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Abstract
Proximal Policy Optimization (PPO) has proven to be effective in
training large language models (LLMs) for code generation. In this
work, we propose a framework for training LLMs for code gen-
eration that tackles two challenges: 1) insufficient GPU memory
caused by increasing model sizes. ii) requirement to execute un-
trusted generated code for reward modeling. Standard PPO for code
generation involves 4 LLMs including actor, critic, reference model
and reward model. We propose to use Ray to provide an abstraction
between models and GPU resources. This abstraction allows dif-
ferent models to be placed onto the same or different GPUs with a
few lines of code. By placing different models onto different GPUs,
our framework avoids insufficient GPU memory issues by utilizing
existing LLM training infrastructure such as Pytorch FSDP, Deep-
Speed, Megatron-LM, etc. To support executing model-generated
code for reward modeling, we developed a sandbox service that
supports isolation, parallel execution, and dataset management via
Function as a service (FaaS). As a demonstration, we train the Star-
Coder2 3b model on the APPS dataset using our framework. Our
experimental results demonstrate 40% pass@1 on the test set of the
introductory split of the APPS dataset.

1 Introduction
Following [1, 9, 14], we utilize Proximal Policy Optimization (PPO)
[12] to train LLMs for code generation. PPO-based RL training sys-
tem for code generation typically consists of three LLMs: an actor,
a critic, and a reference policy network. PPO algorithm proceeds in
iterations, each with three stages: (1) response generation using the
actor model with a batch of prompts; the prompts are the code ques-
tions and the responses are the generated code. (2) preparation of
training data by scoring the generated code responses via sandbox,

computing the values and KL divergence through a single forward
pass of the critic, reference policy, and computing the advantage
function via Generalized Advantage Estimation [11]; (3) learning
from the data by updating actor and critic through PPO loss [12]
using AdamW optimizer [6].

Building a scalable infrastructure to train LLMs for code genera-
tion is challenging because: i) as the model sizes grow, colocating
all the models inside all the processes may easily lead to GPU Out-
of-Memory. ii) executing generated code may be insecure, slow,
and possibly timed out. Existing works [5, 14] train PPO for code
generation by using data parallelism [10] with all the models colo-
cating in all the processes. Also, the generated code is executed
locally without proper isolation and parallelism for speedup.

In this work, we propose a framework for training LLMs for code
generation via PPO that tackles the aforementioned challenges.
Specifically, our contributions are:

• Our framework adopts Ray to provide an abstraction between
models and their placement onto GPUs. This allows placing
different models onto different GPUs for training and inference
to avoid Out-of-Memory.

• We utilize Pytorch FSDP [10] for model training and vLLM [4]
for fast rollout.

• We utilize FaaS (Function as a service) to implement our sandbox
that provides isolation and auto-scaling.

2 Training Infrastructures
2.1 Ray-Based RL training infrastructure
RL can be considered as a computation flow, whereas LLM compu-
tation can be treated as a black box and a function approximator

1

https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/


Chi Zhang, Guangming Sheng, Siyao Liu, Jiahao Li, Ziyuan Feng, Zherui Liu, Xin Liu, Xiaoying Jia, Yanghua Peng, Haibin Lin, and Chuan Wu

for various RL algorithms. To effectively manage the diverse com-
putational demands of different LLMs, we introduce a novel Ray-
based [8] RL training infrastructure tailored for LLM applications.

2.1.1 WorkerGroup. We introduce the concept of a WorkerGroup,
which manages a list of workers, each being a Ray remote process
that holds a GPU. The WorkerGroup encapsulates LLM training, in-
ference, and generation into primitive APIs that can be invoked by
the Ray driver program. It also provides virtualization that enables
all workers to initialize their distributed parallel groups and to be
executed under the Single Program Multiple Data (SPMD) para-
digm, which is widely adopted in existing LLM training and serving
frameworks. We integrate PyTorch FSDP [10] and vLLM [4] in the
WorkerGroup for LLM training and generation in code generation
tasks. We will further integrate other LLM frameworks such as
Megatron-LM [13] and VeScale [3] to support larger model scales.

With our WorkerGroup design, users can simply set the data and
tensor parallel size to initialize the LLMs using FSDP and vLLM.
Furthermore, the primitive APIs for constructing RL computation
flow can be easily implemented by reusing the computation scripts
from existing LLM systems. For example, the computation involved
in update_actor and generate function of ActorWorkerGroup
class (for actor model in Fig. 1) is similar to the pre-training scripts
in PyTorch FSDP and generation script in vLLM. With such code
reuse, each component of the RL training system, including rollout,
actor, critic, and reference policy, is implemented as a WorkerGroup
with different parallelism strategies and several primitive APIs.

2.1.2 ResourcePool. A Ray cluster involves a head node and a
bunch of worker nodes. The head node is typically a CPU machine
responsible for resource scheduling and managing computation
tasks within the cluster. Each worker node represents a GPU device
dedicated to computation. We provide a ResourcePool class that
virtualizes a set of GPU devices. When applying a ResourcePool
instance to a WorkerGroup, the corresponding LLM and its dis-
tributed computation will be mapped to the allocated GPUs. LLMs
share the same GPU set when using the same ResourcePool in-
stance, but are allocated to different GPU sets when assigning
different ResourcePool. We assume no overlap between different
ResourcePool instances.

2.1.3 Driver Program for PPO algorithm. The primitive APIs of
each model enable streamlined development of various RL algo-
rithms. A user can implement an RL algorithm in a few lines of
code as a single process driver program to run on the head node of
a Ray cluster. During execution, the driver program utilizes Remote
Process Calls (RPC) to coordinate the execution order following
the RL algorithm, involving a sequence of primitive API calls to
invoke distributed computation of models. As shown in Figure 1,
PPO can be implemented in just 9 lines by invoking model opera-
tions including compute_values and generate_sequences, which
are executed within their corresponding WorkerGroup on multiple
GPUs. The register with 3D_PROTO and DP_PROTO denotes that the
corresponding model operation is executed under 3D parallelism
or data parallelism respectively, instructing the driver program to
dispatch the input data and collect the output data of these func-
tions.

class ActorWorkerGroup(WorkerGroup):
    # Examples of distributed computation

@register(transfer_mode=3D_PROTO)
    def generate(self, prompts: DataProto):
        ...
    @register(transfer_mode=DP_PROTO)
    def update_actor(self, prompts: DataProto):
        ... 
# Allocate machines for a ResourcePool
resource_pool = ResourcePool([n_gpus_per_machine] * n_machines)
# Map the worker with allocated devices and init models
actor = ActorWorkerGroup(config, resource_pool)

... # Omit other models initialization.
# An example of PPO
for prompts in dataloader:
     # Generate responses
     batch = actor.generate_sequences (prompts)
     # Prepare experience
     batch = actor.compute_log_prob (batch)
     batch = critic.compute_values(batch)
     batch = reference.compute_log_prob(batch)
     batch = reward_function(batch) # Executed in the sandbox
     batch = compute_advantages(batch)
     # Update actor and critic
     critic_metrics = critic.update_critic(batch) 
     actor_metrics = actor_hybrid_engine.update_actor(batch)

Figure 1: Illustration of theWorkerGroup, ResourcePool, and
the PPO algorithm implementation.
2.1.4 Benefits. With the above design, we decouple the LLM com-
putation from the data dependencies among different LLMs in vari-
ous RL algorithms. This decoupling enables algorithm researchers
to focus solely on exploring novel RL computation flow and corre-
sponding numerical computation, without addressing the LLM dis-
tributed computation. Moreover, it also enables system researchers
to optimize the performance of each RL system component inde-
pendently. The WorkerGroup abstraction provides a framework-
agnostic interface, allowing seamless integration of recent advance-
ments in LLM training and serving frameworks, by directly incor-
porating their existing codebases to implement the RL components.

2.2 Sandbox
Since generated code may contain malicious contents, it is manda-
tory to execute the generated code inside a secure environment.
Also, running generated code with a large batch sequentially may
be slow. Thus, parallelism is also desired to speed up the reward
computation.

2.2.1 Isolation. Our implementation uses a standard Docker run-
time container to run each generated code. The container is not
privileged, thus running any code inside the container can’t impact
the host machine. Compared with the gVisitor container runtime
used by OpenAI [1], our solution can’t test code that requires ker-
nel. However, our solution is more general as most cloud providers
don’t support containers with privileged access.

2.2.2 Parallelism. In order to ensure the execution of generated
code doesn’t interfere with each other, the maximum number of
parallelism in each contain is 1. This also ensures the CPU and
memory resources for each data.We also perform necessary process
cleanup and file system restoration after each run. The auto-scaling
capability is provided

2.2.3 Dataset Management. Since the test cases may be large for
different problems, it is undesirable to send the test cases to the
sandbox server with problems each time. Instead, we give each
problem a unique ID and store the test cases in the sandbox server.
We only send the ID and generated code to the sandbox server.
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3 Experiment
In this section, we provide a detailed demo that uses our framework
to train an LLM for code generation.

3.1 Data
3.1.1 Dataset Selection. We use the APPS dataset [2] that con-
tains 10k Python coding problems. Each problem has a question
statement, a starter code, several solutions, and several test cases.
The code problems are categorized into introductory, interview, and
competition. We only focus on introductory part in our demo that
contains 2.64k training data and 1k testing data.

3.1.2 Data Preprocessing. We propose 3 steps to perform data pre-
processing: i) PPO requires test cases to judge whether the gener-
ated code is correct or not. Thus, we remove all the data without
test cases. ii) We run all the solutions against the test cases to verify
the correctness. We removed all the solutions that can’t pass all
the test cases. We remove data if all the test cases fail. iii) Due to
the computation budget, we only keep the data where the question
is less than 1024 tokens. After preprocessing, there remains 2639
training data and 717 testing data.

3.2 Evaluation
We evaluate the trained model using the test set of APPS intro-
ductory split. For each problem, we prompt the model with the
question and obtain the response via greedy generation. We send
the response and test case to the sandbox and receive the percent-
age of the passed tests. We report the percentage of the passed tests
as pass@1 score.

3.3 Results
3.3.1 Pretraining and SFT. We use StarCoder2 3b [7] as our pre-
trained model. We first perform evaluation on StarCoder2 3b. The
pass@1 score is only less than 1%. This is mainly because the pre-
trained model cannot follow the instructions and produces C++
code even though the instructions ask it to write solutions in Python.
We perform Supervised Finetuning (SFT) on the training set for 3
epochs and achieve 34% pass@1 test score.

3.3.2 Reinforcement Learning. We use FSDP zero2 [10] to imple-
ment actor and rollout so that actor and rollout can fully share the
weights. We use FSDP zero3 to implement critic training, reference
policy and reward model. Our implementation runs on a single
node with 8 A800 80G GPUs. We summarize the hyper-parameters
used in our training in Table 1. We show the training curve in
Figure 2. We observe that the training score increases from 0.34 to
0.75 and the testing score increases from 0.34 to 0.40. This indicates
that our framework can successfully train an LLM using PPO for
code generation.

4 Conclusion
In this work, we introduced a novel framework for training large
language models (LLMs) for code generation using Proximal Pol-
icy Optimization (PPO). Our approach effectively tackles the chal-
lenges of insufficient GPU memory in training multiple LLMs and
the secure execution of untrusted generated code. By integrating
Ray, our framework enables precise model placement on GPUs to

Table 1: Hyper-parameters of our experiments

Hyper-parameters Value

Total epochs 20
PPO epochs 1

Global batch size 1024
PPO mini-batch size 256

PPO clip ratio 0.2
Optimizer AdamW [6]

Max prompt length 1024
Max response length 512
Gradient clipping 1.0

Sampling temperature 1.0
Discount factor 1.0
GAE Lambda 1.0

Figure 2: Training score and test score

prevent memory overload. Furthermore, it utilizes existing LLM
infrastructures like PyTorch FSDP and vLLM to accelerate the RL
training process. To ensure the secure and scalable execution of gen-
erated code, we have implemented a robust sandbox environment
using Function as a Service (FaaS). We evaluate the effectiveness of
our framework by training the StarCoder2 3B model on the APPS
dataset, achieving a 40% pass@1 on the test set of the introductory
split. Our work presents a step towards scalable and efficient train-
ing of LLMs for code generation, enabling researchers to focus on
developing high-performing models and RL algorithms without
being hindered by infrastructure constraints.
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