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Abstract

Minimizing latency is of primary importance for data aggeagn which is an
essential application in wireless sensor networks. Masydata aggregation al-
gorithms under the protocol interference model have begmgsed, but the model
falls short of being an accurate abstraction of wirelessrfatences in reality. In
contrast, the physical interference model has been showa toore realistic and
has the potential to increase the network capacity whentadapa design. Itis a
challenge to derive a distributed solution to latency-mizing data aggregation
under the physical interference model because of the sifapi¢hat global-scale
information to compute the cumulative interference is meedt any node. In
this paper, we propose a distributed algorithm that aimsitomize aggregation
latency under the physical interference model in wirelesssr networks of arbi-
trary topologies. The algorithm us€g¢K) time slots to complete the aggregation
task, whereK is the logarithm of the ratio between the lengths of the lshgad
shortest links in the network. The key idea of our distrilduadgorithm is to par-
tition the network into cells according to the vale thus obviating the need for
global information. We also give a centralized algorithmiabhcan serve as a
benchmark for comparison purposes. It constructs the ggtiom tree follow-
ing the nearest-neighbor criterion. The centralized atlgwr takesO(logn) and
O(log® n) time slots when coupled with two existing link scheduliricategies,
respectively (whera is the total number of nodes), which represents the current
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best algorithm for the problem in the literature. We prowectbrrectness andie
ciency of our algorithms, and conduct empirical studiesaumdalistic settings to
validate our analytical results.

Keywords. Data Aggregation, Wireless Sensor Networks, Physicatfietence
Model, Minimum Latency

1. Introduction

Data aggregation is a habitual operation of many wireleas@enetworks,
which transfers datae(g., temperature) collected by individual sensor nodes to a
sink node. The aggregation typically follows a tree topglogoted at the sink.
Each leaf node would deliver its collected data to its paratte. Intermediate
sensor nodes of the tree may optionally perform certain asjoers €.9., sum,
maximum, minimum, mean, etc.) on the received data and fortir result. Be-
cause the wireless medium is shared, transmissions to fdtve data need to be
coordinated in order to reduce interference and avoidstofli The fundamental
challenge can be stated as: How can the aggregation trasisngse scheduled
in a wireless sensor network such that no collision may oaadrthe total num-
ber of time slots used (referred to aggregation latency) is minimized? This is
known as theMinimum:-Latency Aggregation Scheduling (MLAS) problem in the
literature [1, 2, 3, 4, 5].

The MLAS problem is typically approached in two steps: (i) data agatien
tree construction, and (ii) link transmission schedulik@r (i), we assume the
simplest mode in which every non-leaf node in the tree wilkenanly one trans-
mission, after all the data from its child nodes have beeaived. A correct so-
lution to theMLAS problem requires that no concurrent transmissions iriage
with each other should take place. If steps (i) and (ii) ameiea out simultane-
ously in a solution, we have a “joint” design.

To model wireless interference, existing literature moatisume therotocol
interference model, in which a transmission is successful if and only if its leee
is within the transmission range of its transmittend outside the interference
range of any other concurrent transmitters. The best sekntiwn for theMLAS
problem or similar problems ([2, 3, 4, 5]) under the protoctérference model
bound the aggregation latency @A + R) time slots, whereR is the radius of
the sensor network in hops ands the maximal node degreeq, the maximum
number of nodes in any node’s transmission range). The gubtoterference
model however has been found to be too simplistic and carmemeé s an accu-



rate abstraction of wireless interferences. Insteadpliisical interference model
[6], which captures the reality more accurately, is becgmore popular. Little
research however has so far been done to addreddltA& problem under the
physical interference model.

The protocol interference model considers only interfeesnwithin a limited
region, whereas the physical interference model tries pouca the cumulative
interference due to all other concurrently transmittingemin the entire network.
More precisely, in the physical interference model, th@gnaission of linkg;
can be successful if the following condition regarding tign&l-to-Interference-
Noise-Ratio @NR) is satisfied:

NO + ZegheAij—{aj} Pgh/dgj

Here Aj; denotes the set of links that transmit simultaneously with P;; and

Pgn denote the transmission power at the transmitter ofdjpénd that of linkey,,
respectivelyd;; (dy;) is the distance between the transmitter of knke,n) and the
receiver of linke;. a is the path loss ratio, whose value is normally between 2 and
6. Np is the ambient noises is the SINR threshold for a successful transmission,
which is at least 1.

We give an example, in Fig. 1, to demonstrate the advantagfeegbhysical
interference model over the traditional protocol intezfeze model, with which
the network capacity is underestimated (data aggregatimnis longer). In the
figure, six nodes are located on a line, where siakjgregates data from the other
five nodesh to f. The number on a link is the distance between the two nodes
joined by the link. Under the protocol interference modaly &vo concurrent
transmissions conflict with each other, and therefore five tslots are needed to
aggregate all the data to the siaksuch as by the sequente-» e - d —» ¢c —

b — a. On the other hand, with the physical interference modegettime slots
are enough: at time slot 1, the transmissibns a, d — ¢, andf — e can be
scheduled concurrently, using transmission powg26*. At time slots 2 and 3,
e — candc — acan be scheduled consecutively with transmission pdygé*
andNgyB24, respectively. It can be easily verified that the above lictkesluling
and power assignment satisfy tH&IR condition (1) at each receiver under typical
network settingse.g., @ = 4 andg = 1. In this paper, we investigate tih&LAS
problem under the physical interference model.

A solution to theMLAS problem can be a centralized one, a distributed one, or
mixed. For a large sensor network, a distributed solutiaceisainly the desired

> B. (1)
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Figure 1: A data aggregation example.

choice. Distributed scheduling algorithm design is sigatfily more challeng-
ing with the physical interference model, as “global” infa@tion in principle is
needed by each node to compute the cumulative interferdérthe aode. We are
only aware of one study [7] which presents a distributed temiuto the MLAS
problem under the physical interference model; they ddravéatency bound of
O(A+R) in a network where sensors are uniformly randomly deplogatk of the
drawbacks of this work is that théfeiency guarantee is not provided for arbitrary
topologies.

In this paper, we tackle the minimum-latency aggregatidredaling prob-
lem under the physical interference model by designing laotentralized and
a distributed scheduling algorithm. Our algorithms areliapple to arbitrary
topologies. The distributed algorithm we propoGell-AS, circumvents the need
to collect global interference information by partitiogithe network into cells
according to a parameter called the link length diversity, which is the loga-
rithm of the ratio between the lengths of the longest and bimetsst links. Our
centralized algorithmNN-AS, combines our aggregation tree construction algo-
rithm with either one of the link scheduling strategies megd in [8] and [9] to
achieve the best aggregation performance in the currerdtitre. Our main focus
in this paper is on the distributed algorithm; the centesdialgorithm is included
for completeness and to serve as a benchmark in the perfoen@mparison.
For situations in practice where centralization is not abfmm, the centralized
algorithm may be a useful choice.

We conduct theoretical analysis to prove the correctned&@niency of our
algorithms. We show that the distributed algoritt@ell-AS achieves a worst-
case aggregation latency bound@fK) (whereK is the link length diversity),
and the centralized algorithidN-AS achieves worst-case bounds@flogn) and
O(log®n) when coupled with the link scheduling strategies in [8] 481 re-
spectively (wheren is the total number of sensor nodes). In addition, we de-
rive a theoretically optimal lower bound for tihdLAS problem under any inter-
ference model—logy). Given this optimal bound, the approximation ratios are
O(K/logn) with Cell-AS, O(1) with NN-AS and the link scheduling in [8], and
O(log? n) with NN-AS and the link scheduling in [9]. We also compare our dis-
tributed algorithm with Liet al.’s algorithm in [7] both analytically and experi-



mentally. We show that both algorithms have@(m) latency upper bound in their
respective worst cases, whiliell-AScan be morefective, with latencyD(logn),
when applied to Let al.’s worst case examples. Our experiments under realistic
settings demonstrate th@ell-AS can achieve up to a 35% latency reduction as
compared to Liet al.’s. Besides, we have found that imiform topologies, the
aggregation latencies fotN-AS (with the link scheduling in [9]) and Let al.’s
algorithm can be reduced @(log? n) andO(log’ n), respectively, whileCell-ASs
latency is betwee®(log® n) andO(log® n).

The contribution of this paper can be summarized as follows:

> We investigate thilinimum-Latency Aggregation Scheduling (MLAS) prob-
lem under the physical interference model for arbitrarytogies, and pro-
pose a distributed algorithnGell-AS, to avoid the need of global informa-
tion about interference with a latency bound@(K), whereK is the link
length diversity (the logarithm of the ratio between theglts of the longest
and the shortest links).

> We also propose a centralized algorithiiN-AS, for completeness and to
serve as a benchmark in the performance comparison. The-vass la-
tency bounds of the centralized algorithm can@®@ogn) and O(log®n)
when coupled with the link scheduling strategies in [8] a@l¢dfespectively
(wherenis the total number of sensor nodes).

> A theoretically optimal lower bound for th€ILAS problem under any in-
terference model is derived—Ilag)( Given this optimal bound, the approx-
imation ratios aré(K/ log n) with Cell-AS O(1) with NN-AS and the link
scheduling strategy in [8], an@(log? n) with NN-AS and the link schedul-
ing strategy in [9]. Thus, our centralized algorithNiN-AS with link the
scheduling strategy in [8] achieves an asymptoticallyroptilatency per-
formance, which is the current best result in the literature

> Both analytical and experimental comparisons are condumtédeen our
distributed algorithm and Lt al.’s algorithm in [7] to demonstrate thefe
ciency of our proposed algorithm.

The remainder of this paper is organized as follows. We discelated work
in Sec. 2 and formally present the problem model in Sec. 3. GHEAS and
NN-AS algorithms are presented in Sec. 4 and Sec. 5, respectielgxtensive
theoretical analysis is given in Sec. 6. We report our ercglrstudies of the
algorithms in Sec. 7. Finally, we conclude the paper in Sec. 8



2. Related Work

2.1. Data Aggregation

Data aggregation is an important problem in wireless semstwvork research.
There exist a lot of exciting work investigating the problgm?2, 3, 4, 5, 7, 10,
11], among which minimizing aggregation time via transneisscheduling is a
common topic.

To the best of our knowledge, all except one paper [7] assiaerotocol
interference model. Chest al. [1] propose a data aggregation algorithm with a
latency bound of4 — 1)R, whereR is the network radius in hop count andis
the maximal node degree. The NP-hardness proof oMbAS problem is also
presented. The current best contributions [2, 3, 4, 5, 10hddhe aggregation
latency byO(A + R).

[2] is the first work that converta from a multiplicative factor to an additive
one. The algorithm is built on the basis of maximal independet, which is also
used in [5]. The latter work provides a distributed solutiorthe problem.

In [3], the MLAS problem is dealt with in the context of multi-hop wireless
networks and with the assumption that each node has a unihcomation range
and an interference range pf> 1. Xu et al. [4] propose a distributed aggre-
gation schedule and prove a lower bound of fl@xn, R} on the latency of data
aggregation under any graph-based interference modelewhis the network
size. Dtterent from the above work where connected dominating setsaci-
mal independent sets are employed, a novel approach obdistdd aggregation
with latency boundO(A + R) is introduced in [10]. HereR is the inferior net-
work radius satisfyinR < R < D < 2R whereD is the network diameter in
hop-count.

The MLAS problem is extended to the case with multiple sinks in [1lthvei
latency bound 0O(A + kR), wherek is the number of sinks.

The only solution to th&1LAS problem under the physical interference model
is by Li et al. [7]. They propose a distributed aggregation schedulingréignm
with constant power assignment, which can achieve a lateaopd ofO(A + R)
when the transmission range is setas0 < § < 1 is a configuration parameter
andr is the maximum achievable transmission range under theigalyister-
ference model with power assignme?rand%" = B. No deterministic latency
bound can be derived when the transmission range is chaoggit which prob-
abilistic analysis has been conducted. Theerncy of Liet al.’s algorithm may
not be guaranteed when applied to arbitrary topologieschvis a consequence
of constant power assignment.



Algorithm Latency Centralized v.s. Distributed Interference Mode
[1] (A-1R Centralized Protocol
[2] 23R+ A -18 Centralized Protocol
[3] 15R+A -4 Centralized Protocol
[5] 24D + 6A + 16 Distributed Protocol
[4] 16R +A - 14 Distributed Protocol
[10] AR +2A -2 Distributed Protocol
[7] oA +R) Distributed Physical
This paper O(K) Distributed Physical

Table 1: Comparison of data aggregation algorithms.

A detailed comparison of data aggregation algorithms isrgin Table 1.

2.2. Link Scheduling under the Physical Interference Model

The physical interference model has received increasitegtadn in recent
years, as a more realistic abstraction of wireless interniegs [6]. It has also been
shown that it can significantly improve the network capaf®tyl2, 13, 14, 15],
as compared to the protocol interference model. An impottack of existing
studies focuses on thdinimum Length link Scheduling (MLS) problem [9, 14,
15, 16, 17, 18], which is to find the minimum amount of time thedule the
transmissions in a given link set without collision. TS problem is closely
related to the link scheduling step of thEAS problem.

Moscibrodeet al. are the first to formally define and investigate the link scited
ing complexity over a connected structure in wireless neta/{l4]. They further
study topology control for thMLSproblem under the physical interference model
and obtain a theoretical upper bound on the scheduling aatylin arbitrary
wireless network topologies [15].

In [9], Moscibroda proposes a link scheduling algorithmdonnected struc-
tures, with a scheduling complexity @f(log®n). The scheduling complexity of
the connected structure is further reduce®ftmgn) in [8]. Hua et al. [19] extend
the MLS problem for connected structures to ultra-wideband neétsvand derive
a scheduling algorithm with complexi®(log(n/m) - log® n), wheremis the pro-
cessing gain. They further [20] solve tMLS problem at the cost of moderately
exponential time.

Halldérsson et al. [21] give a distributed solution to thi.S problem with
O(logn) approximation. They then present a constant-factor aqumettion for



the MLS problem with any given link set and length-monotone, suakdr power

assignment in [22]. A unified algorithmic framework is buitt develop ap-

proximation algorithms for link scheduling with or withopbwer control un-

der the physical interference model in [23]. Wan et al. [24dws a constant-
approximation in the simplex mode. Kesselheim et al. [25ppise another con-
stant approximation in fading metrics and @(log n) approximation in the gen-
eral metric space.

In [16], a new measurement called “disturbance” is propdeeaddress the
difficulty of finding a short schedule. Goussevskatial. [17] make the mile-
stone contribution of proving the NP-completeness of aigpease of theMLS
problem. In [18], Fuet al. extend theMLS problem by introducing consecu-
tive transmission constraints. An NP-hardness proof igideal for this extended
problem.

3. The Problem Model

We consider a wireless sensor networkafbitrarily distributed sensor nodes,
Vo, V1,...,Vh 1, and a sink nodey,. Let directed graplc = (V, E) denote the
tree constructed for data aggregation from all the senstesto the sink, where
V = {Vo,V1,...,Vn} is the set of all nodes, artel = {g;} is the set of transmission
links in the tree withg; representing the link from sensor nogéo its parenv;.

Our problem at hand is to pick the directed linksEro construct the tree and
to come up with an aggregation sched8le- {Sy, S1, ..., St_1}, whereT is the
total time span for the schedule a8ddenotes the subset of links Ehscheduled
to transmit in time slot, ¥t = 0,..., T — 1. A correct aggregation schedule must
satisfy the following conditiondgFirst, any link should be scheduled exactly once,
i.e, Ul St = EandSinS; = O wherei # j. Second, a node cannot act as a trans-
mitter and a receiver in the same time slot, in order to apoichary interference.
Let T(S;) andR(S;) denote the transmitter set and receiver set for the linl&,in
respectively. We need to guarante&s;,) N R(Sy) = 0,¥t=0,..., T — 1. Third, a
non-leaf nodey; transmits to its parent only after all the links in the subtreoted
atv; have been scheduledk., T(S;)NR(S;) = 0, wherei < j. Finally, each sched-
uled transmission in time sloti.e, link &; € S;, should be correctly received by
the corresponding receiver under the physical interfexenadel, considering the
aggregate interference from concurrent transmissiond bfilkes gy, € S; — {g;j},

. .. Pij/d . e
i.e., the condition —.——— > 8 should be satisfied.
N0+2eghest—(qj-} Pgh/ 9j

The minimume-latency aggregation scheduling problem cafobaally de-
fined as follows:




Symbol | Definition

\ Node set including the sink

E Link set

Vi, The sink node

Vi Nodei

Y Link from nodeyv; to v;

S Aggregation schedule

S Set of links scheduled at time slot

T(S) Transmitter set for link ses;
R(Sy) Receiver set for link se$;

K Link length diversity

R Network radius in terms of hop count

A Maximum node degree

n Number of sensor nodes in the network

No Background noise

a Path loss ratio

B SNR threshold

Pij Transmission power at the transmitter of ligk
dij Distance between nodgeandv;

Ajj Set of links scheduled simultaneously weh

Table 2: Notations.

Definition 1 (Minimum-Latency Aggregation Scheduling). Given a set of nodes
{Vo, V1, ..., Vn1} @and a sink v,,, construct an aggregation tree G = (V, E) and alink
schedule S = {So, Sy, ..., St} satisfying Uy St = E, Si N S; = 0 wherei # j,
and T(S;)) N R(Sj) = 0 wherei < |, such that the total number of time slots T

isminimized and all transmissions can be correctly received under the physical
interference model.

Without loss of generality, we assume that the minimum Eeeln distance
between each pair of nodes is 1. As our algorithm design ta@fearbitrary
distribution of sensor nodes, we assume that the upper bmuttte transmission
power at each node is large enough to cover the maximum natinde in the
network, such that no node would be isolated. Each node indtveork knows its
location. This is not hard to achieve during the bootstragsitage in a network
where the sensors are stationary.

Important notations are summarized in Table 2 for ease efeate.
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4. Distributed Aggregation Scheduling

Our main contribution is anficientdistributed scheduling algorithm called
Cell Aggregation Scheduling (Cell-AS) for solving theMLAS problem with arbi-
trary distribution of sensor nodes.

Our distributed algorithm features joint tree constructiink scheduling, and
power control, and executes in a phase-by-phase fashiahieva@ the minimum
aggregation latency. In contrast, the tree constructiah lark scheduling are
disjoint steps in [7]. We first present the key idea behindalgorithm and then
discuss important techniques to implement the algorithra flly distributed
fashion.

4.1. Design ldea

Initially, the entire area can be seen as being divided irdoyrsmall areas.
Our distributed algorithm first aggregates data from sensdes in each small
area where the transmission links are short, and then agfgsedata in a larger
area by collecting from those small ones with longer trassian links; this pro-
cess repeats until the entire network is covered by one bnege

We divide the lengths of all possible transmission linkshia hetwork into
K + 1 categories: [82-3°],(2-3°,2-3,...,(2-3%%,2-3X], whereK is bounded
by the maximum node distandin the network with 2 31 < D < 2.3X, A
link from nodev; to nodev; falls into categor if the Euclidean distance between
these two nodes lies within (B8<*,2- 3] with k = 1,...,K, or [3°,2- 3% with
k = 0. We refer toK as thelink length diversity which is proportional to the
logarithm of the ratio between the lengths of the longesttaedshortest links in
the network. In our design, aggregation links in catedoare treated and their
transmissions are scheduled (to aggregate data in theesraedlas) before links
in categoryk + 1 are processed (to aggregate data in the larger areas).

The algorithm is carried out in an iterative fashion: In rdlknk = 0, ..., K),
the network is divided into hexagonal cells of side lendthlB each cell, a node
with the shortest distance to the sink is selected as the hesgbnsible for data
aggregation; the other nodes in the cell directly transmithe head, one after
another, with links no longer than-3%. In the next roundk + 1, only the head
nodes in the previous round remain in the picture. The nétwscovered by
hexagonal cells of side lengtti*3 and a new head is selected for data aggregation
in each cell. AfterK + 1 rounds of the algorithm, only one node remains, which
will have collected all the data in network, and will transthie aggregated data
to the sink node in one hop. Fig. 2 gives an example of the ilgorin a sensor
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(a) Round 0. (b) Round 1. (c) Round 2.

Figure 2: The iterations dell-AS an example with three link length categories and one sink in
the center.

network with three link length categories, in which seldctead nodes are in
black.

In each roundk of the algorithm, links of length categokyare scheduled as
follows to avoid interference and to minimize the aggrematiatency. We as-
sign colors to the cells and only cells with the same colorsEredule their link
transmissions concurrently in one time slot. To bound tlierfarence among
concurrent transmissions, cells of the same color need sofhieiently far apart.
We usel—fx2 + 12X + 7 colors in total, such that cells of the same color are sep-
arated by a distance of at leaskX2{ 1)3 with X = (68(1 + (%)“ﬁ) +1)Ye, as
illustrated in Fig. 3. (The solid cells are of the same colerF are six cones to
be referred to in the analysis in Sec. 6.) We will show in Seba by using these
many colors, we are able to bound the interferences and tbus fhe correctness
and dficiency of our algorithm. Inside each cell, the transmisgiioks from all
other nodes to the head are scheduled sequentially. Ndtedbh round of the
algorithm may take multiple time slots.

The Cell-AS algorithm is summarized in Algorithm 1, where the schedulin
of links in cells of the same color is carried out accordingtgorithm 2.

4.2. Distributed Implementation
The algorithm can be implemented in a fully distributed fash

4.2.1. Location and synchronization
In the bootstrapping phase, a middle position of the serstwrark is assigned
to be the origin (00). Each node is then assigned its location coordinates (
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Figure 3: Link scheduling in one time slot 6ElI-AS: cells with the same color are separated by a

distance of at least X(+ 1)3, whereX = (68(1 + (%)"0—32) + 1)Ye,

relative to the origin with such techniques as GPS. In fady a small number of
nodes need to be assigned their coordinates initially,@sttiers can obtain their
coordinates through relative positionirgd(, [26]).

Each node in the sensor network carries out the distribuligarithm in a
synchronized fashion,e., it knows the start of each rourkdand each time sldt
Such synchronization can be achieved using one of the pahstynchronization
algorithms in the literaturee(g., [27]).

4.2.2. Neighbor discovery

In each roundk, the network is divided into cells of side length @& the
manner as illustrated in Fig. 3. Each node can determineehd cesides in in
the current round based on the node’s location. It can thesoder its neighbors
in the cell via local broadcasting [28]. The broadcastimygeais 2 3“1, such that
all nodes in the same cell can be reached.

4.2.3. Head selection

The head of a cell in rouni is the node in the cell closest to the sink. All
the nodes are informed of the sink’s location in the boopgtiag stage of the
algorithm, or even before they are placed in the field. Sircdheode knows the
location information of all its neighbors in the same céltan easily identify the
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Algorithm 1 Distributed Aggregation SchedulinGél1-AS)
Input: Node seWV with sinkv,.
Output: Tree link setE and link schedulé&.

1. ki=0;t:=0;V=V-{v,.; E:=0;S:=0;

2: X = (68(1+ (%)00%2) + 1)V,

3: while |[V| # 1do

4:  Cover the network with cells of side length &nd color them With%ex2 +12X+7

colors;

5. fori:=1t0X2+12X+7do

6 Ei := 0, whereE; is link set in cells of color;
7 for each cellj with colori do
8
9

Select node/, in cell j closest to sinky, as head,;
: Construct links from all other nodes in cglto vp,;
10: Add the links toE; andE;

11: Remove all the nodes in celllexceptvy, from V;
12: end for

13: (PSj, t) := Same-Color-Cell-Scheduléy, t);

14: S =S U PS;;

15:  end for

16: k:=k+1;

17: end while

18: Vn, :=the only node inV; Construct linkey, from vy, to vy;
19: E:=EU{em}; S =S U {{em}};

20: return E andS.

head.

4.2.4. Distributed link scheduling

In each round, coloring of the cells is done as illustrated in Fig. 3. Asleac
node knows which cell it resides in, it can compute colairits cell in this round.
Cells of the same color are scheduled according to the segquarbeir color
indices,i.e, cells with colori schedule their transmissions before those with color
i + 1. The head node in a cell is responsible to decide when tlez ntdes in its
cell can start to transmit, and to announce the completidraosmissions in its
cell to all head nodes within distancex2f 1)3¢.

A head node in a cell with colar+ 1 waits until it has received completion
notifications from all head nodes in cells of colowithin distance 2X + 1)3-.
It then schedules the transmission of all the other nodetsinell one by one,
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Algorithm 2 Same-Color-Cell-Scheduler
Input: Link setE; and time slot index.

Output: Partial link schedulé®S; for links in E;, andt.
L X = (88(1+ (F5)"55) + DV
2: Define constant := Ng8X%;

3: PS; :=0;

4: while E; # 0 do

5: St =0
6:
-
8
9

for each cellj with colori do
Choose one non-scheduled ligd in cell j;
Assign transmission powéy, := ¢ X dgh;
: St = St U {egn); Ei := E — {egn};
10: end for

11: PS;:=PSjuU{Si}t:i=t+1;
12: end while

13: return PS; andt.

by sending “pulling” messages. For a non-head node in tHeitwlaits for the
“pulling” message from the head node and then transmitsiis @ the head.

When the algorithm is executed round after round, only theeadHat have
not transmitted (the heads in previous rounds) remain iexieeution, until their
transmission rounds arrive.

5. Centralized Aggregation Scheduling

Assuming global information is available at each sensa@m th centralized
scheduling algorithm can be constructed, which can achirey&est aggregation
latency for theMLAS problem. We present in the following such a centralized
algorithm,Nearest-Neighbor Aggregation Scheduling (NN-AS).

Our centralized algorithm progresses in a phase-by-plasseon, with joint
tree construction and link scheduling. In each round, tgerghm finds a nearest
neighbor matching among all the sensor nodes that haveamsiitted their data,
and schedule all the links in the matching.

The algorithm is started with all the sensor node¥ i {v,}. It finds for each
nodev; the nearest neighbor nodg, where neithen; nor v; has already been
included in the matching, and a directed link framnto v; is established. For ex-
ample, in Fig. 4 showing a sensor network of six nodes, themag identified in
round O contains two links, & 3 and 4— 6. The links in matchingvl, (of round
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(a) Round 0 (b) Round 1 (c) Round 2

Figure 4: The steps dIN-AS an example with six sensor nodes.

0) are then scheduled, using either the link schedulingrilgo proposed in [8]
or the one in [9], both of which schedule a set of links with igueed schedul-
ing correctness under the physical interference modekrAdil transmissions in
round O are scheduled, all the nodes that have transmitéeckaroved, and the
algorithm repeats with the remaining nodes. In Fig. 4(bgde®2, 3, 5, and 6
remain, and two links are generated based on the neares$ioeigriterion and
then scheduled for transmission. The process repeatsomhfilone sensor node
remains, which will transmit its aggregate data to the siodtenin one hop.

The centralized algorithm is summarized as Algorithm 3, relRhase-Schedul er-
1 andPhase-Scheduler-2 call upon Algorithm 4 provided in [8] and Algorithm 5
provided in [9], respectively, to generate the scheduldifiks in matchingMy
in roundk. In Algorithm 4,/(-) is the Riemann zeta function [29]. In Algorithm
5, thepre-processing(My) procedure assigns two values,, 7;; andy;; related to
link lengthd;;, for each linke;; € My, while thecheck(e;, S;) procedure checks
whether linke; can transmit concurrently with links i8; and returns a Boolean
value.

6. Analysis

In this section, we prove the correctness of our distribited centralized
algorithms, and analyze theiffigiency with respect to the bound of aggregation
latency.

6.1. Correctness

We first prove that%ﬁx2 + 12X + 7 colors are enough to separate the cells of
the same color by a distance of at least 2(1)d, whered = 3¢ is the side length
of cells in categork.

Lemma 1. At most 1—36X2 + 12X + 7 hexagons with size length of d can cover a
disk with radius 2(X + 1)d.
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Algorithm 3 Centralized Aggregation SchedulingN-AS)
Input: Node seWV with sinkv,.
Output: Tree link setE and link schedulé&.
1. ki=0;t:=0;E:=0;S:=0;V=V-{v};
2: while |V| # 1do
My = 0;
for eachv, € V do
if vi ¢ T(My) UR(My) then
Findv;’s nearest-neighbarj € V;
if vj ¢ T(Myx) UR(M) then
Construct linkg ; fromv; to vj; My := M U {g};
end for
E := E U My; (PSk,t) := Phase-Schedulerd¥, t) or Phase-Schedulerdd, t);
S =S U PSy;
90 V:i=V-TMy; k:=k+1;
10: end while
11: v; := the only node irV; Construct linken from v; to vy;
12: E:= EU{an}; S:=SU {{en}}h
13: return E andS.

©Nogahhw

prROOF. As shown in Fig. 3, we divide the disk into six equal-sized+overlapping
cones. It is clear that the maximum number of hexagons tordbeedisk is at
most six times of that to cover each cone.

Take coneA for instance. We have at moSthexagons in range ofd, & + 1
hexagons in range ode% + 1+ 2 hexagons in range c%bl, etc. So itis not hard
to prove by induction that we have at mogé% ¥,/ ;i hexagons in range ééﬁjd
in one cone. So in a range ofR¢ 1)d, for which j < ***0-1 we have at most

4(X+1)-1 ,4(X+1)-1 i .
1/6 + —2 (2 5D hexagons in one cone, which means at MBXE + 12X + 7
in the disk. O

Theorem 1 (Correctness ofCell-AS). The distributed algorithm Cell-AS (Algo-
rithm 1) can construct a data aggregation tree and correctly schedule the trans-
missions under the physical interference model.

prOOF. Algorithm 1 guarantees that each sensor node transmitlgxace and
will not serve as a receiver again after the transmissiomck¢he resulting trans-
mission links constitute a tree.

The link scheduling guarantees that a node would not trareamdi receive at
the same time and a non-leaf node transmits only after athdldes in its subtree
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Algorithm 4 Phase-Scheduler-1 [8]
Input: Link setMy and time slot index.
Output: Partial link schedul@Sy for links in M, andt.

1: Define constant integdr:= [(16**3 - ¢(a/2) - 38)%(~2)7; PSy := 0;
2: Let Ryax 1= MaXg;em,{dij}; Rmin 1= Ming em, {dij};

3: for each integevwith 0 < v < b® - 1do

4: S,:=0;

5: end for

6: for each linkej € My do

7. Pij:=3Ng- (Rmx)(a—Z)/Z . (dij)(a+2)/2;

8: u:=logy(dij/Rmin)); q=u modb; I := LzuRzn;‘nJ mod b2 + Lzl}@’nj mod b;
9:  Siq:=SiqUlajh
10: end for
11: for each integevwith 0 < v < b® - 1do
12:  if Sy #0then
13: PSk = PSKU{S; ti=t+1;
14: endif
15: end for
16: return PSy andt.

have transmitted. We next prove that each transmissioncisessful under the
physical interference model.

In [30], a safe CSMA protocol under the physical interferencmlel is pre-
sented. The core idea is to separate each pair of concuresrgntitters by a
predefined distance, such that the cumulative interferenttee network can be
bounded. However, the background noise is not consider@®]n\We revise the
conclusion of [30] to adapt their result to the physical ifgeence model in this
paper.

We know that any two concurrent transmitters of links in tame categork
are separated by at least{ 1)3, whereX = (68(1 + (%)“ﬁ) + )Y, For any
scheduled link with length, the power assigned for transmissioPis NoBX*re.
According to the conclusion of [30], the cumulative inteeiecel at any receiver
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Algorithm 5 Phase-Scheduler-2 [9]
Input: Link setMy and time slot index.
Output: Partial link schedul@Sy for links in M, andt.
Phase-Scheduler-2(My, t)
1: pre-processind{y);
2: Define a large enough constant PSy := 0; £ := 2No(a — 1)/(a — 2);
3: for m= 1to £[log(£B)] do
LetEm = {aj € Mklyij = m};
while not all links in E,, have been scheduletd
S = 0;
for eache; € Ey, in decreasing order afij do
if check(ej, St) then
St :=StUlej}; Em = Em—{&j}; Pij := df - (68)™;
end for
10: PSk := PSk U{St}; t =t + 1,
11: end while
12: end for
13: return PSy andt.

pre-processing(Mg)

1: Please refer to [9] for details.
check(ej, St)

1: Please refer to [9] for details.

©oe NN O

of a link in categoryk satisfies

1., 2., 1 _NgsX2- 3k)“
I < G(Y) (1+(%) a/—2) 23
2., 1
=6(1+ (%) a——Z)NO’B
— No(X“ — 1).

So theSINR value for any scheduled link with lengthshould satisfy

P/re S Noﬁxd
N0+| - N0+N0(Xa—l)

:B.

We can conclude that each link transmission is successtidruhe physical
interference model. O
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Theorem 2 (Correctness oNN-AS). The centralized algorithm NN-AS (Algo-
rithm 3) can construct a data aggregation tree and correctly schedule the trans-
mission under the physical interference model.

PROOF. The algorithm in Algorithm 3 guarantees that each node bdlremoved
from the node se¥ after selected for transmission, and hence it will be a trans
mitter exactly once. At the end of each round, receivers dneramon-scheduled
nodes remain iV, and all aggregated data reside in the remaining nodeseTher
fore, the generated transmission links correctly constautata aggregation tree.
For the link scheduling, Algorithm 3 applies either one @& #gigorithms in [8]
and [9], whose correctness under the physical interfereragiel are proven. O

6.2. Aggregation Latency

We now analyze theficiency of the algorithms. We also derive a theoreti-
cally optimal lower bound of the aggregation latency forMieAS problem under
any interference model and show the approximation ratiasioflgorithms with
respect to this bound.

6.2.1. Distributed Cell-AS
We now analyze thefciency of the distribute@ell-AS algorithm.

Theorem 3 (Aggregation Latency ofCell-AS). The aggregation latency for the
distributed algorithm Cell-AS (Algorithm 1) is upper bounded by 12(%6X2+ 12X+
7K — 32X2 — 72X — 29 = O(K), where K is the link length diversity and X =
(668(1 + (%)"a—}z) + 1) isa constant.

proor. We first show thatf the minimum distance between any node pair is 1,
there can be at most seven nodes in a hexagon with side length 1. We prove by

utilizing an existing result from [3]: Supposé¢ is a set of points with mutual
distances at least 1 in a disk of radiyshen

U| < £r2+7rr +1
V3

A hexagon of side length 1 can be included in a disk of radius 1 at the
center. Then we derive

2n
U< —x1°+7x1+1=77692<8. 2)
V3
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Hence there can be at most seven nodes with mutual distaidde tfe unit disk,
and therefore in the hexagon.

An example is given in Fig. 5, with seven nodes in one hexadaide length
d=1.

From the above result, we know that there can be at most & transmitting
to the head node in each cell of side lengthBach cell of side length*3with k >
0 covers at most 13 cells of side length'3an illustration is given in Fig. 2(b) and
(c)). Therefore, at most six time slots are needed for sdireglthe transmissions
in a cell of side length% and at most 12 for the cells of side length(8 > 0), to
avoid the primary interference.

As we cover cells of the same size wﬂgfv@ + 12X + 7 colors, at mos.g—f’x2 +
12X+7 rounds are needed to schedule all the cells in the sameslugikh category.
Thus at most 6]-§—3X2 + 12X + 7) time slots are needed for scheduling all the cells
with side length 8 and 12£X? + 12X + 7) time slots for cells of side lengtt 3
(k > 0). Since 2 3X > D (the maximum node distance in the network), cells of
side length 8 can cover the entire network. There can be only one cell sf thi
size, and so at most 12 time slots are needed for schedudihgks. In summary,
at most 6E2X? + 12X + 7) + 12(X? + 12X + 7)(K — 1) + 12 = 12(X? + 12X +
7)K — 32X? — 72X — 30 time slots are needed to schedule all the transmissions in
the data aggregation tree.

One additional time slot is required to transmit the aggiesgjdata to the sink.
Therefore the overall aggregation latency is at mos%GJ)Q?(+ 12X+ 7)K —32X2 -
72X-29. SinceX = (6,8(1+(%3)"%_2)+ 1)Y* is a constant, the overall aggregation

latency isO(K). O

6.2.2. Centralized NN-AS
We first prove a few lemmas before analyzing thieceency of the centralized
NN-AS algorithm.

Lemma 2. The data aggregation tree can be constructed with at most [Iog% nj
rounds in NN-AS.

proor. We give the proof by first showing the&ch node can be the nearest neigh-
bor of at most six other nodes on a euclidean plane. We prove this claim by
contradiction. Fig. 5 gives an example that one node (nod&@)e the nearest
neighbor of six other nodes.

Suppose that a node can be the nearest neighbor of sevemottes,e.g.,
node 0 in Fig. 6. Letl;; represent the distance between nodad | in the figure.



21

Figure 5: Seven nodes in a hexagon cell.Figure 6: Node 0 as nearest neighbor of
seven other nodes: a contradiction

We haved; < d;» andd, < diy, and thusz102 > 2012 andz102 > £021. Since
4102+ 2012+ £/021= &, we haves102> Z.

Similarly, we can derive203> %, £304> %, £/405> %, /506> %, 2607 > 3,
and/701> 3. Thereforez102+/203+/304+/405+/506+/607+/701 > %’T > 2n,
which is a contradiction. Therefore a node can be the neaeggthbor of at most
six nodes.

In each round oNN-AS, each node;, € V is the nearest neighbor of at most
six nodes. Then at least one link will be established fronoarte of these seven
nodes, and at least one node out of these seven nodes wilnoyed fromV at
the end of this round. Therefore at Ieéml nodes are removed fromin total.

From the above discussion, at m@ﬁ#l nodes are left iV after each round
of the algorithm. The algorithm terminates when only oneenceimains inv.
Let k be the maximum number of rounds which the algorithm execMiéeshave

r‘—;kn] = 1, and thuk = [log; nl. N

Lemma 3. The link scheduling latency in each round of NN-AS is O(1) with
Phase-Schedulerifh Algorithm 4 and O(log? n) with Phase-Scheduleri Algo-
rithm5.

prooF. In each round ofNN-AS, the number of links to be scheduled is equal to
exactly the number of nodes removed frami.e., at Ieast%|V|. Meanwhile, as
each node can either be the transmitter or the receiver lhitatlo in one round,
the number of links to be scheduled is upper boundeél‘w SincelV| < n, we
haveO(n) links to schedule in each round. As the link set generatedah round

is based on the nearest-neighbor mechanism, we can applyithecheduling



22

strategy proposed in [8] to schedule them with constantiynbled time slots. On
the other hand, the link scheduling algorithm achievesentat ofO(log? n) with
nlinks [9]. Therefore, the link scheduling latency in eachind ofNN-ASis O(1)
with Phase-Scheduler-1 in Algorithm 4 andO(log? n) with Phase-Scheduler-2 in
Algorithm 5. O

Theorem 4 (Aggregation Latency of Centralized\NN-AS). Theaggregation la-
tency of the centralized algorithm NN-AS (Algorithm 3) is upper bounded by
O(log n) with Phase-Schedulerift Algorithm 4 and O(log® n) with Phase-Scheduler-
21in Algorithm 5.

prROOF. From Lemmas 2 and 3, we know thBNN-AS is executed for at most
rlog% n] rounds and the link scheduling latency in each rour@(is) with Phase-

Scheduler-1in Algorithm 4 andO(log? n) with Phase-Scheduler-2 in Algorithm 5.
In total, NN-AS schedules the data aggregatiorOﬁIog% n]) time slots, which is

equivalent td(logn), with Phase-Scheduler-1in Algorithm 4 andO([log; n log? n)

time slots, which is equivalent ©(log® n), with Phase-Scheduler-2 in Algorithm
S. O

6.2.3. Optimal Lower Bound

We next derive the optimal lower bound of the aggregatioeney, and the
approximation ratios of our algorithms with respect to thosind.

Theorem 5 (Optimal Lower Bound of Aggregation Latency). Theaggregation
latency for the MLAS problem under any interference model islower bounded by
logn.

prooF. Under any interference model, as a node cannot transmreaed/e at the
same time, at moé% links can be scheduled for transmission in one time slot.
Since each node only transmits exactly once, at rﬁ}bs‘uodes complete their
transmissions in one time slot.

Suppose we neddtime slots to aggregate all the data. We hp§é = 1, and
thusk = [lognl, i.e., the aggregation latency under any interference model is at
least logn. O

Comparing to the optimal lower bound, our distribu@sdl-ASachieves an ap-
proximation ratio ofO(K/ logn), and the centralizeNN-ASachieves an approxi-
mation ratio ofO(1) with the link scheduling strategy in [8] ar@{log® n)/ logn,
which is equivalent t®(log? n), with the link scheduling strategy in [9]. We show
in Appendix A thatO(K) is betweerO(log n) andO(n).
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6.3. Comparison with Li et al’s Algorithm [ 7]

We next analytically compare our distribut€ail-AS with the distributed al-
gorithm proposed by L&t al. [7], which is the only existing work addressing the
MLAS problem under the physical interference model.

Li et al.’s algorithm has four consecutive steps:

—Topology Center Selection: the node with the shortest network radius in
terms of hop count is chosen as the topology center.

—Breadth First Spanning (BFS) Tree Construction: using the topology center
as the root, breadth-first searching is executed over theonletto build a BFS
tree.

—Connected Dominating Set (CDS) Construction: a CDS is constructed as
the backbone of the aggregation tree with an existing agpr{#i], based on the
BFS tree.

—Link Scheduling: the network is divided into grids with side length=
5r/ V2, where 0< 6 < 1 is a configuration parameter assigned before execution,
andr is the maximum achievable transmission range under theqaiysterfer-
ence model with constant power assignmélahdp,g—: = 3. The grids are colored

with r(%)% + 1+ V2] colors and links are scheduled with respect to
a(1+2° %) 4 2%

grid colors. Herer = === D)

Aggregation Latency. Li et al.’s algorithm solves th&ILASproblem inO(A+
R) time slots, wherd is the network radius in hop count ands the maximum
node degree. In the worst case, eitRar A can beO(n), e.g., in the examples in
Fig. 7 and Fig. 8 to be discussed shortly, &e O(logn) in the best case. Our
Cell-AS achieves an aggregation latency@({K), which is also equal t®(n) in
the worst casee.g., in the example in Fig. 9, an@(logn) in the best case (see
Appendix A). Therefore the two algorithms have the same rsrdé worst-case
and best-case aggregation latencies.

Computational and Message ComplexityBoth the computational complex-
ity and the message complexity of oGell-AS algorithm are upper bounded by
O(min{Kn, 13¢}). SinceK = nin the worst case, both are at m&n?).

Li et al.’s algorithm has a computational complexity ©fn|E|) and message
complexity ofO(n + |E[). As|E| = n? in the worst case, the computational com-
plexity and message complexity of ki al.’s algorithm areO(n®) andO(n?), re-
spectively.

We can see thaTell-AS enjoys a better computational complexity while hav-
ing the same order of message complexity witletlal.’s algorithm. More details
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Topology Center

Figure 8: Worst case Il for Lét al.’s algorithm.

on the analysis of the complexities of our algorithm andtlal.’s algorithm can
be found in Appendix B.

Case Study.We next show tha€ell-AS can outperform Let al.’s algorithm
in its worst cases. The minimum link length is set to one umithie following
examples, without loss of generality.

Fig. 7 is a worst case of L&t al.’s algorithm. Nodes are located along the
line with distance = 1 between neighboring nodes. The topology center should
be the center of the line, which leadsRo= 3. According to the latency bound
O(A + R), Li et al.’s algorithm take€(n) time slots to complete data aggregation.

On the other hand, the maximum node distance in Fig.n/-isl. Therefore,
the link length diversityK with our algorithm should be Icgg‘g—l. According to
the latency boun®(K), the scheduling latency should Bélogn) with Cell-AS,
which is better tha®(n).

Fig. 8 is another worst case for &i al.’s algorithm, in which all nodes reside
on the circle with unit distance between neighboring nodesept for node 1 in
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Figure 9: An worst case for both Cell-AS andadtial.’s algorithm.

the center. The radius of the circleris- 1. Therefore, node 1 has the maximum
node degred of n — 1. With respect to latency bour@A + R), O(n) time slots
are required to complete aggregation withet.al.’s algorithm.

Meanwhile, the maximum node distance in Fig. 8 is &ince the distance
between any neighboring nodes on the circle is 1, we havex2 n — 1 with
large values ofi, which is an approximation of the circle’s perimeter. Thika t
link diversity K should be about |og‘2;—l. Therefore, the aggregation latency is
O(log n) with Cell-AS which is better tha®(n) with Li et al.’s algorithm.

Fig. 9 is a worst case example for both Cell-AS andtLal.’s algorithm. In
this example, the maximum node distancéflig—1 between nodes 1 anmdwhile
the minimum node distance is 1 between nodes 1 and 2. Hus,log, 3”‘:‘1
with Cell-AS. As for Li et al.’s algorithm,A = n — 1 since the transmission range
should be at least"® to maintain connectivity. BotiCell-AS and Li et al.’s
algorithm will taken— 1 time slots to complete the data aggregation. On the other
hand, our centralizetIN-AS algorithm can perform better than this and achieve
an aggregation latency @¥(logn) or O(log® n) according to Theorem 4.

7. Empirical Study

We have implemented our proposed distributed algorii@hAS, centralized
algorithmNN-AS as well as Liet al.’s algorithm, and carried out extensive simu-
lation experiments to verify and compare thdii@ency.

It should be noted that the link scheduling algorithm in [Bhigves a worst-
case latency bound &f(18 logn + 1) = O(logn), wheren is the number of nodes
andb is a constant integer related to the path-loss-rat@md the SINR threshold
B. b®is the number of colors to color the grids that cover the whaavork.
Since the value ob is too large with any d,3) pairs, the number of required
colors inhibits the application of the link scheduling aigfom proposed in [8]
in typical networks of limited sizes. As a result, in the engail study, we only
implement thePhase-Scheduler-2 algorithm based on [9] iNN-AS.

In our experiments, three types of sensor network topoggiamelyUni-
form, Poisson and Cluster, are generated with the number of noaes 100 to
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1000, which are distributed in a square area Q000 square meters (200 meters
times 200 meters). The nodes amiformly randomly distributed in théJni-
form topologies, and are distributed with tReisson distribution in thePoisson
topologies. In th&luster topologies [32], the centers af clusters are uniformly
randomly located in the square and, for each clugienodes are uniformly ran-
domly distributed within a disk of radiug at the center. We use the same settings
as in [32] in our experiments, wheng = 10 andrc = 20. We sel\, to the same
constant value .Q as in [7] (which nevertheless would ndfect the aggregation
latency). The transmission power in our implementationicdlal.’s algorithm is
assigned the value that would result in a transmission rahg8é to maintain the
connectivity of the respective network with high probaigjlivhile ¢ is set to 06

in compliance with the simulation settings in [7]. Since&2 < 6 andg > 1, we
experiment withy set to 3, 4 and 5, anglto values between 2 to 20, respectively.
We implement the three algorithms i€ and run the programs on a Solaris
server with an 8-core CPU (2.6GHZ) and 8G RAM. All our resultssented are
the average of 1000 trials.

We first compare the aggregation latency of the three algostwith diferent
combinations ofr andp values in the three types of topologies. The results are
presented in Fig. 10, 11, and 12, respectively.

Fig. 10 shows that the aggregation latency vi#il-ASis larger with smaller
a, Which represents less path loss of power and thus largerfénénce from
neighbor nodes, and with larggr corresponding to higher SINR requirement.
We however observe in Fig. 11 that, wiiN-AS the latency curves tend to over-
lap under the same node distribution even when valuesasfdg vary, but they
show marked dferences with dferent node distributions. This shows that net-
work topology is the dominant influential factor in aggregatiatency folNN-AS
which can be explained by the algorithnmisarest-neighbor mechanism in tree
construction anaon-linear power assignment [9] for link scheduling.

For Li et al.’s algorithm, Fig. 12 shows that most of the curves produded a
differents values are straight or nearly straight lines that overlapept in the
following cases withUniform topologies: = 2 whena = 4;8 = 2,8 = 4 and
B = 6 whena = 5. The reason behind the linearity of the lines is that eash gr
is scheduled one by one without any concurrency witktlal.’s algorithm in the
cases of thd?oisson and Cluster topologies, as well as thegniform topologies
with smallera and largep values. The no- concurrency phenomenon is due to the
fact that since the number of colors’@%) +1+ V21with | = 6r/ V2,

“(1;_212) + 52 22) and&C = B (see Sec. 6.3 for detailed discussion oftal.'s

T =
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Figure 10: Aggregation latency withell-ASin different topologies.

algorithm), smallerr and largep values lead to a larger number of colors needed.
On the other hand, in tHeéoisson andCluster topologies, the nodes are not evenly
distributed, thus a largeris requested to maintain the network connectivity, which
leads to a smaller number of grids since the side length df ged isér/ V2. In
these cases, the number of required colors in the algoréisndecided by and
B, is larger than the total number of grids in the network (Whgproportional to
1/r). Therefore, each grid is actually scheduled one by oneoinparison, the
number of cells in ou€ell-ASalgorithm is only related to the link length diversity,
but notr. Therefore, our algorithm can execute with much more caeogy in
link scheduling across flerent cells, leading to the sublinear curves in Fig. 10.
Fig. 10—12 show that concurrent link scheduling (acroffient cellgyrids)
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Figure 11: Aggregation latency withN-ASin different topologies.

occurs with all three algorithms only in the following fouases in theJniform
topologies: (1 =4,8=2;(2) a=5,=2;3)a=5,=4;(4)a =5, =6.
We next compare the aggregation latencies achieved by the #igorithms in
these four cases. Fig. 13 shows that our centralgdhS achieves a much lower
aggregation latency as compared to the other two algorithne that the changes
in its curves are almost unobservable. The performancerdfistributedCell-AS
is similar to that of Liet al.’s algorithm whemn < 200, but is up to 35% better
than the latter when the network becomes larger.

To obtain a better understanding of the asymptotic perfaoeaf each algo-
rithm, we further divide the aggregation latency in Fig. $3dx? n, log® n, log® n,
and lod n, respectively, and plot the results in Fig. 14 (since theesiare sim-
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Figure 12: Aggregation latency with ket al.’s algorithm in diferent topologies.

ilar in all four cases, we show the results obtained at 4 andg = 2 as being
representative). Our rationale is that, if the aggregalaency of an algorithm
has a higher (lower) order th&xlog' n), its curve in the respective plot should go
up (down) with the increase of the network size, and a redtiflat curve would
indicate that the aggregation latencyddog n). From Fig. 14(a) and 14(d), we
infer that the average aggregation latencyNdf-AS and Li et al.’s algorithm is
O(log?n) and O(log’ n), respectively. The curves corresponding to @eil-AS
algorithm slightly go up in Fig. 14(b) and slightly go downkhig. 14(c), indicat-
ing thatCell-AS achieves an average aggregation latency bet@kw® n) and
O(log® n).

Our analysis in Sec. 6 gives an aggregation latency upperdotiO(K) for
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Figure 13: Aggregation latency comparison of the threerétlyos in selected network settings.

Cell-ASandO(log® n) for NN-ASwith the link scheduling strategy in [9]. Our ex-
periments have shown that the average aggregation latexey practical settings
is better in the Uniform topologies with the algorithms.

8. Concluding Remarks

This paper tackles the minimum-latency aggregation sdivedproblem un-
der the physical interference model. Many results folthé&Sproblem under the
protocol interference model have been obtained in recearsydut they are not
as relevant to real networks as any solution under the phlyisierference model
which is much closer to the physical reality. The physic#diference model is
favored also because of its potential in enhancing the rr&teapacity when the
model is adopted in a design [12, 13, 9, 14, 15]. Although tinsizal interfer-
ence model makes finding a distributed solutioficlilt, we propose a distributed
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Figure 14: Asymptotic aggregation latency of the three @llgms @ = 4,8 = 2).

algorithm to solve the problem in networks of arbitrary tlgmpes. By strategi-
cally dividing the network into cells according to the lirdoigth diversity K), the
algorithm obviates the need for global information and canniplemented in a
fully distributed fashion. We also present a centralizggathm which represents
the current mostf&cient algorithm for the problem, as well as prove an optimal
lower bound on the aggregation latency for MeAS problem under any inter-
ference model. Our analysis shows that the proposed distdbalgorithm can
aggregate all the data @(K) time slots (with approximation rati®(K/ logn)
with respect to the optimal lower bound), and the centrdledgorithm in at most
O(logn) time slots (with approximation rati®(1), and using the link schedul-
ing strategy in [8]) andD(log® n) time slots (with approximation rati®(log? n),
and using the link scheduling strategy in [9]). Our empirisi@dies under re-
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alistic settings further demonstrate that b@Qil-AS and NN-AS (using the link
scheduling strategy in [9]) outperform Ei al.’s algorithm in all three topologies
tested. Furthermore, ti@eell-ASandNN-ASalgorithms (using the link scheduling
strategy in [9]) can potentially achieve an average aggi@gy&atency of between
O(log® n) andO(log® n), andO(log? n) in practice, respectively.

In our future work, we will investigate further reductiontbie theoretical up-
per bound on the aggregation latency with distributed imTglietations and study
the latency-energy tradéfan data aggregatiore.g., the achievable asymptotic
order of aggregation latency with constraint transmisgiower in each time slot.
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Appendix A. Analysis of the range ofK

Fig. 9 is a worst case example f@ell-AS. The minimum geometric node
distance is 1 and the maximum geometric node distangg#3' = (3" - 1)/2.
SoK = log; ¥572, which isO(n) in the worst case.

Recall the existing result from [3]: suppose the entire nétws a disk of
radiusr = 3X, and the node sat is a set of points with mutual distances at least

1; then we have

2

2r
ns—sr +ar+1

=n< E(3K)2 +r3¢+1
V3

V3 8r
=K > |Og3 (E( 2+ %(n - 1) - 7T)) = O(Iog \/ﬁ)
Since the aggregation latency low boundQglogn) by Theorem 5K is
O(logn) in the best case instead ©flog v/n) (otherwise, the aggregation latency

with Cell-ASis O(K) = O(log v/n), which contradicts with Theorem 5).

Appendix B. More on the computational and message complexityfcCell-AS
and Li et al.’s algorithm

1) Computational Complexity

Cell-AShas three main function module., neighbor discovery, head selec-
tion, and link scheduling. During neighbor discovery inleacund, each node
performs exactly one local broadcast. Thererar®des in round 0 and at most
min{n, 131} nodes in rounck > 0. So at mosh + Y, min{n, 13¢*1} =
min{(K+1)n, n+ %ﬁ‘”} local broadcast operations are involve&ir 1 rounds.
For head selection, the total numbers of location compasiso decide the heads
in round 0 and in roundk > 0 are at most @ and miff13Kn, Y5, 131} re-
spectively, as there are at most seven nodes in each celuimdr@, and 13 per
cell in roundk > 0. Hence the overall computational complexity for headcsele

tion throughout the algorithm is at most # min{13Kn, 22251, similarly, link

scheduling also has a computational complexity #min{13Kn, %ﬁ‘”}. In
summaryCell-AShas an overall computational complexity@fmin{Kn, 13}).

Li et al.’s algorithm is divided into four phaseise.,, topology center selection,
breadth-first spanning (BFS) tree construction, connectedirtating set (CDS)
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construction, and link scheduling. For topology centeestbn, the node with
the shortest network radius in terms of hop count is chosémeast®pology center.
If the classical Bellman-Ford algorithm is applied to detive routing matrix, the
complexity for this phase i©(|V||E|). For BFS tree construction, the complexity
is O(V| + |[El). The CDS construction phase also has a complexi®(®f| + |E|).
Their link scheduling phase consists of an outer iteratiorthee nodes and an
inner iteration on the colors. Let the number of colorsybehe computational
complexity in this phase i®©(y|V|). In summary, Liet al.’s algorithm requires a
computational complexity adD(|V||E|).

2) Message Complexity

Cell-AS During both the neighbor discovery and the link scheduphgse,

n nodes in round 0 and at most Min13<~**1} nodes in rounk send messages
to their neighbors. Thus, the message complexity of eithtérase two functions

is min{(K + 1)n,n+ 2421} As head selection is conducted based on neighbor
location information obtained during neighbor discovéisymessage complexity

is 0. HenceCell-ASrequires an overall message complexityOgmin{Kn, 13¢}).

Li et al.’s algorithm: The message complexities for topology cesédection,
BFS tree construction, and CDS construction all@(®/| + |E[). We are unable
to analyze the message complexity of the link scheduling@has no implemen-
tation details are given in the paper [7].



