ECCHECK: Enhancing In-Memory Checkpoint with
Erasure Coding in Distributed DNN Training

Guicheng Qi
HKU
u3010274 @connect.hku.hk

Zongpeng Li
Tsinghua University
zongpeng @tsinghua.edu.cn

Abstract—Distributed large model training is intensively time
and resource consuming. Failures during the long training period
are often inevitable, and can incur substantial recovery costs.
Checkpointing has been the standard fault tolerance approach,
which periodically stores the latest model states at remote persis-
tent storage. This process can be time-consuming due to limited
network bandwidth, and adversely affects training throughput.
In-memory checkpointing addresses this issue by saving check-
point data into host memory instead of remote storage. However,
host memory is non-persistent, and may not provide sufficient
resilience in case of machine failure. We propose ECCHECK, a
novel in-memory checkpoint system that employs erasure coding
to enhance fault tolerance in distributed deep neural network
training. ECCHECK advocates serialization-free encoding and
decoding in model checkpointing. Several techniques are pro-
posed to minimize computation and communication overhead
incurred by erasure coding. Extensive experiments demonstrate
that ECCHECK achieves superior fault tolerance compared to
state-of-the-art solutions, while maintaining high checkpointing
frequency, low checkpointing stalls, and fast recovery from
failures.

Index Terms—distributed training, fault tolerance, in-memory
checkpoint, erasure coding

I. INTRODUCTION

The emergence of large deep learning models such as
GPT-4 [23], LLaMA [34], and PaLM-E [8] has unlocked
new possibilities in natural language processing, computer
vision, and beyond. Training these models, with hundreds of
billions of parameters, requires vast computation resources:
often utilizing hundreds or even tens of thousands of GPUs
for weeks or even months [33]. This protracted training pro-
cess inevitably encounters numerous faults, including software
glitches and hardware breakdowns. For example, the training
of Llama 3.1 405B experienced 419 unexpected failures over
54 days, encompassing various issues such as GPU device
malfunctions, network infrastructure failures, server hardware
problems, and software bugs. This averaged to approximately
one failure every 3 hours, with 78% of these failures attributed
to confirmed or suspected hardware issues [33]. Upon failure,
training often needs to be restarted, incurring substantial
recovery costs in time and resources.

Checkpointing has been the de facto standard to enable
failure recovery in distributed model training, periodically
storing training states (e.g., model parameters, optimizer states,

This work was supported in part by the Huawei Cloud Computing Tech-
nologies Co., Ltd. under Grant TC20240629018 and by Hong Kong Research
Grants Council (RGC) under Contracts HKU 17204423(GRF) and C7004-22G
(CRF).

Chuan Wu Zhuwei Peng, Yi Zheng
HKU Huawei
cwu@cs.hkuhk {pengzhuwei,zhengyi29} @huawei.com

dataloader states) on remote persistent storage [24]. By loading
the latest checkpoint from the storage, it allows training to
resume from the corresponding model states. To ensure model
consistency, training is paused during this recovery process,
and loading checkpoint from the remote storage is often time-
consuming due to network bandwidth constraints. To main-
tain acceptable training throughput, checkpointing frequency
is typically kept relatively low, once every few hours [1].
Consequently, failures may cause the model to roll back to
a rather old state, wasting significant time and computation
resources. For example, 178,000 GPU hours are wasted due
to various training failures in the training of OPT-175B [36].

To address the low checkpointing frequency, CheckFreq
[20] adaptively adjusts checkpointing frequency in real time,
to strike a balance between checkpoint overhead and failure
recovery time. It also implements a two-phase checkpointing
process, snapshot and persist, to reduce training interruptions,
but still transfers the checkpoint to remote storage. Check-
N-Run [9] uses incremental checkpointing for deep recom-
mendation models and employs quantization techniques to
reduce the checkpoint size, expediting data transfer to remote
storage. However, quantization may compromise model accu-
racy. GEMINI [35] adopts in-memory checkpointing, where
checkpoints are stored directly in CPU memory of host
machines. This enables high checkpointing frequencies due
to much higher I/O bandwidth. However, GEMINI’s node
grouping strategy restricts its ability to handle consecutive
node failures effectively, and it still relies on remote storage
when concurrent failures happen in the same group, due to the
non-persistent nature of host memory.

Addressing these challenges, we propose ECCHECK, an in-
memory checkpoint system for distributed large model train-
ing that leverages erasure coding for distributed checkpoint
storage and efficient failure recovery. By harnessing the high
bandwidth of inter-node connections, ECCHECK can achieve
significantly higher checkpointing frequency compared to re-
mote storage-based checkpointing. Although CPU memory is
non-persistent, erasure coding can provide more fault tolerance
than replication, under the same level of redundancy.

ECCHECK can tolerate multiple node (aka machine) fail-
ures while maintaining high checkpoint frequency and fast
training recovery, without compromising model accuracy or
training throughput. To efficiently integrate erasure coding
into distributed DNN training, we design a serialization-free
encoding and decoding protocol for model checkpointing and

recovery. To alleviate the additional computational and com-
munication overhead due to checkpoint coding, we propose
several techniques to accelerate checkpointing and to avoid
interference with distributed model training. Our contributions
can be summarized as follows:

> We design ECCHECK, an innovative in-memory check-
pointing system that utilizes erasure coding for fault tolerance
to multiple machine-level failures in distributed DNN training.
The system strategically classifies all n training nodes into &
data nodes and m parity nodes. By applying erasure coding
to process checkpoints in a distributed manner, ECCHECK
enables the training system to withstand up to m concurrent
failures. ECCHECK leverages CPU resources for checkpoint
encoding and communication, and does not compete with
model training for GPU computation and memory resources.
ECCHECK can be applied in distributed training using any
type of parallelism (tensor parallelism, pipeline parallelism,
fully sharded data parallelism).

> We design a serialization-free encoding and decoding
protocol for processing model checkpoints. It decomposes the
checkpoint into distinct components for tailored processing,
reducing overhead and improving efficiency.

> We advocate multiple optimization techniques in EC-
CHECK to minimize both computational and communication
overhead incurred by erasure coding. ECCHECK employs
the efficient Cauchy Reed-Solomon [2] code as its encoding
scheme, leveraging CPU thread pool to accelerate encoding.
ECCHECK utilizes a sweep line algorithm to optimize the
selection of data nodes and parity nodes, and determines the
ideal XOR reduction target (a crucial step in ECCHECK’S
checkpointing process), to reduce communication volume.
Furthermore, ECCHECK exploits network idle time slots for
communication tasks and employs a pipelined approach to
overlap checkpoint computation and communication.

> We implement ECCHECK on top of Megatron-LM [32]
[22] [16]. We conduct extensive experiments to demonstrate
the scalability, fault tolerance, and performance benefits of
ECCHECK under various distributed training configurations.
ECCHECK not only provides enhanced fault tolerance com-
pared to replication-based in-memory checkpointing, but also
features reduced checkpointing time (by up to 5.2 %) and faster
recovery (by up to 13.9x) compared to remote storage-based
checkpointing.

II. BACKGROUND AND MOTIVATION
A. Distributed Model Training and Checkpointing

Distributed training represents the status quo of training
large deep learning models, with computation distributed
across multiple workers/devices. Several key parallelism
strategies have been widely adopted. Data parallelism [12]
replicates the entire model at each device, with each device
processing a different mini-batch of training data. Tensor
parallelism [32] partitions tensors among devices, allowing
parallel computation on different parts of the same model
layer. Pipeline parallelism [13] [21] divides the model into
stages, running different layers on different devices, creating a

00666660

006 OP e ® 6
(@) 6P #rank

Fig. 1: Hybrid parallelism in a 4-node distributed training system,
where each node contains 4 GPUs. The DNN model is divided into
2 pipeline-parallel stages, with each stage partitioned among 4 GPUs,
and each stage having a replica.

data parallelism = pipeline p: tensor

node0 node1 node2 node3 node0 nodel1 node2 node3 node0 node1 node?2 node3

a e Fa e | ool da][da][da] [do][2

0 1 2 3 dy dy d3 d3 dy d3 ||| dd| [i=dj
(a) Each of the four (b) Replication-based (c) Erasure coding-based
nodes stores one chunk. Approach. Approach.

Fig. 2: Replication vs. erasure coding of checkpoint. With the
same amount of redundancy, erasure coding provides stronger fault
tolerance.

computation pipeline among microbatches of input data. The
parallelism strategies can be combined to optimize resource
utilization and training scalability under different model archi-
tectures and hardware configurations. An example of hybrid
parallelism is given in Fig. 1, with data, pipeline, and tensor
parallelism combined to train a DNN model.

A typical checkpoint includes model states, optimizer states,
dataloader states, and additional metadata (such as iteration
count and checkpoint version), all structured as a dictio-
nary. The checkpointing process generally involves several
steps: synchronizing model states across distributed workers
to ensure model consistency, serializing checkpoint data into
compact byte objects, and storing the byte objects to persistent
storage. In distributed environments, effective checkpointing
must carefully balance fault tolerance and training perfor-
mance.

Since the interconnection bandwidth among nodes is sig-
nificantly higher than that to remote storage, in-memory
checkpointing can potentially achieve a high checkpointing
frequency. Nonetheless, CPU memory is non-persistent and
in-memory checkpoint would be lost when the machine
fails. GEMINI [35], a state-of-the-art in-memory checkpointing
system, employs a replication-based method to ensure fault
tolerance. It divides all nodes into groups of the same size;
within a group, each node stores replications of all checkpoint
data in that group, thereby providing fault tolerance. In Fig. 2,
four nodes in a distributed training system each store one
checkpoint data chunk. Nodes 0-1 and 2-3 are organized into
two separate groups. With the inter-group replication design of
GEMINI (Fig. 2b), the system can tolerate up to two concurrent
node failures, one in each group. Using a larger group size
may allow tolerating more concurrent failures, but may incur
significant communication and memory overhead, as each
node needs to broadcast its checkpoint to all nodes within
the same group.

B. Erasure Coding

Erasure coding is a classic method for fault tolerance
with data redundancy, and has been well studied/applied in

the fields of distributed storage [7], cloud computing [17],
and network communications [30]. Compared to replication,
erasure coding requires less redundancy to achieve the same
level of fault tolerance, at the cost of additional computational
overhead.

The core idea of erasure coding is to use an encoding matrix
(also known as a generator matrix) to transform k original
data packets into n = k + m encoded packets, such that
any k of these n packets can reconstruct the original & data
packets. The encoding matrix is of size (k+m) X k, with any
k rows being linearly independent. An erasure code can be
either systematic or non-systematic [25]. Systematic erasure
codes, widely adopted in practice, preserve the original k data
packets and append m parity packets. The encoding matrix
is E = [Iy, E')T, where I, is a k x k identity matrix, E’ is
a k x m matrix. Non-systematic codes transform the entire
message, resulting in an encoded output that does not contain
the original data. Systematic codes have lower encoding and
decoding complexity, while non-systematic codes can provide
enhanced error correction capabilities and improved security.
We focus on systematic codes due to their lower computational
overhead; security considerations are beyond the scope of this
work.

In Fig. 2c, node 0 and node 1 store the original data chunks
[do, d1] and [ds, d3], respectively. In contrast, node 2 and node
3 store the encoded parity chunks [do + dg,d; + d3] and
[do — da, dy — d3]. The system can tolerate any two concurrent
failures. For instance, if node 0 and node 1 fail concurrently,
the checkpoint chunks stored on node 2 and node 3 can be
used to recover dy,d;,ds,ds. For both replication (Fig. 2b)
and erasure coding (Fig. 2c), each node needs to store twice
its original checkpoint data size. Erasure coding can provide
better fault tolerance than replication under the same amount
of redundancy.

On the other hand, erasure coding incurs additional compu-
tation (for chunk encoding and decoding) and communication
(for transferring chunks among nodes for distributed storage)
overhead. Is it worth adopting erasure coding which trades off
extra computation for better fault resilience? Consider a 2000-
node cluster, which can be divided into 500 groups, each con-
taining 4 nodes. Let p denote the probability of a single node
experiencing failure, assuming node failures are independent
[31] [11]. If we use a replication-based checkpointing system,
for each 4-node group, the recovery rate (i.e., the probability
of recovering all checkpoint data from node failures) is given
by:

Reep=(1—p)' + (?)p(l -p)’+ (<;1> —2)p°(1—p)* (1)

If we use an erasure coding-based method for each 4-node
group, as illustrated in Fig. 2c, the group can tolerate any two
concurrent failures. Under this arrangement, the recovery rate
is:

Re'r'a = (1 _p)4 + (?)p(l _p)3 + <;l>p2(1 _p)2 (2)

mmm Other Time Serialization Time

g
o

=
=)

18.1% 26.6% 22.2%

31.4%

e

©
o
o

o
o

°
IS

Recovery Rate
o
2 g

—— erasure coding
— replication

e

o
o
o

(<}
©
Normalized Checkpointing Time

0.0 GPT2 345M GPT2 345M GPT2 1.6B GPT2 1.6B

5Gbps 10Gbps 5Gbps 10Gbps

It
wn

o
o

.000 0.005 0.010 0.015 0.020
Node failure probability Fig. 4: Serialization overhead in
checkpointing for GPT2 models
trained on 4 NVIDIA A100 40G
GPUs. Checkpoints stored to re-
mote storage; aggregated band-
width marked under each case.

Fig. 3: Recovery rate compar-
ison between replication-based
and erasure coding-based meth-
ods in a 2000-node cluster.

We obtain that Rerq — Ryep = 2p*(1—p)?. For the 2000-node
cluster divided into 500 groups, considering that any group
failure renders recovery impossible, the overall recovery rate in
the cluster is ngg with replication-based checkpointing, and
R2% with the erasure coding-based method. Fig. 3 compares
the fault tolerance capacity between the two methods. With
the increase of node failure rate, the better failure resilience
of erasure coding is more pronounced. If we can optimize
erasure coding to incur only marginally more overhead than
replication, without significantly interfering with training, then
adopting erasure coding is worthwhile due to substantially

improved fault tolerance in large-scale distributed systems.

C. Opportunities and Challenges

Existing research has explored some approaches to applying
erasure coding to in-memory checkpointing. For instance,
a study presented at HASE [4] investigates diskless check-
pointing in distributed scenarios; however, it is not well-
suited for DNN training workloads. ECRM [37] is specif-
ically tailored for recommendation models, which limits its
applicability to other types of DNNs and broader distributed
training scenarios. Furthermore, it can only tolerate a single
node failure, making it less effective in scenarios requiring
higher fault tolerance. The application of erasure coding to
in-memory checkpointing presents promising opportunities for
improving failure resilience of distributed training systems,
while maintaining high checkpointing and recovery efficiency.
Nevertheless, several challenges need to be addressed to
fully realize the benefits of erasure code-enhanced in-memory
checkpointing.

Challenge 1: Designing an efficient encoding and decoding
protocol. In distributed model training, each worker maintains
a sharded state_dict (i.e., the checkpoint data), of which
model and optimizer states are maintained in GPU memory,
Random Number Generator (RNG) states in the dataloader
and other training metadata like iteration count are stored
in CPU memory. Since encoding is applied to a contiguous
block of memory, it is necessary to transfer the non-contiguous
checkpoint into a contiguous block of memory in the CPU.
Therefore, an intuitive first step is to serialize the checkpoint
into compact byte objects, treating them as data blocks to

be subsequently encoded. However, serialization can incur
significant overhead [19], as shown in the examples in Fig. 4,
constituting a significant proportion of the overall checkpoint-
ing time. Notably, as the aggregated bandwidth to remote
storage increases, the relative serialization overhead grows in
comparison to the overall checkpointing time, as transferring
the checkpoint takes less time while the serialization time
remains unchanged. Furthermore, when encoding after seri-
alization, the process of serialization is on the critical path
of checkpointing, which cannot be executed with encoding in
a pipelined manner. Given these limitations, a serialization-
free encoding and decoding approach is more desirable for
processing the checkpoint.

Challenge 2: Minimizing the overhead incurred by era-
sure coding. Erasure coding inevitably introduces additional
computation and communication overhead. If the overhead
significantly hinders training throughput or reduces check-
pointing frequency, the approach becomes less appealing. For-
tunately, existing research has developed techniques to accel-
erate encoding and decoding, achieving impressive throughput
exceeding 40 Gbps [38]. Additionally, communication dur-
ing distributed training typically follows predictable patterns
[29]. For example, in tensor parallelism, the communication
involves frequent all-gather and reduce-scatter operations to
reconstruct full tensors or aggregate partial computations; in
pipeline parallelism, the communication resembles a pipeline,
with activations flowing forward and gradients flowing back-
ward between adjacent stages, and an all-reduce operation
is applied at the end of a mini-batch to update gradients.
Many idle network time slots exist during distributed training
[29], e.g., in tensor parallelism, idle time occurs between
consecutive all-gather or reduce-scatter operations; in pipeline
parallelism, network idling happens when some stages are
under computation while others are waiting for data. They can
be utilized for the communication incurred by erasure coding,
reducing its interference with the training process. We propose
several optimization techniques to minimize the computation
and communication overhead introduced by erasure coding,
developing robust and efficient in-memory checkpointing so-
lutions that exploit the advantages of erasure coding while
mitigating potential overheads.

III. ECCHECK
A. Overview

We propose ECCHECK, an in-memory checkpointing sys-
tem that utilizes erasure coding. As illustrated in Fig. 5,
ECCHECK adopts an erasure coding-based in-memory check-
pointing scheme. All training nodes follow 4 steps during
checkpointing. First, each worker (on a GPU) offloads the
tensor data (i.e., GPU states, including model and optimizer
states) onto CPU memory (step 1), also known as CUDA
DtoH copy. Upon completion, training continues. The fol-
lowing steps are executed asynchronously. After offloading,
all checkpoint data resides in CPU memory, where the CPU
performs encoding, according to the encoding protocol (step

remote

(3] - >
. ok persistent
* storage
CPU®

Q- N
node n-2 node n-1
ﬂofﬂoading oencoding ecommunication olow-frequency

persisting

Fig. 5: Checkpointing architecture of ECCHECK.

Step 1: Encoding Step 2: XOR reduction Step 3: P2P communication Done!

node 0 node 0 node 0 node 0
(data node 0) (datanode 0) (data node 0) (data node 0)
do
endo

|
|
!
|
|
|
]
U s
ari de 1)’ | (parity node 1)
[\ [E Y (s

d ==

=
e |

—
N
! .
1
|
i
1

do

o

Lenfol

:

\
A (o e)
[Pd]

' '
' '
I '
| |
| '
1 '
| 1
I '
1 '
| '

1 '

2 |
1 '
| '
| |
' '
' '
| 1
| |
1 '
| '

node 2 node 2
(data node 1) (data node 1)

- .
data packet encoded packet parity packet encoding XOR reduction P2P communication

node.

Fig. 6: ECCHECK: example of checkpointing.

2). Then the encoded chunks are transferred to other nodes
following a predetermined communication strategy (step 3).
After that, each node stores enough coded checkpoint chunks
to ensure that any subset of them can recover the original
checkpoint data. Additionally, all checkpoint data are trans-
ferred to a remote storage at a low frequency (step 4) to
counter catastrophic failures in which surviving nodes cannot
recover the original checkpoint.

ECCHECK can be applied to a distributed training sys-
tem using any type of parallelism. Since data parallelism
naturally provides model replicas, ECCHECK is more useful
with pipeline-parallel, tensor-parallel, and fully sharded data
parallel (FSDP) training, where no full replicas are available
for checkpoint recovery. In distributed training, each worker
maintains a sharded state_dict of the model, which is the
data to be checkpointed. The sharding of state_dict is
determined by the specific parallelism strategy of choice. In
tensor parallelism, state_dict is sharded across devices
based on tensor dimensions, with each shard containing a
portion of the model’s parameters, typically split along the
hidden dimension for linear layers and attention heads for
transformer models. In pipeline parallelism, state_dict is
sharded by model layers, with each shard containing the pa-
rameters of one or more consecutive layers of the model. Each
shard typically includes model parameters, optimizer states,
and other necessary training metadata specific to that portion
of the model. ECCHECK utilizes erasure coding to encode
the sharded state_dict at each node, and the encoded
dictionary is referred to as encoded_state_dict.

B. Design Principle

We abstract each sharded state_dict (i.e., the check-
point) on each worker as a data packet. Consider n nodes in a

Step 1: P2P communication

node 0 node 0
(data node 0) (data node 0)

Step 2: Encoding

node 0
(data node 0)

node 3
(parity node 1)

T

(parity n

=
3
2
5

Step 3: XOR reduction

Step 4: Resuming training Step 5: P2P communication Done!

node 0
(data node 0)

do
Po

node
(data node 0)
do
d

node 0
(data node 0)
do
Po

g
°

node 3 node 3
(parity node 1) (parity node 1) (parity node 1)

HH
e3]| [n5

7

€12P3
7

€29P3

dy
dy
node 3 dy
(parity node 1)
S
\

‘ dl

‘ ‘ ‘ ps

a [Ca Po
d3 P1 ds ‘ p1 p1

node 1 node 1
(replaced)
(parity node 0)

(replaced)

(parity node 0) (parity node 0)

node 1
(replaced)
d:

(parity node 0)

node 1 node 1
(replaced) dy (replaced)
(parity node 0)

(parity node 0)
dy

(replaced)
(parity node 0)

2 3

node 2 node 2
(replaced) (replaced)
(data node 1) (data node 1)

node 2
(replaced)
(data node 1)

D survival survival

node datapacket parity packet

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
1

(replaced)
(data node 1)

—J
encoded packet recovered packet

node 2
(replaced)
(data node 1)

node 2
(replaced)
(data node 1)

node 2
(replaced)
(data node 1)

1
1
1
1
|
|
|
i
|
!
1
|
1
1
I
1
1
1
1

encoding

XOR reduction [
1O pop communication

Fig. 7: ECCHECK: example of recovery.

distributed training system, each node has g devices (GPUs),
and there will be ng checkpoint data packets, which altogether
constitute the complete checkpoint of the DNN model. We
evenly divide the ng checkpoint data packets into k& chunks,
and encode the k chunks into m parity chunks (m = n — k),
so that we can obtain n chunks in total. We allow each
node to store one chunk, and any k of the n chunks can
recover the original k chunks (i.e., the original ng checkpoint
data packets). In this way, the distributed training system can
tolerate any m concurrent node failures.

For example, when there are 4 nodes and each node
has one device, there are 4 data packets, dgy,d;,d2,ds. We
evenly divide the four data packets into 2 chunks Dy and
D, each containing 2 data packets, i.e., Dy = [do,d;] and
Dy = [ds,d3). Let E be a 4 x 2 encoding matrix (any two
rows of E are linearly independent). Let Py and P; denote
the 2 parity chunks. The encoding is performed as follows:

Dy 1 0 Do
Di| _ Dol _ |0 1{[Do]_ D
Pyl Di| |enn ew2| |Di| |e1nDo+e12Ds

Py €21 €22 e21Dg + e22D1

As a result, we have

Py = [e11Do + e12D1] = [e11do + er2dz,
Py = [e21Do + e22D1] = [ea1do + e22da,

eindi + ei2ds]
ea1d1 + e2ads]

Then we distribute Dy, D1, Py, P, among the four nodes, so
that any two nodes can recover the original Dy and D;. The
decoding process, which recovers Dy and D1, e.g., when only
Dy and P; are available, is illustrated as follows:

2] = [][]

Dol [1 0] '[De] [1 01 [Do
€21 €22 P —2% $ Py

D,

To integrate the checkpoint encoding process of Eqn. 3 into
a distributed training system, ECCHECK first categorizes the
n nodes into two types, k£ data nodes and m parity nodes with
n = k+m, so that the k data nodes store data chunks and the
m parity nodes store parity chunks. The selection of data nodes
is crucial and will be detailed as part of the communication
strategy in Sec. IV-B. A three-step procedure is then carried
out for distributed checkpoint encoding and storage among the
nodes: encoding, XOR reduction, and P2P communication. In

®)
= |

the example in Fig. 6, there are two data nodes (k = 2) and
two parity nodes (m = 2) in a 4-node distributed training
system, with one worker per node. Each worker first encodes
its checkpoint data packet into m encoded packets. Next, XOR
reduction operations are conducted across different subsets of
nodes, with each operation storing the XOR result (the parity
packet) of m encoded packets on a target node. For instance,
the XOR reduction is conducted between node 1 and node 3,
and the XOR result of e11d; (in node 1) and e;2d3 (in node 3)
is p1, which is stored in node 1 (the target node). Finally, the
nodes perform P2P communication to transfer data packets or
parity packets to the respective data or parity nodes, so that
node O stores Dy, node 1 stores P, node 2 stores Dq, and
node 3 stores P;.

Let
po = e11do + e12dz, p1 = e11d1 + e12ds,

6
p2 = e21do + e22d2, p3 = e21d1 + e22ds ©

Then we obtain:

Dy = [do,d1], D1 = [d2,d3], Po = [po,p1], P = [p2,ps3]

N
We will discuss in Sec. IV-A that we use a bitmatrix B(FE)
as the encoding matrix, which is computed over GF'(2), so
addition is equivalent to bit-wise XOR — the reason why the
second step is called XOR reduction. The above derivation
is related to the three steps in Fig. 6. For example, node 0
initially has dy; computing e;;dy corresponds to the encoding
step, and ey1dp+e12ds corresponds to the XOR reduction step,
resulting in pg; then node 0 sends pg to node 1, corresponding
to the P2P communication step.

To recover the training states from the distributed, encoded
checkpoint chunks following Eqn. 5, there are two key tasks:
(1) Each surviving or replaced node should obtain the original
checkpoint for resuming training; (2) Each surviving and
replaced node should store the same data or parity chunk as
it did before the failure, to restore the same fault tolerance
capacity. ECCHECK includes two distinct recovery workflows,
corresponding to two failure cases:

e When all data nodes survive, the original checkpoint data
remains intact. The recovery workflow goes as follows: Data
nodes send the replaced nodes their corresponding parts of
the checkpoint data. Upon completion, each node can use its
checkpoint data to resume training. Then the lost parity packets
are encoded and stored in the corresponding parity nodes.

airs
L broadcast

. decompose
state_dict decomposg
% data packet D
tensor data
[~ -
~.

SNcoge [encoded
acket

Fig. 8: Serialization-free encoding protocol.

non-tensor
key-value serialize and

e When some data nodes fail, resulting in the loss of
some original checkpoint chunks, we first decode the surviving
packets to reconstruct all data packets, enabling each node to
have its own checkpoint data and resume training immediately.
After that, the decoded data or parity packets are transferred
to the corresponding data or parity nodes, to restore the fault
tolerance capacity.

Fig. 7 illustrates an example recovery scenario where nodes
1 and 2 are down, following the same setting as in Fig. 6. First,
node 0 sends d; to the replaced node 1, and node 3 sends ps to
the replaced node 2, distributing the decoding workload across
all nodes to speed up recovery. Node O still stores d; in its
memory, so does node 3, and this is omitted in the figure for
clarity. Each node then encodes its data packet to obtain two
encoded packets using a decoding matrix E’ (E’ is based on
the inverse of a submatrix of encoding matrix £ and Eqn. 5 is
an example). After encoding and XOR reduction, each node
stores a data packet and a parity packet. Training can then
continue. Finally, the recovered data packets and parity packets
are sent to their corresponding data or parity nodes.

C. Encoding and Decoding Protocol

An intuitive approach to encode checkpoint is to first seri-
alize its data into compact byte objects, treating them as data
packets to be subsequently encoded. However, serialization
can incur significant overhead [19] and cannot be executed
in a pipelined manner with subsequent encoding and com-
munication operations. In ECCHECK, we eliminate the need
for serialization, and propose a serialization-free encoding and
decoding protocol to save and load the checkpoint, based on
the following observations:

e state_dict can be decomposed into three distinct
components: non-tensor key-value pairs (such as training
metadata like iteration count), tensor keys, and tensor data
(the latter two components collectively form the tensor key-
value pairs, and the tensors are model states, optimizer states,
and RNG states in the dataloader). Non-tensor key-value pairs
and tensor keys are relatively small in size, while tensor data
constitutes the vast majority. For instance, in state_dict
of GPT2-345M, non-tensor key-value pairs and tensor keys
each occupy approximately 52KB (less than 0.001% of the
total checkpoint size), while tensor data account for around
6.5GB (over 99.99% of the total).

e The majority of data to checkpoint (including model and
optimizer states) resides in GPU memory, while others (non-
tensor key-value pairs, tensor keys, a small part of tensor data)
are in CPU memory.

e Each tensor’s data is stored contiguously in memory, while
their sizes can vary significantly.

Our serialization-free encoding protocol consists of the
following steps (Fig. 8):

1. Analyze and decompose state_dict into three com-
ponents: non-tensor key-value pairs (dict), tensor keys (list),
and tensor data (list). Transfer tensor data residing in GPU
memory to CPU memory.

2. Serialize and broadcast the non-tensor key-value pairs
and tensor keys to all other workers, as their communication
traffic is negligible compared to tensor data.

3. For the list of tensor data (now all on CPU memory): (a)
Copy the original tensor data to reserved data buffers for data
packets. (b) Encode each tensor and store the encoded result
into reserved encoding buffers for encoded packets. (c) When
a buffer is full, it becomes a data or encoded packet. XOR
reduction and P2P communication operations are performed
on the corresponding data and encoding buffers (packets).

Upon completion of checkpoint encoding, each node stores
serialized non-tensor key-value pairs, serialized tensor keys,
and data chunk or parity chunk, separately in CPU memory.

The decoding protocol follows the same three-step proce-
dure above for encoding to decode the data packets or parity
packets on surviving and replaced nodes, except for replacing
the encoding matrix by the decoding matrix. That is, it also
computes 2 ‘parity’ chunks from 2 ‘data’ chunks, just like
the encoding process. In the example shown in Eqn. 5 and
Fig. 7, the ‘data’ chunks are Dy and Pj;, while the ‘parity’
chunks are D; and Fy. Then the original tensor data are
obtained according to the decoded data packets. By combining
the tensor data with the non-tensor key-value pairs and tensor
keys, the original state_dict can be reconstructed.

This design significantly improves checkpoint efficiency by
eliminating the need for full serialization of state_dict,
focusing computational efforts on the most data-intensive com-
ponents. Furthermore, once decomposition of state_dict
is done and tensor data has been transferred to host mem-
ory, DNN training can immediately continue, and ECCHECK
executes the remaining checkpointing steps asynchronously,
allowing less training stalls.

IV. OVERHEAD MINIMIZATION
A. Encoding Optimizations

ECCHECK’s computational overhead primarily occurs dur-
ing checkpoint encoding. We adopt an efficient encoding
scheme, Cauchy Reed-Solomon code, with low computational
complexity, and the thread pool technique to accelerate encod-
ing implementation.

Cauchy Reed-Solomon Code. Cauchy Reed-Solomon code
[2] [38] [18] is a variant of Reed-Solomon code based on
the Cauchy matrix. Its encoding can be implemented by using
XOR operations exclusively [2]. Due to space limitation, we
omit the details of Cauchy Reed-Solomon code. The encoding
process is computed over GF'(2). Consider the example in
Eqn. 3, where Py = ei;1Dp + e12D1. The multiplication

node 2 node 0 node 1 node 2

T T T
a0 Cds do)1 ds o 1Cd i) (Cds
€12d3) | (€12d5)

node 0 node 1

T T

dy ! dy d | d3
(endd) (ezda)
[

ank®, | rank | | rank 2] rénk 3

< datanode 0_parity node.0”datarode 1

‘
D D || D D | D) @D

| I |
Gnk4 | rAnk5 rank B, rank rank ank 3 || rank4 | rAdnk 5

< datanode 0 datanods ¥”_parityiode 0

node 0

node 2 node 1 node 2

s TR %1 Cdy 401

node 0 node 1

T T
do)1 Cd do)1 (Cdy

Hwis : ! | : |
rank 0 | rank1 || rank2 | rank3 | | rank4 | rank 5 rank 0N rank 1 || rank 2 1 rank 3 [{fank 4 1 rank 5
data node 0, parity node 0 data node 1 datanodeQ._ datanoded parity node 0
node 0 node 1 node 2 node 0 node 1 node 2
T T T
&)1 Cdy ! 41 Cds do)1 (Cdy &3)y (Cds !
dy) (wml el dy)} i} !
rank0 | rank 1 || rank2 | rank3 | | rank 4 | ranks rank 0 i rank 1 || rank2 1 rank3 || rank4 | ranks
datanode 0 parity node 0 data node 1 datanode 0 datanode1 parity node 0
[] = — ———r [= — —mms
datapacket encoded packet parity packet XORreduction P2P communication datapacket encoded packet parity packet XORreduction P2P communication

(a) node 1 be the parity node (b) node 2 be the parity node

Fig. 9: Examples on different communication volumes resulting from
different data and parity nodes selection.

of e;1 Dy corresponds to computing the XOR result of a
bitmatrix B(ej;) and the binary form of Dy, while the
addition of ej1Dg + e12D7 is equivalent to a bitwise XOR
operation. This choice of erasure code mitigates the coding
overhead, maintaining high training throughput and enabling
more frequent checkpointing.

Thread Pool Technique. We adopt Jerasure [26], a widely-
adopted library implementing various erasure codes on CPUs,
to generate encoding matrices over finite fields GF'(2¢). To
enhance performance, we employ a thread pool technique
to parallelize the encoding process. We divide an encoding
task, which typically involves encoding a contiguous block of
memory into another contiguous block of the same size, into
multiple sub-tasks. Each sub-task is responsible for encoding a
portion of the memory. We assign threads in the threadpool to
execute these sub-tasks concurrently, effectively parallelizing
the encoding process across multiple CPU cores. This paral-
lelization significantly improves the encoding speed.

B. Communication Strategy

ECCHECK’s communication overhead mainly occurs during
XOR reduction and P2P communication. Our communication
strategy, which optimally selects data/parity nodes and XOR
reduction target, inherently reduces communication volume.

1) Optimal Selection of Data and Parity Nodes: The de-
cision of which nodes serve as data nodes or parity nodes
directly impacts the communication traffic during checkpoint-
ing. In the example in Fig. 9, there are 3 nodes in a distributed
training system, each containing two devices, and we are to
decide two data nodes (k = 2) and one parity node (m = 1).
Assume each worker has 1 data packet (1 unit size), and
then each worker has a parity packet (1 unit size) as well.
In Fig. 9a, when node 1 is designated as the parity node,
the checkpoint encoding process requires 3 XOR reduction
operations and 3 P2P communication operations, resulting in
total communication traffic of 6 units. Especially, node 2 is
selected as data node 1 and should eventually store ds, dy4, ds,
while node 2 already contains dy4, d5 initially, necessitating the
transfer of only one additional data packet. In Fig. 9b, when
node 2 is the parity node, there are 3 XOR reduction operations

and 4 P2P communication operations, leading to total commu-
nication traffic of 7 units. Especially, node 1 is selected as data
node 1 which initially stores only ds, requiring the transfer of
two additional data packets. Consequently, the data/parity node
selection in Fig. 9a leads to lower communication overhead.

We compute the best data and parity node selection by
formulating the problem as a maximum overlap interval pair-
ing problem. Consider two arrays of intervals, origin_group
and data_group, where origin_group represents the phys-
ical distribution of GPUs across machines in a distributed
training setup, grouping GPUs by their host machines, while
data_group is a logical partitioning of all GPUs across
machines into equal-sized groups based on k (i.e., the number
of data nodes). In Fig. 9, origin_group = [[0,1], 2, 3], [4, 5]]
and data_group = [[0,1,2],[3,4, 5]]. The goal is to find, for
each interval in data_group, the interval in origin_group that
has the maximum overlap. The index of this maximally over-
lapping interval in origin_group is a corresponding data node.
In the above example, for interval [0, 1, 2] in data_group, the
maximally overlapping interval in origin_group is [0, 1], and
the index of [0,1] is 0; thus, node O is selected as a data
node. After processing all k intervals in data_group, the k
data nodes are identified, and the other nodes become parity
nodes. It ensures that each designated data node requires the
minimum number of additional data packets from other nodes,
thereby minimizing the communication traffic in P2P commu-
nication. We adopt the sweep line algorithm [3], an efficient
algorithm for interval problems, to solve it. The algorithm uses
a sweep line that moves from left to right across all interval
endpoints in origin_group and data_group. It maintains
a set of active intervals from origin_group and processes
events (interval starts and ends) in chronological order. When
encountering a data_group interval, it compares it with all
active origin_group intervals to find the maximum overlap.
This approach efficiently handles all intervals in a single pass,
avoiding redundant comparisons. The time complexity of our
data/parity node selection is O((n + m)log(n + m)), where
n and m are the lengths of origin_group and data_group,
respectively.

2) Optimal Selection of XOR Reduction Target: The num-
ber of XOR reduction operations is determined by the
world_size W (i.e., the number of workers), £ and m,
and remains constant regardless of which nodes are designated
as the parity nodes. Specifically, ECCHECK evenly divides
the W workers into k data groups, each containing W/k
workers. Consequently, there are W/k reduction groups, each
comprising k£ workers from the k£ data groups that share the
same relative index within their respective data groups. Within
each reduction group, there are m XOR reduction operations
to generate m parity packets. Therefore, % -m XOR reduction
operations are performed in total.

While the number of reduction operations is fixed, we can
optimize the selection of the reduction target. The reduction
target is desirably a parity node to eliminate the need of
data transfer in subsequent P2P communication, thereby min-

imizing overall communication traffic. Given W /k reduction
groups and g workers per parity node, there are % —g
reduction groups without parity workers (i.e., workers on a
parity node). For groups containing parity workers, we simply
assign the XOR reduction target to parity workers, eliminating
the need for additional P2P communication. For each reduction
group without a parity worker, we must distribute the m
XOR reduction results across its k workers and then transfer
them to the corresponding parity workers through the P2P
communication. The selection of reduction targets in this
reduction group depends on the relative values of k and m:

- When k& = m: the sweep line algorithm typically des-
ignates odd-indexed nodes as data nodes and even-indexed
nodes as parity nodes. There are W/k = 2¢ reduction groups,
each with k& workers and m XOR reduction operations. Since
k = m, the m XOR reduction results can be directly stored
on the k workers.

- When £ > m: kK — m workers in each group are not
assigned as reduction targets for any XOR reduction operation,
exempting them from P2P communication. ECCHECK assigns
m reduction targets sequentially at an interval of | k/m] within
each reduction group.

- When k < m: at least m — k workers in each reduction
group are selected as reduction targets multiple times. EC-
CHECK assigns m reduction targets in a round robin manner
within each reduction group.

3) Communication Scheduling: While checkpoint encoding
is executed on the CPU, avoiding direct interference with
GPU computation, the associated communication shares the
same network infrastructure as training communication. Such
network resource sharing could potentially impede the training
process. Fortunately, training communication typically follows
predictable patterns [29]. We can exploit such predictabil-
ity to strategically schedule checkpointing communication
operations during network idle periods, thereby minimizing
disruption to the training process.

To identify network idle periods, we profile the time slots
for inter-node communication during the first 50 training it-
erations. Then we synchronize checkpointing communications
with these identified idle periods. In tensor-parallel training,
we leverage the idle times between synchronization of partial
results across devices. For pipeline-parallel setups, we exploit
the bubble periods when some stages are waiting for inputs or
have finished processing.

C. Pipelined Execution

Further, we execute the three steps (encoding, XOR re-
duction, and P2P communication) in a pipelining manner,
exploiting multi-threading to maximize efficiency: as soon
as a data packet is encoded by an encoding thread, it is
immediately passed on to the XOR reduction thread, which
performs the necessary XOR operations. Meanwhile, the en-
coding thread continues uninterrupted with encoding the next
data buffer. Upon completion of XOR reduction, the P2P
communication thread immediately initiates data transfer. This
pipelined execution works in concert with the idle time slot

TABLE I: Model configurations

Model Hidden size #AH #Layers Model size
1600 32 48 1.6B

GPT-2 2560 40 64 5.3B
5120 40 64 20B
1600 32 48 1.6B

BERT 2560 40 64 5.3B
5120 40 64 20B
1600 32 48 1.6B

T5 2560 40 64 5.3B
5120 40 64 20B

Note: AH is short for attention heads.

scheduling discussed earlier. The encoding thread operates
continuously, preparing data packets and encoded packets for
transmission. However, the XOR reduction thread and P2P
communication thread are synchronized with the identified
network idle periods. These threads buffer their operations and
execute them only during the profiled idle time slots, ensur-
ing that checkpointing communications do not interfere with
training traffic. Such pipelined execution effectively overlaps
computation and communication, substantially reducing the
overall execution time.

V. EVALUATION
A. System Implementation

We implement ECCHECK on top of Megatron-LM [32],
a state-of-the-art framework for training large models, in
5.2k lines of C++ and Python code. ECCHECK primar-
ily comprises three functions: eccheck.initialize,
eccheck.save, and eccheck.load. When training
starts, eccheck.initialize determines the encoding ma-
trix and the communication strategy, and allocates neces-
sary buffers. It also identifies network idle time slots by
online profiling. During training, eccheck.save periodi-
cally stores the encoded_state_dict in host memory.
In the event of failures, eccheck.load reconstructs the
latest version of the original state_dict from available
encoded_state_dict entries. The distributed training
utilizes NCCL [5] as the communication backend, and Adam
optimizer [15] for parameter updates. We adopt the Gloo
[10] communication backend for ECCHECK communication
operations, as we use CPU resources for checkpoint encod-
ing and communication, enabling parallel processing without
interfering with GPU training.

B. Experimental Setup

Testbed. We experiment on four machines, each equipped
with two AMD EPYC 7H12 CPUs and four NVIDIA Tesla
A100 GPUs (40 GB) interconnected via NVLink. The host
memory of each machine is 512 GB. We train each DNN
model using hybrid parallelism: tensor parallelism with a
degree of 4 among GPUs on each machine and pipeline par-
allelism across 4 stages on the four machines. Inter-machine
network bandwidth is 100 Gbps. For persistent checkpoint
storage, we utilize a remote storage system with aggregated
bandwidth of 5 Gbps from the machines to it. To evaluate

scalability, we scale up to a maximum of 32 NVIDIA Tesla
V100 GPUs (32 GB).

Benchmarks. We train representative large deep learning
models, including GPT-2 [27], BERT [6], and T5 [28], on
the Code Parrot dataset [14]. We vary the number of layers
and hidden sizes, generating a diverse set of model scales, as
shown in Table I. We maintain a consistent vocabulary size of
50,257 tokens in all experiments.

Baselines. We compare ECCHECK with three baselines: (1)
basel, which uses torch.save () from PyTorch and is the
conventional choice for checkpointing in distributed training
[24]. It serializes state_dict and then transfers the result
to remote persistent storage. Its checkpointing is synchronous,
blocking training until checkpointing is complete. (2) base2,
a 2-phase checkpoint scheme inspired by CheckFreq [20]. It
first copies the model states from GPU to CPU, and then
asynchronously writes the checkpoint data to remote persistent
storage. (3) base3: replication-based in-memory checkpointing
according to GEMINI (which is not open-sourced) [35]. In our
four-node testbed, it groups node 1 and node 2 into one group
and node 2 and node 3 into another. Each worker first copies
the model states from GPU to CPU, and then broadcasts the
checkpoint data to all other nodes in the same group.

Settings. In our settings, & = 2 and m = 2. Each worker
reserves 12 data buffers and 24 encoding buffers in the CPU,
and each buffer is 64 MB in size.

C. Checkpointing Time

Fig. 10 compares the checkpointing time for mod-
els of different sizes. The time is measured from when
eccheck.save is called until its completion. In-memory
checkpointing, base3 and our ECCHECK, significantly reduce
the checkpointing time compared to remote storage-based
checkpointing. Checkpointing time limits the maximum check-
pointing frequency, as the next checkpointing process cannot
begin until the current one finishes. A higher checkpointing
frequency helps prevent training from resuming from a much
earlier state after a failure, thereby reducing wasted GPU work.
While ECCHECK exhibits a modest increase in checkpointing
time compared to base3 (approximately 1.6 times) due to
the overhead of encoding, it offers a substantially enhanced
fault tolerance capacity. Specifically, it can tolerate any two
concurrent failures, while base3 is unable to recover if both
node 0 and node 1 (or both node 2 and node 3) fail. We posit
that this minor increase in checkpointing time is a judicious
trade-off, considering the much improved resilience against
failures that ECCHECK provides. Furthermore, as we will
demonstrate next, the additional time required by ECCHECK
has a negligible impact on overall training progress.

D. Training Efficiency

Fig. 11 presents a time breakdown of ECCHECK check-
pointing when training GPT-2 models of varying sizes. Step
1 (i.e., analyzing and decomposing the state_dict, and
meanwhile transferring tensor data from device memory to

host memory) only blocks training for a short duration. Step 2
(i.e., broadcasting non-tensor key-value pairs and tensor keys)
takes negligible time. Step 3 (i.e., the pipeline execution of
the encoding, XOR reduction, and P2P communication) takes
the majority of the time. This step occurs asynchronously,
allowing training to progress unimpeded.

Fig. 12 compares the average training iteration time across
different checkpoint frequencies (i.e., 1/#checkpoint interval).
We observe that the runtime overhead for basel is significant
due to its reliance on synchronous checkpointing, which
blocks training until the checkpointing process is complete.
As the checkpoint frequency increases, the runtime overhead
for base2 becomes more pronounced. Although base2 writes
checkpoint data asynchronously to remote persistent storage
to reduce checkpoint stalls, it fails to reduce the actual
checkpointing time, thereby limiting its ability to support
high-frequency checkpointing. In contrast, both base3 and
ECCHECK demonstrate similarly outstanding performance.
This can be largely attributed to their use of high-bandwidth
inter-node connections and effective communication strategies.

E. Fast Recovery

Fig. 13 presents the recovery time under two failure sce-
narios, i.e., from when eccheck.load is called to training
resumption. In Figure 13a where all data nodes O and 2
survive, ECCHECK can resume training rapidly by leverag-
ing high-bandwidth inter-node connections for transferring
checkpoint data packets. In contrast, remote storage-based
checkpointing, basel and base2, require significant recovery
time, due to relatively low bandwidth and the inability to
execute asynchronously.

In Fig. 13b where nodes 0 and 1 survive (data node O
fails), base3 fails to recover the original model states due
to the failure of both node 2 and node 3. While ECCHECK
requires additional time to resume training compared to the
first scenario (due to decoding to recover lost data packets), it
still substantially outperforms basel and base2.

F. Scalability

We first show that the communication overhead for each
worker remains constant as the number of nodes increases.
Consider a general scenario with n nodes, each containing g
workers (with a total of W = ng workers). These are divided
into k data nodes and m parity nodes, where n = k + m.
Each worker stores data of size s, meaning the total model
size is s- W. As we described in Section IV-B, there are W/k
reduction groups, each comprising k& workers. Each reduction
group performs m XOR reduction operations, generating m
parity packets that are distributed among the k workers. The
total communication volume during the XOR reduction is
%m(kj —1)s. For P2P communication, under our optimal data
and parity nodes selection strategy, each data node already
holds g data packets. Given that there are W data packets
in total, this means W — kg data packets need to be trans-
ferred. Each parity node holds g parity packets, and there are
% total parity packets. Therefore, the total communication

EEN basel [EZE base2

N base3 WM eccheck

Checkpointing Time (sec)

GPT2 1.6B BERT 1.6B T51.6B GPT2 5.3B

Fig. 10: Comparison

GPT2 1.6B GPT2 5.3B GPT2 20B

25 20 ‘8| —e— no checkpoint
8 100 £ | —— basel
20 o
— —_ 580 E7 base2
o o S
gs 815 g g5 | —- base3
° o 260 26 —+- eccheck
E4 £E10 £ g
F = 40 =
&5
2 5 20 g A
g
0 0 0 <4 DU ST Collt
Step 1 @ Step 2 m Step 3 /500 1/200 1/100 1/50 1/20 1/10

Checkpoint Frequency

Fig. 11: Time breakdown of EC-
CHECK checkpointing.

Fig. 12: Checkpointing over-
head for GPT2 5.3B training.

B basel base2 BN base3

B eccheck

GPT2 1.6B GPT2 5.3B

400

—
o
s}

u
=)
N
o
=]

Recovery Time (sec)
Recovery Time (sec)
Recovery Time (sec)

o
o

(a) Node 0 and node 2 survive, i.e., all data nodes survive.

BN basel base2 BN base3 I eccheck
g GPT2 1.6B g GPT2 5.3B g GPT2 20B
240 2100 £400
[[[
£ £ £
= = =
E‘ZO = 50 E‘ZOO
g g g
5o S K S K x
o o o
(b) Node 0 and node 1 survive, i.e., not all data nodes survive.
Fig. 13: Comparison of recovery time.
3 501 == basel
a base2
g4o —& base3
IS —4- eccheck
230
£
S
£20| g
210l “+
g 10 - e—
g e — e
4 8 6

Fig. 15: Comparison of fault toler-
ance capacity between base3 and
ECCHECK under identical redun-
dancy conditions (k = m = 7).

Fig. 14: Scalability of check-
pointing time with varying
numbers of GPUs.

volume for one checkpointing process is W + (W —
kg)s + (% — g)ms = msW, which is m times the total
model size. Thus, the average communication overhead per
device is ms, meaning it does not increase as the number
of nodes grows, it depends only on the number of parity
nodes (which determines fault tolerance) and the size of the
model shard each worker holds. This illustrates ECCHECK’S
excellent scalability. In Fig. 14, we evaluate the scalability
of our approach using up to 32 NVIDIA V100 32GB GPUs.
A GPT-2 model with a fixed hidden size of 1024 is trained,

40 100 400
20 50 200
0 0 0

BERT 5.3B T55.3B GPT2 20B BERT 20B T5 20B

of checkpointing time.

while the number of layers is varied from 16 (for 4 GPUs)
to 128 (for 32 GPUs) to ensure that the model parameters
per GPU remain nearly constant. The number of nodes is
fixed at n = 4, with kK = m = 2. The figure demonstrates
the excellent scalability of base3 and ECCHECK, attributed
to their fully distributed design. In contrast, for basel and
base2, the checkpointing time scales linearly with the number
of GPUs. This is because the volume of data increases linearly,
while the aggregated bandwidth to the remote storage system
remains constant.

In large clusters, it is common to increase the number
of parity nodes to enhance fault tolerance, which will raise
the communication overhead. To mitigate this, a group-based
checkpointing approach can be employed, where nodes are
divided into smaller groups, and ECCHECK is applied within
each group. This allows the system to scale to a larger number
of nodes without a proportional increase in checkpointing
overhead, while still maintaining sufficient fault tolerance
compared to replication-based methods. An example of this
approach is illustrated in Fig. 3.

G. Fault Tolerance Capacity

Consider our experimental setting where k =m = n/2.
The successful recovery rate of ECCHECK is .2 (7)p*(1—
p)"~* according to Eqn. 2, demonstrating that ECCHECK
can tolerate up to n/2 concurrent failures. In contrast, for
base3, recovery becomes impossible if more than one failure
occurs within the same group. To ensure recoverability, any
¢ failures must occur in distinct groups. In this case, the
probability of base3 successfully recovering the original data
is Sy (- (2

Fig. 15 illustrates the fault tolerance capacities of both
systems. ECCHECK achieves superior fault tolerance com-
pared to base3 under identical redundancy conditions (i.e.,

identical CPU memory usage), and this advantage becomes
more pronounced as the number of nodes increases.

according to Eqn. 1.

VI. CONCLUSION AND DISCUSSION

We introduced ECCHECK, an innovative in-memory check-
pointing system for distributed deep learning training. Lever-
aging erasure coding, ECCHECK significantly enhances fault
tolerance of in-memory checkpointing while maintaining high
training throughput, low checkpointing stalls, and fast recov-
ery. We judiciously design a series of techniques to optimize
computation and communication efficiency during the erasure
coding-based checkpointing procedure. Extensive experiments
show ECCHECK’s advantages: reduced checkpointing time
(by up to 5.2x) and fast recovery (by up to 13.9x) compared

to remote storage-based checkpointing. Moreover, it demon-
strates enhanced fault tolerance compared to replication-based
in-memory checkpointing.

For better scalability, we can use a group-based checkpoint-
ing approach, by dividing nodes into groups, with ECCHECK
applied for checkpointing within each group. The group size
can be tailored to specific requirements of the training job,
balancing communication efficiency and fault tolerance. Com-
puting the optimal group size is part of our future work.

REFERENCES

[1] “Bloom chronicles,” https://github.com/bigscience-workshop/
bigscience/blob/master/train/tr11-176B-ml/chronicles.md, 2022.

[2] J. Bloemer, M. Kalfane, R. Karpz, M. Karpinski, M. Luby, and D. Zuck-
ermank, “An xor-based erasure-resilient coding scheme,” International
Computer Science Institute, University of California at Berkeley, Berke-
ley, CA, USA, Tech. Rep. TR-95048, 1995.

[3] F. Chang, Y.-P. Cheng, T. Pavlidis, and T.-Y. Shuai, “A line sweep
thinning algorithm,” in Proceedings of 3rd International Conference on
Document Analysis and Recognition, vol. 1, 1995, pp. 227-230 vol.1.

[4] Z. Chen and J. Dongarra, “A scalable checkpoint encoding algorithm
for diskless checkpointing,” in 2008 11th IEEE High Assurance Systems
Engineering Symposium, 2008, pp. 71-79.

[5] N. Corporation, “Nccl: Nvidia collective communication library,” https:
//github.com/NVIDIA/nccl, 2017.

[6] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” 2019.

[7]1 A. Dimakis, V. Prabhakaran, and K. Ramchandran, “Decentralized
erasure codes for distributed networked storage,” IEEE Transactions on
Information Theory, vol. 52, no. 6, pp. 2809-2816, 2006.

[8] D. Driess, F. Xia, M. S. M. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter,
A. Wahid, J. Tompson, Q. Vuong, T. Yu, W. Huang, Y. Chebotar,
P. Sermanet, D. Duckworth, S. Levine, V. Vanhoucke, K. Hausman,
M. Toussaint, K. Greff, A. Zeng, I. Mordatch, and P. Florence, “Palm-e:
An embodied multimodal language model,” 2023.

[9] A. Eisenman, K. K. Matam, S. Ingram, D. Mudigere, R. Krishnamoor-
thi, K. Nair, M. Smelyanskiy, and M. Annavaram, “Check-N-Run:
a checkpointing system for training deep learning recommendation
models,” in 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22). Renton, WA: USENIX Association,
Apr. 2022, pp. 929-943.

[10] Facebook, “Gloo: A collective communications library,” https://github.
com/facebookincubator/gloo, 2017.

[11] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan, “Availability in globally distributed storage
systems,” in Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’10. USA: USENIX
Association, 2010, p. 61-74.

[12] P. Goyal, P. Dollar, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch sgd: Training
imagenet in 1 hour,” 2018.

[13] Y. Huang, Y. Cheng, A. Bapna, O. Firat, M. X. Chen, D. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu, and Z. Chen, GPipe: efficient training of
giant neural networks using pipeline parallelism. Red Hook, NY, USA:
Curran Associates Inc., 2019.

[14] HuggingFace, “Code parrot dataset,” https://huggingface.co/datasets/
codeparrot/github-code, 2022.

[15] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017.

[16] V. Korthikanti, J. Casper, S. Lym, L. McAfee, M. Andersch, M. Shoeybi,
and B. Catanzaro, “Reducing activation recomputation in large trans-
former models,” 2022.

[17] J. Li and B. Li, “Erasure coding for cloud storage systems: A survey,’
Tsinghua Science and Technology, vol. 18, no. 3, pp. 259-272, 2013.

[18] C. Liu, Q. Wang, X. Chu, and Y.-W. Leung, “G-crs: Gpu accelerated
cauchy reed-solomon coding,” IEEE Transactions on Parallel and Dis-

tributed Systems, vol. 29, no. 7, pp. 1484-1498, 2018.
[19] F. Lu, X. Wei, Z. Huang, R. Chen, M. Wu, and H. Chen,

“Serialization/deserialization-free state transfer in serverless workflows,”
in Proceedings of the Nineteenth European Conference on Computer
Systems, ser. EuroSys ’24. New York, NY, USA: Association for
Computing Machinery, 2024, p. 132-147.

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

(36]

[37]

[38]

J. Mohan, A. Phanishayee, and V. Chidambaram, “CheckFreq: Frequent,
Fine-Grained DNN checkpointing,” in /9th USENIX Conference on File
and Storage Technologies (FAST 21). USENIX Association, Feb. 2021,
pp- 203-216.

D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia, “Pipedream: generalized
pipeline parallelism for dnn training,” in Proceedings of the 27th ACM
Symposium on Operating Systems Principles, ser. SOSP *19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 1-15.

D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary,
V. Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro,
A. Phanishayee, and M. Zaharia, “Efficient large-scale language model
training on gpu clusters using megatron-lm,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC *21. New York, NY, USA: Association
for Computing Machinery, 2021.

OpenAl, “GPT-4,” https://openai.com/gpt-4, 2023.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, PyTorch: an imperative style, high-
performance deep learning library. Red Hook, NY, USA: Curran
Associates Inc., 2019.

W. W. Peterson, Error-Correcting Codes. Cambridge, MA: MIT Press,
1961.

J. S. Plank, S. Simmerman, and C. D. Schuman, “Jerasure: A library in
C/C++ facilitating erasure coding for storage applications — version 1.2,”
Department of Electrical Engineering and Computer Science, University
of Tennessee, Knoxville, TN, USA, Tech. Rep. CS-08-627, 2008,
citeseer.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” OpenAl Blog,
vol. 1, no. 8, p. 9, 2019.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” J. Mach. Learn. Res., vol. 21,
no. 1, jan 2020.

S. Rajasekaran, M. Ghobadi, and A. Akella, “CASSINI: Network-
Aware job scheduling in machine learning clusters,” in 2/st USENIX
Symposium on Networked Systems Design and Implementation (NSDI
24). Santa Clara, CA: USENIX Association, Apr. 2024, pp. 1403—
1420.

L. Rizzo, “Effective erasure codes for reliable computer communication
protocols,” SIGCOMM Comput. Commun. Rev., vol. 27, no. 2, p. 24-36,
apr 1997.

B. Schroeder and G. Gibson, “A large-scale study of failures in high-
performance computing systems,” in International Conference on De-
pendable Systems and Networks (DSN’06), 2006, pp. 249-258.

M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-lm: Training multi-billion parameter language models
using model parallelism,” 2020.

L. team, “The llama 3 herd of models,” 2024.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Roziere, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez,
A. Joulin, E. Grave, and G. Lample, “Llama: Open and efficient
foundation language models,” 2023.

Z. Wang, Z. Jia, S. Zheng, Z. Zhang, X. Fu, T. S. E. Ng, and Y. Wang,
“Gemini: Fast failure recovery in distributed training with in-memory
checkpoints,” in Proceedings of the 29th Symposium on Operating
Systems Principles, ser. SOSP °23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 364-381.

S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan,
M. Diab, X. Li, X. V. Lin, T. Mihaylov, M. Ott, S. Shleifer, K. Shuster,
D. Simig, P. S. Koura, A. Sridhar, T. Wang, and L. Zettlemoyer, “Opt:
Open pre-trained transformer language models,” 2022.

T. Zhang, K. Liu, J. Kosaian, J. Yang, and R. Vinayak, “Efficient fault
tolerance for recommendation model training via erasure coding,” Proc.
VLDB Endow., vol. 16, no. 11, p. 3137-3150, jul 2023.

T. Zhou and C. Tian, “Fast erasure coding for data storage: A com-
prehensive study of the acceleration techniques,” in /7th USENIX
Conference on File and Storage Technologies (FAST 19). Boston, MA:
USENIX Association, Feb. 2019, pp. 317-329.

