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Abstract—Spectrum auctions are efficient mechanisms for
licensed users to relinquish their under-utilized spectrum to sec-
ondary links for monetary remuneration. Truthfulness and social
welfare maximization are two natural goals in such auctions,
but cannot be achieved simultaneously with polynomial-time
complexity by existing methods, even in a static network with
fixed parameters. The challenge escalates in practical systems
with QoS requirements and volatile traffic demands for secondary
communication. Online, dynamic decisions are required for rate
control, channel evaluation/bidding, and packet dropping at each
secondary link, as well as for winner determination and pricing at
the primary user. This work proposes an online spectrum auction
framework with cross-layer decision making and randomized

winner determination on the fly. The framework is truthful-in-
expectation, and achieves close-to-offline-optimal time-averaged
social welfare and individual utilities with polynomial time
complexity. A new method is introduced for online channel
evaluation in a stochastic setting. Simulation studies further
verify the efficacy of the proposed auction in practical scenarios.

I. INTRODUCTION

As wireless devices and applications proliferate, static spec-

trum allocation (e.g., by FCC in the U.S.A.) can no longer

meet the dynamic demand for channels, resulting in congestion

in unlicensed spectrum and under-utilization in the licensed

counterparts [1]. Spectrum leasing [2] has been proposed to

allow a primary user (licensed spectrum user) to lend its idle

channel to secondary users with a monetary remuneration, for

improved utilization of the spectrum resource.

Auctions are natural mechanisms for implementing spec-

trum leasing. Each secondary user can strategically bid for

channels from the primary users to maximize its utility. Recent

research in spectrum auction [3]–[10] has mainly focused

on the design of truthful and efficient auction mechanisms

that can avoid market manipulation while boosting social

welfare, i.e., the overall utility of all participants in the auction.

However, two fundamental issues are still not well addressed,

when we consider repeated auctions in a long-run system:

Issue 1, how can each bidder decide its true value of the

spectrum for its utility maximization over the long term? And

Issue 2, how can the long-term social welfare be maximized by

exploiting the spatial reuse of channels without transmission

collisions?
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Before discussing the two issues, we first define the true

value.
Definition 1 (True value): The true value of a channel is

one that satisfies the following condition: if a secondary link

wins the channel by paying a price equal to the true value,

then it ends up with the same time-averaged utility as when

losing the channel.
Issue 1. A bidder’s true valuation of a channel is always

assumed perfectly known and static in the current literature.

However, it is already hard to precisely acquire even in the

static case with single round of auction, where the true value

is only related to the utility of one-time data delivery [11].

Not to mention the case in a dynamic network where data

traffic from each secondary user varies unpredictably, how

to decide the true value of a channel in each time slot

(or, each round of auction) that maximizes the long-term

utility while maintaining network stability, is a non-trivial

issue. Furthermore, we consider a practical quality-of-service

goal for secondary communication, that there is a predefined

maximum allowable delay for the delivery of each packet,

by when it is either delivered or dropped. This goal further

complicates channel evaluation. Besides, channel evaluation at

one time is also closely connected with channel allocation and

rate control in the subsequent time. How can a bidder calculate

the impact of winning/losing the channel in time slot t on its

long-term utility, without any future information?

(a) Policy A

Queue 1 2 3 3

Bid price 5 5 15 15

Charged price 0 0 5 5

Action None None Deliver Deliver
Utility 0 0 0 0

(b) Policy B

Queue 1 2 2 2

Bid price 5 10 10 10

Charged price 0 4 4 4

Action None Deliver Deliver Deliver
Utility 0 1 1 1

TABLE I
A MOTIVATING EXAMPLE.

The following example illustrates the challenge from issue

1. Consider a channel with unit capacity, i.e., one packet can

be transmitted in each time slot. Suppose a packet queue is

maintained at each bidder, and one packet arrives at the queue

in each time slot. The gain of getting one packet delivered is

5. Each packet should be delivered within 3 slots, or dropped



at the penalty of 10 if not delivered. The bidder, who knows

nothing about future packet arrival, comes up with two policies

for channel evaluation: i) policy A evaluates the channel based

on the bidder’s utility in the current time slot, and computes

the value of the channel in current slot as 5 + 1drop ∗ 10,

where 1drop is an indicator function that equals 1 if there

is any packet reaching its maximum allowable delay and 0

otherwise, given that the utility of the bidder is 5−(5+1drop∗
10) = −1drop ∗ 10 if it wins the channel and is charged at

the true value of 5 + 1drop ∗ 10, which is equivalent to the

utility of −1drop ∗ 10 if not getting the channel; and ii) policy

B considers not only any to-be-outdated packet, but also the

other packets in the queue, and derives the value of the channel

in current slot as 5 ∗m+ 1drop ∗ 10, where m is the number

of packets that have not reached their maximum allowable

delays.

The bidder bids in each time slot with its true value of the

channel. Suppose the bidder can always win the channel with

any price higher than 9. The charge to the bidder is 4 (or 5)

if it wins the channel with a bidding price 10 (or 15), and 0

if it loses. Table I.a and I.b present the bidder’s queue length,

channel evaluation (i.e., bidding price), charged price, actions

(deliver or drop a packet, or none) and utility in 4 consecutive

time slots. The overall utility obtained using policy A and B

is 0 and 3, respectively. Hence, deciding true values based

only on utility in an individual time slot is not suitable for

long-term utility maximization in a dynamic system. A more

elaborated channel evaluation method is needed.

Issue 2. The second issue typically leads to an NP-hard prob-

lem, since collision-free channel allocation for social welfare

maximization is equivalent to the weighted maximum indepen-

dent set problem. Even for social welfare maximization in a

static network, only heuristics are exploited to approximate the

optimum [3]–[10]. The problem becomes more difficult when

we set to achieve long-term social welfare maximization in a

dynamic system, together with guarantees of truthfulness in

bids.

Our contributions. We propose a new, online auction frame-

work to dynamically evaluate the true value of channels in

each time slot, while maximizing the time-averaged individual

utility and social welfare in the long run, under practical

system dynamics. In the framework, each secondary link

strategically decides its channel evaluation/bids, transmission

rates and packet dropping in each time slot, through an

online algorithm utilizing Lyapunov optimization [12]. Upon

receiving the bids, a primary user selects a set of collision-

free bids with maximum expected weights as the winners of

the auction of its channel, based on a random access control

protocol derived with Glauber dynamics [13]. Subsequently,

the primary user charges each winner a tailored price, and the

winning secondary links schedule their data transmissions on

the obtained channels. Below we summarize the contributions

of this work.

⊲ To our knowledge, this work is the first to dynamically

evaluate the true value of a channel in an online auction,

instead of assuming it as a priori knowledge, for maximizing

long-term averaged utility at each secondary link. Our main

idea is that the true value of the channel at a bidder at each

time should be proportional to the urgency level of delivering

packets: higher when the cumulative delay of packets in the

queue is large, i.e., when packet dropping is a more imminent

threat.

⊲ As the current best result, our proposed randomized auction

mechanism achieves the arbitrarily close-to-offline-optimal

long-term averaged social welfare with polynomial-time com-

plexity and the guarantee of truthfulness in expectation, i.e.,

bidding with the true evaluation is the optimal strategy for

the bidder in maximizing its expected time-averaged utility.

Moreover, the long-term averaged utility of each individual

secondary link is also arbitrarily close to its offline optimum.

There is a tradeoff between how close these quantities are

to their offline optima, and the maximum allowable delivery

delay of packets, which we investigate in details.

In the rest of the paper, we discuss related literature in

Sec. II and introduce the system model in Sec. III. The auction

framework and online algorithms are in Sec. IV. A benchmark

algorithm is presented in Sec. V for comparison. We evaluate

the efficacy of the proposed framework through theoretical

analysis and simulation studies in Sec. VI and Sec. VII,

respectively. Sec. VIII concludes the paper.

II. RELATED WORK

Auctions have been widely studied for trading idle spectrum

between a primary user and the secondary links. Truthfulness

and social welfare optimality are two natural economic prop-

erties in spectrum auction design. The VCG mechanism, by

Vickrey [14], Clarke [15] and Groves [16], is known to achieve

both goals concurrently. However, the VCG mechanism can

only be efficient when optimal solutions can be computed in

polynomial time, while the collision-free channel allocation

problem is typically NP-hard since it requires solving a

maximum weight independent set problem.

Existing studies often focus on truthfulness while approx-

imating the optimal social welfare using efficient algorithms.

Zhou et al. [3] propose the first truthful spectrum auction with

a monotonic allocation mechanism. A truthful double auction

with multiple sellers is introduced by Zhou et al. [5]. The

work of Jia et al. [4] maximizes the expected revenue of

the spectrum seller, and approximately maximizes the social

welfare with the guarantee of truthfulness. Wang et al. [6]

present the first truthful online double auction for the spectrum

market, but with a complete interference graph. A multi-unit

double auction with truthfulness and asymptotic efficiency in

social welfare is proposed by Xu et al. [7], without spacial

spectrum reuse. Dong et al. [17] investigate the time-frequency

flexibility using a combinatorial auction with both truthfulness

and worst-case approximation of the social welfare. [11] is the

first effort discussing the truthful auction with imprecise true

evaluation for the data offloading service provided by each

small player in a cellular network. A heuristic mechanism



is proposed, however, with no performance guarantee on the

utility optimality for the wireless service providers.

With a natural extension of truthfulness into truthfulness in

expectation, randomized algorithms are designed to approxi-

mate expected social welfare maximization in a spectrum auc-

tion. Gopinathan et al. [8] investigate truthful-in-expectation

spectrum auction mechanisms with a balance between social

welfare and fairness among secondary users. Hoefer et al. [10]

present a novel linear program formulation using a non-

standard parameter of the conflict graph, achieving an approx-

imation of the social welfare with truthfulness in expectation.

Zhu et al. [9] are first to study spectrum auctions for multi-hop

communications, with truthfulness in expectation and provable

approximation for optimal social welfare.

The above solutions either provide no efficiency guarantee

or achieve only a fraction of the optimal social welfare, when

truthfulness is guaranteed, with the assumption of known true

evaluation of the spectrum. In contrast, this paper presents

a spectrum auction mechanism which can arbitrarily closely

approach the maximum social welfare in expectation with

polynomial-time complexity, while guaranteeing truthfulness

in expectation. A novel way to calculate the true evaluation of

spectrum at each secondary link is also proposed.

III. PROBLEM MODEL

We consider a secondary network (vp, Vs, E). vp is the

primary user of a licensed spectrum, which can be divided

into C non-overlapping orthogonal channels for lease to a

set of secondary links, Vs. E is a set characterizing the

interference relation, and <vi, vj> ∈ E indicates a collision

between vi, vj ∈ Vs if transmitting simultaneously on the same

channel. Each sender/receiver of the secondary link has a half-

duplex software-defined radio that can be tuned to any channel

provided by the primary user. The network operates in a time-

slotted fashion, such that each link can transmit on one channel

only in each time slot, at a unit capacity.

A. Data traffic model at secondary links

For each secondary link vi, data packets arrive at its sender

node with an ergodic process, with Ai(t) ∈ [0, Amax
i ] being

the data arrival rate in t, upper-bounded by Amax
i . To maintain

network stability, rate control is applied such that ri(t) packets

in Ai(t) are admitted into the transport layer with

ri(t) ∈ [0, Ai(t)]. (1)

Transport-layer queue: A data queue Qi(t) is maintained on

the transport layer at each link vi:

Qi(t+ 1) = max{Qi(t)−
∑

c∈[1,C]

µic(t)− di(t), 0}+ ri(t). (2)

Here, µic(t) ∈ {0, 1} is the channel allocation variable

(decided by the primary user via auction) indicating whether

vi is transmitting on channel c in t, and di(t) is the number of

dropped packets that exceed their maximum allowable delays

(see (6)) with

di(t) ∈ [0, dmax
i ], (3)

TABLE II
IMPORTANT NOTATIONS.

Vs Set of secondary links vp Primary user
E Edges in conflict graph C # of channels

Ui(·) revenue func. of link
vi

Qi(t) data queue at link vi

ηi(t) Aux. var for ri(t) ǫi constant for QoS at vi
Ai(t) Data arrival of secondary link vi at slot t
Amax

i Maximum data arrival rate of secondary link vi
b̃i(t) true value for vi to buy a channel at t

b̂i(t) Payment by secondary link vi at slot t
bi(t) bid of vi for a channel at t
Yi(t) Virtual queue for rate control at secondary link vi
Zi(t) Virtual queue for QoS at secondary link vi
ri(t) Admitted data at secondary link vi at slot t
µic(t) Transmission variable: data delivered out of Qi(t)
di(t) Dropped packets by secondary link vi at slot t
dmax
i Maximum packet drop rate by secondary link vi
βi Penalty to drop one packet by secondary link vi

where dmax
i is the maximum dropping rate. A secondary link

can transmit over one channel only at a given time, through

the pair of half-duplex radios, i.e.,
∑

c∈[1,C]

µic(t) ≤ 1, ∀vi ∈ Vs. (4)

To avoid interference, two mutually interfering links cannot

be scheduled on the same channel at t:

µic(t) + µjc(t) ≤ 1, ∀vi, vj ∈ Vs, < vi, vj >∈ E, c ∈ [1, C]. (5)

B. Quality of service model

We consider the following transmission guarantee at each

secondary link vi:

A packet on link vi is either delivered or dropped within

Di slots after entering the queue. (6)

Here, Di is the maximum allowable delay for packets on link

vi. Naturally, a penalty βi is incurred for dropping a packet

at secondary link vi.

C. Spectrum auction model

There are two types of entities in the spectrum auction:

secondary links (bidders) and the primary user (auctioneer).

The auction consists of three main steps:

Step 1: Each secondary link vi ∈ Vs computes true value

b̃i(t) of obtaining one channel for transmission at t, and

submits a bid bi(t) to the primary user. The secondary link

aims to maximize its utility and could bid untruthfully, i.e.,

bi(t) 6= b̃i(t). We aim to design a strategy-proof spectrum

auction where bidding truthfully is a dominant strategy for

each secondary link.

Step 2: After collecting the bids from all secondary links, the

primary user computes the channel allocation decisions µic(t),
indicating whether channel c is allocated to secondary link vi
at t. We consider the spatial reuse of channels such that a set

of collision-free links can be concurrently scheduled on the

same channel subject to constraints (4) and (5).

Step 3: The primary user decides the payment b̂i(t) to be

charged to each secondary link vi ∈ Vs.



D. Economic properties of the auction

We now define the economic properties pursued in our

design of the spectrum auction mechanism.

Definition 2 (Truthfulness in expectation): An randomized

auction is truthful in expectation if bidding the true value is a

dominant strategy for each buyer, i.e., the bidder cannot gain

a higher utility (in expectation) by unilaterally deviating from

bidding true values, while other bidders’ strategies remain the

same.

Definition 3 (Individual rationality in expectation): An

randomized auction is individually rational in expectation if

each bidder ends up with non-negative expected utility.

Definition 4 (Budget balance in expectation): The auction-

eer’s expected utility is non-negative, i.e., the total charge

collected from the bidders is non-negative in expectation.

E. Utility model at secondary links

Hereinafter, for any variable α(t), we denote its time-

averaged value as ᾱ, i.e., ᾱ = limt→∞
1
t

∑t−1
τ=0 E(α(τ)),

where E(·) is the expectation.

We consider the selfishness of each secondary link vi ∈ Vs,

which aims to maximize its time-averaged utility ϕi. ϕi

consists of three components: the revenue gain from data

delivery, Ui(r̄i), the cost of leasing spectrum,
¯̂
bi, and the

penalty for dropping packets, βi · d̄i:

ϕi = Ui(r̄i)−
¯̂
bi − βi · d̄i.

Here, Ui(·) is a non-decreasing, concave and twice-

differentiable revenue function for vi. Hence, individual long-

term utility maximization at secondary link vi ∈ Vs becomes:

max ϕi (7)

s.t. Queue stability, and constraints (1), (3), (4), (5), (6) at vi.

F. Social welfare

The economic efficiency of an auction is measured in terms

of its achieved social welfare, i.e., the overall utility of all

participants in the auction. The utility of each secondary link

is its utility as discussed above, while the utility of the primary

user is the overall payment from all the secondary links,
∑

vi∈Vs

¯̂
bi.

Cancelling payments made by links and revenue gleaned by

the primary user, the social welfare, ϕ, becomes:

ϕ =
∑

vi∈Vs

[Ui(r̄i)− βi · d̄i].

The long-term-average social welfare maximization prob-

lem is:

max ϕ (8)

s.t. Queue stability and constraints (1), (3), (4), (5), (6) at each link.

Our objective includes for each secondary link to maximize

its time-averaged utility, i.e., optimization problem (7), and for

the network to maximize its social welfare at the same time.

IV. ALGORITHM DESIGN

In this section, we present our spectrum auction framework

and the algorithms designed for both the secondary links and

the primary user. Fig. 1 outlines the sketch of the spectrum

auction between secondary links and the primary user.

Winner determination & 

pricing

Spectrum evaluation 

& bidding
Link transmission

Fig. 1. The modules of spectrum auction.

A. Spectrum Evaluation and Bidding at Secondary Link

A secondary link dynamically decides its channel evaluation

and bids, as well as associated decisions on allocation of

acquired channels for packet transmission, rate control and

packet dropping, in each time slot, with the goal of max-

imizing its time-averaged utility in (7). We transform (7)

into a sequence of one-shot optimization problems, and solve

them respectively to derive the online algorithm based on

the Lyapunov optimization technique [12]. To achieve that,

apart from the data packet queues defined in Eqn. (2), each

secondary link vi ∈ Vs also maintains two types of virtual

queues.

Virtual queue for rate control: To deal with non-linear

revenue functions Ui(·) [12], each secondary link vi has the

following virtual queue for its rate control:

Yi(t+ 1) = max{Yi(t)− ri(t), 0}+ ηi(t). (9)

Here ηi(t) is an auxiliary variable for rate control at

secondary link vi with

ηi(t) ∈ [0, Amax
i ]. (10)

If virtual queue Yi(t) is kept stable, η̄i ≤ r̄i, i.e., the time-

averaged value of auxiliary variable ηi(t) constitutes a lower

bound for the time-averaged throughput. We will show that

maximizing the utility of η̄i can approximately maximize the

utility on average throughput r̄i.

Virtual queue for QoS guarantee: We apply the

ǫ−persistence queue [18] technique to guarantee the QoS goal

in (6). Each link vi maintains the following virtual queue

Zi(t+ 1) =max{Zi(t) + 1{Qi(t)>0} · (ǫi −
∑

c∈[1,C]

µic(t))− di(t)

− 1{Qi(t)=0}, 0}. (11)

Here, 1{·} is a binary indicator function. ǫi is a positive

constant. The virtual queue Zi(t) approximately keeps track of

the delay in data packet queue Qi(t). A longer virtual queue

Zi(t) represents a larger cumulative queuing delay of packets

in Qi(t). In Sec. VI, we demonstrate that, with the aid of

this virtual queue, our algorithm can provide worst-case delay

guarantee for each packet.

Hence, the sender of each secondary link vi maintains a set

of queues Θi(t) = {Qi(t), Yi(t), Zi(t)} at each time t. We

define a Lyapunov function as follows:



L(Θi(t)) =
1

2
[[Qi(t)]

2 + [Yi(t)]
2 + [Zi(t)]

2].

The one-slot conditional Lyapunov drift is:

∆(Θi(t)) = L(Θi(t+ 1))− L(Θi(t)).

The drift-plus-penalty is (equivalent to drift-minus-utility

here; derivation details are in technical report [19]),

∆(Θi(t))− V · [Ui(ηi(t))− b̂i(t)− βi · di(t)]

≤Bi − Φ
(1)
i (t)−Φ

(2)
i (t)− Φ

(3)
i (t)− Φ

(4)
i (t) + ǫi · Zi(t). (12)

Here, V > 0 is a user-defined parameter for gauging the

optimality of time-averaged utility. Bi =
1
2 [[ǫi]

2+3[Amax
i ]2+

2[1+dmax
i ]2] is a constant value. Φ

(1)
i (t), Φ

(2)
i (t), Φ

(3)
i (t) and

Φ
(4)
i (t) are related to the auxiliary variable ηi(t), the rate con-

trol variable ri(t), channel allocation & charge variable µic(t)
and b̂ic(t), and packet dropping variable di(t), respectively:

Φ
(1)
i (t) =V · Ui(ηi(t))− ηi(t) · Yi(t), (13)

Φ
(2)
i (t) =ri(t) · [Yi(t)−Qi(t)], (14)

Φ
(3)
i (t) =

∑

c∈[1,C]

[µic(t) · [Qi(t) + Zi(t)]− V · b̂i(t), (15)

Φ
(4)
i (t) =di(t) · [Qi(t) + Zi(t)− V · βi]. (16)

According to the Lyapunov optimization theory [12], we can

maximize a lower bound of the time-averaged utility for vi and

find optimal solutions to the rate control, channel evaluation &

bidding, and packet dropping variables by minimizing the RHS

of the drift-plus-penalty equality (12), observing the queue

lengths Θi(t) and the packet arrival Ai(t) in each time slot

t. Hence, we can derive an online algorithm to solve (7), that

solves the one-shot optimization problem in each time slot t
as follows:

max Φ
(1)
i (t) + Φ

(2)
i (t) + Φ

(3)
i (t) + Φ

(4)
i (t) (17)

s.t. Constraints (1), (3), (4), (5) and (10) at vi.

The maximization problem in (17) can be decoupled into

four independent optimization problems:

max Φ
(3)
i (t) (18)

which is related to the optimal channel evaluation & bidding

decisions, with b̃i(t) and bi(t), which also determine the

channel allocation decisions with µic(t), ∀c ∈ [1, C] and

channel charge decisions with b̂i(t) after the auction by pri-

mary user (the interference constraints (4) and (5) are satisfied

by getting channel allocation decisions from the spectrum

auction mechanism, to be introduced in Sec. IV-B); and

max Φ
(1)
i (t) (19)

s.t. Constraint (10),

which is related to the optimal decision on the auxiliary

variable ηi(t); and

max Φ
(2)
i (t) (20)

s.t. Constraint (1),

which is related to the optimal decision on the rate control

variable ri(t); and

max Φ
(4)
i (t) (21)

s.t. Constraint (3),

which is related to the optimal decision on packet dropping

with di(t). The following is our algorithm to solve the four

one-shot optimization problems. The detailed derivation is

given in [19]

Channel evaluation and bidding: We seek to design a truthful

auction (in Sec. IV-B) where each secondary link vi bids its

true valuation of the channel, i.e., bi(t) = b̃i(t). According

to the definition in Sec. I, the true value of a bidder is the

highest price it is willing to pay, charged with which (i.e.,

b̂i(t) = b̃i(t)) its utility in (18) if one channel is allocated to

link vi, i.e., ∃c, µic(t) = 1, is exactly the same as if losing

the auction. Following this argument, each secondary link vi
evaluates a channel based on its queue lengths in each time

slot as follows:

b̃i(t) =
Qi(t) + Zi(t)

V
. (22)

The rationale is that the true value for vi to buy one channel

is determined by its level of traffic congestion and cumulative

delay (or data transmission urgency), i.e., Qi(t) + Zi(t). A

large value of Qi(t) implies high congestion (or transmission

urgency), while a large value of Zi(t) indicates an urgency in

dropping packets.

Rate control: Each secondary link computes assignments to

the auxiliary variable and the rate control variable by solving

the one-shot optimization problems (19) and (20) respectively,

ηi(t) = max{min{U ′−1
i (

Yi(t)

V
), Amax

i }, 0}, (23)

where U ′−1
i (·) is the inverse function of the first-order deriva-

tive of Ui(·), and

ri(t) =

{

Ai(t) if Yi(t) > Qi(t)

0 Otherwise
. (24)

Note, each secondary link only needs local information, i.e.,

revenue function Ui(·) and queue lengths. Virtual queue Yi(t)
can be regarded as the unused tokens for data admission.

A large value for Yi(t) indicates an adequate number of

available tokens, which results in fewer new tokens (i.e., ηi(t))
to be added in this time slot. Meanwhile, Qi(t) reflects the

congestion level on the link. Yi(t)−Qi(t) > 0 means that we

have enough tokens while relatively low congestion. Thus, we

admit all the arrived jobs. Otherwise, no job is admitted into

the network.

Packet dropping: We decide the number of packets to drop

by solving optimization (21) at each t:

di(t) =

{

dmax
i if Qi(t) + Zi(t) > V · βi

0 Otherwise.
(25)

The rationale is that Qi(t) + Zi(t) represents the urgency

level to schedule/drop packets. If the scheduling/dropping

urgency outweights the weighted dropping penalty V · βi,

packets are dropped at the maximum rate; otherwise no



Algorithm 1 Dynamic Utility Maximization Algorithm at Sec-
ondary Link vi in Time Slot t

Input: Ai(t), A
max
i , Yi(t), Qi(t), Zi(t), βi, d

max
i , Ui(·) and V .

Output: ηi(t), ri(t), b̂i(t), b̃i(t), bi(t), di(t) and µic(t), ∀c ∈ [1, C].

1: Rate control: Decide ηi(t) and ri(t) with Eqn. (23) and (24);

2: Channel valuation and bid: Decide b̃i(t) and bi(t) with

Eqn. (22);

3: Channel allocation and payment: Get decisions on b̂i(t) and

µic, ∀c ∈ [1, C], from the auction;

4: Packet dropping: Decide di(t) with Eqn. (25);

5: Update Qi(t), Yi(t) and Zi(t) with Eqn. (2) (9) and (11).

packets are dropped. That is, each link is reluctant to drop

packets unless the queue lengths exceed certain thresholds,

above which packets are suffering long delays.

B. Auction at Primary User

After collecting all the bids from secondary links, the pri-

mary user executes a randomized auction mechanism, which

is truthful, individual rational and budget balanced, all in

expectation. This randomized auction has two modules: winner

determination and channel pricing.

Winner determination: This module randomly decides a

subset of secondary links in Vs, each winning one of the

C channels; other secondary links are not allocated with a

channel. Equivalently, the auctioneer finds a collision-free

channel allocation strategy χ(t) = {µic(t) ∈ {0, 1}|∀vi ∈
Vs, c ∈ [1, C]} in each time slot, such that constraints (4) and

(5) are satisfied. Glauber dynamics are utilized in the algorithm

design. Especially, the winners in each time slot are selected

randomly based on i) the bidding prices, ii) channel allocation

in the previous time slot, and iii) interference constraints.

There are two steps of the algorithm at each t:

Step 1: The primary user uniformly randomly selects a set

of collision-free channel allocation variables, m(t) (referred

to as the decision set). For each channel allocation variable

not included in the decision set, i.e., µic(t) 6∈ m(t), it sets

µic(t) = µic(t− 1).
In practical implementation, we can associate a timer, which

is uniformly randomly set with a value from a range [0,W ]
(W > 0), with each channel allocation variable µic(t), ∀vi ∈
Vs, c ∈ [1, C]. If the timer of µic(t) expires before that of

any of its mutually-interfering allocation variables, i.e., µjc(t)
with <vi, vj> ∈ E and µic′(t) with c′ 6= c, µic(t) is included

in the decision set m(t); otherwise, µic(t) is not in the set

m(t) and let µic(t) = µic(t− 1).

Step 2: For each channel allocation variable µic(t) in the

decision set m(t), do the following:

- If any mutual-interfering allocation variable of µic(t) is

included in the decision set in a previous time slot, i.e.,

∃ <vi, vj> ∈ E with µjc(t − 1) = 1 or ∃c′ 6= c with

µic′(t − 1) = 1, variable µic(t) will not be included in the

decision set in the current time slot by setting µic(t) = 0;

- Otherwise, µic(t) is included with probability pi, i.e.,

Algorithm 2 Spectrum Auction at Primary User vp in Time Slot t

Input: bi(t), µic(t− 1), and E, ∀vi ∈ Vs, c ∈ [1, C].

Output: b̂i(t), and µic(t), ∀vi ∈ Vs, c ∈ [1, C].

Module 1: Winner determination

1: Step 1: Uniformly randomly select a decision set m(t);

2: Step 2: For each channel allocation variable µic(t) (∀vi ∈

Vs, c ∈ [1, C]):

– If µic(t) 6∈ m(t), set µic(t) = µic(t− 1);

– Otherwise,

–If ∃vj ∈ Vs, < vi, vj >∈ E with µjc(t − 1) = 1 or

∃c′ 6= c with µic′(t− 1) = 1, set µic(t) = 0;

–Otherwise, set µic(t) = 1 with probability pi =
eV ·bi(t)

1+eV ·bi(t)
while µic(t) = 0 with probability 1−pi =

1

1+eV ·bi(t)

3: Step 3: If µic(t) = 1, channel c is allocated to secondary link

vi.

Module 2: Channel Pricing

1: The payment of each secondary link vi ∈ Vs is calculated with

Eqn. (26).

µic(t) = 1 with probability pi =
eV ·bi(t)

1 + eV ·bi(t)
,

and not included with probability 1− pi, i.e.,

µic(t) = 0 with probability 1− pi =
1

1 + eV ·bi(t)
.

Step 3: If µic(t) = 1, channel c is allocated to secondary

link vi for data transmission.

Remarks: The rationale of the winner determination module

is that: i) in step 1, we provide equal chance for each link to

change its status, i.e., winning or losing the auction; and ii) in

step 2, we give preference to those links with higher bidding

price, i.e., bi(t).

Channel Pricing: For each link vi ∈ Vs, its payment to the

primary user in time slot t is calculated as:

b̂i(t) =
∑

vj∈Vs,vj 6=vi

bj(t) ·
∑

c∈[1,C]

[µ
(i)
jc (t)− µjc(t)]. (26)

Here, µ
(i)
jc (t) is the channel allocation decision made by the

winner determination algorithm stated above, with bi(t) = 0
and unchanged bids from other links.

C. Computation complexity

We show that, in each time slot, the computation complexity

of our auction framework, i.e., Alg. 1 and 2, is in a polynomial

order of the total network size and number of channels, i.e.,

|Vs| and C.

For each secondary link vi ∈ Vs, Algorithm 1 decides the

rate control, channel evaluation/bidding, and packet dropping

in constant complexity with Eqn. (23), (24), (22) and (25).

Thus, the overall complexity to run Algorithm 1 in the network

is in the order of the secondary network size |Vs|.
In each time slot, Algorithm 2 decides the decision set with

a complexity in the order of total number of channel allocation

variables, i.e., |Vs| · C, by keeping one timer for each of



them. In the next step, for each channel allocation variable

in the decision set, the allocation decision in previous slot

for each of its mutually-interfering variable is checked. In the

worst case, the size of the decision set is in O(|Vs|) while

the interference degree of one channel allocation variable

is in O(C + |Vs|). Hence, the complexity in this step is

O(|Vs|(C + |Vs|)). Since the primary user also runs the same

winner determination module (for the sake of channel pricing)

for each secondary user vi by setting bi(t) = 0 at each

time t, the overall complexity for the winner determination

module is O(|Vs|
2(C + |Vs|)). The channel allocation and

pricing decisions are then computed in constant complexity

for each allocation variable. Therefore, the overall complexity

of Algorithm 2 is O(|Vs|
2(C + |Vs|)).

In summary, our auction framework has a computation

complexity of O(|Vs|
2(C + |Vs|)).

V. SOCIAL WELFARE MAXIMIZATION

We next propose a benchmark algorithm for evaluating

the efficiency of our spectrum auction mechanism in social

welfare. In this benchmark algorithm, each participant in the

network, including each secondary link and the primary user, is

altruistic. There is no more auction, but a centralized decision

maker to decide channel allocation, rate control, link schedul-

ing, and packet dropping in each time slot, to maximize the

time-averaged social welfare of the entire network as defined

in (8). A set of queues Θ(t) = {Qi(t), Yi(t), Zi(t)|∀vi ∈ Vs}
are maintained over time. To solve (8), a Lyapunov function

is defined as follows:

L(Θ(t)) =
1

2

∑

vi∈Vs

[[Qi(t)]
2 + [Yi(t)]

2 + [Zi(t)]
2].

The derivation of the benchmark algorithm also applies

the Lyapunov optimization technique, similar with that of the

individual utility maximization algorithm in Sec. IV-A. Due to

space limit, more details are included in technical report [19].

The solutions to the auxiliary variables, rate control vari-

ables, and packet dropping variables are the same as those

in Algorithm 1. We make the channel allocation decisions by

solving optimization problem (27).

max Ψ(t) =
∑

vi∈Vs

[Qi(t) + Zi(t)]
∑

c∈[1,C]

µic(t) (27)

s.t. Interference constraints Eqn. (4) and (5), ∀vi ∈ Vs.

Algorithm 3 Dynamic Social Welfare Maximization Algorithm in
Time Slot t

Input: Ai(t), A
max
i , Yi(t), Qi(t), Zi(t), βi, d

max
i , Ui(·) and V ,

∀vi ∈ Vs.
Output: ηi(t), ri(t), di(t) and µic(t), ∀c ∈ [1, C], vi ∈ Vs.

1: Rate control: Decide ηi(t) and ri(t), ∀vi ∈ Vs, with Eqn. (23)
and (24).

2: Channel allocation: Decide µic(t), ∀c ∈ [1, C], vi ∈ Vs, by
solving optimization problem Eqn. (27) with branch-and-bound
algorithm [20].

3: Packet dropping: Decide di(t), ∀vi ∈ Vs, with Eqn. (25);
4: Update Qi(t), Yi(t) and Zi(t), ∀vi ∈ Vs, with Eqn. (2) (9) and

(11).

(27) is a maximum weight scheduling problem, which is NP-

hard since computing a maximum weighted independent set

is required. A centralized branch-and-bound algorithm can be

implemented to approximate 1− δ (δ ∈ [0, 1]) fraction of the

maximum Ψ(t) [20]. The benchmark algorithm is summarized

in Alg. 3.

VI. THEORETICAL ANALYSIS

We present theoretical analysis of our proposed spectrum

auction framework and dynamic algorithms in this section.

Due to space constraint, all detailed proofs are included in

technical report [19].

A. QoS guarantee
Lemma 1 (Bounded queues): Let Y max

i , Qmax
i and Zmax

i

be defined as follows,

Y max
i =V · U ′

i(0) + Amax
i , ∀vi ∈ Vs,

Qmax
i =V · U ′

i(0) + 2Amax
i , ∀vi ∈ Vs,

Zmax
i =V · βi + ǫi, ∀vi ∈ Vs.

For each vi ∈ Vs, if dmax
i ≥ max{Amax

i , ǫi}, the transport

layer data queue Qi(t), and the virtual queues Yi(t) and Zi(t)
are bounded for each slot t as follows,

Yi(t) ≤ Y max
i , Qi(t) ≤ Qmax

i , Zi(t) ≤ Zmax
i .

This lemma is proved by induction based on Algorithm 1

and the queueing laws (2), (9) and (11).

Theorem 1 (QoS guarantee): Each packet on secondary

link vi ∈ V is either delivered or dropped with Algorithm

1 before its maximum delay Di, if we set ǫi =
Qmax

i +Zmax
i

Di

and dmax
i ≥ max{Amax

i , ǫi}.

This theorem can be proved based on Lemma 1 and the

ǫ−persistence queue technique [18]. The condition on ǫi is to

ensure that the queue lengths can grow to satisfy the job drop

condition, i.e., Qi(t)+Zi(t) > V ·βi, if some packets remain

undelivered in the last Di slots.

B. Economic Properties of the Auction
Theorem 2 (Optimal Winner Determination): The winner

determination in Algorithm 2 computes collision-free channel

allocations that maximize the expectation of Ψ(t) as defined

in (27), if each secondary link bids truthfully and V → ∞.
The correctness of the collision-free channel allocations can

be proved by contradiction, while the maximization of Ψ(t)
in expectation is based on the Glauber dynamics to find a

stationary distribution (which is converged when V → ∞)

for each feasible channel allocation decision. This theorem is

utilized in the proof for the truthfulness, individual rationality,

budget balance and optimality in social welfare.

Theorem 3 (True Evaluation): The channel valuations in

(22), ∀vi ∈ Vs, are true values.

This theorem is proved based on the definition of the true

values and that (17) is solved in each time slot by each

secondary link.

Theorem 4 (Truthfulness in Expectation): Bidding

truthfully is the dominant strategy of each secondary

link in the auction in Algorithm 2, i.e., no secondary link



can achieve a higher utility in expectation in terms of the

one-shot optimization problem (17), by bidding with values

other than its true values in Eqn. (22), if V → ∞.

We prove this theorem by contradiction and show that,

in all cases, no secondary link can do better with one-shot

optimization problem (17) by bidding untruthfully.

Theorem 5 (Individual Rationality): No winning secondary

link pays, in expectation, more than its bidding price, i.e.,

E{b̂i(t)} ≤ bi(t), ∀vi ∈ Vs, if V → ∞.

This theorem can be proved based on the winner determina-

tion and pricing schemes in our auction mechanism, together

with Theorem 2.

Theorem 6 (Budget Balance at Primary User): At the pri-

mary user, the total payment-in-expectation collected from the

secondary links is non-negative, i.e.,
∑

vi∈Vs
E{b̂i(t)} ≥ 0, if

V → ∞.

This theorem is proved with the pricing mechanism and

Theorem 2.

C. Optimality of Individual Utility and Social Welfare

Theorem 7 (Individual Utility Maximization): Let Ω∗
i be

the offline optimum of time-averaged utility of secondary link

vi ∈ Vs, obtained in a truthful-in-expectation, individual-

rational-in-expectation and budget-balanced spectrum auc-

tion, with complete information on its data arrivals and

channel availability in the entire time span [0, T-1]. The

online Algorithm 1 can achieve a time-averaged utility Ωi for

secondary link vi within a constant gap Bi/V to Ω∗
i , i.e.,

Ωi ≥ Ω∗
i −Bi/V,

where V > 0 and Bi =
1
2 [[ǫi]

2 + 3[Amax
i ]2 + 2[1 + dmax

i ]2]
is a constant.

The proof to Theorem 7 is rooted in Lyapunov optimization

theory [12]. The gap Bi/V can be arbitrarily close to zero by

increasing V .

Theorem 8 (Social Welfare Optimality): Let Π∗ be the of-

fline optimum of the time-averaged social welfare in (8),

obtained with full information of the network over the entire

time span [0, T-1]. The time-averaged social welfare Π12 and

Π3, achieved by running Alg. 1 & 2 and Alg. 3, respectively,

approach the offline-optimal social welfare Π∗ with a constant

gap B/V , i.e.,

Π12 ≥ Π∗ −B/V, Π3 ≥ Π∗ −B/V,

where V > 0 and B = 1
2

∑
vi∈Vs

[[ǫi]
2 + 3[Amax

i ]2 + 2[1 +
dmax
i ]2].

We prove this theorem by first showing that the dynamic

decisions made by Alg. 1 & 2 have the same expected values

as that by Alg. 3 according to their Algorithm definitions and

Theorem 2, which means they have the same expected social

welfare in a long run. Next, we prove their social welfare

optimality based on Lyapunov optimization theory [12]. The

gap B/V can be arbitrarily close to zero by increasing V .

With Theorem 7 and 8, we see that both the individual

utility of each secondary link and the social welfare of the

network can be made arbitrarily close to their optima by setting

V → ∞. However, by Lemma 1 and Theorem 1, the maximum

allowable delay Di is also proportionally increasing with V
if ǫi is a constant. Hence, there is a tradeoff, adjusted by V ,

between the maximum allowable delay and the optimality of

individual utility and social welfare.

VII. PERFORMANCE EVALUATION

A. Simulation Setup

We consider a network with 16 links1 uniformly randomly

distributed in the network with an average interference degree

of 4. The primary user has 4 orthogonal channels for sale. In

each time slot, each link has a data arrival with an average

rate of 0.2 data units per slot uniformly distributed between 0

and 0.4. The utility function for an average throughput r̄i can

be calculated with log(1+ r̄i). The penalty to drop one unit of

data is βi = 1.0, ∀vi ∈ Vs. The constant value of ǫi, ∀vi ∈ Vs

is fixed at 1.0. The maximum packet drop rate dmax
i is also

1.0 such that dmax
i ≥ max{Amax

i , ǫi}.

For each execution of the benchmark algorithm, its channel

allocation decisions are derived by solving problem (27) with

glpk [21]. Each round of simulation is executed for 100,000

time slots, and each datum is the average of 100 trials.

B. Social Welfare

Since it is not computationally feasible to derive the offline-

optimal long-term-average social welfare, we compare the

social welfare achieved by our auction framework, i.e., Al-

gorithms 1 and 2, with that of the benchmark Algorithm 3,

which is proven to be arbitrarily close to the offline optimum

of long-term social welfare (in Theorem 8). Fig. 2 shows that,

when V is larger, the social welfare obtained by our auction

framework is even better, and is mostly within 10.1% of that

by the benchmark algorithm. Hence, our auction framework

achieve a social welfare closer to its offline optimum when V
scales up, validating the result in Theorem 8.
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Fig. 2. Comparisons of social welfare.

C. Average delay and packet drop rate

From Lemma 1 and Theorem 1, we see that the maximum

allowable delay is proportional to the value of V . Thus,

approaching the optimal social welfare by scaling up V will

inevitably lead to an increased delay. We next examine the

performance of average delay and packet drop rate by our

auction framework and the benchmark algorithm with different

values of V .

A nice observation in Fig. 3(a) is that, although the max-

imum allowable delay grows proportional to V , the average

1While our auction is efficient, the benchmark algorithm needs to solve an
integer program in each time slot, limiting the network size in the simulation.



delay that packets actually experience increases slowly with

V , implying that our auction framework can approach the

offline optimal social welfare without significantly sacrificing

the average delay.

We also study the average number of admitted packets

in the entire secondary network that are eventually dropped,

in our auction framework and in the benchmark algorithm,

respectively. Fig. 3(b) reveals that the average drop rate

decreases quickly as V grows, and drops to a level close to that

of the benchmark algorithm when V > 2500. Intuitively, with

a larger V , less packets are dropped in order to decrease the

penalty incurred by packet dropping, which in turn increases

the achievable social welfare.
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(a) Average delay
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(b) Average drop rate

Fig. 3. Average delay and drop rate.

For reasons behind such low average delay and its slow

scaling with V , we compare the average lengths of the

packet queues and virtual ǫ−persistence queues in Fig. 4.

Fig. 4(a) shows that the average packet queue length is a small

value within 0.25, so packets are promptly delivered/dropped

without being accumulated, consistent with the low and slow

scaling average delay in Fig. 3(a). Similar result is also

found for the benchmark algorithm. However, in Fig. 4(b), the

average lengths of the virtual queue Z have clear differences

in our auction framework and in the benchmark algorithm: the

former is large and grows quickly with V while the latter is

mostly close to zero. In each time slot, the channel allocation

decisions in Algorithm 3 are derived by solving a max-weight

scheduling problem. As long as the scheduling weight for

the allocation variable µic(t), i.e., Qi(t) + Zi(t), is positive,

link vi will have a chance to be scheduled. Thus, the virtual

queue is neither necessary, since the packet queue length is

already positive, nor possible to accumulate to a long length,

since the transmission opportunities are readily obtained. To

the contrast, our auction framework requires a higher value

of Qi(t) + Zi(t) at a link to get a larger chance of being

allocated a channel, according to the definition of probability

pi in Algorithm 2 and the bidding price bi(t) with its true

value in Eqn. (22). However, a nice property of our auction is

that, packet queues are not necessarily long since the lengths

of virtual queue are already large enough, leading to a high

chance of channel allocation and a short delay. The only cost

lies in convergence time, scaling with V , for each virtual queue

Zi(t) to reach its stable length.
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(a) Average length of packet queue Q
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Fig. 4. Average lengths of queues.

VIII. CONCLUSION

We investigated online auction design for maximization of

long-term-averaged social welfare in a network of secondary

links, and of long-term-averaged utility at each secondary link,

under QoS requirements and volatile traffic demands. The

goals are truthfulness and computational efficiency. A novel,

online spectrum auction framework was proposed to dynam-

ically decide the rate control, channel evaluation/bidding and

packet dropping at each secondary link, as well as the winner

determination and pricing at the primary user, achieving the

above goals simultaneously.
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