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Abstract
Reinforcement Learning from Human Feedback (RLHF) is
widely used in Large Language Model (LLM) alignment. Tra-
ditional RL can be modeled as a dataflow, where each node
represents computation of a neural network (NN) and each
edge denotes data dependencies between the NNs. RLHF
complicates the dataflow by expanding each node into a dis-
tributed LLM training or generation program, and each edge
into a many-to-many multicast. Traditional RL frameworks
execute the dataflow using a single controller to instruct
both intra-node computation and inter-node communication,
which can be inefficient in RLHF due to large control dispatch
overhead for distributed intra-node computation. Existing
RLHF systems adopt a multi-controller paradigm, which can
be inflexible due to nesting distributed computation and data
communication. We propose HybridFlow, which combines
single-controller and multi-controller paradigms in a hybrid
manner to enable flexible representation and efficient execu-
tion of the RLHF dataflow. We carefully design a set of hierar-
chical APIs that decouple and encapsulate computation and
data dependencies in the complex RLHF dataflow, allowing
efficient operation orchestration to implement RLHF algo-
rithms and flexible mapping of the computation onto various
devices. We further design a 3D-HybridEngine for efficient
actor model resharding between training and generation
phases, with zero memory redundancy and significantly re-
duced communication overhead. Our experimental results
demonstrate 1.53×∼20.57× throughput improvement when
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running various RLHF algorithms using HybridFlow, as com-
pared with state-of-the-art baselines. HybridFlow source
code is available at https://github.com/volcengine/verl
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1 Introduction
Large language models (LLMs) such as GPT [11], Llama [73]
and Claude [7] have revolutionized various artificial intel-
ligence (AI) applications, ranging from writing [2], search-
ing [52] to coding [63]. LLMs are first pre-trained on trillions
of tokens from books, websites, etc,. via next-word prediction
to accumulate broad knowledge [11]. Next, LLMs are trained
on domain-specific datasets via supervised fine-tuning (SFT),
to be able to follow human instructions [11]. Despite the out-
standing capabilities of LLMs on natural language tasks after
pre-training and SFT, the detrimental and biased contents in
the training datasets may still mislead an LLM to generate
toxic and undesirable content. Reinforcement Learning from
Human Feedback (RLHF) is introduced to further align an
LLM to human values, for building helpful and harmless AI
applications [7, 55].
RLHF is built upon traditional RL algorithms [4, 68, 78],

e.g., Proximal Policy Optimization (PPO) [68] and REIN-
FORCE [78]. The widely adopted PPO-based RLHF system
typically consists of four LLMs [7, 55]: an actor, a critic, a ref-
erence policy network and a reward model. PPO-based RLHF
proceeds in iterations, each with three stages: (1) response
generation using the actor model with a batch of prompts;
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(2) preparation of training data by scoring the generated re-
sponses through a single forward pass of the critic, reference
policy, and reward models; (3) learning from human pref-
erence by updating actor and critic through forward and
backward computation. Other RLHF variants [19, 43] follow
similar stages but involves different numbers of models and
data dependencies among the models.

Traditional RL can be modeled as a dataflow [46], which is
a directed acyclic graph (DAG): each node in the RL dataflow
represents computation of a neural network (e.g., actor or
critic network which can be CNN or MLP); each edge de-
notes data dependency between NN computations (e.g., out-
put of the critic is used as input to actor training [68].) RLHF
dataflow is more complex, with more complicated models
involved (e.g., LLMs for the actor/critic/reference/reward
models), each running distinct computation, and more di-
verse data dependencies among them (i.e., multicast between
distributed model partitions). Training and generation of an
LLM in the RLHF dataflow requires distributed computation
(e.g., using tensor/pipeline/data parallelism) [40, 71]. There-
fore, each node in the RLHF dataflow is a complex distributed
program, corresponding to distributed computation of the
respective LLM. Models in different nodes typically use dif-
ferent parallelism strategies as their workloads vary. The
edge represents data resharding, which is often a many-to-
many multicast. Consequently, Flexible representation and
efficient execution of the complex and resource intensive
RLHF is imperative.

Traditional RL frameworks such as RLLib [45] and RLLib
Flow [46] utilize a hierarchical single-controller paradigm
to run RL dataflows. A centralized controller assigns nodes
in the dataflow to different processes and coordinates their
execution order. Each node process can further spawn more
workers to perform computation, again following the single-
controller paradigm. However, they only provide primitives
for data-parallel training and are constrained to neural net-
works that are at most hundreds of MB in size [45, 46]. In the
RLHF dataflow, each node corresponds to an LLM with up to
billions of operators, computed using some complex paral-
lelism. A single-controller paradigm is inefficient due to the
substantial overhead of dispatching operators to distributed
accelerators [1, 9].

Existing RLHF systems adopt a multi-controller paradigm
to manage intra-node computation and inter-node data re-
sharding [17, 30, 80]. Each controller independently manages
the computation of one device and uses multiple point-to-
point operations to coordinate data dependencies between
different nodes. This multi-controller paradigm introduces
negligible dispatch overhead when performing LLM compu-
tation (detailed in §2.2). However, without central control, it
is inflexible to implement various RLHF dataflow, as modi-
fying a single node to adapt to different data dependencies
requires changing all dependent nodes’ implementation, hin-
dering code reuse.

To address these limitations, we propose HybridFlow, a
flexible and efficient RLHF framework to easily represent and
execute diverse RLHF dataflows, attaining high throughput.
Our key observation is that utilizing the single-controller
paradigm on the inter-node level enables flexible expres-
sion of various data dependencies and easy coordination of
inter-node data resharding with minimal overhead, while
integrating the multi-controller paradigm within intra-node
computation enhances computation efficiency substantially.
We advocate a hierarchical hybrid programming model to
generate RLHF dataflows. At the node level, multiple model
classes are provided that encapsulate distributed computa-
tion (training, inference and generation) of different LLMs in
the dataflow into primitive APIs. These APIs can seamlessly
support various parallelism strategies from the existing LLM
frameworks, including 3D parallelism [71], ZeRO [59], and
PyTorch FSDP [57]), and perform distributed computation
under the multi-controller paradigm. Among the nodes, a
set of transfer protocols are designed to hide the complexity
of data resharding from users, as coordinated by a single
controller. This programming model abstracts away the com-
plexity of distributed computing, allowing users to imple-
ment an RLHF dataflow in a few lines of code and run RLHF
through a single process of the single controller. It also effec-
tively decouples intra-node computation and inter-node data
transfer, allowing independent optimization of each model
without changing the code of other models in the dataflow.

Training and generation of the actor model represent ma-
jor computation in the RLHF dataflow. We further design
a 3D-HybridEngine to enable efficient execution of training
and generation of the actor model, introducing zero mem-
ory redundancy and significantly reduced communication
overhead during model parameter resharding between the
training and generation stages. Our hybrid programming
model also facilitates flexible placement of models onto the
same or different sets of GPU devices. This allows us to pro-
vide an effective algorithm to optimize GPU allocation and
placement of the models, with various model sizes and dis-
tinct workloads, for any RLHF dataflow. Our contributions
in designing HybridFlow are summarized as follows:
•We propose a hierarchical hybrid programming model for
conveniently building the RLHF dataflow. This programming
model enables efficient distributed execution of intra-node
computation and flexible inter-node data resharding and
transfer, for various RLHF algorithms (§4).
•We design a 3D-HybridEngine that executes training and
generation of the actor model with high computation effi-
ciency and zero-redundancy transition between the training
stage and the generation stage (§5).
•We devise an effective mapping algorithm to automatically
identify optimized GPU allocation and placement of each
node (model) in the RLHF dataflow (§6).
•We conduct extensive experiments comparing HybridFlow
with state-of-the-art RLHF systems [17, 30, 82] under various
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Figure 1. Dataflow graph of 3 RLHF algorithms [19, 43, 55].
Stage 1○, 2○, 3○ represent Generation, Preparation, and
Training, respectively.

RLHF algorithms, model sizes and cluster scales. Our evalua-
tion demonstrates 1.53×∼20.57× throughput improvements.
We have open-sourced HybridFlow and believe that Hy-

bridFlow can boost future RLHF research and development.

2 Background and Motivation
2.1 Reinforcement Learning from Human Feedback
RLHF Workflow. RLHF aligns the linguistic space of LLMs
with human values, using a set of human-ranked candidates
of given prompts [7, 19, 41, 43, 55, 70, 91]. An RLHF sys-
tem typically consists of multiple models, e.g., an actor, a
critic, a reference policy, and one or multiple reward models.
The actor and the reference are each pre-trained/fined-tuned
LLM (i.e., the LLM that is undergoing RLHF). The critic and
reward models can be different LLMs fine-tuned on the hu-
man preference dataset, with the language modeling head
replaced by a scalar output head [7, 55]. The RLHF workflow
can be decomposed into 3 stages (Figure 1) and we take PPO
as an example:
•Stage 1 (Generation): The actor produces responses from a
batch of prompts using auto-regressive generation.
•Stage 2 (Preparation):Using prompts and generated responses,
the critic computes their values [66, 68], the reference policy
computes their reference log probabilities, and the reward
model computes their rewards [7, 55], all via a single pass of
forward computation of the respective model.
•Stage 3 (Learning/Training): The actor and the critic are
updated via Adam [38], using the batch of data produced by
previous stages and the loss function [55].
Other RLHF algorithms largely follow the 3-stage work-

flow as well (Figure 1(b)(c)). Safe-RLHF [19] introduces an
auxiliary pretrain loss following PPO-ptx [55] and includes
an additional cost model to fit human preferences and safety
labels simultaneously. ReMax [43] requires an additional gen-
eration pass for variance reduction and eliminates the critic
model in the dataflow. Researchers are actively exploring
novel RLHF algorithms [41, 70, 91] and integrating tradi-
tional RL methods into RLHF domains [37]. These variances
necessitate a flexible representation of the RLHF dataflow
graph to accommodate diverse algorithmic requirements.

(b) HybridFlow

(a) Existing RLHF frameworks
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Figure 2. Programming model used in RLHF systems. (a)
Existing RLHF systems adopt the multi-controller paradigm.
(b) HybridFlow utilizes a hybrid programming model: the
single-controller coordinates models; each model uses multi-
controller paradigm in distributed computation. Inactive
node in grey represents operation not executed at this time.

Parallelism Strategies. LLMs are trained and served with
data, pipeline, and tensor parallelism [36, 40, 54]. With data
parallelism (DP), the input data is split into multiple sub-
sets; each subset is processed by a separate device (e.g., a
GPU) [69]. ZeRO [59] is a memory-optimized solution for
DP training, progressively sharding optimizer states, gra-
dients, and model parameters across GPUs. Pipeline paral-
lelism (PP) [32, 53] and tensor parallelism (TP) [71] distrib-
ute model parameters, gradients and optimizer states across
multiple GPUs. Modern distributed training frameworks like
Megatron-LM [71] and MegaScale [36] utilize 3D parallelism
or PTD parallelism [54], where P, T, D stand for PP, TP, DP,
respectively. In 3D parallelism, PP size represents the num-
ber of pipeline stages in model training, TP size refers to the
number of shards that a tensor is partitioned into, and DP
size is the number of model replicas. LLM serving systems
employ 3D parallelism similar to training while only model
parameters and KVCache are sharded [16, 29, 40].
LLM models in the RLHF dataflow may perform distinct

computations, including training (one forward pass, one
backward pass and model update), inference (one forward
pass) and generation (auto-regressive generation with multi-
ple forward passes). In particular, training and generation are
performed on the actor model, training and inference on the
critic, and inference on reference policy and reward models.
Distinct parallel strategies can be applied to different models
for varied computations to achieve optimal throughput.
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2.2 Programming Model for Distributed ML
Single-Controller. It employs a centralized controller to
manage the overall execution flow of the distributed program.
With centralized control logic, users can build core function-
alities of the dataflow as a single process (Figure 2(b)), while
the controller automatically generates distributed workers
to carry out the computation. With a global view of the
hardware and dataflow graph, the single-controller para-
digm allows flexible and optimized resource mapping and
execution order coordination among dataflow tasks. How-
ever, coordination messages are passed from the controller
to all workers, incurring significant dispatch overhead when
executing expansive dataflow graphs on large clusters [1, 9].
Multi-Controller. Each device (aka worker) has its own con-
troller. State-of-the-art distributed LLM training and serving
systems adopt the multi-controller paradigm, due to its scal-
ability and low dispatch overhead (control messaging largely
passed from CPU to GPU over fast PCIe links) [36, 40, 60, 71].
As shown in the example that employsmulti-controller RLHF
implementation in Figure 2(a), a separate program is run
for each model, and all workers of one model execute the
same program. Each worker only possesses a local view of
the system state and requires point-to-point communication
between two models (blue code and arrows) to coordinate
model execution order. To implement an RLHF workflow in
the multi-controller architecture, a user must intricately in-
tegrate the code for collective communication, computation,
and point-to-point data transfer in the program run at each
device. This leads to deeply nested code of computation and
data transfer, challenging to develop, maintain, and optimize.
In Figure 2(a), each model performs local computation and
all_gather operations (black code), while the actor model
must explicitly manage send operations to the critic and re-
ward models, and the latter must correspondingly implement
receive operations at precise points in their program.

2.3 RLHF Characteristics
Heterogeneous model workloads. The actor, critic, ref-
erence and reward models in RLHF may execute training,
inference or generation at different stages, with different
memory footprint and computation demand. For reference
policy and reward models, only their model parameters need
to be stored in GPU memory, as they perform only the for-
ward pass computation. For the actor and the critic, their
model parameters, gradients, and optimizer states must be
stored as they undergo model training. Moreover, a small
actor model (e.g., a 7B pre-trained/fine-tuned LLM) can be
paired with larger critic and reward models (e.g., 70B LLMs)
in RLHF for better alignment [7]. Given such heterogeneity,
different parallelism strategies and tailored optimizations
are needed for running each model during RLHF.
Unbalanced computation between actor training and
generation. In the RLHF dataflow, training and generation
of the actor model are represented by two nodes (Figure 1),
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concurrently computed. Reference model (blue) and reward
model (green) are colocated on the same set of GPUs and
executed sequentially.

which often render majority of the workload in each RLHF
iteration (e.g., 58.9% of total RLHF time with HybridFlow).
Actor training is computation bound [24], often requiring a
larger model-parallel (MP) size (i.e., the number of partitions
the model is partitioned into) and distributing the workload
to more GPUs, e.g., 8 partitions of a 7B model on 8 GPUs. Us-
ing the same parallelism strategy (e.g., the same MP size) for
generation can lead to underutilization of GPU computation
resources due to its memory-bound nature [40]. Previous
studies show that combining a larger DP size with a smaller
MP size (hybrid data and model parallelism), e.g., partition a
7B model into two and replicate it four times on 8 GPUs, can
improve the generation throughput [44, 92]. Although using
different parallelism strategies for actor training and genera-
tion may optimize throughput in both stages, resharding the
actor model weights at runtime between the two stages can
incur significant communication and memory overhead. For
example, aligning a 70B actor model requires transferring
140GB of model weights from training to generation per
RLHF iteration, taking up to 36.4% of an iteration time when
the two stages are on different devices [30].
Diverse model placement requirements. Strategic device
placement of models in the RLHF dataflow is necessary, ac-
cording to computation workloads and data dependencies
of the models. Figure 3 gives an example model placement
plan and the corresponding RLHF execution flow. Models
placed on different sets of devices can be executed in parallel
if no data dependencies exist. Models placed on the same
set of GPUs, referred to as colocated models, share the GPU
memory and are executed sequentially in a time-sharing
manner, as out-of-memory (OOM) error may easily happen
if colocated LLMs execute concurrently.

We observe a compromise: placing models on different de-
vices permits parallel processing but may inevitably lead to
some GPU idle time, given staged model execution in RLHF.
In Figure 3, actor and critic are placed separately, perform-
ing training in parallel, but incurring 1/3 of their GPU time
being idle, during other RLHF stages. Supporting various
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Table 1. Comparison of RLHF frameworks. Figures illustrate execution of one PPO iteration. Numbers 1-6 represent response
generation, reward model inference, reference model inference, critic inference, actor training, and critic training, respectively.

RLHF system DeepSpeed-Chat OpenRLHF NeMo-Aligner HybridFlow

Parallelism Training: ZeRO
Generation:TP

Training: ZeRO
Generation:TP

3D Parallelism for both
training and generation

Training: 3D, ZeRO, FSDP
Generation: 3D Parallelism

Actor weights
in training & generation

Model resharding
from ZeRO to TP

Using two copies of actor
weights for the two stages

Using identical model partition
in two stages (shared weights)

Zero-redundancy
model resharding

Model
Placement

Colocate all models
on the same set of devices

Each model placed
on separate devices

Actor/Ref colocated on some GPUs
Critic/RM colocated on other GPUs

Support various
model placement

Execution
Pattern

GPU ProcessActor
Critic
Reference Policy

Reward model

1 2 3 4 5 6

1

2
3
4

5
6

1 2

3 4

5

6

Support various
execution patterns

placement strategies and maximizing device utilization are
crucial for optimizing RLHF performance at any model size
and cluster scale.

2.4 Limitations of existing RLHF systems
Inflexible support for various RLHF dataflow graphs.
Existing RLHF systems adopt the multi-controller paradigm
for dataflow implementation [17, 30, 80, 82]. To implement
various RLHF algorithms, a user must navigate and manage
code that mixes collective communication, model computa-
tion (potentially using various distributed training/serving
frameworks), and point-to-point data transfer. This code
structure lacks modularity/function encapsulation, making
the RLHF systems tightly coupled with specific LLM train-
ing and serving frameworks. Consequently, a user needs to
implement and optimize different RLHF dataflows case-by-
case [46], hindering code reuse and increasing the risk of
making mistakes. Existing RLHF frameworks only support
the PPO algorithm. In addition, limited parallel strategies are
supported due to implementation complexity. For example,
to incorporate 3D parallelism for LLM training and genera-
tion in DeepSpeed-Chat [82], one may have to re-implement
the whole system due to the mixed code structure.
Inefficient RLHF execution. Table 1 summarizes paral-
lelism strategies, model placement, and execution patterns
adopted by the existing RLHF systems. DeepSpeed-Chat [82]
and OpenRLHF [30] adopt ZeRO-3 for actor training and TP
for actor generation. OpenRLHF uses different copies of the
actor model on different devices for training and generation,
incurring redundant memory usage and frequent weight syn-
chronization among devices. DeepSpeed-Chat maintains the
same copy of actor model on the same set of devices for train-
ing and generation, and reshards model weights between
training and generation (due to different parallelisms used
in the two stages), which may still incur substantial memory
and communication overhead for large models (detailed in
§5.4). NeMo-Aligner [17] uses the same 3D parallelism con-
figurations in actor training and generation, experiencing
low generation throughput (§8.4).

Existing RLHF frameworks are limited to one model place-
ment plan and hence one RLHF execution pattern, as shown

in Table 1. Implementing a different placement is difficult,
requiring changing the inner logic of model initialization
and inter-node data transfer as highlighted in blue in Fig-
ure 2. OpenRLHF and NeMo-Aligner allow concurrent model
computation in the preparation and learning stages; in the
generation stage, models except the actor are idle, wasting
the GPUs they occupy. DeepSpeed-Chat colocates all models
on the same set of devices, and each device runs each model
sequentially according to the RLHF dataflow. With unbal-
anced workloads among the models, such a placement can
be inefficient in resource utilization (evaluated in §8.3).

2.5 Design Considerations
To tackle limitations of existing systems, the key question is
- How to design a flexible and efficient programming
model to implement RLHF dataflow? A single-controller
design is particularly advantageous at the inter-node level
due to its flexibility in coordinating data transfer, execution
order, and resource virtualization among distributed compu-
tation of different models [9, 50]. The RLHF dataflow graph
typically consists of only a few nodes. Dispatching control
messages to different nodes from the single-controller in-
curs negligible overhead as compared to distributed com-
putation required for nodes (models) in the dataflow. The
multi-controller paradigm, known for its low latency in dis-
patching operators to accelerators [20], can be leveraged in
distributed computation of each model. With these insights,
we propose a hierarchical hybrid programming model for
RLHF dataflow implementation. Our key design principle is
to combine single-controller and multi-controller paradigms
in a hybrid manner. This design ensures flexible expression
and efficient execution of RLHF dataflow, maintaining low
control overhead at both inter-node and intra-node levels.
As shown in Figure 2(b), this paradigm decouples intra-node
distributed computation and inter-node data transfer, allow-
ing each model to focus solely on local computation without
managing inter-node communication.

3 HybridFlow Overview
Figure 4 depicts the architecture of HybridFlow, which con-
sists of three major components: Hybrid Programming Model,
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Figure 4. Architecture of HybridFlow.

3D-HybridEngine and Auto-Mapping algorithm. The hybrid
programming model includes a set of hierarchical APIs to
enable flexible expression of the RLHF dataflow and effi-
cient computation of models in the dataflow (§4). The 3D-
HybridEngine is particularly designed for efficient training
and generation of the actor model, allowing different 3D
parallel configurations in the two stages and enabling zero
memory redundancy and minimized communication over-
head during the transition between two stages (§5). The auto-
mapping algorithm determines optimized device placement
of each model to maximize the throughput of RLHF (§6).

The workflow of our RLHF system goes as follows. A user
provides the following inputs to start the RLHF system: (i)
model specifications, including the architecture and size of
the actor/critic/reference policy/reward models in the RLHF
dataflow; (ii) device placement of the models in the dataflow,
as obtained by running the auto-mapping algorithm under
given GPU cluster configurations; (iii) parallelism strategy
for running each model in each stage, e.g., a tuple of (p, t,
d) for 3D parallelism, where p, t, d represent PP size, TP
size and DP size, respectively. The single controller program
takes these inputs to initialize models in the RLHF dataflow
and virtualized resource pool, dispatches operations/models
to devices according to the placement plan, and invokes
functions run by the multiple controllers on devices to carry
out distributed computation of each model.
The multi-controller program implements the Parallel-

Worker class: it constructs parallel groups of each model
among allocated devices according to its parallelism strate-
gies, invokes the 3D-HybridEngine for actor training and
generation, and can be integrated seamlessly with existing
LLM engines [40, 57, 60, 71] for training, inference and gener-
ation of other models. The transfer protocols are coordinated
by the single controller program to support resharding of
data (including prompts, responses, and other model outputs
in RLHF) between models with distinct parallelism strate-
gies. The data resharding of the actor between training and
generation is handled by 3D-HybridEngine.

4 Hybrid Programming Model
4.1 Hierarchical APIs
Intra-node: encapsulating distributed program. For dis-
tributed computation of each model in different RLHF stages,
we provide a base class, 3DParallelWorker. Given allocated
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class ActorWorker(3DParallelWorker):
    # An example of distributed computation function
    @register(transfer_mode=3D_PROTO)
    def update_actor(self, prompts: DataProto):
        ...
# Allocate devices for a ResourcePool
resource_pool = ResourcePool([n_gpus_per_machine] * n_machines)
# Map the model to allocated devices and init model
actor_model = ActorWorker(actor_config, resource_pool)

Config

Actor  (p, t, d) = (1, 2, 3)
Critic  (p, t, d) = (2, 1, 2)

Call from controller

Transfer data

Return data futures
Collect data futures
Distribute data futures

TP,PP TP, PP rank on a GPU 
in a DP group

Figure 5. An illustration of hierarchical APIs. (a) Model
with 3D parallel configuration, resource allocation, and
3DParallelWorker initialization. (b) Asynchronous data re-
sharding between two models with collect and distribute
functions in 3D_PROTO.

devices, it facilitates distributed model weight initialization
and establishes 3D parallel groups for each model. A parallel
group includes a set of GPUs to host a specific parallel di-
mension of the model, e.g., different tensor shards in TP and
different model replicas in DP. Figure 5(a) illustrates initial-
ization of the actor model with our APIs, while initialization
of other models is similar.

Inheriting from the 3DParallelWorker class, severalmodel
classes, for actor, critic, reference, and reward model, respec-
tively, are provided. Each of these model classes encapsu-
lates APIs to implement the model’s distributed forward and
backward computation, auto-regressive generation, and opti-
mizer updates, decoupling the distributed computation code
with data dependencies with other models. These APIs can
be easily implemented by reusing the computation scripts
from existing LLM systems. For example, the computation in-
volved in update_actor function of ActorWorker (the class
for the actor model) is similar to the pre-training scripts in
Megatron-LM [71]. A model class encapsulates fundamental
operations for implementing various RLHF algorithms, e.g.,
generate_sequences in the actor model class for generat-
ing responses based on the prompts and compute_reward
in the reward model class for evaluating responses through
a forward pass. (More APIs are detailed in Appendix A).
Besides base class 3DParallelWorker that implements

3D parallelism, we further provide base classes for PyTorch
FSDP (FSDPWorker) and ZeRO (ZeROWorker), and the corre-
sponding model classes inheriting each base class, to support
different parallelism strategies in model computation. Paral-
lelWorker in Figure 4 denotes one of these base classes.
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Inter-node: unifying data resharding implementation
between models. Many-to-many multicast is involved for
data transfer between models employing different paral-
lelism strategies on different devices. We unify this data
transfer implementation by associating each operation in
each model class with a transfer protocol, using @register.
Each transfer protocol consists of a collect function and a dis-
tribute function, to aggregate output data and distribute in-
put data according to the parallelism strategy of each model.
In the example in Figure 5(a), update_actor operation is
registered to transfer protocol 3D_PROTO, as 3D parallelism
is used for actor training. In 3D_PROTO, the collect function
gathers all the output data of corresponding model function
(e.g., the loss scalar return from the update_actor) in each
DP group to the single controller, and the distribute func-
tion distributes the input data to the registered function (e.g.,
advantages for the update_actor) to each DP group. Data
resharding is enabled using the source model’s output collect
function and the destination model’s input distribute func-
tion. Figure 5(b) illustrates data resharding between the actor
(generation) and the critic (inference), where computation
of the models adopts different 3D parallelism strategies. The
single controller gathers data futures using the collect func-
tion in 3D_PROTO of actor (steps 1○- 3○) and sends it to critic
(step 4○); critic distributes the received data futures to each
DP group using the distribute function in its 3D_PROTO (step
5○). Then remote data is retrieved from actor to critic, with
each of critic’s GPUs only fetching the required local batch
of the actor’s output data according to its DP rank (step 6○).
The actual data transfer only occurs between GPUs, avoiding
any central bottleneck.
We provide 8 transfer protocols, including 3D_PROTO, DP

_PROTO, ONE_TO_ALL, etc., that cover most data resharding
scenarios (detailed in Appendix B). A user can further extend
the transfer protocols through implementing customized
collect and distribute functions.
Facilitating flexible model placement. We provide a
ResourcePool class that virtualizes a set of GPU devices.
When applying a ResourcePool instance to a model class
(Figure 5(a)), distributed computation of the model will be
mapped to the devices.Models utilizing the same ResourcePool
instance are colocated on the same set of GPUs; models are
placed on different sets of GPUs when different Resource
Pool instances are applied in their model classes. We assume
no overlap between different ResourcePool instances.
Asynchronous dataflow execution. When models are
placed on separate sets of devices, their execution is triggered
automatically as soon as their inputs become available [50].
In Figure 5(b), the data future from actor is immediately
returned after the controller’s call (steps 1○- 3○); the con-
troller then initiates a new call to critic and distributes the
futures following the transfer protocol (steps 4○- 5○). When
some models are placed on the same set of devices, they
are executed sequentially based on the calling order. With

# Initialize cost model by reusing the RewardWorker
cost = RewardWorker(cost_config, resource_pool)
...  # omit other models initialization
algo_type = “Safe-RLHF” # specify different RLHF numerical computation.
# Examples of PPO and Safe-RLHF
for (prompts, pretrain_batch) in dataloader:
     # Stage 1: Generate responses
     batch = actor.generate_sequences(prompts)
            batch = actor.generate_sequences(prompts, do_sample=False)
     # Stage 2: Prepare experience
     batch = critic.compute_values(batch)
     batch = reference.compute_log_prob(batch)
     batch = reward.compute_reward(batch)
     batch = cost.compute_cost(batch)
     batch = compute_advantages(batch, algo_type)
     # Stage 3: Actor and critic training
     critic_metrics = critic.update_critic(batch, loss_func=algo_type)
     pretrain_loss = actor.compute_loss(pretrain_batch)
     batch[“pretrain_loss”] = pretrain_loss
     actor_metrics = actor.update_actor(batch, loss_func=algo_type)

is added for Safe-RLHF

is added for ReMax
Not necessary in ReMax

Figure 6. Implementation of PPO [55], ReMax [43], and Safe-
RLHF [19]. Users can adapt to different RLHF algorithms by
simply adding or deleting a few lines of code.

our programming model, HybridFlow is flexible in support-
ing diverse distributed execution patterns without any code
change of the RLHF algorithm (Figure 6).

4.2 Implementation of different RLHF algorithms
Our APIs enable streamlined development of various RLHF
algorithms (dataflows). Users can implement an RLHF al-
gorithm in a few lines of code as a single process program
to run on the single controller, that involves a sequence
of primitive API calls to invoke distributed computation of
models. Examples of PPO, ReMax, and Safe-RLHF are given
in Figure 6. PPO can be implemented in just 8 lines by in-
voking model operations including compute_values and
generate_sequences, which are executed under the multi-
controller paradigm on multiple GPUs. To adapt to Safe-
RLHF which integrates an additional cost model to evaluate
safety preferences and the pre-taining loss for actor, only 5
more lines of code are added on top of PPO implementation.
To adapt to ReMax, one additional call to actor generation is
needed, and the critic-related code can be removed.
Achievingflexible.This flexibility of extension is crucial for
researchers to explore different RLHF algorithms: they can
reuse distributed computation encapsulated in each model
class and simply adjust the code for numerical computations
according to specific algorithms, such as GAE [67] and KL di-
vergence in compute_advantage and loss functions of actor
and critic. The streamlined development can be attributed
to the hybrid programming model. Our modular API design
simplifies development, facilitates extensive code reuse, and
enables directly incorporating the codebase of existing LLM
training/serving frameworks. It also decouples model com-
putation and data transfer among models. Any change in the
distributed frameworks does not affect the code of the RLHF
algorithm (Figure 6), enabling individualized optimization
for each model’s execution (§5). Flexible placement of mod-
els with diverse workloads is supported, enabling optimized
mapping of RLHF dataflow onto various devices (§6).
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Figure 7. 3D-HybridEngine workflow in one RLHF iteration.
4 GPUs are used for actor training and generation. 1-2-2
(𝑝-𝑡-𝑑) parallel groups are used in training and 1-1-2-2 (𝑝𝑔-
𝑡𝑔-𝑑𝑔-𝑑) parallel groups are used in generation.

5 3D-HybridEngine
We design the 3D-HybridEngine to support efficient training
and generation of the actor model, targeting significant RLHF
throughput improvement.

5.1 Parallel Groups
To eliminate redundant actor model copies, we advocate
deploying actor training and generation stages on the same
set of devices, 𝑁𝑎 GPUs allocated to the actor, and execute
them sequentially on the same copy of actor model weights.
Nonetheless, actor training and generation may well adopt
different 3D parallelism strategies, i.e., the generation stage
typically requires smaller TP and PP sizes but a larger DP
size, than the training stage (§2.3). 3D-HybridEngine enables
efficient model parameter resharding between actor training
and generation across the same set of devices in this context.
Let 𝑝-𝑡-𝑑 denote 3D parallel groups constructed for ac-

tor training, corresponding to the set of GPUs to host 𝑝
pipeline stages, 𝑡 tensor shards, and 𝑑 model replicas [54].
3D-HybridEngine builds different parallel groups for actor
training and generation, according to their different 3D paral-
lelism strategies, respectively. We use 𝑝𝑔 , 𝑡𝑔 , and 𝑑𝑔 to denote
the size of generation pipeline parallel group, generation
tensor parallel group, and micro data parallel group, respec-
tively, in the generation stage. 𝑑𝑔 indicates the ratio of model
replica number in generation over that in training, i.e., each
DP replica in training becomes 𝑑𝑔 micro DP replicas, to pro-
cess 𝑑𝑔 microbatches of prompts and responses. We have
𝑁𝑎=𝑝×𝑡×𝑑=𝑝𝑔×𝑡𝑔×𝑑𝑔×𝑑 such that 𝑑𝑔 =

𝑝𝑡

𝑝𝑔𝑡𝑔
. The micro DP

groups are employed exclusively in actor generation stage
to render a larger DP size for full device utilization. The
generation parallel groups are denoted by 𝑝𝑔-𝑡𝑔-𝑑𝑔-𝑑 .

5.2 3D-HybridEngine Workflow
Between actor training in iteration 𝑖 of RLHF and actor gen-
eration in iteration 𝑖 + 1, the actor model parameters need
to be resharded and prompts data to be distributed, follow-
ing the parallel group configurations in the two stages. In
iteration 𝑖 + 1 of RLHF, 3D-HybridEngine gathers the actor

Gen TP Group

All Gather

Train DP Group

Train TP Group

Micro DP 
Group

Model weight 
partition

Redundant 
training weight 

GPU & rankG1

Discard unused  weights from other ranks

(a) Same grouping methods between training and generation (HybridFlow-V)

(b) Optimized parallel grouping methods (HybridFlow)

G1

Train

Gen

Train

Gen

G1 G2 G3 G4 G5 G6 G7 G8

G2 G3 G4 G5 G6 G7 G8

G1 G2 G3 G4 G5 G6 G7 G8

G1 G2 G4G3

All-Gather
complete weights

G5 G6 G7 G8

G1 G3G2 G4 G5 G7G6 G8

 All-Gather within
Micro-DP groups

Figure 8. Model weights resharding. 2 machines each with
4 GPUs are used for actor training and generation.

model parameters updated in iteration 𝑖 (step 1○ in Figure 7),
for generation within each micro DP group. Then, the batch
of prompts are loaded to each model replica (step 2○), which
generates responses (Generation stage of RLHF). Following
this, 3D-HybridEngine performs an all-gather operation on
the generation results within each micro DP group (step
3○), and re-partitions model parameters according to the 3D
parallelism for actor training (step 4○). With model weights,
prompts and responses correctly re-distributed, the loss of
the actor model is computed and actor model weights are up-
dated following the RLHF algorithm (step 5○) - actor training
stage of iteration 𝑖 + 1.

5.3 Zero redundancy model resharding
Parallel grouping methods in 3D parallelism are typically as
follows: PP and TP groups are formed by assigning consecu-
tive ranks to pipeline stages and tensor shards, respectively;
DP groups are constructed by selecting ranks at regular in-
tervals, determined by the product of PP size and TP size.
In Figure 8(a), actor training uses 3D parallel groups, 1-4-2:
there is one PP group for all GPUs (for illustration clarify);
the TP groups are [G1, G2, G3, G4], [G5, G6, G7, G8], and
the DP groups are [G1, G5], [G2, G6], [G3, G7], [G4, G8].
Suppose the same parallel grouping methods are used but
with different parallel sizes, e.g., 1-2-2-2 for generation in
Figure 8(a). During the transition from training to genera-
tion, 3D-HybridEngine applies all-gather operations among
the model parallel groups to aggregate all parameters, and
then retain only a subset of model weights on each device
for its generation, according to the parallel groups the device
belongs to. On some GPUs (e.g., G2, G3, G6, G7), there is
no overlap between training and generation model weights,
and separate memory is needed to maintain weights for sub-
sequent training as well (grey boxes in Figure 8(a)).We call
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Table 2. Transition overhead between training & generation

DS-Chat HybridFlow-V HybridFlow

Comm. Vol 𝑡𝑝𝑑−1
𝑡𝑝𝑑

𝑀
𝑡𝑝−1
𝑡𝑝

𝑀
𝑡𝑝−𝑡𝑔𝑝𝑔
𝑡𝑔𝑝𝑔𝑡𝑝

𝑀

Peak Mem. 𝑀 𝑀 1
𝑡𝑔𝑝𝑔

𝑀

Redundancy 1
𝑡𝑝𝑑

𝑀 1
𝑡𝑝
𝑀 0

the system HybridFlow-V, when 3D-HybridEngine uses the
above vanilla parallel grouping methods in the two stages.

We further design a new parallel grouping method for 3D-
HybridEngine to use in the generation stage, that eliminates
the redundancy in weights storage and leads to minimal
memory footprint and communication due to actor model
resharding between training and generation. Specifically,
we form generation TP and PP groups by selecting ranks at
regular intervals, determined by 𝑡

𝑡𝑔
and 𝑝

𝑝𝑔
, and construct

micro DP groups by sequentially assigning ranks along the
generation TP or PP dimensions. In Figure 8(b), 1-2-2-2 paral-
lel groups are used in generation: the generation TP groups
are [G1, G3], [G2, G4], [G5, G7], [G6, G8]; and the micro
DP groups are [G1, G2], [G3, G4], [G5, G6], [G7, G8]. This
strategic rearrangement of generation parallel groups leads
to overlap between training and generation model weights
on each device, enabling reuse of training weights during
generation and zero redundancy in device memory usage due
to model resharding. In addition, 3D-HybridEngine conducts
several all-gather operations concurrently, one within each
micro DP group, leading to significantly reduced communi-
cation overhead.

5.4 Transition overhead
In Table 2, we compare communication overhead and mem-
ory footprint during the transition between training and
generation stages, among different actor engine designs. We
assumemodel size of the actor is𝑀 and𝑁𝑎 GPUs are used for
its training and generation. The actor engine in DeepSpeed-
Chat conducts an all-gather operation across all GPUs dur-
ing transition; HybridFlow-V performs this all-gather within
training TP and PP groups. The communication volumes
for these operations are 𝑁𝑎−1

𝑁𝑎
𝑀 =

𝑡𝑝𝑑−1
𝑡𝑝𝑑

𝑀 for DeepSpeed-
Chat and 𝑡𝑝−1

𝑡𝑝
𝑀 for HybridFlow-V, calculated following [13].

Both engines aggregate all model parameters in each GPU’s
memory before subsequently partitioning model states ac-
cording to the generation parallel groups, resulting in a peak
memory usage of model parameters𝑀 . As they cannot reuse
training weights during generation on some GPUs, training
weights need to be maintained on them, amounting to 1

𝑡𝑝𝑑

and 1
𝑡𝑝

redundant memory consumption, respectively.
With our parallel grouping method for the generation

stage, HybridFlow confines the all-gather operation within

each micro DP group. The communication overhead is re-
duced to 𝑑𝑔−1

𝑡𝑝
𝑀 =

𝑡𝑝−𝑡𝑔𝑝𝑔
𝑡𝑔𝑝𝑔𝑡𝑝

𝑀 . Each GPU only needs to col-
lect remote parameters within its micro DP group and can
reuse the training weights in generation. Therefore, the peak
memory usage of model parameters in HybridFlow precisely
matches the model partition size on each GPU in generation,
eliminating any redundancy in GPU memory usage.

6 Auto Device Mapping
Our hybrid programming model requires users to input the
following configurations, which are referred to as amapping
of the RLHF dataflow to the given devices: (a) device place-
ment of the models in the dataflow; (b) the corresponding
parallelism strategy for running each model in each stage.

We provide an efficient algorithm (Algorithm 1) for users
to identify the optimized mapping of executing the RLHF
dataflow on a given cluster of devices, that minimizes the
end-to-end latency of each RLHF iteration. Given a dataflow
𝐷 , we first explore all possible placement plans P for the
models in the given cluster (Line 3). For example, the PPO al-
gorithm involves four models, resulting in 15 possible place-
ments (from the Bell partition problem [10, 62]), ranging
from a completely standalone placement where all models
are placed on different devices (e.g., OpenRLHF’s placement)
to colocating all models on the same set of devices (e.g.,
DeepSpeed-Chat’s placement). We refer to colocated models
on the same set of GPUs as a colocated set. Models in a colo-
cated set can employ different parallelism strategies across
the same set of GPUs. We identify the smallest number of
GPUs to be allocated to each of the colocated model sets,
𝐴𝑚𝑖𝑛 , based on memory consumption of colocated models,
ensuring no out-of-memory errors (Line 9).
Next, starting from the minimal GPU allocation in 𝐴𝑚𝑖𝑛 ,

we enumerate all feasible device allocations to each colo-
cated model set (Lines 10-12). Given device allocation 𝐴 to
the colocated set and computation workload𝑊 of models
in the set, we explore optimized parallelism strategies for
each model in the auto_parallel module, that minimizes
model execution latency. The workload𝑊 includes input
and output shapes and computation (training, inference or
generation) of each model. In auto_parallel, we utilize a
simulator module simu to estimate the latency of different
parallel strategies, following previous research [42, 84, 90, 92]
(outline in Appendix. C).

The d_cost module estimates the end-to-end latency of
the RLHF dataflow under given model placement and par-
allelism strategies, by iterating through all stages in the
dataflow graph and summing up latencies of all stages (Lines 17,
25). For models in the same colocated set and involving com-
putation in the same stage (such as actor and critic both
performing model update in RLHF training stage), their exe-
cution latencies are summed up (Line 32). For models in dif-
ferent colocated sets, their execution within the same stage
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Algorithm 1 Device Mapping for an RLHF Dataflow
1: Input: RLHF dataflow graph 𝐷 , LLMs in RLHF dataflow

𝐿=[𝑙1, 𝑙2, . . . , 𝑙𝑘 ], workload𝑊 of LLMs in RLHF dataflow, total
# of GPUs 𝑁 , memory capacity per GPU 𝑄

2: Output: device mapping of models in RLHF dataflow
3: P ← get_placements(𝐷, 𝐿, 𝑁 )
4: 𝐶∗ ←∞
5: 𝑏𝑒𝑠𝑡_𝑚𝑎𝑝𝑝𝑖𝑛𝑔← ∅
6: for all 𝑝𝑙𝑚 ∈ P do
7: 𝐶𝑝𝑙𝑚 ←∞
8: 𝑏𝑒𝑠𝑡_𝑝𝑙𝑚_𝑎𝑙𝑙𝑜𝑐 ← ∅
9: 𝐴𝑚𝑖𝑛 ← get_min_alloc(𝑝𝑙𝑚,𝑄, 𝑁 )
10: for all 𝐴 ∈ enum_alloc(𝑁,𝐴𝑚𝑖𝑛) do
11: �̂� ← []
12: for all set ∈ 𝑝𝑙𝑚 do
13: for all 𝑙 ∈ set do
14: �̂� ← auto_parallel(𝐴,𝐴𝑚𝑖𝑛, 𝑙,𝑊 )
15: �̂�.append (̂𝑙)
16: 𝑝𝑙𝑚.update(�̂�)
17: 𝐶𝑎𝑙𝑙𝑜𝑐 ← d_cost(𝐷, 𝑝𝑙𝑚,𝑊 )
18: if 𝐶𝑎𝑙𝑙𝑜𝑐 < 𝐶𝑝𝑙𝑚 then
19: 𝐶𝑝𝑙𝑚 ← 𝐶𝑎𝑙𝑙𝑜𝑐
20: 𝑏𝑒𝑠𝑡_𝑝𝑙𝑚_𝑎𝑙𝑙𝑜𝑐 ← (𝑝𝑙𝑚,𝐴)
21: if 𝐶𝑝𝑙𝑚 < 𝐶∗ then
22: 𝐶∗ ← 𝐶𝑝𝑙𝑚

23: 𝑏𝑒𝑠𝑡_𝑚𝑎𝑝𝑝𝑖𝑛𝑔← 𝑏𝑒𝑠𝑡_𝑝𝑙𝑚_𝑎𝑙𝑙𝑜𝑐
24: return 𝑏𝑒𝑠𝑡_𝑚𝑎𝑝𝑝𝑖𝑛𝑔

25: Procedure d_cost(𝐷 , 𝑝𝑙𝑚,𝑊 ):
26: 𝑠 ← number of stages in 𝐷

27: 𝑐 ← [0] × 𝑠 // Initialize latency for each stage to 0
28: for all set ∈ 𝑝𝑙𝑚 do
29: 𝑐𝑔 ← [0] × 𝑠
30: for all 𝑖 ∈ {0, ..., 𝑠 − 1} do
31: for all �̂� ∈ set do
32: 𝑐𝑔 [𝑖] ← 𝑐𝑔 [𝑖] + simu (̂𝑙,𝑊 [𝑖])
33: 𝑐 [𝑖] ←𝑚𝑎𝑥{𝑐 [𝑖], 𝑐𝑔 [𝑖]}
34: return sum(𝑐)

can be parallelized, and the latency of the stage is deter-
mined by the maximum execution time among different sets
(Line 33). We identify the best device placement of the mod-
els with their corresponding parallelism strategies, achieving
minimal execution time per RLHF iteration (Lines 18-23).

The complexity of Algorithm 1 is 𝑂 ( (𝑁−1)!
(𝑘−1)!(𝑁−𝑘 )! ), where

𝑘 is the number of models in the dataflow and 𝑁 is the total
number of devices to run the dataflow. This is the worst-case
complexity for enumerating all possible device allocations
for a placement strategy (i.e., the standalone placement),
calculated by assigning 𝑁 devices to 𝑘 models (known as
the integer partition problem [6]). For better efficiency, we
cache parallelism strategies identified for each model on a
number of devices 𝐴, to eliminate redundant searches for
the same parallelism strategies when the model is placed on
different sets of 𝐴 GPUs in different placement strategies.

Though we assume 𝑁 homogeneous GPUs when running
the auto mapping algorithm, Algorithm 1 can be readily
extended for optimizing model mapping over heterogeneous
devices, by considering heterogeneous devices in simu and
auto_parallel modules [88].

7 Implementation
HybridFlow is implemented in around 12k lines of Python
code (LoC).
Hybrid programming model. The hierarchical APIs are
implemented with 1.8k LoC. The centralized single controller
is built on top of Ray [50] and uses Remote Process Calls
(RPC) to coordinate the execution order of different models
and transfer data between models following the dataflow.
These intermediate data are stored in TensorDict [57]. In our
multi-controller paradigm for distributed computation, each
model function runs on a separate process across various
devices, with control messages relayed from each controller’s
CPU process to the corresponding GPU. Our implementation
supports Megatron-LM, PyTorch FSDP, and DeepSpeed as
the LLM training and inference engines, and vLLM for auto-
regressive generation. In vLLM, we replace the centralized
KVCache manager with a distributed manager to align with
the multi-controller paradigm.
3D-HybridEngine. Its main logic is implemented with 2.4k
LoC on top of Megatron-LM and vLLM.We store actor model
weights for training and generation stages on separate mem-
ory buffers, offload generation weights to the CPU mem-
ory during training, reload generation weights back to GPU
memory during the transition, and use both buffers in gen-
eration. We use NCCL communication primitives [35] to
collect and concatenate model parameters in each micro DP
group during the transition between training and generation.
We offload KVCache to CPU memory after generation and
reload it back to GPU in the next iteration.
Auto-Mapping Algorithm is implemented with 1.9k LoC,
together with three simulators for training, inference, and
generation workloads. The algorithm is run before starting
the RLHF dataflow on CPU, to generate device mapping and
parallelism strategies for dataflow initialization.

8 Evaluation
8.1 Experimental Setup
Testbed.We deploy HybridFlow on a cluster of 16 machines
(128 GPUs). Each machine is equipped with 8 NVIDIA A100-
80GB GPUs inter-connected with 600GB/s NVLink. The
inter-machine bandwidth is 200Gbps. Our experiments use
the following software versions: CUDA12.1, PyTorch 2.1.2,
Megatron-core 0.6.0, NCCL 2.18.1, and vLLM 0.3.1.
Models and RLHF algorithms.We run the RLHF dataflow
(Figure 1) of PPO [68], ReMax [43] and Safe-RLHF [19] al-
gorithms. PPO is one of the most popular algorithms for
RLHF [7, 55], consisting of actor, critic, reference policy, and
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(d) 70B (5.17×∼17.98×)

Figure 9. PPO throughput. Numbers in parentheses are HybridFlow speedups compared with baselines.
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(d) 70B (6.46×∼9.78×)
Figure 10. ReMax throughput. Numbers in parentheses are HybridFlow speedups compared with baselines
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16 32 64 128
# of GPUs

0.0
0.5
1.0
1.5
2.0

Th
ro

ug
hp

ut
 (t

ok
en

s/
s) 1e4

NeMo-Aligner
DS-Chat
OpenRLHF
HybridFlow

(b) 13B (2.49×∼18.47×)

32 64 128
# of GPUs

0.0

0.5

1.0

1.5
Th

ro
ug

hp
ut

 (t
ok

en
s/

s) 1e4
NeMo-Aligner
DS-Chat
OpenRLHF
HybridFlow

(c) 34B (2.20×∼19.76×)

64 128
# of GPUs

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

1e4
NeMo-Aligner
DS-Chat
OpenRLHF
HybridFlow

(d) 70B (4.89×∼16.86×)
Figure 11. Safe-RLHF throughput. Numbers in the parentheses are HybridFlow speedups compared with the baselines

reward models. Each model is a Llama [73] model with sizes
ranging from 7B to 70B. Safe-RLHF has an additional cost
model whose architecture and size are the same as the re-
ward model and ReMax eliminates the critic model. We use
mixed precision for actor and critic training, i.e., BF16 for
model parameters and FP32 for gradient and optimizer states,
with Adam [38] optimizer in all experiments. BF16 is used
in model inference and auto-regressive generation. If not
specified, the experiment results are obtained from PPO.
Baselines. We compare HybridFlow with state-of-the-art
RLHF systems including DeepSpeed-Chat [82] v0.14.0, Open-
RLHF [30] v0.2.5, and NeMo-Aligner [17] v0.2.0 (detailed in
Table 1). NeMo-Alginer doesn’t support ReMax algorithm.
We do not compare HybridFlow to other frameworks such
as Trlx [27], HuggingFaceDDP [79], and Collosal-Chat [15]
as they are less representative and slower than the above
baselines (as reported in [82]).

We use RLHF throughput (tokens/sec) as the performance
metric, computed by dividing the total number of tokens in
prompts and responses in a global batch by one RLHF itera-
tion time. All reported performance numbers are averaged
over 5 training iterations after a warm-up of 10 iterations.

Datasets and hyperparameters. We perform RLHF on
"Dahoas/ful-hh-rlhf" dataset [7] of HuggingFace, which is
widely used for LLM alignment [64, 85]. As the baseline
systems may not incorporate continuous-batching optimiza-
tion [83] during generation, for a fair comparison, we en-
force the same length on all responses to be generated. In
each experiment, the input prompt length and the output
response length are both 1024 and the global batch size of
input prompts to the actor model is 1024. The number of
PPO epochs is 1 and the number of PPO update iterations per
epoch is 8, aligning with previous RLHF research [31, 55, 81].

8.2 End-to-End performance
Figures 9, 10, and 11 show RLHF throughput when running
PPO, ReMax, and Safe-RLHF respectively. The actor, critic,
reference, and reward models in this set of experiments are
of the same size, following previous practice [7, 55, 82]. The
number of GPUs used in experiments of different model
sizes ranges from the smallest number of GPUs to run RLHF
without OOM to 128 GPUs. We do not enable offloading
optimizer states [61] in the experiments for fair comparison.
Overall performance.We observe that HybridFlow consis-
tently outperforms the baselines across all model scales. In
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Figure 12. Throughput of HybridFlow under different placements
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Figure 13. Placement comparison under
13B actor and reference policy & 70B critic
and reward model.

Figure 9 for PPO, HybridFlow outperforms DeepSpeed-Chat,
OpenRLHF and NeMo-Aligner by 3.67× (up to 7.84×), 3.25×
(up to 5.93×) and 12.52× (up to 20.57×), respectively. This is
mainly because HybridFlow effectively executes generation,
inference, and training in all RLHF stages by sharding the
models with different parallelism strategies to fit various
computation workloads. HybridFlow achieves the highest
average speedup of 9.64× when training 70B models, as Hy-
bridFlow reduces the transition overhead by up to 71.2% and
89.1% compared to DeepSpeed-Chat and OpenRLHF, which
also incurs large inter-machine communication when train-
ing with ZeRO-3. Due to the lack of KVCache in generation
engine, NeMo-Aligner’s main performance bottleneck lies
in the generation stage, which accounts for up to 81.2% of
its RLHF iteration time. Similar results can be observed in
Figures 10, 11 validating the efficiency of HybridFlow on
running various RLHF algorithms.
Scalability.HybridFlow achieves at least 2.09× speedup on 8
GPUs. With increasing GPUs, the strong scaling efficiency of
HybridFlow on variousmodel scales is 66.8%, computed by di-
viding throughput in largest scale

throughput in smallest scale by max. # of GPUs
min. # of GPUs [5],

averaging over three algorithms and all model scales. Scal-
ing to a large number of GPUs with a fixed global batch
size results in smaller local batch sizes for each worker, po-
tentially causing GPU underutilization. Running 7B models
on 128 GPUs, HybridFlow still outperforms the best base-
line OpenRLHF for 1.68×, 1.53×, and 1.71× on PPO, ReMax,
and Safe-RLHF respectively. This can be attributed to Hy-
bridFlow’s ability to adapt the best placement strategies for
different models and cluster sizes to minimize RLHF time.
OpenRLHF performs better in a larger GPU cluster but less
efficiently on smaller ones.

8.3 Model Placement
In this experiment, we implement various model placements
of the PPO algorithm in HybridFlow, under the same model
and cluster settings as in Sec. 8.2: (i) colocate, the placement
strategy in DeepSpeed-Chat; (ii) standalone, that in Open-
RLHF and; (iii) split, NeMo-Aligner’s colocation placement
(actor and reference policy on the same set of devices and
critic and reward model on another); (iv) hybridflow, the
optimized placement obtained by Algorithm 1.

Comparison of different model placements. Figure 12
reveals that optimized placement of HybridFlow under differ-
ent numbers of GPUs varies. From 16 to 64 GPUs, colocating
all models on the same set of devices yields the best perfor-
mance. For 96 to 128 GPUs with 34B models and 96 GPUs
with 13B models, the split strategy becomes optimal. The
split strategy divides GPUs evenly between the two sets
of models, as their sizes are equal. For 13B models on 128
GPUs, the standalone strategy achieves the highest through-
put. In this case, HybridFlow allocates 64 GPUs for the actor,
32 for the critic, and 16 each for the reference and reward
model. In smaller clusters, computation of all models can
fully utilize GPU resources; the colocate strategy ensures
maximumGPU usage in different RLHF stages. In larger clus-
ters, RLHF throughput under colocate placement fails to scale
up linearly as the batch size is fixed and the computation-to-
communication ratio decreases with a larger DP size onmore
GPUs. Standalone and split strategies place models on differ-
ent devices with a smaller DP size for each model in larger
clusters, facilitating parallel execution of different models in
the same stages. In all cases, our Algorithm 1 produces the
best placement with the highest training throughput.
Larger critic and reward model. We further evaluate
model placements when running PPO with a 13B actor and
reference policy and 70B critic and reward models (larger
critic and rewardmodels are expected to produce better align-
ment [7]). Figure 13 shows that the colocate strategy still
outperforms others by 44.8% on average with up to 64 GPUs.
The split strategy achieves higher throughput with 96 GPUs.
When scaling to 128 GPUs, the best placement obtained by
Algorithm 1 colocates actor, reference, and reward models
on 64 GPUs while allocating the remaining 64 GPUs to critic.
On the same number of GPUs, actor and reference policy’s
computation time is much smaller than critic and reward
model, and colocating the reward model with actor and ref-
erence policy reduces the GPU idle time in the experience
preparation stage. In general, distributing actor and critic on
different devices for parallel execution in the training stage
leads to higher throughput in large clusters.

8.4 3D-HybridEngine
Transition time comparison. Figure 14 shows the transi-
tion time between actor training and generation stages on
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Figure 14. Transition time between actor training and generation.
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Figure 15. Time breakdown on different generation parallel
sizes of the actor model on 16 GPUs.

various model scales, which is the time to reshard model
weights from training to generation, under the same settings
in §8.2. OpenRLHF’s transition time includes weight syn-
chronization time between two copies of the actor model on
different devices. HybridFlow reduces the transition time by
55.2% (11.7s) on average and the transition overhead by up to
89.1% (78.2s) with 70B models, while maintaining consistent
overhead across different cluster scales. This is attributed to
our new parallel grouping method for the generation stage
(§5.4). In baseline methods, all model parameters must be
collected during transition, necessitating layer-by-layer col-
lections multiple times to prevent OOM. HybridFlow enables
zeromemory redundancy during transition and requires only
one all-gather operation per micro DP group.
Transition and generation timeWe further validate the
need to use different parallel sizes in actor training and gen-
eration in HybridFlow. In this experiment, all models are
colocated on the same set of GPUs, and the KVCache for
generation is allocated using the remaining GPU memory
(i.e., best-effort allocation). Figure 15 gives the transition and
generation time when running RLHF on 16 GPUs with 7B
and 13B models, respectively, with training parallel groups
1-8-2 (following p-t-d convention) and varying generation
TP group size 𝑡𝑔 from 1 to 8. The generation PP group size
remains constant at 𝑝𝑔=1 and the micro DP group size 𝑑𝑔 is
computed as 8

𝑡𝑔
. We observe that applying a smaller gener-

ation TP group size, 𝑡𝑔=2, for 7B models and 𝑡𝑔=4 for 13B
models reduces the generation latency by 60.3% and 36.4%,
respectively. Conversely, using the same TP size as training
(𝑡𝑔=8), following the NeMo-Aligner approach, results in the
largest generation latency due to GPU underutilization. Fur-
ther reducing 𝑡𝑔 fails to achieve higher speedup, as a smaller
𝑡𝑔 necessitates maintaining a larger KVCache per GPU.
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Figure 16. Runtime of device mapping algorithm. The model
size and # of GPUs are simultaneously scaled.

8.5 Algorithm Runtime
Figure 16 shows the running time of Algorithm 1, which is
significantly shorter than days of actual RLHF training. A
linear growth of running time is exhibited, revealing good
scalability of the device mapping algorithm with model size
and cluster size. Most of the running time is spent on estimat-
ing the execution latency of each model’s parallel strategies.
More parallelism strategies are available for a larger model,
requiring more simulations to identify the optimal one for
each placement plan. Our caching of optimal parallelism
strategies of the models to be reapplied across different place-
ments reduces the search time for the best placement to at
most half an hour.

9 Discussions
Fault Tolerance.HybridFlow is orthogonal to existing fault-
tolerance approaches [22, 34, 49, 76, 93] and already incor-
porates checkpointing. Failures can be detected by NCCL
errors and silent-data-corruption by checksums. Our pro-
gramming model enables the single controller to coordinate
checkpoint operations via RPC, allowing the saving of model
states within each ParallWorker Group. This includes sav-
ing parameters of actor/critic models, dataloader IDs, and
Random Number Generator (RNG) states to ensure system-
wide consistency. Moreover, HybridFlow can also employ
redundancy-based fault-tolerance methods, such as broad-
cast parameters and CPU checkpoint, for fast recovery if
enough healthy model replicas are available [76, 93].
Placement Insights.We conclude three main insights for
model placement and GPU allocation in RLHF training. 1)
Allocatingmore GPUs to the actormodel can reduce the time-
consuming generation latency, which cannot be parallelized
with other models. 2) When each model computation can
fully utilize GPU resources, colocating all the models is most
effective when training on relatively small-scale clusters. 3)
When scaling up to large-scale clusters (i.e., strong scaling),
distributing the actor and critic models on different devices
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for parallel execution in the training and preparation stages
would help achieve higher throughput.
Resource multiplexing. HybridFlow enables colocation of
models on shared devices by utilizing time-sharing for GPU
computation. Recent research in DNN task scheduling has
developed fine-grained resource multiplexing techniques,
primarily aimed at achieving the service-level objectives
of individual tasks [8, 18, 26, 26, 47, 56, 77]. Although the
ResourcePool implementation supports parallel execution
of collocated models, HybridFlow generally adheres to se-
quential execution to prevent GPU resource contention or
OOM issues as discussed in Section 2.3. Applying GPU shar-
ing and heterogeneous resources in RLHF training poses
distinct challenges, as it seeks to balance the computation
workload and manage complex data dependencies among
various tasks. Investigating fine-grained auto-mapping al-
gorithms for GPU sharing in RLHF training, coupled with
model offload optimization and integration of heterogeneous
devices, would be a promising direction for future research.
Fromalignment to reasoning. In RLHF for LLM alignment,
the reward signal is generated by the reward model. Besides
alignment tasks, similar algorithms (e.g., PPO andGRPO [70])
can be applied to other domains, such as code generation and
mathematical reasoning. For these tasks, a ground truth may
exist for each prompt, which can be determined by assessing
the correctness of the output value for each code test case and
verifying the accuracy of mathematical results. Therefore,
the reward model can be replaced by non-neural-network
reward modules, such as a sandbox environment [87] for
evaluating generated code or a reward function [14, 65] to
validate mathematical results. HybridFlow can seamlessly
integrate these reward modules by wrapping them as remote
functions and orchestrating their execution within the single-
process script, providing a flexible and efficient framework
for diverse reinforcement learning applications.

10 Related Work
RL frameworks. There have been plenty of frameworks
for RL, ranging from general-purpose RL systems design
for small-scale DNNs [12, 25, 28, 39, 45, 46] to RLHF sys-
tems specifically optimized for LLMs [15, 17, 30, 80, 82]. We
have thoroughly examined closely related work in §2 and we
discuss more RL frameworks in this section. These RL frame-
works [12, 25, 28, 39, 74], similar to recent RLHF systems,
use a hodgepodge of multi-controller frameworks to imple-
ment their algorithms. They establish multiple long-running
distributed programs with each component coordinating
the execution order with hard-coded data synchronization.
Gear [74] further optimized the experience replay segment
of the RL pipeline. However, all these frameworks fail to
support LLM training, inference, and generation in RLHF.
LLM training and serving systems. TorchDDP [57] and
Horovod [69] support data parallel training. ByteScheduler [58]

and DeepSpeed [60] extend data parallelism with communi-
cation and memory optimizations. Numerous systems [23,
36, 48, 54, 71, 75, 89] optimized large model training through
model parallelisms such as tensor parallelism and pipeline
parallelism to partition models across devices. LLM serving
systems [3, 16, 40, 72, 83, 92] also adopts data and model
parallelism to accelerate auto-regressive generation with
specialized optimizations like continuous-batching [83] and
chunked-prefill [3]. Note that all the above frameworks adopt
multi-controller paradigm for efficient computation.
Dataflow systems. Dataflow systems like MapReduce [21],
Spark [86], Dryad [33], and Naiad [51] are popular for analyt-
ics and ML workloads but they lack support for dynamic task
graphs. Ray [50] unifies task-parallel and actor programming
models in a single dynamic task graph and implements a scal-
able distributed scheduler and a global control store, which
is adopted by many RL frameworks [45, 46]. Pathways [9],
a closed-source project for TPUs, are designed to easily ex-
press complex parallelism patterns and fine-grain control
flow within a single DNNmodel, such as pipeline parallelism
and Mixture-of-Experts with sparse computation. It employs
an asynchronous distributed dataflow design that enables
parallel control plane execution despite data dependencies,
reducing the dispatch overhead from single-controller para-
digm. Its main focus lies on single-model training, requiring
complex compilations of each sub-network of a DNN model.
HybridFlow can integrate Pathways as a submodule to im-
plement the computation of models in the RLHF dataflow.

11 Conclusion
HybridFlow is an RLHF framework that enables flexible rep-
resentation and efficient execution of diverse RLHF algo-
rithms. We propose a hybrid programming model that allows
users to easily build RLHF dataflow in a few lines of code by
encapsulating distributed computation of different LLMs into
primitive APIs and hiding the complexity of data resharding
among nodes. Our 3D-HybridEngine ensures efficient execu-
tion of training and generation of the actor model, with zero
memory redundancy and significantly reduced communica-
tion overhead for model parameter resharding. Furthermore,
our effective mapping algorithm optimizes GPU allocation
and placement of models in the RLHF dataflow. Extensive
experiments demonstrate that HybridFlow achieves 1.53× to
20.57× speedup compared to state-of-the-art RLHF systems
under various model sizes and cluster scales.
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Table 3. The transfer protocols in HybridFlow.

Transfer Protocols Distribute function Collect function Use case

ONE_TO_ALL Broadcast the data to all ranks. Gather the data from all ranks. All the worker methods have the same input and run the ssme codes,
e.g. model initialization.

3D_PROTO
Split the data, scatter across all DP ranks

and broadcast within the group.
Gather and concatenate the data from
the p=-1, t=0 worker in all DP groups.

The model is sharded among multiple workers within each data-parallel
group. The output of the model only exists in the last pipeline stage and
is duplicated across the data-parallel groups. This is a typical scenario
in 3D parallel training in Megatron-LM, Deepspeed, etc.

3D_ALL_MICRO_DP
Split the data by micro DP size, scatter across

all micro DP groups and broadcast
among all ranks within the group.

Gather and concatenate the data from
the local_rank=0 worker in all micro DP groups.

Used with HybridEngine. It is used to handle the 3D-parallel scheme of
the policy model, when switching between training and inference.

3D_PP_ONLY Broadcast the data to all ranks. Gather and concatenate the data from
the t=0, d=0 worker in all PP groups.

Used to examine weight names as they are identical in TP and DP
groups.

DP_PROTO
Split the data into batches and
scatter across all DP ranks.

Gather and concatenate
the data from all DP ranks. Training model in data-parallel mode.

ALL_TO_ALL No operation. Gather the data from all ranks. Used when debugging. Users can manually define the inputs of each
worker and examine their outputs respectively.

A Primitive APIs in HybridFlow
In HybridFlow, we implemented the primitive of each model
in RLHF training by inheriting the 3DParallelWorker, FSDP
Worker and ZeROWorker. The functions of thesemodel classes
are designed to decouple the distributed computation code
and provide fundamental operations in RLHF for the users.
This primitive design is compatible with the auto-regressive
generation, forward pass, backward pass, and model update
operations in the existing distributed inference and training
frameworks. Users can easily customize the RLHF training
dataflow (by adapting the numerical computation in the pro-
vided functions) according to the algorithm’s design and
benefit from reusing the underlying distributed computation
implementation. We illustrate the meaning and the actual
computations of these APIs in Table 4.

B Transfer Protocols
We implemented transfer protocols that cover all common
use cases of data resharding betweenmodels in RLHF dataflow.
Users can utilize these pre-defined protocols to generate any
RLHF dataflow. Moreover, Users can easily define their own
transfer protocols by implementing a collect function and a
distribute function. Transfer protocols decoupled the compli-
cated data resharding and distributed training. We denote p,
t, d as the rank of the worker in pipeline-, tensor- and data-
parallel group respectively. We illustrate these predefined
protocols in Table 3.

C Auto-Parallelism Algorithm
Algorithm 2 outlines the search process of the optimal par-
allelism strategy of each model. Starting from the minimal
model parallelism size of each model (to prevent OOM when
colocating with multiple workers), we enumerate all feasi-
ble parallel configurations based on the number of GPUs
and the number of GPUs per machine𝑈 . The default num-
ber of 𝑈 is set to 8. We use simu module to estimate the
latency of each model based on their workload. This module

Algorithm 2 Auto Parallelism Algorithm
1: Input: Device allocation 𝐴, minimal device allocation

and model parallel size for each model in a set 𝐴𝑚𝑖𝑛 ,
workload𝑊 , the number of GPUs per machine𝑈

2: Output: the parallelism strategy for the model in a set
3: Procedure auto_parallel(𝐴, 𝐴𝑚𝑖𝑛 , 𝑙 ,𝑊 ):
4: 𝑁𝑙 = 𝐴[𝑙] // Get device allocation of the model
5: 𝑡𝑚𝑖𝑛 = 𝐴𝑚𝑖𝑛 [𝑙] .𝑡 // Get minimal model parallel size
6: 𝑝𝑚𝑖𝑛 = 𝐴𝑚𝑖𝑛 [𝑙] .𝑝
7: best_para← ∅
8: best_para.cost←∞
9: for all t ∈ {𝑡𝑚𝑖𝑛, 𝑡𝑚𝑖𝑛 + 1...,𝑈 } do
10: for all p ∈ {𝑝𝑚𝑖𝑛, 𝑝𝑚𝑖𝑛 + 1..., 𝑁𝑙

𝑈
} do

11: d← 𝑁𝑙

p×t
12: para_plan← (𝑝, 𝑡, 𝑑)
13: cost← simu(𝑝𝑎𝑟𝑎_𝑝𝑙𝑎𝑛, 𝑙,𝑊 [𝑙])
14: if best_para.𝑐𝑜𝑠𝑡 > cost then
15: best_para.𝑐𝑜𝑠𝑡 ← cost
16: best_para← para_plan
17: return best_para

includes three simulators for training, inference, and gener-
ation workload, all are analytical models following previous
research [42, 84, 92]. The training and inference workload is
compute-bound while the generation workload is memory-
bound. For the actor model, we first find the parallelism strat-
egy for training and record the memory usage in the training
stage. During actor generation, KVCache requirements are
calculated using the batch size and max sequence length.
If the model-parallel size for the generation stage cannot
accommodate both parameters and KVCache, we increase
it. Then, we seek the optimal strategy with corresponding
KVCache allocation by comparing the latency estimation.
Developing a comprehensive autoregressive generation sim-
ulator that accounts for variable KVCache sizes could further
enhance the auto-mapping process in RLHF research.
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Table 4. Key functions provided in each model class. The users can use these provided functions to construct various RLHF
algorithms in a few lines of code.

Model APIs Computation Interpretation

Actor
generate_sequence

auto-regressive
generation

Based on a batch of prompts, the actor model generates a batch of
responses and returns the log probability of each token in the responses.

compute_log_prob a forward pass

The actor model computes the log probability of each token in the
prompts and responses. This log probability is the same as the return
log probability when performing generation using the same model
precision. (Optional in PPO)

compute_loss a forward pass The actor model computes the pretrain loss based on the pertaining
dataset [7, 19, 55].

update_actor
a forward, backward pass

and model update

Based on the advantages, returns (calculated from compute_advantage)
and pertaining loss, the actor model calculate the training loss and up-
date its weights.We implement various loss for diverse RLHF algorithms
including PPO [55], Safe-RLHF [19], ReMax [43], GRPO [70] and others.

Critic compute_values a forward pass The critic model computes the values for each prompt and response.

update_critic
a forward, backward pass

and model update

Based on the values and returns, the critic computes a squared-error loss
to update its weights. We also implement critic loss for diverse RLHF
algorithms including PPO [55], Safe-RLHF [19], ReMax [43], GRPO [70]
and others.

Reference
Policy compute_ref_log_prob a forward pass

The reference model computes the reference log probability of each
token in the prompts and responses. This log probability is utilized as a
benchmark to evaluate the divergence of the actor model and constrain
its learning process.

Reward compute_reward a forward pass
The reward model conducts forward computation to calculate scores for
a given set of prompts and responses. The rewards could be token-level
or sample-level.

- compute_advantage
numerical

computation

Based on the values rewards from the value model and reward model re-
spectively, the function estimates the advantages on the given prompts
and the current policy model’s responses. This computation involves
no model forward passes.
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