if ,
otherwise.

Note that since and are chosen randomly, ’s are also
random variables. We define another import parameter for the
total capacity that each peer directly receives from its upstream
neighbors, which is given by . We will see
that this value is the main factor that determines the streaming
capacity from the source to each node.
Remark: Since an ON peer represents a user with low upload

capacity, the above scheme implies that, regardless of each
user’s upload capacity, it will choose the same number
of downstream neighbors uniformly and divide its capacity
evenly among these downstream neighbors. In [20], we use
this model and show that, even with a general distribution of
upload capacity, neighbors are still sufficient to attain
a close-to-optimal streaming capacity. For details, please refer
to [20].
Somewhat surprisingly, we will show that, as long as

, the algorithm achieves close-to-optimal
streaming capacity, with probability approaching 1 as
(Theorem 1).
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Remark: Note that the server only chooses ON peers as
its downstream neighbors. This is essential for achieving the
close-to-optimal streaming capacity. To see this, note that the
optimal streaming capacity of a complete network is also
constrained by the server capacity [see (1)]. If the server had
used a substantial fraction of its upload capacity to serve ON
peers, intuitively the rest of the peers would then suffer a lower
streaming rate. With the same intuition, one would think that
the peers directly connected to the server also need to be careful
in choosing their downstream neighbors. However, this turns
out to be unnecessary. For our main result (Theorem 1) to hold,
no other peers (except the server) are required to differentiate
their downstream neighbors. As readers will see, this is because
those cuts with only containing the downstream neighbors
of play a small role in the overall probability of attaining the
close-to-optimal streaming capacity.
We also note that the above algorithm uses the “push”

model, where upstream peers choose downstream neighbors.
An alternate model is the “pull” model, where downstream
peers choose upstream neighbors. Note that both models create
a mesh-topology, and there is considerable symmetry between
the two models. We use the push model in this paper because it
is easier to analyze, although we believe that the main results
of the paper can be generalized to the pull model, which we
leave as future work.

C. Main Result

Theorem 1: For any and , there exist and
such that for any and the proba-

bility for the min-min-cut under the algorithm in Section II-B to
be smaller than is bounded by

Recall that the min-min-cut is equal to the streaming rate to
all peers. Hence, Theorem 1 shows that as long as the number
of downstream neighbors is , for any the
streaming rate of our algorithm will be larger than times
the optimal streaming capacity with probability approaching 1
as the network size increases.

D. Proof of Theorem 1

We first find the min-cut for any fixed peer . We will use a
similar approach as the one in [19]. We will show that the prob-
ability for the capacity of a cut to be smaller than times
its mean is very small, as becomes large. Then, we will take
the union bound over all cuts and show that overall probability
is also very small. However, the techniques in [19] do not di-
rectly apply to ourmodel due to the following two reasons. First,
due to the ON–OFF model, there are fewer “ON” peers and hence
the probability for each cut to fall below its expected value is
larger than the case when all peers’ upload capacity is the same.
However, there are still the same number of cuts we need to ac-
count for, which may cause the union bound in [19] to diverge.
Second, the link capacity in [19] is assumed to be indepen-
dent across , which is not the case in our model. To address the
first difficulty, we will first consider the subgraph that only con-
tains the ON users, and hence the number of cuts is also reduced

correspondingly. To address the second difficulty, we will show
that the joint distribution of can be approximated by i.i.d.
random variables, which significantly simplifies the analysis.
We first introduce the following general relationship between

the min-cut from the server to the peer in a random graph
and the min-cut from the server to the peer in the any

subgraph of that contains and .
Proposition 2: Let be a random graph defined on some

probability space that has a fixed source and a fixed desti-
nation . Let be another random graph defined on the same
probability space such that for all and
contains and . Then, for any given positive value , the

following holds:

(2)

where is the min-cut in from to , and
is the min-cut in from to .

Proof: Let and
. For any , the

min-cut from to in the graph is less than . Since
is a subgraph of , the min-cut from to in

is smaller than the min-cut in , i.e.,
. Hence, . We then have ,

and (2) holds consequently.
Proposition 2 is intuitive because every cut in has

a larger capacity than the corresponding cut in the subgraph
. For a given destination , let be the subgraph

of such that contains the peer , the server, and all
of the nodes whose channel condition is ON, and are
those edges between nodes in . The capacity of the edges in
is the same as the capacity of the edges in . Proposition 2

allows us to focus on the subnetwork instead of the entire
network . Assume that there are ON peers in the network
excluding peer , and thus . Clearly, is a random
variable with binomial distribution with parameter and
. For ease of exposition, we assume that is fixed during the
following discussion for one given cut, and we will consider
the randomness of later when we take the union bound over
all cuts. We define a cut on by dividing the peers in
into a set of size that contains the server, and the
complementary set of size that contains peer .
The capacity of the cut is then given by

(3)

Note that for each peer (and ), we have
, where is the number of down-

stream neighbors of peer that are in the set . Note that the
value of must satisfy

. Since downstream neighbors of
peer are uniformly chosen from other peers, we have

This is the probability that out of downstream neighbors of
peer are in (of size ) and of them are in
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the set . The distribution of is known as a hyper-geo-
metric distribution with expectation [24, p. 167].
We can get a similar expression for the source , i.e.,

if is OFF

if is ON.

if is OFF
if is ON.

Hence, we obtain the expectation of as

if is OFF
if is ON.

(4)

Next, we are interested in the probability that
for all for a given constant . In other

words, this is the probability that the min-cut value is no less
than times its average. For all , it is not hard to see

If we have , we will get

Recall that is the optimal streaming
capacity assuming a complete network [7]. Hence,

then implies that . In other words,
the probability that for all becomes
a lower bound for the probability that the min-cut is no less
than . In the following, we will derive

. We will use the moment generating function for
. Before we go further, we need to address the second diffi-

culty we mentioned above, i.e., the ’s are correlated across
. To remove the coupling, we need to introduce the notion of
negatively related for Bernoulli random variables [25], [26].
Definition 3: The Bernoulli random variables

, are said to be negatively related if for each
there exists random variables , such that the distribution of
the random vector is equal to the conditional
distribution of the random vector given that

, and for .
For negatively related random variables, the following the-

orem holds ([26, Theorem 4]).
Theorem 4: Suppose ’s are negatively related Bernoulli

random variables with identical distribution, .
Let , , be i.i.d. random variables, where has
the same distribution as for all . Then, for any real

Theorem 4 thus allows us to bound the moment generating
function of negatively related random variables by that of
independent random variables. Its intuition can be explained
as follows. Roughly speaking, for negatively related Bernoulli
random variables, conditioned on the event that one of them
is 1, the others are more likely to be small. Correspondingly,
conditioned on the event that one of them is 0, the others are
more likely to be large. Therefore, when , the moment
generating function is mainly determined by the probability of
the sum of all indicator random variables achieving the larger
value. The sum of negatively related random variables is less
likely to achieve a larger value, and hence the value of the
moment generation function is smaller. For , the moment
generating function is mainly determined by the probability of
the sum of all indicator random variables achieving the smaller
value. The sum of negatively related random variables is also
less likely to achieve a smaller value, and hence the value of
the moment generation function is smaller.
One can show that hyper-geometric random variables can be

viewed as the sum of negatively related Bernoulli random vari-
ables (see [26, Example 1]). Specifically, we first construct
by choosing neighbors out of peers. For each peer
on the right, let if peer is chosen as a neighbor, and
let otherwise (note that is not defined for peers on the
left). We can then construct as follows. First, set
for all . Then, if , in order to make , we choose
one neighbor randomly (either from the left or the right) and
exchange that neighbor with peer . If was on the left, we
then let . If was on the right, we then let
and . Clearly, has the same distribution as given
that . However, by our construction, for all

. Hence, , are negatively related. We can
now use Theorem 4 to bound the moment generation function of

by the moment generating functions of the sum of
i.i.d. random variables. Toward this end, we have the following
proposition.
Proposition 5: For any given cut and of a network

, let and be subsets of and , respectively.
Assume that and .
Let the upload capacity of each peer be . For each
peer in , it chooses downstream neighbors uniformly and
randomly from a given subset of that is a superset of
. Let . Then the moment generating function of

satisfies

(5)
Note that the right-hand side of (5) can be viewed as the

moment generating function of assuming
that ’s are independent. Proposition 5 then follows from
Theorem 4 and the negatively related property discussed above.
The detailed proof of Proposition 5 is available in [20]. Propo-
sition 5 combined with the Chernoff bound will be frequently
used to estimate the probability for a cut to “fail,” i.e., the
capacity of a cut being less than times its expected
capacity. Recall that the capacity of the cut is given by
(3). Then, by taking and in Proposition 5 to be and
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, respectively, we can show the following result for the cut
in under the assumption of ON–OFF upload capacities.

Lemma 6: Let . Given that the total number of ON
peers in the entire network is equal to , the probability that
the capacity of the cut in is less than
can be bounded by the following:

The proof of Lemma 6 can be found in Appendix A. Lemma 6
gives us an upper bound on the probability that the capacity

of a cut is less than times its mean conditioned
on the event that the total number of ON peers is equal to
. Note that is the average number of edges from
peers in to peers in , while is a lower bound on
the average number of edges from the server to peers in .
Hence, the upper bound in Lemma 6 decreases exponentially
if the average number of edges increases. Furthermore, since
the average number of edges is proportional to , the upper
bound also decreases exponentially if increases. We will use
Lemma 6 for each . The following lemma then
bounds the effect of all cuts separating and . Note that for each
value of , there are possible cuts . Due to symmetry,
the capacity of all cuts has the same distribution.
Lemma 7: Define to be the event for

any cut among the cuts . Suppose that there exists
such that for any and any integer

between 0 and , the following holds for
and :

Then, the probability of the union of all ’s is bounded by

In addition, we can separate the union bound into two parts

(6)

(7)

Lemma 7 is obtained by taking the union bound over all cuts.
The detailed proof of Lemma 7 is in [20]. Combing Lemmas 6
and 7, we can now prove Theorem 1.

Proof of Theorem 1: According to Proposition 2 and
Lemma 7, for any peer , the minimum cut from the source to
can be bounded by

(8)

Recall that if , implies
. By Lemma 6, letting and

, we have if

Now let and apply Lemma 7 to (8). We get

Note that by assumption, . For any
and , choose a sufficiently large such that

. We then have, for large

Hence, the minimum cut satisfies

Thus, the min-min cut satisfies

We remark on several implications of Theorem 1. First,
Theorem 1 not only shows that pure random selection is suffi-
cient to achieve close-to-optimal streaming capacity as long as
each peer has downstream neighbors; it also reveals
important insights on the significance of different types of cuts.
To see this, note that if we choose as in the proof such that

, we have [from (6)]

On the other hand, we have . Hence, the
probability that the last cut (the and cut) fails is much
larger than the probability that any other cut fails. Thus, for each
peer , the min-cut from the source to is mainly determined
by (recall that is the total capacity received by peer
directly from its upstream neighbors, which is also the capacity
of the last cut).
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The above insight suggests that if wewant to design improved
distributed control algorithms for P2P streaming systems, we
may want to focus on improving the capacity at the last hop.
Note that one of the main reasons for to fall below its mean
value is the imbalance of across . More specifically, some
peers may have a larger number of upstream peers, and hence
have a larger-than-average value of , while other peers may
have a smaller-than-average value of . Such imbalance will
lead to an increase in the probability that some peers have low
streaming rates. Based on this intuition, we can design a slightly
more sophisticated scheme to balance the value of of dif-
ferent peers, which will be discussed explicitly in Section III.
Theorem 1 also reveals important relationships between the

number of neighbors required and key system parameters. For
example, if we require a better performance (smaller or larger
) or have fewer ON peers (smaller ), the number of down-
stream neighbors needed by each peer will increase. Specifi-
cally, according to the proof, we need . If we require
a higher streaming rate or a faster convergence rate, i.e., is
smaller (consequently is smaller) or is larger, we will need
a larger . If the probability that a peer is ON is reduced, i.e.,
is reduced, we will also need a larger .

III. IMPROVED HYBRID ALGORITHM

In Section II, we proposed a simple scheme with random
neighbor selection and uniform rate allocation that can sustain
a close-to-optimal streaming rate for all users. Our scheme only
requires neighbors for each peer. However, our simu-
lation results (see Section IV) indicate that the number of neigh-
bors that each peer needs may still be quite large. This is be-
cause the actual number of neighbors required also depends on
the constant factor before the term. As in the remarks
following Theorem 1, for uniform rate-allocation schemes, we
need , which increases inversely proportional to the
square of . The goal of this section is to study whether we can
design a slightly more sophisticated scheme for neighbor selec-
tion and/or rate allocation that can significantly reduce the con-
stant factor . Specifically, our strategy is to retain the random
peer-selection algorithm but focus on improving the rate alloca-
tion algorithm. One may argue that random peer-selection may
still be suboptimal. However, as we explain in Section II-B,
random peer selection has the advantage that it is very easy
to implement and robust to peer dynamics. In contrast, other
peer-selection algorithms (e.g., based on forming tree [13]) will
likely bemore costly in the presence of peer dynamics. Since our
goal in this paper is both to attain a close-to-optimal streaming
capacity and to use simple, robust, and distributed control, we
believe that the choice of using random peer selection strikes a
reasonable tradeoff. In fact, as we will show, even by improving
the rate allocation alone, significant performance improvement
can be attained.
As we observed in earlier sections, with high probability, the

bottleneck for uniform rate allocation lies in the last hop, i.e.,
the total upload capacity allocated to some peers from their im-
mediate upstream neighbors is smaller than average. Hence, a
natural idea is to design a more sophisticated rate-allocation
scheme such that the capacity of the last hop is more balanced,
and therefore we may be able to reduce the number of neigh-
bors that each user needs in order to achieve a close-to-op-

timal streaming rate. More specifically, we may find ,
, such that with as few neighbors as possible, the fol-

lowing holds:

for all

for all (9)

where denotes the set of all the upstream neighbors of peer .
Such a rate-allocation scheme is in general not difficult to com-
plete: It can be found by solving a linear optimization problem.
Wu and Li [27] have proposed a fully distributed rate-alloca-
tion algorithm to solve a similar linear program. However, a
potential limitation of this approach is the following: such a
rate-allocation scheme may only guarantee the capacity for the
last hop. There may be another cut with smaller capacity, which
still constrains the overall streaming rate of the system. To the
best of our knowledge, we are not aware of an existing result that
can rigorously prove or disprove that guaranteeing the last-cut
capacity is sufficient for guaranteeing the end-to-end streaming
rate with high probability in a random topology. On the other
hand, if we were to formulate the rate-allocation problem as an-
other linear program for theminimum cut, the complexity would
be much higher than (9). Hence, it remains a challenging ques-
tion to develop low-complexity rate-allocation algorithms that
can provably outperform the uniform rate-allocation scheme.
Recall that in Section II, using uniform rate allocation among

the downstream neighbors, we show that all the other cuts have
a much higher probability (than the last-hop cut) for achieving
a rate larger than the required streaming rate. A natural question
is then whether we can design a scheme that combines the ad-
vantages of both the more sophisticated rate allocation in (9) for
improving the last cut and the uniform rate allocation for main-
taining the high values at other cuts. This question leads us to
the following hybrid algorithm that is simple to implement and
provably reduces the number of neighbors required.
We consider the following class of hybrid algorithms for

rate allocation: Each peer reserves a fraction of its
upload capacity for the more sophisticated rate allocation sim-
ilar to (9) and uses the remaining fraction of its up-
load capacity for uniform rate allocation. Specifically, let
be the allocated capacity to from ’s fraction of upload ca-
pacity using the more sophisticated rate-allocation scheme, and
let be the uniformly allocated capacity to peer from peer
’s remaining fraction of upload capacity. Note that each
peer still randomly selects downstream neighbors. Hence,

if . Then, the total allocated capacity from
to is . We now formulate a
linear feasibility problem to control . As we did before, we
wish our algorithm could achieve a close-to-optimal streaming
capacity. Hence, we set the target streaming rate of each user
to be . Recall that is the optimal streaming
capacity. Therefore, the goal of the more sophisticated rate al-
location algorithm is to find ’s such that

for all

for all (10)
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Note that as long as a feasible solution to (10) exists, a sufficient
condition to (10) can be produced by the following modified
optimization problem:

subject to for all

for all (11)

Like the case with uniform rate allocation, in (11) we do not
even need to know the optimal streaming rate beforehand.
Hence, the control of the peers (such as peer selection and
rate allocation) is decoupled from the problem of choosing the
streaming rate.1 The distributed algorithm proposed in [27] is
still suitable for solving this problem. Therefore, this hybrid
algorithm still preserves the feature of being fully distributed
and simple to implement. Next, we will show that it can achieve
a close-to-optimal streaming capacity with a significantly lower
number of neighbors.

A. Performance Analysis
Next, we will show that this hybrid algorithm can achieve a

streaming capacity of with a much smaller number
of downstream neighbors of each peer. The following theorem
states the performance of this hybrid algorithm more clearly.
Theorem 8: For any , and , there

exist

and such that for any and , the
probability that for the capacity of the min-min-cut under the
algorithm is smaller than is bounded by

This result shows that the hybrid algorithm indeed reduces the
lower bound on the number of required neighbors of each peer.
Note that for small , the factor does not depend on at all.
In contrast, the factor for the uniform rate-allocation scheme
must increase proportional to . As a numerical example,
suppose that we want to sustain at least 90% of the optimal
streaming capacity, which means that . The uniform
rate-allocation scheme requires . In contrast, if we
use the hybrid algorithm and choose , then we only
need . The number of neighbors of each peers is
reduced by 40 times.
We separate the proof of Theorem 8 into two parts. First, since

the allocation of is based on (10), we need to show that,
given the uniform rate allocation of , there exists
a feasible solution to (10) with high probability. Hence, all last
cuts should be able to exceed the required streaming rate with
high probability. Second, we need to show that, based on the
1We note that this decoupling property may also be exploited to help the

server to find the optimal streaming rate. For example, the server can use a
simple probing mechanism to estimate the largest possible streaming rate based
on the peers’ feedback.

uniform rate allocation alone, the values of all other cuts
should also exceed the required streaming rate with high prob-
ability. Theorem 8 would then follow.
For the first step, wewill use the following results, which state

an equivalent characterization to (9) and (10). Specifically, there
exists a rate allocation such that the sum of the upload capacity
allocated to each user from its immediate upstream neighbors is
larger than its required streaming rate if and only if, for any
group of peers in the network, the total upload capacity from
their upstream neighbors is larger than the sum of the streaming
rates of this group of users.
Lemma 9: There exist , , such that (9) holds

if and only if for any subset , the following holds:

(12)

where .
Corollary 10: There exist , such that (10)

holds if and only if for any subset , the following holds:

(13)

where .
The proof of Lemma 9 follows a similar line of the argu-

ment as the Hall’s Theorem [28]. The complete proof using the
min-cut max-flow theorem is provided in [20]. Note that for the
hybrid schemes, the reserved upload capacity of each user for
the more sophisticated rate allocation is . In addition, each
user receives a capacity of from the uniform rate al-
location. Thus, since the required streaming rate for each user
is , the target downloading rate for the more so-

phisticated rate allocation should be .
Therefore, Corollary 10 follows from Lemma 9 immediately by
letting the upload capacity of each user in Lemma 9 be , and
letting in Lemma 9 be . Corollary
10 states that if (13) holds, then we can find a proper hybrid
rate-allocation scheme such that the capacity of the last hop of
each user is enough for its streaming rate. Next, we will show
that (13) holds with high probability.
Lemma 11: Fix . For any and ,

there exist and such that if and

(14)

the following holds for the hybrid algorithm :

for some

Lemma 11 and Corollary 10 together imply that the proba-
bility with which (10) has no solution converges to 0 as the net-
work size grows. Therefore, with high probability, we can
find a rate allocation such that (10) holds, i.e., the capacities of
all last-hop cuts are greater than with high proba-
bility. For others cuts, our random graph approach in Section II
still applies (it is here that we need ). Theorem 8 then
follows. Readers can refer to [20] for the detailed proof.
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Fig. 2. Success probability versus the number of downstream neighbors
under uniform rate allocation.

IV. SIMULATION

In this section, we provide simulation results to verify the an-
alytical results in previous sections. We simulate a P2P network
with peers and one server. Although the analytical
results in this paper focus on the ON–OFF model for peers’ up-
load capacity, here we provide simulation results both for the
ON–OFF model and a uniform distribution model. In the ON–OFF
model, each user has an ON probability of . When a user is ON,
it contributes an upload capacity . On the other hand, in
the uniform distribution model, the upload capacity of each peer
is uniformly distributed between . Furthermore, each peer
chooses the same number of downstream neighbors and divides
its upload capacity evenly among these neighbors, regardless of
its upload capacity. In both cases, the server has a capacity of

. The optimal streaming capacity is thus
for the ON–OFF model with , and both for
the ON–OFF model with and for the uniform distribu-
tion model. We vary the number of downstream neighbors of
each user from 80 ( ) to 960 ( ), which
correspond to 1.6% and 19.2% of the total number of peers .
For each choice of the number of downstream neighbors, we
generate random networks for 200 times. For each iteration, all
users select their downstream neighbors randomly as described
in Section II-B, and we use the algorithm in [29] (a modified
push-relabel algorithm) to find the min-min cut from the source
to all the users and compare it to . We count the
number of times that the min-min cut of the network is larger
than and plot the probability for that to happen as
the number of downstream neighbors of each peer varies. The
result is shown in Fig. 2, where we simulate four different com-
binations of (for the ON–OFF model) and .
First, let us focus on the two curves marked with a triangle.

They correspond to , i.e., the targeted streaming rate
is 80% of . We can observe that, using random peer-selec-
tion, when for the ON–OFF model and when the number
of downstream neighbors of each peer is more than

(19.2% of ), the success probability that the system
could sustain a streaming rate higher than 80% of the optimal
streaming capacity is greater than 0.9. If for the ON–OFF
model, the number of downstream neighbors needed by each
peer to achieve the same success probability of 0.9 reduces
to (12.8% of ). Furthermore, we can ob-
serve that with the same ON probability , when we increase

Fig. 3. Success probability versus the number of downstream neighbors
under hybrid rate allocation ( ).

from to , the required number of down-
stream neighbors to achieve the same success probability of
0.9 decreases to (for ) and

(for ). These observations verify our remarks
following Theorem 1 that needs to be larger if is smaller or
is smaller. We also observe that, when the upload capacity of
each peer follows the uniform distribution and when the number
of downstream neighbors of each peer is more than

(9.6% of ), the success probability of sustaining
more than 80% of the optimal streaming capacity is almost 1.
This suggests that our analytical result is still valid for other
models of peer upload capacity.
We note that in the above simulation results, the number of

neighbors required to achieve a high success probability is still
quite large. Using a similar set of configurations, we next sim-
ulate the hybrid algorithm proposed in Section III, which is de-
signed to further improve the performance. We first choose the
parameter to be 0.4 (i.e., each user performs the more sophis-
ticated rate allocation with 40% of its upload capacity as de-
scribed in Section III and allocates the remaining upload ca-
pacity uniformly among its downstream neighbors). The result
is shown in Fig. 3. We notice that the number of neighbors re-
quired is reduced by an order of magnitude. For example, focus
on the curve for and . In Fig. 3, when the number
of downstream neighbors of each peer is more than 15 (0.3% of
), the probability that the system can sustain a streaming rate

higher than 80% of the optimal streaming capacity is already
almost 1. In contrast, recall that for the corresponding curve in
Fig. 2 with and , if we use uniform rate al-
location, each peer needs more than (12.8%
of ) downstream neighbors to achieve the same performance.
Hence, the hybrid algorithm reduces the required number of
downstream neighbors of each peer by more than 40 times,
while still retaining the simplicity and robustness of the random
peer-selection scheme.
In order to further understand how the value of affects the

performance of the hybrid algorithm, we conduct the following
simulations. We vary the value of from 0.1 to 1.0. For each ,
we run the simulation in the same way as we generated Fig. 3.
Note that although our analytical result in Theorem 8 requires
that , here we experiment with an even larger range of .
In Fig. 4, we plot the success probability versus the number of
downstream numbers for different values of . The two subfig-
ures correspond to two configurations of . We observe that
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Fig. 4. Success probability versus the number of downstream neighbors
under hybrid rate allocation for different values of .

Fig. 5. Required number of downstream neighbors versus the fraction of
capacity for sophisticated rate allocation.

the performance of the hybrid algorithm is fairly insensitive to
the value of in the range .
To more clearly observe the trend, in Fig. 5 we plot, for each

value of , the smallest number of downstream neighbors
that is required for the system to reach a success probability of
0.9. Each of the four curves corresponds to a different combi-
nation of and . We recall that the point corresponds to
uniform rate allocation. We can observe from Fig. 5 that when
is small (e.g., ), the required number of downstream

neighbors is significantly larger for all curves. As we explained
toward the end of Section II-D, this behavior is due to the dif-
ficulty for uniform rate allocation to guarantee the capacities of
the last-hop cuts. On the other hand, the point corresponds
to the “pure” sophisticated rate allocation. For all curves, we ob-
serve that there is a large range of where the required number
of downstream neighbors is less than that required when .
As we conjecture in Section III, this may have something to do
with the difficulty for the “pure” sophisticated rate allocation
to guarantee the capacities of cuts other than the last-hop cuts.
Although in our simulations this performance degradation for

does not appear to be very large, we are not aware of a
theoretical result that can rigorously prove or disprove the per-
formance of the “pure” sophisticated algorithm. From Fig. 5,
we observe that a value of between 0.3 to 0.5 appears to be
a reasonable choice: it provides both theoretical performance
guarantees (recall that Theorem 8 requires ) and good
empirical performance.
We next simulate the performance of both the uniform rate-

allocation algorithm and the hybrid rate-allocation algorithm
when the total number of users changes. We vary the total
number of users in the systems from to .

Fig. 6. Success probability versus under uniform rate allocation.

Fig. 7. Success probability versus under hybrid rate allocation.

The results are shown in Figs. 6 and 7. For the results of the
uniform rate-allocation algorithm in Fig. 6, we choose the pa-
rameters and . Each curve corresponds to a
different choice of from to .
An interesting observation is that when is small (e.g.,

), the performance in fact degrades as increases. The
reason is that when is small, may be even larger than ,
in which case we use and the network becomes fully
connected. However, as increases, the sparse connectivity
and the negative effect of low will eventually kick in. On
the other hand, when is sufficiently large ,
the success probabilities under all different values of are al-
ways 1. For the results of the hybrid rate-allocation algorithm
in Fig. 7, we choose the parameters and . Each
curve corresponds to a different choice of from
to . We observe that the performance of the hybrid
rate-allocation algorithm is less sensitive to the total number of
users . Under the same value of , the success probability
remains on the same level as varies. On the other hand, we
can still see that when is sufficiently large, the success prob-
ability becomes 1 for all different values of .

V. CONCLUSION
In this paper, we study the streaming capacity of sparsely con-

nected P2P networks.We show that evenwith a random peer-se-
lection algorithm and uniform rate allocation, as long as each
peer maintains downstream neighbors, the system can
achieve close-to-optimal streaming capacity with high proba-
bility when the network size is large. These results provide im-
portant new insights on the streaming capacity of large P2P



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAO et al.: STREAMING CAPACITY OF SPARSELY CONNECTED P2P SYSTEMS WITH DISTRIBUTED CONTROL 11

network with a sparse topology. One such insight is that the
capacity of the last cut (i.e., the capacity from direct upstream
neighbors) is often the bottleneck. We then use this insight to
improve the peer-selection and rate-allocation algorithm to fur-
ther optimize the achievable streaming capacity. Specifically,
we design a hybrid algorithm that uses a slightly more sophis-
ticated rate-allocation algorithm to improve the capacity and to
reduce the constant factor in the result. This new al-
gorithm still retains the simplicity and robustness of the random
peer-selection scheme, but it significantly reduces the number of
neighbors required to achieve a certain performance guarantee.
Throughout this paper, we have assumed a uniformly random

peer-selection scheme. It is highly likely that more sophisticated
peer-selection schemes (albeit with a higher complexity) may
lead to even better performance, e.g., an even smaller factor .
For instance, one may assign a larger number of downstream
neighbors to a peer with a larger upload capacity. However,
we caution that the resulting performance improvement is not
automatic. As we have seen in Section III for the hybrid al-
gorithm, the effect of local improvement on the global perfor-
mance can be difficult to quantify. Thus, the insights obtained
from our analysis may be used to guide the design of more
sophisticated algorithms. Furthermore, this paper has focused
on P2P live-streaming systems. For future work, we will in-
vestigate whether similar insights can also be extended to P2P
video-on-demand services, which have also become increas-
ingly popular.

APPENDIX A
PROOF OF LEMMA 6

Proof: By Chernoff bounds, we have for

(15)

where

Now we apply Proposition 5. Recall that we define a cut on
by dividing peers into sets and . We could also

view and as subsets of some cut and of net-
work . We need to exclude the server from since it has
a different upload capacity. For each peer in , it will
choose downstream neighbors randomly from the entire net-
work. Hence, . According to Proposition 5, we have

, and .
Therefore, using (5), we have

Note that the server only choose neighbors from the ON
peers, . Using similar techniques, for the server, we
can bound by

Define , and
. The and can be written

as

Let and be the minimum of and , respec-
tively, over . It is easy to see . Also
since and is convex on , these minima are attainable.
Let and be the minimizer, respectively. We must
have

(16)

One can show that . Note that for
and , we have since

is concave and its derivative at 0 is . Moreover, for
, one can see that by

checking
and when . Then,

substituting into (16) and using the above relationship

Consequently

Since (15) holds for any , letting yields

Similarly, one can show that if is ON, we have

Since , we have
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Hence

APPENDIX B
PROOF OF LEMMA 11

Proof: Let be the number of ON users in the system,
which is a random variable with binomial distribution

. For any subset of , define as the number of
ON peers that are the upstream neighbors of at least one peer in
, i.e., . Let be the number
of peers in . Then, , and the following two
events are equivalent (defined as ):

(17)

In the last event of (17), the first term of the left-hand side
is the capacity from the more sophisticated allocation, and the
second term is the capacity from uniform allocation. We divide
the proof into two parts according to the value of .
1) We first consider the case when is small, i.e., ,
where is a small constant that does not de-
pend on . We will show that when is very small, the
capacity of the more sophisticated allocation alone
will be sufficient with high probability, i.e., it may be larger
than . Recall that

. Let . Then, for any , there
exists such that whenever , . We
thus have implies .
Therefore

(18)

Next, we are going to show that the probability that
for some is very small. To prove this,

we first make the following claim: If there exists a set of
peers such that , then there exists
another set of peers such that

(19)

where . To see this, first note that if and
, (19) automatically holds by letting

. Suppose that for some ,
but . We then remove one peer
from and obtain . Clearly, . We will
have

Hence, still satisfies . If (19) is still
not true for , we can remove another node from and
repeat these steps until we find a set that satisfies (19). Note
that by removing nodes one by one from , in the worst
case we will end up with a set that contains one peer.
However, as mentioned above, if , (19) is
automatically satisfied. As a result, we can always find a
set that satisfies (19) by removing the nodes from one
by one. Therefore, the claim holds. Consequently

for some

for some (20)

Now we are going to characterize the probability on the
right-hand side of (20). Define to be the probability
that a given user selects at least one of the peers in
as its downstream neighbor. For any peer , is
equal to 1 minus the probability that peer chooses all its
downstream neighbors from the peers that are not in .

More specifically, for , we have

(21)

Similarly, for , we have

Note that for any peer , the value of is identical for
all the sets that have the same size . In the rest of
the proof, we will use to denote the probability that
user selects at least one of the peers in as its down-
stream neighbor for all the sets that satisfies ,
i.e., such that . Note that

Thus, for any , (21) becomes a lower bound of

(22)

The second term on the right-hand side of (22) satisfies

Combining (22) and the above inequality, we get a uniform
lower bound of for all , which is denoted by ,

. Now we have, for
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Then, for , we have

for some

since

It follows that

for some

for some

(23)

Note that when is large, satisfies

We have

(24)

Finally, combining (18), (20), (23), and (24), we have

for some

for some

2) When is large, i.e., , the capacity from so-
phisticate allocation alone may not be adequate. We then
need to count both parts of the capacity in (17). Consider
the quantity in (17). It can be
viewed as the maximum capacity that can be assigned to
from both the more sophisticate and uniform rate al-

location. Now consider a purely uniform rate allocation.
The total capacity allocated to must be a lower bound of
the above value. Next, we will show that the above lower
bound will be larger than with high probability.

More precisely, let be the indicator function of the event
that there is a link between node and node , and node
is an ON peer or the server. Then, we have

Note that for fixed , . Furthermore, if
is ON or , then . Recall that is
the number of ON users in . We have

and hence . Then, the total
available capacity from to will be

The above value is equal to the capacity from to if
we use purely uniform rate allocation scheme. Note that

Applying Chernoff bound and Lemma 5, and using similar
argument as we did when proving Lemma 6, we can show
that

Consequently

Hence, as long as , the above
expression will converge to 0 exponentially fast. In fact,
if and satisfies (14), then for sufficiently
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large , the inequality always holds.
Hence, if (14) holds, we have

Finally, by combining the result of parts 1) and 2) together,
we can thus prove the lemma.
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