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Abstract—The performance of large-scale peer-to-peer (P2P)
video-on-demand (VoD) streaming systems can be very chal-
lenging to analyze due to sparse connectivity and complex, random
dynamics. Specifically, in practical P2P VoD systems, each peer
only interacts with a small number of other peers/neighbors. Fur-
thermore, its upload capacity, downloading position, and content
availability change dynamically and randomly. In this paper, we
rigorously study large-scale P2P VoD systems with sparse con-
nectivity among peers and investigate simple and decentralized
P2P control strategies that can provably achieve close-to-optimal
streaming capacity. We first focus on a single streaming channel.
Using a simple algorithm that assigns each peer a random set of

neighbors and allocates upload capacity uniformly, we
show that a close-to-optimal streaming rate can be asymptotically
achieved for all peers with high probability as the number of
peers increases. Furthermore, the tracker does not need to
obtain detailed knowledge of which chunks each peer caches, and
hence incurs low overhead. We then study multiple streaming
channels where peers watching one channel may help peers in
another channel with insufficient upload bandwidth. We propose
a simple random cache-placement strategy and show that a
close-to-optimal streaming capacity region for all channels can
be attained with high probability, again with only
per-peer neighbors. These results provide important insights into
the dynamics of large-scale P2P VoD systems, which will be useful
for guiding the design of improved P2P control protocols.

Index Terms—Cache-placement, peer-to-peer (P2P) networks,
robust and decentralized control, uniform peer-selection, video-
on-demand.

I. INTRODUCTION

P EER-TO-PEER (P2P) video-on-demand (VoD) streaming
systems have already become amajor player on today's In-

ternet. Their success (e.g., PPLive, TVAnts, UUSee, and Zattoo)
has made high-quality on-demand streaming of rich contents
available to millions of users at low server costs [2]. In contrast
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to their commercial success, however, in-depth theoretical un-
derstanding of these systems appears to be lacking. The perfor-
mance of large-scale P2P VoD systems can be extremely com-
plex to study. As time progresses, the part of the video that a
peer is interested in viewing, the cached content that it can use
to serve others, and its upload capacity can all change substan-
tially. Furthermore, these systems are highly decentralized in
nature, and each peer often only has a very limited view of the
overall system through its sparsely connected neighbors. Due to
these reasons, it remains a challenging problem to understand
the fundamental performance limits of highly dynamic and de-
centralized P2P VoD systems.
In this paper, we study a problem of fundamental interest

to P2P VoD systems, i.e., what is the optimal streaming rate
that all peers can reliably receive, and how to achieve this
optimal rate with simple, robust, and decentralized control.
Note that a trivial upper bound on the streaming rate can be
obtained by dividing the total upload capacity of all peers by
the total number of peers. In P2P live-streaming systems, it
has been shown in our prior work that streaming rates close
to this optimal value can be achieved through simple and
decentralized control [3]. However, in P2P VoD systems, it is
unclear whether such an optimal rate can still be attained. In
contrast to live streaming [3]–[11], each peer in a VoD system
is interested in playing a different portion of the video. Further-
more, its viewing position may jump back and forth [12], [13].
As a result, the content availability at each peer can be highly
discontinuous and dynamic. One way to alleviate this difficulty
is to assume that some peers (referred to as “caches”) have
cached the entire video beforehand, and other downloading
peers request the content only from the caches. In [14]–[16],
the authors have studied the optimal cache-placement problem
based on this assumption. An implicit assumption along this
line of work is that there exists a central entity that can perfectly
balance the downloading requests among caches. Otherwise,
such a global balancing problem by itself can be very chal-
lenging in a decentralized setting when the upload capacity of
the peers varies.
An alternate (and perhaps practically more relevant) ap-

proach is to directly model how peers downloading the same
video can use their upload capacity to help each other, which
is unfortunately more difficult. Such models were proposed
in, e.g., [13], [17], and [18]. However, it appears difficult to
establish whether they can achieve close-to-optimal streaming
rates. More recently, [19]–[22] propose an algorithm that
allocates the overall upload capacity in the system sequentially
from the “oldest” peer to the “youngest” peer. For each peer,
its requested capacity is first allocated from older peers. If the
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older peers' upload capacity is insufficient, additional capacity
is then requested from the server. Similarly, [23] proposes a
global optimization problem for rate-allocation given the age
of the peers. While these algorithms have been found to exhibit
good performance, the resulting rate allocation may need to
be completely recalculated when the peers' upload capacity
changes. Furthermore, these analyses have not accounted for
the possibility that the peers' playback positions may jump back
and forth, in which case even an older peer may not have the
content to serve younger peers.
In summary, existing analytical studies of the streaming ca-

pacity of P2P VoD systems either require extensive centralized
control, are sensitive to upload-capacity variations, or do not ac-
count for the random-seek behavior of the peers. In contrast, in
this paper we provide the first rigorous study of the streaming
capacity of large-scale P2P VoD systems with simple decentral-
ized control that are robust to upload-capacity variations and
random-seek behaviors. We focus on the setting of “hot” videos,
i.e., there are a large number of peers who are interested in
viewing each video. We first study a single-channel system, i.e.,
all users are interested in viewing the same video. Assuming
that the contribution of bandwidth and cache capacities from the
dedicated server(s) is minimal, we show that by using a (prop-
erly designed) random neighbor-selection algorithm and a uni-
form rate-allocation algorithm, with probability approaching 1
as the total number of peers increases, all peers can achieve
a close-to-optimal streaming rate of , where is the av-
erage upload capacity per peer and is a small positive constant.
In our algorithm, each peer is only assigned upstream
neighbors, with which they exchange content-availability infor-
mation. These neighbors are chosen uniformly randomly from a
suitable choice set determined at the tracker (note that this is the
only part of the algorithm that requires centralized knowledge).
To determine the choice set, the tracker only needs to know the
current downloading position of each peer, but does not need to
know the detailed content/chunk availability at each peer. Fur-
thermore, regardless of the variation of its upload capacity, each
peer evenly distributes its upload capacity among downstream
neighbors for whom it has the available chunk(s). As readers
will see in Section II, our analytical studies provide key insights
as to why these simple design principles can result in near-op-
timal performance, which was conjectured in some prior simu-
lation-based studies [24]. Furthermore, these insights reveal the
critical and nontrivial roles that different design choices, e.g.,
the size of the choice set and the extent of content availability,
play in the overall system.
We then turn to a multichannel P2P VoD system where dif-

ferent groups of peers are interested in viewing different videos.
Based on the single-channel control algorithm discussed ear-
lier, we propose a cache-placement algorithm that can achieve
(with high probability) a close-to-optimal streaming rate region
for all channels (see Section III for the precise definition). Our
cache-placement policy shares some similarity to the “propor-
tional-to-deficit-bandwidth” strategy in [19], which was conjec-
tured to be close-to-optimal. However, our policy does not re-
quire a sequential rate-allocation algorithm as in [19].
Our results have a similar flavor to the results in our earlier

work [3] for P2P live-streaming systems. However, as we dis-
cussed earlier and will elaborate further in Section II, P2P VoD

systems are significantly different from live-streaming systems.
Thus, new control algorithms and analytic techniques are re-
quired. To the best of our knowledge, this work provides the first
analytic result that demonstrates how to achieve close-to-op-
timal streaming capacity in large-scale P2P VoD systems using
simple, robust, and decentralized control.

II. SINGLE-CHANNEL P2P VOD SYSTEM
In this section, we focus on a system with a single channel,

i.e., all users are interested in viewing the same video. We first
describe the systemmodel. We will then propose simple, robust,
and decentralized peer-selection and rate allocation algorithms
that result in at most upstream neighbors per peer.
We then prove that all peers can achieve the close-to-optimal
streaming rate with high probability, when is large.

A. System Model
We consider a P2PVoD systemwhere users/peers1 would like

to watch a common video. Let denote the length of the
video. There is a server and totally peers. Let denote
the set of all peers in the system, i.e., . We assume
that the number of peers is fixed. In other words, if a peer
leaves the system, a new peer is assumed to immediately join
the system at a possibly random initial position. This assumption
simplifies the analysis, while we believe that the insights under
this assumption will also hold for a more dynamic model where
peers randomly join and leave the system. In a VoD system, the
viewing/downloading progress of different peers in the same
channel is typically different. Peers who have already down-
loaded certain parts of the video can then serve the cached con-
tent to later peers. We define the downloading position of a peer
as the immediately next position in the video that the peer will
download. We assume that the downloading position of each
peer is i.i.d. according to a distribution with density function

. In other words, for a small , is the probability
that the downloading position of a peer is between and .
Clearly, the exact form of the distribution will depend on
many factors, such as a new peer's initial viewing position, the
length of time before it leaves the channel, and how often and
in what manner it fast-forwards/rewinds. However, the exact de-
pendency on these factors will likely be quite complicated. In-
stead, in this paper we do not assume a probabilistic model for
these factors. Rather, we only assume that, given these random
factors, the overall system is stationary and ergodic, and thus the
distribution exists. In practice, this distribution can often be
estimated by the tracker in each channel [12]. Furthermore, we
do not assume a particular form of in this paper. As readers
will see, our results will only depend on a small number of pa-
rameters of the distribution . Some of these parameters are
defined below.
Note that the downloading position of a peer is typically

larger than its viewing position, with some buffering in between
to absorb any fluctuations in the downloading speed. After a
peer finishes watching a channel, it may stay for some period of
time and serve other peers in the channel. We thus allow
to have a Dirac delta function at point . Equivalently, let

1We use the terms “user” and “peer” interchangeably throughout the rest of
the paper.
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Fig. 1. Neighboring sets of peer in channel .

denote the probability that a peer's downloading position is
. For ease of exposition, we assume that, with probability 1,

the downloading position of each peer before is different
from that of other peers. From now on, we will index a peer
watching a channel by its downloading position . Let
denote the set of all peers with downloading position .
To model how peers serve other peers, each peer has a set of

downstream neighbors that this peer may upload content to.
Correspondingly, each peer also has a set of upstream
neighbors from which this peer can
potentially download the content. However, since a peer may
perform random seeks, it may not have all the content “before”
its downloading position. Hence, not all neighbors in the up-
stream neighbor set of peer have the content requested by
peer . We denote as the set of upstream neighbors
of peer who have the data that peer is requesting and who
are willing to serve peer . (See Section II-B-2 for the notion
of a peer "willing" to serve another peer.) Correspondingly, let

denote the set of downstream neigh-
bors that peer can actually serve. We call and the ef-
fective downstream neighbors and the effective upstream neigh-
bors, respectively. Let , , , and

.2 (see Fig. 1 for illustration).
Let denote the upload capacity of peer . We assume

that is a bounded random variable between with
mean value , which is i.i.d. across all peers. Like other
studies [3]–[5], [9], [10], we assume that the download capacity
and the core network capacity are sufficiently large, and hence
the upload capacity is the only resource bottleneck. The system
performance is determined by the relationship between the tar-
geted streaming rate and the downloading rates. Let denote
the targeted streaming rate of the video. Let denote the
streaming rate from peer to peer . Clearly, for any

(or equivalently for all ). We have the following
upload capacity constraint on each peer :

Let denote the achievable downloading rate for peer , which
is then given by

To guarantee smooth playback, the downloading rate of each
viewing peer must be no smaller than the targeted rate of

2As a convention, we will use script variable to denote a set (e.g., ), and
use a normal variable to denote its size (e.g., ).

the video. Note that the peers whose downloading position is
do not need to download new data, and hence we are only

interested in the downloading rate of those peers in . We
thus define the streaming capacity of the system as the largest
value of such that for all peers .
We note that there is a simple upper bound on the streaming

capacity. We assume that is away from 0 even with large ,
and the contribution of the server capacity is negligible. In this
case, it is easy to see that the largest possible streaming rate that
all peers can attain is on average. However, this
upper bound completely ignores the details of the VoD system,
i.e., whether a peer has the content and the upload capacity
to help the other peer. Hence, it is unclear whether this upper
bound is attainable in a large and decentralized VoD system. In
practice, is usually not very large. Hence, in the rest of this
section, we will omit the contribution of in the streaming ca-
pacity, and we will say that the channel achieves a close-to-op-
timal streaming capacity with a small if all peers
attain a streaming rate no smaller than . Our goal in
this section is to design simple, robust, and decentralized algo-
rithms that can achieve this close-to-optimal streaming capacity
with high probability.

B. Simple and Distributed Peer-Selection and Rate Allocation
Algorithm

In our prior work for P2P live-streaming systems [3], we
have proposed a simple peer-selection strategy where each peer
uniformly randomly selects downstream neighbors
and divides its upload capacity evenly among its downstream
neighbors. This simple algorithm has been shown to achieve a
close-to-optimal streaming rate for live-streaming P2P systems.
Although this result serves as a useful starting point, as reader
will see below, the same design would have led to very poor per-
formance in VoD systems. Thus, we need to design a new set of
control algorithms tailored to VoD systems.
1) Peer Selection: We first explain why a uniformly random

peer-selection algorithm will not work well for VoD systems.
Note that unlike live-streaming systems, in a VoD system
different peers are viewing different parts of the video, and
their cached content is also different. If an older peer (whose
downloading position is in the later part of the video) chooses
a younger peer (whose downloading position is in the earlier
part of the video) as an upstream neighbor, there is a high
chance that the younger peer does not have the content to help
the older peer. Hence, the connection between them is of no
use. This problem will be the most severe for the oldest peers
that are close to the end of the video. With uniformly random
peer selection, the peers who are interested in downloading this
part of the video will find that most of their selected upstream
neighbors are younger and do not have the desired content.
Hence, the streaming rate to these oldest peers will be very
poor. Hence, we need to design a new peer-selection strategy
for VoD P2P systems.
The key idea of our new strategy is to restrict the random

neighbor selection of each peer to be within a choice set ,
which contains peers with downloading positions larger than
. More specifically, we use the “random sequential choice-set
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selection strategy” as follows. Let be a constant such that
. In this strategy, the choice set of peer

consists of the next peers whose downloading positions are
immediately larger than 's. If there are less than peers after
and immediately before , will be the set of all peers with
downloading positions larger than . In practice, the tracker can
order all the peers according to their downloading positions and
assign choice sets according to the above strategy. Recall our
assumption that no two peers before are at the same down-
loading position. In practice, if this assumption does not hold,
the tracker can always break ties arbitrarily. Then, the tracker
server picks (where is a positive constant to be
determined later) peers uniformly randomly from peer 's choice
set , which constitute peer 's set of upstream neighbors .
We have . Correspondingly, define the client set of peer
as . The set of downstream

neighbors of must come from this client set and is given by
. Let and .

Remark: It appears that the tracker must maintain the current
downloading position of all peers, which may incur high over-
head. However, as we will explain later in Section II-B-4, by
enforcing that all peers advance their downloading position at
the same speed, this overhead can be significantly reduced.
2) Content Availability: Even with the above peer-selection

strategy, the streaming rate for some peer can still be very poor.
This is because peers may fast-forward/rewind in a VoD system.
This discontinuous random-seek behavior means that a peer
may not always have all the content before . Thus, even if a
peer picks an older peer as an upstream neighbor, the connection
and the capacity may still be wasted. Unfortunately, the random-
seek behavior of peers is quite complicated to model. To the
best of our knowledge, no existing analytical works on P2P VoD
systems are able to take into account the impact of this random-
seek behavior.
Our strategy is to develop a condition for content availability

that is sufficient for achieving close-to-optimal streaming rates,
yet easy-to-satisfy even with random-seeks. This is perhaps the
most difficult part of our design. To see why such a condition
is nontrivial to formulate, consider the following scenario. Sup-
pose that the peers in the choice set of peer are uni-
formly distributed in the range , as shown in Fig. 2,
where . Furthermore, suppose that each peer

only has the content in . The above sce-
nario can occur when many peers random-seek to from be-
fore (e.g., the opening of a movie ends at , and thus most
viewers wish to jump directly to ). In this case, although peer
may still have upstream neighbors uniformly chosen from
, none of them can help peer (because they do not have the

content needed by ). Clearly, the key difficulty here is that, due
to its particular position, peer is unable to obtain any useful
content from its upstream neighbors.
To address this difficulty, we introduce the following condi-

tion. Fix a positive constant . We require that, for
any peer and any one of its upstream neighbor , the prob-
ability that peer has the content for (and is willing to help)
peer is equal to , independently of the position of
peer . Note that if we were to satisfy this condition for the

Fig. 2. Content availability example.

example in Fig. 2, wewould need tomake sure that, even when a
peer random-seeks to , the peer also downloads the additional
content at position with a probability no smaller than .
A more detailed algorithm to achieve this condition is given in
Appendix A. Clearly, when such a content availability condi-
tion is satisfied, the difficulty in our example in Fig. 2 will not
occur. As we will see later, this condition will be sufficient for
achieving a close-to-optimal streaming rate.
We make a few remarks regarding the above condition. First,

in order to meet this condition, only those peers who random-
seek need to download a small amount of additional content (see
Appendix A). According to real measurement studies in [12],
each peer only jumps 1.6–3.4 times on average in each video.
Thus, the overhead due to this additional download operation is
low. For example, if the peers' viewing positions are uniformly
distributed between , then the additional bandwidth will
be no more than a fraction of the total required bandwidth
of all users, which is not significant. Second, note that if one
does not enforce the above content availability condition, an al-
ternative option is to let the server stream data directly to such a
peer that does not receive a sufficient streaming rate from its
own upstream neighbors. However, under this alternative op-
tion, peer would have to ask the help from the server even
though it did not perform any random seek. If the server ca-
pacity is not immediately available, the service to peer would
be disrupted. In contrast, under our content availability condi-
tion, only peers that random-seek need the help from the server.
When a peer initiates a random seek, it expects a service disrup-
tion before the video can start at the new position. Thus, our con-
tent availability condition does not create additional disruption
perceived by the user. Finally, depending on the value of ,
our content availability condition may even consume less addi-
tional server capacity than the alternate option. We will evaluate
the required server capacity for the two options in Section IV.
3) Rate Allocation: To serve downstream neighbors, each

peer applies a uniform rate-allocation algorithm that takes into
account content-availability. Specifically, let denote
the set of peers in peer 's client set , whom peer has the re-
quested data for and is willing to serve. We call the effective
client set of peer . Let . Thus, the effective down-
stream neighbor set of peer will be the intersection of the
effective client set and the downstream neighbor set of peer ,
i.e., . Then, each peer divides its upload capacity
equally among all of its effective downstream neighbors. Thus,
the streaming rate from peer to peer , , is equal to
if , and , otherwise. Correspondingly, we can
define the effective choice set of peer as the set of peers
in the choice set who has the required content of peer . We
have . See Table I for a summary of the relation-
ship between these notations. Note that for rate-allocation, peers



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAO et al.: CAPACITY OF P2P ON-DEMAND STREAMING WITH SIMPLE, ROBUST, AND DECENTRALIZED CONTROL 5

TABLE I
RELATIONSHIP BETWEEN , , , AND . THE RELATIONSHIPS BETWEEN

, , , AND ARE SIMILAR

only need to know the content availability information at their
neighbors. There is no need for the tracker to maintain content
availability information, which leads to low control overhead.
4) Uniform Progress: There remains one potential source of

high overhead. In a P2P VoD system, it is possible that some
peer downloads content at a higher speed than others. If that is
the case, the tracker needs to constantly update and reorder their
downloading positions. Furthermore, some upstream neighbors
of peer may either fall behind or advance too far ahead. As a
result, the neighbors of each peer may need to be reselected con-
stantly. There will then be significant overhead at the tracker.
We introduce the following condition to significantly reduce

the overhead. Suppose that the targeted streaming rate is
and is equal to the video's normal playback speed. We enforce
that the downloading position of each peer will also advance
ahead of its playback position at the normal playback speed of
the video. In other words, even if the available download rate
that a peer receives from its upstream neighbors is larger than

, it will still download content at the speed of .
On the other hand, if the download rate that a peer receives from
its upsteam neighbors is less than , the server will fill in
the gap. This condition ensures that the downloading positions
of all peers advance at the same speed. In practice, the above
design choice can be easily satisfied by the following protocol
design: A peer will prefetch content for the video only up to
a maximum lead-time ahead of its current playback position.
Thus, once the maximum lead time is reached, the downloading
position will advance at the same speed as the playback position,
which is equal to the normal playback speed (i.e., streaming
rate) of the video.
There are three benefits of this design. First, since the

streaming rate of a video is known beforehand, the tracker can
easily predict the advancement of each peer's downloading
position. Unless a peer fast-forwards/rewinds, there is no
need for the tracker to update and reorder peers' downloading
position. The measurement studies in [12] show that each user
only seeks 1.6–3.4 times in each video on average, which
means that for our algorithm, each peer only needs to report
to the server no more than 4 times on average for each video.
As a comparison, the algorithms in [17]–[19] and [23] require
each user to report its content availability bitmap to the server
periodically. Assume that each peer reports once every 5 min.
Then, these algorithms will require each peer to report 20 times
for a 1-h video. Clearly, the signaling overhead of our proposed
design is significantly lower. Second, the upstream neighbors
and downstream neighbors of each peer do not need to change
constantly either, unless a neighbor leaves the system or

fast-fowards/rewinds, in which case only this neighbor needs
to be replaced via a low-complexity query to the tracker. Third,
the above design choice not only leads to minimal control
overhead, but also significantly simplifies our analysis because
it suffices for us to focus on the streaming rates at a snapshot of
time. On the other hand, some readers may be concerned that
this design may unnecessarily constrain the downloading speed
of those peers who could have downloaded faster. However,
faster peers will likely take capacity from other slower peers,
which will be unfair for the slower peers. Since our goal is to
achieve the highest possible streaming rate for all peers, it is
in fact more beneficial to maintain fairness. As we will show
in our main result, our design is sufficient for attaining the
close-to-optimal streaming capacity.
In summary, the above algorithm has the following highly

desirable features:
1) Simplicity—Both random upstream-neighbor selection

and uniform rate allocation are easy to implement in
practice.

2) Robustness—If an upstream neighbor of peer leaves
the system, the tracker can simply assign another
neighbor to from its choice set.

3) Low control overhead—To carry out neighbor assign-
ment, the tracker only needs to maintain the down-
loading positions of the peers. It does not need to know
the detailed content availability at peers. Furthermore,
the tracker can easily predict the advancement of peers'
downloading position. Hence, the signaling overhead
from peers to the tracker is greatly reduced.

C. Performance Analysis
We have proposed a simple and decentralized algorithm

that is easy to implement, that is robust to changes in the
peers' upload capacity, and that incurs low control overhead
at the tracker. Next, we show that the above algorithm will
attain close-to-optimal streaming rate. Recall from the content
availability condition that for all peers , and is
the downloading rate of peer . Let denote the number of
intervals used to achieve the content availability condition in
Appendix A.
Theorem 1: Assume that there exist positive constants

and such that for all .
For any and , choose with

. Suppose that each peer chooses upstream
neighbors. Then, for sufficiently large and , the following
holds:

for some (1)

Theorem 1 shows that upstream neighbors are suf-
ficient for achieving a close-to-optimal streaming rate of

for all peers with high probability. Furthermore, it provides
additional insights on the required number of neighbors as a
function of the system parameters. First, if we wish to achieve a
closer-to-optimal streaming rate (i.e., smaller ) or a faster con-
vergence of the probability (i.e., larger ), we need more neigh-
bors per peer. Second, is inversely proportional to .
Hence, if there are higher levels of variation in the distribution
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of upload capacities (i.e., the peak rate is large and/or a
significant fraction of peers have small upload capacities), the
required number of neighbors per peer must also be larger to
tackle the extra level of randomness.
Another important consequence of Theorem 1 is that is in-

versely proportional to . We make two remarks. First, it
is no longer necessary to ensure that an upstream neighbor of
peer always has the content that peer requests (i.e.,
for all ). According to Theorem 1, in order to ensure near-op-
timal streaming rates, it would be sufficient if each peer has at
least fraction of the content that its downstream peers will
likely request. This relaxation significantly simplifies the system
design when there are random-seeks. For example, the con-
tent availability strategy described earlier would be sufficient.
Second, Theorem 1 implies that, in order to improve system per-
formance, we should design P2P protocols with large values of

, since it reduces the required number of neighbors.
For ease of exposition, we next provide a sketch of the proof

of Theorem 1. More details will be provided in Appendix B. We
first fix any peer and show that the probability for its down-
loading rate to be smaller than is (recall that

). Theorem 1 then follows by taking the union bound.
Note that peer has exactly upstream neighbors that may
help it. Index these upstream neighbors as .
Let be the indicator function of the event that the th up-
stream neighbor of peer is an effective upstream neighbor,
and let . Then, can be represented by

. We note that compared to our prior work [3]
for live streaming, a main difficulty here stems from the number
of effective downstream peers for each upstream neighbor .
In [3], each upstream neighbor serves exactly downstream
peers. In contrast, here is random and varies with an un-
known parameter . Furthermore, there exists nontrivial cor-
relation across because the client sets of different upstream
neighbors of peer overlap. To address this difficulty, we use
the following main supporting lemma.
Lemma 2: Fix . (a) Let be

a set of independent Bernoulli random variables such that
. (b) Let , , be

positive (and possibly correlated) random variables such that
for some constant . (c) Let

, be positive (and possibly correlated)
random variables such that for any

(2)

(d) Let , , be i.i.d. random variables in-
dependent from 's and 's such that and

for all . For any and for any , let
. Then, there exists such that when

and , the following holds:

(3)

The proof is in [25]. We will soon relate , and to ,
and . To interpret the result of Lemma 2, note that if

and 's are independent from each other conditioned on
, then the condition in (2) trivially holds. Using Jensen's in-
equality, it is then easy to see that , where

. Lemma 2 states that, as long as , the
probability that will diminish to zero. The
conditions in the lemma, however, allow the result to hold even
if 's are correlated, and hence is very useful.
We will use Lemma 2 to show Theorem 1. For ease of

exposition, we consider instead an alternative choice-set se-
lection strategy called “random sequential-range,” which is
slightly different from the “random sequential” choice set
selection strategy that we originally used. In such a “random
sequential-range” choice set selection strategy, each user
choose a choice set that contains all the other peers whose
downloading position are in the range , where
satisfies that , if , and

otherwise. Correspondingly, the client set of
each peer contains all the peers in the range , where

satisfies that , if ,
and otherwise. Clearly, for any ,

. When is large, should concentrate on
. Hence, we would expect that the performances of the two

choice-set selection strategies are close to each other. A more
general statement can be made as in the following lemma.
Lemma 3: Let be the collection of all continuous intervals

. Fix . Given any , define the
following event:

for all disjoint

where is the number of peers in . Then, for any , there
exists such that for any , .
The proof of Lemma 3 is provided in [25]. Note that if

happens, then the number of peers in every will be close
to its mean value. Lemma 3 states that such an event happens
with high probability. In the following, we will focus on the
situation when event holds. Let and denote the
probability and the expectation conditioned on .
We are now ready to prove Theorem 1. Fix a peer and its

set of upstream neighbors . First, we note that
's are independent because the content availability of each up-

stream neighbor is independent. Furthermore, let be the
parameter introduced in the content availability condition in
Section II-B-2. Then, .
Thus, condition (a) of Lemma 2 is met with . Next, we
will analyze the correlation between 's. Consider an upstream
neighbor . Let be its current downloading position. If peer
recently random-sought to a position before , let be the
position that it first jumped to. Furthermore, let be the range
of content from that peer randomly downloaded
when it first jumped to , according to the content availability
strategy in Section II-B-2. Recall that the effective client set
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is a subset of that peer has the requested content. con-
sists of two parts: 1) all the peers in ;, and 2)
for the peers in , each of them is in
with probability independent of others. Given in Lemma 3,
we must have, for any

Now, consider an alternative system by adding
dummy peers. Construct a new set that con-

tains all peers in . In addition, the first group of
dummy peers are always added to . For the second group of

dummy peers, each of them is in with proba-
bility , independently of others. The advantage of making use
of is that only depends on , and . Furthermore,

and are independent across . Hence, 's are indepen-
dent across conditioned on . Furthermore, by our
construction. Next, consider , i.e., the set of effective
downstream neighbors of . For each peer in , it randomly
choose upstream neighbors, one of which may be . Further-
more, for each dummy peers in , we also let it choose peer
as an upstream neighbor with probability . Let be the
number of effective downstream neighbors of in this alterna-
tive system. Note that may still be correlated across (even
though 's are independent). This is because the sets may
overlap. Then, if an overlapped peer has picked as an up-
stream neighbor, it will be less likely to pick another upstream
neighbor . Fortunately, we can show a negative
dependency between 's. Specifically, if is large, then it
is likely that less peers will pick , and hence will likely
be small. This negative dependency is made precise in the fol-
lowing lemma (see [25] for the proof).
Lemma 4: For any , 's satisfy

Note that by our construction. Hence, condition (c)
of Lemma 2 holds with and . To verify
condition (b), we can show the following lemma based on the
content availability condition. The proof is in [25].
Lemma 5: Let denote the number of intervals used to

achieve the content availability condition in Appendix A. Sup-
pose that there exist positive constants and such that

for all . For any ,
there exists , such that for , we have

Thus, condition (b) of Lemma 2 holds. Finally, note that 's
are i.i.d. and independent of all other random variables. Hence,
Theorem 1 follows from Lemma 2 for the “random sequen-
tial-range” choice set selection strategy. One can then show
that Theorem 1 also holds for our original policy (see [25] for
details).

III. MULTICHANNEL P2P VOD SYSTEM

In Section II, we have focused on a single-channel P2P
system. In this section, we study a multichannel P2P system.
Peers in each channel are interested in viewing a common
video, which is however different across channels. Based on our
single-channel algorithm, we will propose a simple and robust
cache placement policy that could achieve a close-to-optimal
streaming capacity for all channels.

A. System Model

We consider a P2P VoD system containing channels. Let
denote the set of all channels, and de-

note the video length of channel . Let denote the set of peers
that are watching channel , and . Let denote the
set of all peers in the system, i.e., and .
We assume that , where is the fraction of peers
viewing channel , which represents the popularity of channel .
Later on, we will consider a system with large , in which case
we assume that 's are fixed and do not change with , i.e.,
we focus on hot videos. Within each channel, we use the same
model as Section II-A, except that a subscript or superscript
is added to each notation to denote the channel. For example,

, , and represent the probability that a channel- peer's
downloading position is at , the upload capacity of a peer
in channel , and the set of downstream neighbors of peer in
channel , respectively.We assume that for all , i.e.,
the upload capacity in each channel has the same distribution.
Using the results from Section II, we know that each

channel can sustain a maximum streaming rate around
. However, in a multichannel system, it is typical that

different channels have different streaming rate requirements.
Let denote the targeted streaming rate for the video of
channel . Let . The streaming rate in
some channel may satisfy , which implies that
the upload capacity of peers viewing the channel is sufficient to
support the targeted streaming rate. Such channels are referred
to as sufficient channels. On the other hand, some other channel
may have . We call such channels insufficient
channels. We denote the set of insufficient channels as

, and the set of sufficient channels as
. Seemingly, peers in an insufficient

channel will not have enough upload capacity to stream the
desired video.
A natural idea to improve the overall system performance

is to use the extra capacity from sufficient channels to help
the peers in insufficient channels. This kind of helping will
obviously support a larger set of vectors of streaming rate
requirements. We define the streaming capacity region of the
multichannel system as the set of streaming rate vectors, such
that for each , under some centralized peer-selection and
rate-allocation strategy, every peer in the system can receive
a sufficient downloading rate to view its desired channel.
Assuming that the contribution of server capacity is minimal,
the largest possible streaming capacity region is given by

. In other
words, since the upload capacity of peers is the only constraint
in the system, the best that we can do is to support those rate
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vectors such that the summation of all demand is no greater
than the summation of all upload capacity. Again, 's are
usually not very large in practice, and hence we will omit the
contribution of in the rest of this section. Let

We say that a multichannel control algorithm achieves a close-
to-optimal capacity region, if for any with some

, all peers in each channel can sustain the streaming
rate .
In order for peers from a sufficient channel to help peers

in an insufficient channel , the peers in channel must al-
ready have the content for channel , in addition to the con-
tent for channel that they are interested in viewing. For this
purpose, we assume that, in addition to the video from its own
channel, each peer also caches one other video from an insuffi-
cient channel, and hence can serve the peers in the insufficient
channel. (Note that although we assume that the entire video
from the insufficient channel is cached in this case, a similar line
of analysis can be carried out if the video from the insufficient
channel is divided into a small number of parts, and each peer
only cached one part of the video.) Furthermore, we assume that
the cached content has already been preloaded, and we ignore
the bandwidth resources to place these cached contents. We will
then study the optimal placement probabilities for each video
and how to best use the cached content. We note that a similar
assumption of preloading cached content has beenmade in other
prior works [14], [15], [19] that study the optimal cache place-
ment probability. In practice, this kind of proactive deployment
can be implemented in several ways. One possibility is to let
the peers download the cached videos from the server during
nonbusy hours. Such a method is especially useful when the
peers are always online, e.g., when using set-top boxes. An-
other possibility is to perform active push or passive replace-
ment using a randomized algorithm [19]. The key assumption
here and in [14], [15], and [19] is that the cache content will
be updated at a much slower timescale than the time-scale with
which peers request and stream videos. Hence, the cache replen-
ishment process can be performed much more slowly, and thus
the amount of bandwidth consumed for cache placement will be
significantly smaller than the amount of bandwidth consumed
for streaming.
There is, however, a common robustness issue for this line

of work. The optimal cache-placement probabilities are often
a function of system-wide parameters, such as the popularity
of each video. When analyzing the system performance, it
is often assumed that these parameters are known before-
hand [14], [15], [19]. In practice, however, it can be difficult to
accurately estimate these parameters beforehand. Furthermore,
as we discussed above, the cached content may need to be
updated over a slow timescale. Hence, the system parameters
at the time of viewing may have already changed from those at
the time of cache placement. In summary, it is impractical to
assume that the system parameters for computing the optimal
cache-placement probabilities are always known precisely
beforehand. In the sequel, our goal is to develop a multichannel

control algorithm that can achieve close-to-optimal streaming
capacity but is robust to imprecise estimates of key system
parameters.

B. Algorithm and Performance

We start with our cache-placement algorithm, which has
some similarity to the “proportional-to-deficient-bandwidth”
policy in [19]. (However, note that its optimality is not rigor-
ously shown in [19].)
1) Cache Placement: As we discussed earlier, each peer will

cache one other video in addition to the video that it is cur-
rently watching. The tracker maintains which peer caches which
video. Given , the tracker determines the re-
quired number of additional helpers for each channel , , ac-
cording to . Here, can be in-
terpreted as the deficit of upload bandwidth in channel . Note
that using , the tracker can classify sufficient and insufficient
channels: For a sufficient channel , is negative or zero; for
an insufficient channel , gives a positive value. Every peer in
each sufficient channel caches a video randomly chosen from
those of insufficient channels with the following distribution:
The probability that a peer in channel caches the video of
channel satisfies

for all (4)

Note that this probability only depends on (video rate),
(average upload capacity), and (video popularity), but is in-
dependent of . Due to such a randomized cache placement
policy, a random number of peers in each sufficient channel
cache a copy of channel 's video. Let us denote this number by

. The total number of peers in sufficient channels that cache
the video for channel is then . In our algo-
rithm, the tracker randomly chooses peers among the
peers in channel (that cache video ) to help channel ,
where is given by

(5)

We call these peers “helpers” for channel , and we use
to denote the set of all helpers assigned to help channel . Note
that if , our algorithm would fail because there is
not a sufficient number of peers who cache the video. However,
we show in [25] that this failure probability goes to 0 as
. Hence, the actual number of helpers for each channel is

.
Remark: Although we have assumed that each peer only

caches one video, the above algorithm could be easily extended
to the case where each peer caches multiple videos. In par-
ticular, if a peer in a sufficient channel can cache multiple
videos, then for each cache space, it chooses a video from
those of insufficient channels with the same distribution in (4).
Clearly, this design only increases the number of cached copies
for videos of insufficient channels, and thus the likelihood that
the tracker cannot find a sufficient number of “helpers”
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for any insufficient channel will only decrease. Hence, our
performance guarantee (shown later in Theorem 6) will still
hold even when each peer can cache multiple videos.
Robustness to Imprecise Estimates of System Parameters:

Along with the above cache-placement policy, our overall
scheme for multichannel P2P VoD systems achieves the fol-
lowing highly desirable property of being resilient to imprecise
estimates of system parameters. Note that, in the algorithm, the
probabilities depend on several system-wide parameters,
i.e., the mean upload capacity , the video popularity , and
the targeted streaming rate of each channel . In prac-
tice, these parameters, in particular the video popularity, may
change over time. Hence, it would be difficult for the tracker
to precisely estimate the value. Furthermore, as we discussed
earlier, the cache placement operations themselves also take
time, and have to be based on predicted system parameters.
These predicted system parameters can thus be quite different
from the actual system parameters when peers request videos
later. In such a scenario, while the number of required helpers,

, can be instantaneously computed from the current system
configuration (e.g., based on the actual number of peers in
each channel), the cache placement decisions must be
precomputed from possibly a different set of predicted system
parameters. Nonetheless, for each insufficient channel ,
our algorithm usually needs a much smaller number of helpers

than the expected number of potential helpers available,
i.e., . Therefore, even if is computed from inaccurate
system parameters, as long as , we will still be able
to find the required number of helpers, and the performance
of our algorithm will not be negatively affected. Thus, our
algorithm is robust to imprecise estimates of these parameters,
as is shown in the following example.
Example: Consider a P2P VoD system with three different

channels: channel 1 has , and the streaming rate is
; channel 2 has , and the streaming rate is

; channel 3 has peers, and the streaming rate is
. Assume that the average upload capacity of all the peers is

. One can show that . It is
not hard to see that channel 1 is a sufficient channel and chan-
nels 2 and 3 are insufficient channels. If we perform cache place-
ment according to the proportions in (4), the expected number
of peers in channel 1 to cache the video for channels 2 and 3
will be and , respectively. How-
ever, the numbers of actual helpers that we need to assign to the
insufficient channels are only and , which
are much smaller than and . Therefore, it is not
necessary to cache the videos exactly according to the propor-
tions in (4). In particular, assume that the tracker estimates the
system parameters incorrectly as , , ,

, , and , which are very different from
the true parameters cited earlier. Based on these incorrect pa-
rameters, the expected number of peers chosen by our proposed
algorithm to cache the video for channels 2 and 3 will then be

and . Since
and , the tracker will still be able

to find enough helpers for channels 2 and 3 with high proba-
bility. Thus, the same performance guarantee of our algorithm
(stated below in Theorem 6) can still be achieved.

We believe that this robustness property is a distinct advan-
tage of this class of “proportional-to-deficit-bandwidth” strate-
gies [19]. To the best of our knowledge, this work is the first
to account for imprecise system parameters. The key intuition
here is that since peers in the same channel already help each
other, the number of additional helpers required is decided by
the amount of deficit upload bandwidth in the channel, which
is significantly smaller than the total amount of upload capacity
needed. In contrast, in the model of [14], all peers must request
services only from helpers that have cached the content before
hand. In that case, the optimal cache-placement proportion must
be accurate in order to serve the maximum number of requests.
As a result, the performance is then very sensitive to imprecise
estimates of system parameters.
2) Peer Selection and Rate Allocation: Each peer in an in-

sufficient channel uniformly randomly selects upstream
neighbors from its choice set and uniformly randomly picks

upstream neighbors from its helper set , where
. Each peer in a sufficient channel only needs to select
upstream neighbors from its choice set (i.e.,

for peers in sufficient channels). Note that if a peer in a suffi-
cient channel is selected into the helper set of an insuffi-
cient channel , its upload capacity will be completely reserved
for serving peers in channel and will not be used to serve
peers in its own viewing channel. Each upstream peer still ap-
plies the uniform rate-allocation strategy. All other parts of the
peer-selection and rate allocation algorithms remain the same
as in the single-channel case. We can show that with our simple
multichannel control algorithms, the targeted streaming rate of
each channel can be attained with high probability. Specifically,
let be the achieved streaming rate of peer in channel .
Recall that an insufficient channel utilizes
helpers from other channels. For a sufficient channel , we sim-
ilarly define as the opposite of the total number of
helpers that channel contributes. Let and

. Furthermore, recall that . We
have the following main result for multichannel systems. De-
tailed analysis and proofs are provided in [25]
Theorem 6: Fix any , and .

Let . There exists such that if ,
, and , then we can

find and such that

for some and

IV. SIMULATION RESULTS
In this section, we provide simulation results for both

single-channel and multichannel systems to verify our analyt-
ical results.
Although our analytical results have not assumed a specific

user-behavior model, in our simulations we will experiment
with a particular user-behavior model, with which we will
verify that a steady-state distribution will indeed arise.
Specifically, we use the following user-behavior model. The
video length is set to be (seconds). Each user
searches for upstream neighbors among the 500 peers ahead.
We assume that a new peer always starts from the beginning
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Fig. 3. (a) Fraction of peers in three intervals and the additional bandwidth
required from the server as a function of the simulation time. (b) PDF of the
empirical user distribution .

of the video. Each peer could jump to a different location
randomly after some time. More specifically, upon arrival or
each jumping, each peer views the video for a random amount
of time chosen from an exponential distribution with mean
1800 s. After this viewing period, the peer will jump to a
new position between its current position and the end of the
video uniformly randomly. After each jumping, each user
downloads an additional fraction of the data in
its client set, according to our content availability condition
in Appendix A. This process (of viewing and jumping) then
continues until the peer reaches the end of the video, after
which the peer may stay for an additional amount of time
uniformly distributed in [0, 600] s. Finally, the interarrival time
between new peers follows an exponential distribution with
mean 1/3. By simulating the peers' behavior over time, we can
observe the emergence of a steady-state distribution of the
peers' viewing positions. For instance, in Fig. 3(a) each of the
three curves corresponds to peers whose viewing positions are
in the intervals , , and

, respectively. The -axis is the fraction
of peers in each of the three intervals, while the -axis is
the simulation time in seconds. We can observe that these
fractions indeed converge to a steady state, which suggests that
a steady-state distribution has emerged. The empirical
density function of the resulting steady-state distribution
is plotted in Fig. 3(b). In addition, we also measure the required
additional server bandwidth due to our content availability con-
dition in Section II-B-2 and compare it to the total bandwidth
consumed by all the users in the system for streaming [see the
top curve in Fig. 3(a)]. We see that the additional bandwidth is
only about 4% of the total bandwidth.
We then simulate single-channel systems and study the prob-

ability with which peers achieve close-to-optimal streaming
capacity as the number of each peer's upstream neighbors
increases. We will compare the performance as we vary dif-
ferent system parameters, such as the distribution of peers'
upload capacity (represented by ) and the con-
tent availability at peers (represented by ). The
upload capacity of each peer is assumed to be ON–OFF, i.e.,

and for each peer . We
assume that . The average upload capacity of peers
is . We vary the number of upstream neighbors
per peer from to ,

Fig. 4. Single-channel system: the probability of success as the number of up-
stream neighbors increases.

which correspond to 0.5% to 4.45% of the total number of peers
. Then, for each choice of the system parameters

and the number of upstream neighbors per peer, we generate
a single-channel P2P VoD streaming system according to our
single-channel P2P control algorithm for 1000 times. In each
run of the simulation, we record the smallest downloading rate
among all peers and compare it to . We count the
number of times that this smallest downloading rate is larger
than and plot the probability for that to happen. The
result is shown in Fig. 4. We can observe from the simulation
results that, when , , , and when each
peer selects no fewer than (which corresponds
to 0.5% of ) upstream neighbors, a downloading rate higher
than of the average peer upload capacity can be
achieved in the entire network with probability close to 1. (We
note that while appears to be large, it only means
that each peer has 90% of the content for the range of its client
set, which is of a small size .) When is reduced
to 0.5 or is reduced to 0.5, more upstream neighbors are
needed to achieve the same performance. Furthermore, under
the same values of and , when we reduce to 0.2, more up-
stream neighbors are needed to achieve the same performance.
These observations verify our insights following Theorem 1.
Note that our proposed algorithm has used very simple con-

trol mechanisms, such as uniformly random neighbor selection
and uniform rate allocation. In the following, we also simulate
an adaptive algorithm to study whether more sophisticated de-
sign can further improve the system performance. Specifically,
under the adaptive algorithm, each user will no longer choose
its upstream neighbors from its choice set uniformly randomly.
Instead, it will only choose from those peers in its choice set
who still have less than effective downstream neighbors. As
shown in Fig. 4, under the adaptive algorithm, the same proba-
bility of meeting the targeted streaming rates could be achieved
with 1/3 less upstream neighbors (compared to the curve with
the same value of ). This indicates that there is potential to
further improve the proposed algorithm by adding more adap-
tive control, which we will study in our future work.
Since our analytical results focus on large- asymptotics,

our work mainly focuses on “hot videos” that have many peers.
In practice, however, one would also like to understand how
large needs to be for the proposed algorithm to be useful.
In Fig. 5, we study the performance of our algorithm when the
total number of peers changes from 500 to 5000. The number
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Fig. 5. Single-channel system: the probability of success as the number of peers
increases.

of neighbors for each peer is chosen as . We
can see that when or , our
proposed algorithm starts to achieve close-to-optimal streaming
rates with high probability once the number of users reaches
around 1000, which is reasonable for “relatively hot” videos.
In contrast, the performance of our algorithm degrades when

, . The reason is that when and ,
the choice of is too small and it does not satisfy our
condition in Theorem 1, i.e., . Therefore, there is
no performance guarantee in this case.
Next, we simulate a multichannel P2P VoD system with

4 channels. We use the same settings as in the single-channel
simulations on the distribution of peer upload capacities
and the distribution of peers' downloading positions. We set

and . The content availability is given by
. We set , , ,

and . We choose a target streaming rate vector
, which is in (i.e., ). Chan-

nels 1 and 3 are insufficient channels, and channels 2 and 4
are sufficient channels. In Fig. 6, we plot the probability that
the downloading rate of a peer in channel is greater than its
target streaming rates , for each of the four channels as the
number of upstream neighbors per peer varies. Furthermore,
the curve with “ ” plots the probability that all peers in all
channels simultaneously sustain downloading rates greater
than their corresponding target streaming rates. As we can
see from Fig. 6, all channels attain with high probability their
required streaming rates even with a small number of upstream
neighbors. In Fig. 7, we fix with and plot
the success probability as the total number of peers changes.
We see that the probability indeed converges to 1 when the
total number of peers is larger than 20 000.
In Fig. 8, we simulate the effect of cache placement decisions

based on imprecise system parameters. Specifically, the cache
placement probabilities for the above system setting should be

and . [Re-
call from (4) that is the probability that a peer in sufficient
channel caches the video for insufficient channel .] To cap-
ture the effect of imprecise estimates of system parameters, we
instead simulate with a very different set of placement probabil-
ities for sufficient channel 2, and

for channel 4. These placement
probabilities are chosen by the expression

Fig. 6. Multichannel system: the probability of success as the number of up-
stream neighbors increases.

Fig. 7. Multichannel system with precise cache placement: the probability of
success as the total number of peers increases. The number of upstream neigh-
bors is chosen as with .

. One can verify that is barely larger
than in (5). Furthermore, note that , which im-
plies that a smaller number of peers in channel have the cached
content to help channel . As shown in Fig. 8, the system perfor-
mance under skewed cache placement probabilities is similar to
that under the original cache placement probabilities. This ver-
ifies the robustness of our strategies with respect to imprecise
estimates of system parameters.
Finally, we study the cost and benefit of our content avail-

ability condition. The cost is defined as the additional amount
of content that random-seeking peers need to download
from the server in order to satisfy the content availability
condition at a particular value of , divided by the total
amount of content consumed by all streaming users. On
the other hand, to calculate the benefit, we note that if a
user could not get a sufficient streaming rate from its up-
stream neighbors, it will have to ask the server to fill in
the gap. At a given value of , we then count the total
amount of such content downloaded from the
server by all users to fill in the gap, i.e.,

. The benefit of the content availability condition for
each value of is then calculated as ,
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Fig. 8. Multichannel system with imprecise cache placement: When the cache-
placement algorithm is based on imprecise estimates of system parameters, the
probability of success as the number of upstream neighbors increases.

Fig. 9. Cost versus benefit of the content availability condition.

again normalized by the total amount of content consumed
by all streaming users. Thus, this benefit value reflects the
reduction in server capacity requested by non-random-seeking
users, compared to the case without the content availability
condition (i.e., ). We simulate a network with 10 000
peers, streaming a 1-h video. We create a similar setting as the
one that we described in Section II: There is an interval (e.g.,
the opening of the video) for about 1/10 of the video length
that some fraction of the users wish to skip. After skipping,
these peers download additional content to satisfy our content
availability condition. We plot in Fig. 9 the cost and benefit,
at different values of and with different skipping prob-
abilities. We first observe that, when is small (less than
0.4), the benefit outweighs the cost. In other words, our content
availability condition reduces the total download capacity
from the server when is relatively small.3 However, as

increases, the cost eventually becomes larger than the
benefit. Furthermore, we observe that, when the skipping prob-
ability increases, both the benefit and cost increases. The cost
increases because we have more random-seeking peers that
need to download the additional content. The benefit increases
because increases, i.e., when the skipping probability
increases, without the content availability condition the peers

3We note that the above comparison is somewhat conservative because our
definition of the benefit accounts for the streaming rate from upstream neigh-
bors, while our definition of the cost does not. If the random-seeking peers can
also utilize any remaining capacity from the upstreaming neighbors to satisfy
the content availability condition, the cost will be further reduced, and thus the
value of such that the benefit outweighs the cost will be even larger.

that did not jump would have even less chance to find an
effective upstream neighbor. Interestingly, the ratio between
the cost and the benefit remains roughly the same for different
skipping probabilities, and the crossover value of for the
cost to be approximately equal to the benefit also does not vary
significantly.

V. CONCLUSION
In this paper, we provide a rigorous analytical study on the

performance of large-scale P2P VoD systems with sparse con-
nectivity and simple, robust, and decentralized control. For both
single-channel and multichannel systems, we provide easy-to-
implement P2P control algorithms and show that the system can
achieve close-to-optimal streaming capacity with probability
approaching 1, as the total number of peers increases. Under
our control algorithms, each peer is only assigned up-
stream neighbors, with which it exchanges content availability
information. Most parts of the control algorithms are decentral-
ized. Thus, these algorithms incur low control overhead and are
easy to implement in practice. Our analytical studies provide
easy-to-verify conditions for such close-to-optimal streaming
to hold, which shed important insights to guide the design of
improved P2P streaming protocols. There are a number of in-
teresting directions for further work. First, it would be inter-
esting to study whether the required number of per-peer neigh-
bors can be further reduced, possibly by using more sophisti-
cated peer-selection and rate-allocation algorithms than those
studied in this paper. The challenge would be how to improve
the system performance while retaining the simplicity and de-
centralized properties. Second, in our multichannel setting, the
number of videos is assumed to be fixed as increases. A dif-
ferent setting when the number of videos also approaches in-
finity is of significant practical interest. It remains a challenging
question whether or not similar simple algorithms could achieve
good performance under such a many-video scenario.

APPENDIX A
IMPLEMENTATION OF CONTENT AVAILABILITY CONDITION
The content availability condition that we introduced in

Section II-B-2 can be implemented as follows. Choose
such that . Suppose that a peer (denoted
by ) randomly seeks to position . It will first download
a fraction of the content from the range that may be requested
by the peers in its client set. More specifically, let be
the downloading position of the youngest peers in this peer's
client set . This peer then selects and downloads the
content of intervals within , each of which has a
length of , where satisfies

. These intervals are selected inde-
pendently and uniformly randomly. At this point, it is easy
to see that our content-availability condition holds: for any
peer in , the probability that peer has the
required content for peer is equal to the probability that peer
is in at least one of the intervals, which is calculated as

. For sufficiently large , we will have
. Next, as peer continues to

watch the video, it downloads the content from to its current
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downloading position . In order to meet the content
availability condition for all peers in the client set , as long
as contains at least one peer whose downloading position
is smaller than , then for all other peers in , peer
is only willing to serve it with probability , independently of
other peers. This restriction will continue until all peers
advance past . Then, peer can serve all of its downstream
neighbors (equivalently, ).

APPENDIX B
MORE DETAILS OF THE PROOF OF THEOREM 1

Using Lemmas 2–5 and by relating , , and in Lemma 2
to , and for our alternate “random sequential-range”
choice-set selection strategy, it is easy to show that (3) holds
for this alternative policy. To go back to our original “random
sequential” choice set selection strategy and prove Theorem 1,
we need the following lemma. Recall from Appendix A that

is the downloading position of the youngest peer in the
client set of peer . Thus, is similar to introduced
before Lemma 3, except that the latter is defined for the “random
sequential-range” choice-set selection strategy.

Lemma 7: Given any and , let

for all
Then, .

Proof: For any peer such that , i.e.,
, the event implies that

. Thus, the number of peers in must be greater
than . However

Note that the number of peers in is a binomial random
variable with sample size and success probability .
It is then not difficult to show that (refer to [25] for details)

the number of peers in is greater than

(6)

Furthermore, for any peer such that ,
implies that or . Consider

the case when . Such an event implies that the
number of peers in is less than . However, the
number of peers in is a binomial random variable
with sample size and success probability

It is not difficult to see that (refer to [25] for details)

the number of peers in is less than

(7)

Similarly, one can show that

(8)

Finally, combining (6)–(8), and taking the union bound, the re-
sult of the lemma then follows.
Next, fix any peer . Consider the “random sequential”

choice-set selection strategy. Similar to Section II-C, for any
peer , consists of two parts: 1) all the peers in

; and 2) for the peers in ,
each of them is in with probability independently of
others. For any , given in Lemma 3 and in Lemma 7,
we have

and

Since can be arbitrary, replacing by , we can
show that, given the event in Lemma 3 and the event in
Lemma 7, we have

Now, we can construct an alternative system in the same
way as we did in Section II-C. We will have ,

, where 's satisfy Lemmas 4 and 5, with
the conditioning event replaced by . Let and

denote the probability and the expectation conditioned
on . We thus have, for any

Now applying Lemma 2 and taking , we have
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Note that and is arbitrary.
Hence, by properly rescaling , we can show that, for any ,

Consequently

The result of Theorem 1 thus follows by taking the union bound
over all peers.
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