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NetStar: A Future/Promise Framework for
Asynchronous Network Functions
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Abstract— Network functions (NFs) are more than simple
packet processors that apply various transformations to the
packet content. Modern NFs often resort to various external
services to achieve their purposes, e.g., storing flow states
in an external storage or looking up a DNS. Working with
external services is usually implemented using callback-based
asynchronous programming, which is complex and error-prone.
This paper proposes NetStar, a new NF programming frame-
work that brings the future/promise abstraction to the NF
dataplane for flow processing. NetStar simplifies asynchronous
NF programming via a carefully designed async-flow interface
that exploits the future/promise paradigm by chaining multiple
continuation functions for asynchronous operations handling.
The programs implemented using the NetStar framework mimic
simple synchronous programming but are able to achieve full
flow processing asynchrony. We have used NetStar to implement
a number of representative NFs. Our experience and evaluation
results show that NetStar can effectively simplify asynchronous
NF programming by substantially reducing the lines of code,
while still approaching line-rate packet processing speeds.

Index Terms— NFV, asynchronous programming,
future/promise paradigm, high-performance software dataplane.

I. INTRODUCTION

NETWORK Functions (NFs) are more than packet
processors that perform simple transformations on each

received packet. Modern NFs, e.g., firewall [1], NAT [1],
IDS [2], and proxies [3], [4], often need to contact external
services while processing network flows, e.g., for querying
external databases [5], [6], or saving critical per-flow states
on reliable storage to resist failures [1]. To ensure high-speed
packet processing while executing external queries, these NFs
must fully exploit asynchronous programming: after gener-
ating a request to an external service, the NF should not
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block-and-wait for the response in a synchronous fashion;
instead, it should save the current processing context, register
a callback function to handle the response upon its return, and
switch to process other tasks.

Compared with synchronous NF programs, asynchronous
NF implementation using callbacks is more efficient in packet
processing, as it does not waste important CPU time. However,
callback-based asynchronous programming has some inherent
drawbacks that can prevent developers from building NFs with
richer functionalities.

First, compared to a synchronous program, a callback-based
asynchronous program is harder to implement and reason
about. Such a program may define multiple callback functions,
scattered in different places of the source files, to achieve a
series of asynchronous operations. For instance, the Bro IDS
can be configured to detect malware using two nested callback
functions defined in different places (Sec. III-A); and a NAT
may replicate important per-flow states in an external database
using 4 consecutive callbacks, to read from and write to a
remote database [1]. Dealing with multiple callbacks scattered
in different places can be confusing, making it more difficult
for a programmer to trace the execution order of the program.

Second, visiting saved context information inside a reg-
istered callback can be error-prone. Since an asynchronous
program immediately switches to other tasks after saving the
context and registering a callback, the program must ensure
that the saved context is not accidentally freed until the
callback is invoked. Failing to do so may lead to invalid
memory access and program crash. However, when multiple
callback functions are used, the programmer may accidentally
free the context if he fails to correctly trace the execution order
of the callbacks.

Third, callback-based asynchronous program may introduce
redundant error handling code. Since exceptions may be
generated when waiting for external responses, the program
must properly process the generated exceptions by imple-
menting error handling code in the callbacks registered for
the responses. When a series of asynchronous operations are
executed, the programmer has to add redundant error handling
code for each asynchronous operation.

People have recognized the problems with callbacks when
building event-driven systems such as browsers [7], [8], pro-
gramming language runtime systems [9], web servers [10] and
database servers [11]. Their solution to counter these problems
is to use an advanced programming abstraction, such as the
coroutine [12] and the future/promise paradigm [13]–[15].

Coroutine is a user-space cooperative thread that is able to
execute synchronous program in a fully asynchronous fashion.
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However, a coroutine is usually constructed with its own
stack, which may be several kilobytes in size [16]. When NF
processes a large number of small flows, saving and restoring
coroutine stacks, as well as frequent stack memory allocation
may incur performance penalties.

In contrast, the future/promise paradigm uses small runtime
objects, including futures, promises and continuation func-
tions, to mimic synchronous programming while being fully
asynchronous. Besides making asynchronous program easier
to implement, the future/promise abstraction also reduces
redundant error handling code by effectively propagating
exceptions to a consolidate error handling logic, and simplifies
context management.

A recent open-source C++ library, Seastar [17], imple-
ments high-performance future/promise paradigm for building
database server [18]. The library is integrated with DPDK [19]
for high-performance packet IO and provides a customized
user-space TCP/IP stack, making it a good candidate for build-
ing high-performance asynchronous NFs. However, the library
misses a core interface for manipulating raw network packets
with future/promise paradigm. Being a crucial part for building
dataplane NFs, this interface is not trivial to implement.
A straightforward design is to expose a regular packet handler
function, that is invoked for each received packet. While
this interface is easy to use, it falls back to callback-based
asynchronous programming and leaves no room for utilizing
the future/promise abstraction.

This paper discusses the design and implementation of
NetStar, a future/promise-based framework for simplify-
ing asynchronous programming in NFs. With the help of
future/promise abstraction, programming asynchronous opera-
tions in NetStar is similar to implementing simple synchronous
programs, and the resulting NFs are guaranteed to never block-
and-wait for responses as in synchronous programs.

The power of NetStar is mainly attributed to the core inter-
face that we design, called the async-flow interface. Powered
by a simulated packet processing loop, the interface combines
high-performance packet IO with future/promise abstraction
and retains all the power of future/promise.

To evaluate the performance of NetStar, we build a number
of NFs using the framework, including four NFs from the
StatelessNF paper [1], an HTTP reverse proxy, an IDS and a
malware detector. With extensive experiments, we show that
NFs based on NetStar use substantially fewer lines of code
to implement asynchronous packet processing, as compared
to callback-based implementation, while delivering sufficiently
good performance. We also compare NetStar with a coroutine
based implementation, and show that the coroutine is a less
desirable paradigm for implementing NFs that process a large
number of concurrent network flows.

In summary, this paper makes the following contributions.
• We design and implement NetStar, the first

high-performance framework that utilizes future/promise
paradigm for simplifying the implementation of
asynchronous NFs.

• Existing future/promise library lacks an important
interface for processing network packets. We improve
this by designing async-flow interface, which

effectively combines future/promise paradigm with
high-performance packet IO.

• We report our experience in building asynchronous NFs
with NetStar, evaluate the performance of the imple-
mented NFs and open-source our framework in [20].

The rest of the paper is organized as follows. Sec. II
discusses the related work of NetStar. Sec. III presents the
motivations for building NetStar and gives a brief tutorial
for future/promise paradigm. Sec. IV presents an overview
of NetStar. Sec. V describes the detailed design and usage
of async-flow interface. Sec. VI reports the asynchronous
NFs that we build with NetStar. Sec. VII demonstrates the
performance evaluation of the implemented NFs. Sec. VIII
discusses the limitations and miscellaneous issues related
with NetStar. Sec. IX gives a concluding remark and presents
future research directions for improving NetStar.

II. RELATED WORK

There are several existing frameworks [21]–[24] that are
designed to aid the implementation of NFs, but none of them
aims for simplifying the asynchronous programming in NFs.

NetBricks [21] provides a high-level abstraction for build-
ing fast packet processing pipelines, but it does no address
how to simplify asynchronous programming on NF dataplane.
NetStar leverages future/promise abstraction to process data-
plane traffic, and simplifies asynchronous programming with
the async-flow interface. P4 [22] provides a high-level pro-
gramming language for describing dataplane packet processing
pipelines, but it has no intrinsic support for manipulating
dataplane packets asynchronously as in NetStar.

mOS [23] proposes a unified interface for managing con-
nection oriented middleboxes. Using its interface, a middlebox
can extract application-level payload and apply different call-
back functions to process the payload. NetStar shares a similar
event layer as in mOS, where the packet is preprocessed
to expose interested events to the core NF processing logic;
however, NetStar uses the future/promise abstraction for event
handling, and can effectively simplify implementation in case
the NF requires to contact external services.

S6 [24] is a framework for building scalable NFs. It utilizes
coroutine to process asynchronous messages when scaling out.
S6 cannot be used to implement asynchronous operations in
NFs, as the coroutines are completely hidden from the public
APIs exposed by S6. On contrary, NetStar exposes async-flow
interface to implement arbitrary asynchronous operations in
NF core logic.

Except for packet processing, modern NFs require
additional functionalities to resist failures and handle large
workload. StatelessNF [1] proposes a new architecture that
separates the storage of per-flow states from the process-
ing of packets. This advanced architecture requires efficient
and simplified asynchronous programming support, which is
nicely provided by NetStar. OpenNF [25], Split/Merge [26]
and PEPC [27] all use flow migration for dynamical scaling of
NF instances (by migrating flows out of hotspots). Implemen-
tation of a flow migration protocol typically involves complex
asynchronous interactions, and NetStar can be potentially
useful to simplify flow migration implementation.
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The mobile networks, including 4G-EPC and the upcom-
ing 5G networks, have widely adopted NFV technology
for dynamic resource provisioning and improved quality-of-
service (QoS). In [27], the authors propose a new architecture
for building high-performance EPC core. Bagaa et al. [28]
propose a new approach based on coalition game for com-
bining core elements of vEPC and 5G mobile network
into a federated cloud. In [29]–[33], optimal algorithms for
placing virtual network functions in virtualized environment
are proposed under different scenarios, including EPC core,
5G mobile system and edge network. Addad et al. [34]
propose an algorithm for computing optimal network slices
in the cloud. NetStar can be used to simplify the implemen-
tation of many network functions in EPC and 5G mobile
network [27], [28], and can borrow ideas from the algo-
rithmic advancement in the placement of virtual network
functions [29]–[34] for further improvement when used in
virtualized environments.

III. MOTIVATION AND BACKGROUND

A. Asynchronous Programming in Representative NFs

1) Bro: We use a concrete example, malware detection
in Bro IDS [2], to demonstrate how callbacks are used to
program asynchronous NFs. Bro can be configured to detect
malware from transmitted files as follows. A local database
server stores hash values of commonly-seen malware. For each
TCP connection that goes through, Bro reconstructs its byte
stream. If a transmitted file is detected within the byte stream,
Bro computes a SHA1 hash value over the file content, and
queries the local database to obtain a quick response about
whether the hash value matches any malware’s. In case of no
hit in the local database, Bro can turn to the more complete
and up-to-date Malware Hash Registry (MHR) [35], which
provides a special DNS service: Bro can send a DNS request
carrying the file hash to MHR, and the MHR responds whether
there is a match with any of the malware hash values it has.
If either of the two queries detects some malware, Bro raises
an alarm in the log file.

We extract the code covering the execution path of malware
detection from Bro version 2.5-359, and show it in Fig. 1.
There are three callback functions registered in different
places of the Bro’s source files: after a transmitted file is
detected, Bro calls Hash::Finalize() to calculate the
file’s hash value and posts a file_hash event to the
event engine (line 5). Bro handles this event in the first
callback EventHandler::Call, by performing an asyn-
chronous query to the local database (lines 11 - 14). The
response of the database query is handled by the second call-
back StoreQueryCallback::Result. If the file hash
is not found in the local database, Bro performs a DNS
query to the MHR (line 23), whose response is handled by
the third callback LookupHostCallback::Resolved.
Since both the database and MHR queries may fail,
two additional callbacks, Trigger::Timeout() and
LookupHostCallback::Timeout(), are registered to
handle the timeout errors of database and MHR query,
respectively.

Fig. 1. Malware detection in Bro.

The code in Fig. 1 highlights the following disadvantages
in callback-based asynchronous programming: (1) The asyn-
chronous code is more complex to implement as compared to
a synchronous program. For instance, if the second callback
StoreQueryCallback::Result is to be implemented in
a synchronous fashion, the programmer can handle the DNS
response and the timeout event immediately after issuing a
blocking DNS query, without the need for saving the context
information (omitted from line 23) and defining two extra
callback functions elsewhere (lines 32 and 38). (2) Omitted
in line 23, saving and retrieving context information can be
quite troublesome, as Bro relies on reference counting to keep
allocated objects alive, and needs to correctly increase the
reference counts of all the objects kept in the context when
registering a callback. (3) Two functions are defined to handle
potential errors in the two asynchronous operations. The two
functions are redundant as they implement similar logic, which
is to log a malware detection error.

2) HAProxy: We also inspect asynchronous program-
ming in HAProxy [3], a high-performance proxy due to its
callback-based asynchronous design. HAProxy can serve as a
load-balancer or a gateway, which intercepts incoming connec-
tions, relays application requests to backend servers and then
relays responses back to the clients. In order to retrieve data
from incoming connections, HAProxy invokes three nested
callbacks, including iocb (for accessing a connection), recv
(for receiving data from the connection) and rcv_buf (for
putting received data into buffer). The three callbacks are
registered multiple times in various source files, making it
hard to trace the execution flow of HAProxy without a deep
knowledge of the source code.

B. Advanced Programming Abstractions

There is a tradeoff between simplicity and performance
when implementing a NF program: on one hand, synchro-
nous programming is easier but incurs poor performance.
On the other hand, asynchronous programming with call-
backs achieves better performance at the cost of implemen-
tation complexity. Similar tradeoffs have been identified when
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people build server programs, such as web [10] and data-
base servers [11]. The solution in those domains is to use
advanced programming abstractions, including coroutine [12]
and future/promise [9], [13]–[15], to manage the complex-
ity of asynchronous programming while achieving good
performance.

Coroutine is a user-space cooperative thread: a coroutine
explicitly yields its execution to other coroutines when it
waits for asynchronous operations to complete. The coroutine
paradigm has found its success in building asynchronous web
servers [10] and databases [11].

With coroutine, asynchronous NFs can be very easy to
implement. The NF program can be directly written as a syn-
chronous program, which runs as multiple coroutines (threads)
to handle different flows. Whenever a coroutine needs to
perform an asynchronous operation, it yields its execution to
other coroutines after saving its thread context, and then waits
to be resumed when the asynchronous response arrives in the
future.

A coroutine is usually constructed with its own stack,
which may be several kilobytes in size [16], and a typical
high-performance NF needs to process hundreds of thousands
of flows concurrently and millions of packets per second.
An asynchronous NF implemented using coroutine needs to
frequently allocate coroutine stacks and switch between differ-
ent coroutine contexts, resulting in compromised performance
(verified in Sec. VII-G).

In search for an advanced programming abstraction for
simplifying the implementation of asynchronous NFs, we have
identified that the future/promise paradigm can be a good
alternative besides coroutine. Future/promise paradigm uses
small and efficient runtime objects to simplify asynchronous
programming, and can approach satisfactory performance even
when processing a large number of concurrent network flows.

C. Future/Promise

The rest of this section briefly introduces the key con-
cepts of future/promise abstraction, using pseudocode from
Seastar library. To understand this section, we only assume the
knowledge of basic C++ programming language. However,
readers are recommended to possess background knowledge
about C++11/14 features to have a better understanding
of both this section and the NetStar framework. A good
explanation of C++11/14 features can be found in [36]. The
Seastar library [17] also provides a detailed documentation on
future/promise paradigm.

1) Future: A future object has type future<T> and
contains a value of type T. There are two states for each future
object, available and unavailable. When in the available state,
a future object either contains a concrete value of type T that
can be directly used, or an exception. In the unavailable state,
a future object is associated with a promise object, and can be
turned into available state using the associated promise object.

2) Promise: A promise object has type promise<T>.
A future object can be obtained from a promise object with
promise::get_futuremethod. When needed (e.g., when
the response of a remote query arrives, or the response

times out and an exception is generated), the programmer
can set either a concrete value, or an exception, to the
promise object with the promise::set_value method.
The value/exception is then automatically propagated to the
associated future object and turns it into the available state.

3) Continuation Function: Future/promise works together
with continuation functions to achieve asynchronous program-
ming. A continuation function can be appended to a future
object to work as a special callback function, using the
future::then method. If the appended future object is
available, the continuation function is immediately invoked;
otherwise, it is invoked when the future object becomes
available.

The following code shows how to append a continuation
function to the future object fur.

Here, the continuation function is represented as a C++
lambda function [37], and passed as an argument to then
method. captured_variables is a list of variables which
can be freely used in the continuation function. In practice,
captured_variables may contain a pointer to a context
object and the continuation function can visit the context by
following the pointer. When fur becomes available, the con-
tinuation function is called. fur passes its concrete value as
the argument t into the continuation function, which processes
the argument and returns a new future object new_fur.

4) Chaining Multiple Continuation Functions: The return
value of future::then method is a new future object,
which is generated by the return value of the appended
continuation function. Apparently, the new future object can
be appended with another continuation function by calling
future::then again. This feature allows the programmer
to chain multiple continuation functions to mimic synchro-
nous program. Consider the following example that performs
asynchronous database and DNS queries sequentially:

Initially, an asynchronous database query _db.lookup()
is called to acquire a future object db_fur, which contains
the query response when it becomes available. A continuation
function is then appended to db_fur. Inside this function,
a DNS query _dns.lookup() is invoked to obtain a future
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object dns_fur, which contains the DNS response upon
available. db_fur.then returns a new future object, which
is generated by dns_fur. Finally, a continuation function
for handling the DNS response is chained to the future object
returned by db_fur.then.

In the above example, the two queries appear to be syn-
chronously executed but are in fact asynchronously performed,
which demonstrates how future/promise paradigm mimics
synchronous program.

5) Consolidated Error Handling: In the previous example,
to catch exceptions raised during database and DNS queries,
we can simply append another continuation function as
follows:

Here, f may contain an exception that is generated either by
the database query or by the DNS query. When an exception
is raised inside the continuation function, it is propagated
and pushed to the eventual future object, bypassing uncalled
continuation functions in the chain. In the last continuation
function appended to the eventual future object, the contained
exception is thrown using f.get and caught inside a try-catch
pair [38].

Leveraging this consolidated approach, we can effectively
reduce redundant error handling code when developing asyn-
chronous programs.

D. Bring Future/Promise to Dataplane

To implement our future/promise NF programming model,
we choose Seastar [17] library as the base, due to the
following reasons: (i) Seastar is a mature future/promise
library written in C++. The C++-based implementation
introduces minimum runtime overhead as compared to other
future/promise libraries [15] implemented in functional pro-
gramming languages with garbage collection. This is critical
for building high-performance NFs. (ii) Seastar is integrated
with DPDK and has a built-in user-space TCP/IP stack,
rendering a feasible ground for building various NFs.

However, Seastar is originally designed for database
servers [18]. It only exposes a socket-like interface for inter-
acting with application-layer payload and has no interface
for directly retrieving and sending raw network packets. Yet,
an interface for manipulating raw network packets is crucial
for implementing L4 NFs, such as firewall, NAT and IDS.

This leads to the design of NetStar, a framework for building
asynchronous NFs using future/promise paradigm. NetStar is
built on top of Seastar, it introduces a new async-flow interface

Fig. 2. An Overview of NetStar.

for handling raw network packets and combines the socket
interface of Seastar to deal with application-layer traffic. The
details of NetStar framework are covered in the following
sections.

IV. THE NetStar FRAMEWORK

NetStar can build various L4 NFs that directly process
raw network packets, including IDS, firewall and NAT.
The capability of NetStar is further extended to build NFs
that handle L7 application payload, including proxies that
forward application messages between clients and servers.
With future/promise paradigm, NFs built by NetStarcan eas-
ily interact with external services, like database and DNS
service. For the current NetStar version, a single server
instance running NetStar framework only supports one set of
NF processing logic. To run multiple NFs, different server
instances should be provisioned, each running a distinct NF.
An overview of the NetStar framework is given in Fig. 2.

NetStar is integrated with Seastar’s runtime module, which
uses DPDK to fetch packets from NIC queues into the user
space. The hook point is an intermediate layer which parses
packet headers and forwards packets to upper layer according
to the parsed results. When NetStar is used to implement an
NF which handles L4 network packets (i.e., transport-layer
packets), the hook point is configured to forward the packets
received by the runtime to the async-flow manager. For NFs
that handle L7 application payload (e.g., HTTP requests),
the hook point forwards the flows to the user-space TCP/IP
stack to extract application payload.

Some NFs may process both L4 and L7 traffic. For an
IDS that carries out malware detection as in Sec. III-A,
it handles both L4 traffic (the TCP flows being inspected)
and L7 traffic (database and MHR queries). To satisfy the
requirements of these NFs, the processing of L4 and L7 traffic
can coexist in NetStar by configuring the hook point. The
TCP/IP stack of NetStar is associated with a default IP
address. The hook point can be configured to classify all
the input packets according to their IP addresses, forward
packets with matching destination IP addresses to the TCP/IP
stack, and others to the async-flow manager. The scheduler
of NetStar can concurrently schedule both the stack and the
manager to process their input traffic.

A. Process L4 Traffic

We design a special async-flow interface to process L4 pack-
ets, which consists of an async-flow manager and several
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async-flow objects. The manager classifies packets received
from the hook point into different network flows and pushes
each flow to each async-flow object. The async-flow object
implements the NF processing logic inside a simulated packet
processing loop, using the future/promise abstraction for asyn-
chronous operations. We will discuss our detailed design of the
async-flow interface in Sec. V.

B. Process L7 Traffic

To handle L7 application payload, we reuse Seastar’s
TCP/IP stack. The socket interface of this TCP/IP stack is
a modern re-implementation of the traditional POSIX socket
based on the future/promise abstraction. For each established
TCP connection, the stack further exposes one input stream
for receiving data and one output stream for sending data.

C. Thread Model

An NF built with NetStar uses a share-nothing thread model.
Each NF runs multiple threads. Each thread is pined to a
unique CPU core and creates a complete set of modules,
including the async-flow interface (one async-flow manager
and multiple async-flow objects), the TCP/IP stack and the
NF logic. A thread never shares these modules with other
threads. Incoming packets are distributed to different threads
in a load-balanced fashion, by configuring RSS [39] on the
incoming NIC port. In this way, performance overhead asso-
ciated with thread scheduling and shared resource contention
is avoided.

V. ASYNC-FLOW INTERFACE

This section gives a detailed introduction to the async-flow
interface. The async-flow interface is divided into a manager,
which distributes flow packets to different async-flow objects;
and async-flow objects, which can be used for implement-
ing NF logic that need complex asynchronous interactions.
Our major challenge when designing the async-flow interface
is how to exploit the power of the future/promise abstrac-
tion while exposing easy-to-use interfaces for building NFs.
We carefully design a simulated packet processing loop and
use returned future objects to concatenate asynchronous oper-
ations, to address the challenge.

A. Async-Flow Manager

After a packet is delivered to the async-flow manager from
the hook point, the manager first retrieves flow information
from the packet header to build a flow key. By default,
the flow key is based on the flow 5 tuple (source/destination
IP addresses, source/destination port and protocol type) of
each TCP/UDP packet. The manager uses the key to identify
an async-flow object from a hash map: if a corresponding
async-flow object is found, the received packet is sent to the
async-flow object; otherwise, the packet belongs to a new flow,
and the manager creates a new async-flow object for the key,
and updates the hash map. The manager also configures the
new async-flow object with interested events (file hash event)
and core processing logic of the NF, using programming
interfaces exposed by the async-flow object.

Fig. 3. Workflow of async-flow objects (P represents a packet).

B. Async-Flow Object

The async-flow objects are key components to implement
asynchronous packet processing in an NF. We target the fol-
lowing objectives in its design. (1) Ease of Use. The exposed
programming interfaces should be easy to use, especially
for programmers to implement NFs. (2) Full Processing
Asynchrony. After an async-flow object launches an asyn-
chronous operation when processing a packet, it should yield
its execution immediately to other async-flow objects, without
blocking.

In NetStar, the programming interfaces exposed by the
async-flow object include an interface for registering a spe-
cial packet handler function that implements the core NF
processing logic, and an interface for configuring what events
to be reported to the registered packet handler function. The
interfaces are easy to use: registration of a packet handler
function is similar to implementing a packet handler in existing
NF architectures [2], [40].

To achieve the second objective, we simulate a packet
processing loop within each async-flow object via a series of
future-continuation chains, pause a packet processing loop if
any intermediate future object is unavailable, and only resume
it when the future object becomes available.

An illustration of the workflow within and among
async-flow objects is presented in Fig. 3. The rest of this
section discusses how different components of async-flow
object collaborate to form a simulated packet processing loop.

1) FIFO Queue: When a packet is sent from the manager to
the async-flow object, the packet is first pushed into an FIFO
queue and waits to be fetched by the packet processing loop.

2) Preprocessing: When a packet goes into the packet
processing loop, it first goes through a pre-configured pre-
processor to generate a set of events. For instance, if an
in-sequence TCP packet arrives, the preprocessor may retrieve
new payload from the reordering buffer to reconstruct the TCP
byte stream and report it as an new event, along with arrival
event of the TCP packet. In this way, some functionalities
within the core processing logic can be offloaded to the
preprocessor for simplification.

NetStar is equipped with four default preprocessors: a
simple UDP preprocessor and a simple TCP preprocessor
report packet arrival events; a TCP tracking preprocessor
reports events on TCP packet arrival, TCP connection status
change and the reconstruction of the TCP bytestream; a file
extraction preprocessor extracts transmitted files from the
byte stream and reports hash values of the files as events.
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All four preprocessors are equipped with a timer to report flow
time-out events, so that the async-flow object can gracefully
shut down its packet processing loop. NetStar users can freely
configure what preprocessor to use for different types of
packets. When implementing an NF, the programmer can
freely choose what preprocessors to use, so that only useful
events are generated to the NF.

After preprocessing, a packet context object is constructed,
containing the current packet and all the generated events.
If none of the events matches any of the events that the NF
is interested in (e.g., an IDS may only be interested in recon-
structed TCP byte stream, not the arrival of an out-of-order
TCP packet), a default action is performed, i.e., forwarding
the packet out (to the next-hop NF or the flow destination),
and another packet is fetched for preprocessing from the
FIFO queue; otherwise, the packet context is sent to the core
processing logic for further processing.

3) Core Packet Processing Logic: In the core processing
logic, events from the packet context are retrieved and packet
processing logic is executed with a series of asynchronous
operations. To handle one asynchronous operation, an associ-
ated future object is obtained from a promise object, and a
continuation function is appended to the future object. Upon
the completion of the asynchronous operation, the promise
object turns the future object into available state and invokes
the appended continuation function, which carries out cor-
responding processing based on the received response and
returns another future object for handling the next asyn-
chronous operation. Multiple asynchronous operations can be
handled using such a ‘future/promise-continuation’ chain.

Using malware detection in IDS as an example, the core
processing logic includes two asynchronous operations: query-
ing the local database and querying the MHR. A future object
is first constructed to receive query response from the local
database, and the database response is obtained as the concrete
type of value in the future object. A promise is associated to
turn the future into available state when the response returns.
The appended continuation function is invoked then, and
returns another future object, which receives query response
form the MHR. The second future object obtains the MHR
response as its concrete type of value and passes it to an
appended continuation function, which may raise an alert in
case that the response indicates the detection of a malware.

4) Final Future Object and Its Continuation Function: The
last continuation function in the asynchronous ‘future/promise-
continuation’ chain is forced to return a future object con-
taining an action decision (e.g., drop or forward the current
packet under processing). This future object becomes available
when all asynchronous operations in the core processing logic
have been completed. A continuation function is appended
to this future object, which receives the action decision from
the future object and carries out the action accordingly. The
current packet context is then destroyed, and the packet
processing loop moves on to fetch another packet from the
FIFO queue (if it is not empty), and recursively restarts itself.

5) Switching to Another Async-flow Object: After an
async-flow object has issued an asynchronous operation,
the current thread moves on to handle another async-flow

Fig. 4. Malware detector using NetStar.

object, i.e., the packet processing loop in another async-flow
object starts to fetch packets from its own FIFO queue and
processes them.

C. Asynchronous Programming With
NetStar: the IDS Example

Now we present the implementation of a malware detector
using the async-flow interface designed above, which achieves
similar functionality as in Fig. 1.

The pseudocode implementation of this malware detector
is given in Fig. 4. run_async_flow_manager runs the
async-flow manager, which constantly checks (lines 2) new
async-flow object that is created for each new TCP flow. The
manager registers the file hash event (line 3), saves context
information (line 4) and launches the core processing logic
(line 6 - 7) for each new async-flow object. The object then
starts to detect malware by inspecting the flow packets.

First, the preprocessor reconstructs the TCP byte stream as
it receives each new flow packet (code omitted from Fig. 4).
After processing a packet, if the preprocessor detects a newly
transmitted file, it calculates the hash value of this file and
raises a the file hash event. In case that the preprocessor fails
to detect a transmitted file, it only raises a packet arrival event,
which is ignored by the core processing logic, and the packet
is forwarded out directly.

After a file hash event is generated (line 11), The async-flow
object issues a database query and obtains a future object
containing the database response (line 14). A continuation
function (line 17) is appended for checking the query result.
If some malware is detected, the detection result is logged and
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the async-flow object stops processing the flow by dropping
all the following packets (line 18 - 19). Otherwise, the async-
flow object moves on to query the MHR service by sending
a DNS request (line 23). A continuation function (line 26)
is then appended to check the result of the DNS response.
If some malware is detected, the detection result is logged and
the async-flow stops the processing (line 27 - 28). Otherwise,
the async-flow object continues to process other flow packets
by repeating the previous procedures. The code from line 32 to
36 handles potential exceptions generated during the database
or DNS query in a consolidated fashion.

Comparison: The malware detector implemented with Net-
Star has the following advantages over that in Fig. 1. (1)
Simplified Implementation. While some details are omitted
in Fig. 4 for simplicity, the entire malware detection process
can be concisely implemented in NetStar using only 29 lines
of code in one function call. Our code mimics the sequential
execution of database and DNS queries within a single func-
tion, instead of spreading the execution flow across multiple
functions in different files. (2) Simplified Context Management.
In our code, the context information is put directly into the
async-flow object (line 4). Different continuation functions
(lines 17, 26, 32) can easily visit the saved context by capturing
a pointer to the context. Since the saved context is destroyed
when the async-flow object stops running, the above code
guarantees that the saved context is always alive when the
continuation functions are being called. (3) Consolidated Error
Handling. Instead of defining two error handling functions, our
implementation consolidates the error handling logic within a
single continuation function (lines 32 - 36). The programmer
can be more focused on the core NF processing logic, while
simply chaining another continuation function at the end for
handling all errors that might be generated from the core code.

VI. IMPLEMENTED NFS

We have built multiple representative NFs using NetStar.

A. NFs From the StatelessNF Paper [1]

We reimplement four NFs from the StatelessNF paper,
i.e., firewall, NAT, IDS and load balancer. Our implementation
follows the pseudo-code logic in the paper, and leverages our
async-flow interface. The major differences are: (1) we do
not need to set up a dedicated polling thread for each worker
thread to poll the NIC queue. Each thread in NetStar performs
all the tasks including port-polling and packet-processing.
(2) We use a fast in-memory key-value store, mica [41], which
has a larger throughput than the RAMCloud database [42]
used in StatelessNF. (3) In StatelessNF, a unique thread is
dedicated to contact RAMCloud for storing the per-flow states;
with NetStar, the async-flow objects running in each thread can
use the thread-local mica client library to contact mica server
concurrently.

B. An HTTP Reverse Proxy

We use the TCP/IP stack in NetStar to implement an HTTP
reverse proxy, whose functionality is similar to HAProxy

(see Sec. III-A) and TinyProxy [43]: it intercepts incoming
TCP connections from clients, and relays HTTP requests to
servers; it then receives HTTP responses from the servers and
pushes them back to the clients.

C. An IDS That Inspects HTTP Payload

This IDS detects potential intrusion from the reconstructed
HTTP request payload using our async-flow interface, which
is more complicated than the IDS implemented following the
StatelessNF paper.

D. A Malware Detector

as introduced in Sec. V-C. Due to its need to process mixed
L4 and L7 traffic (Sec. IV), it utilizes both the async-flow
interface and the TCP/IP stack of NetStar.

VII. EVALUATION

In this section, we evaluate the performance of the various
NFs built with NetStar. Even though future/promise paradigm
can simplify asynchronous programming, using this paradigm
adds additional overhead to dynamically allocate/deallocate
special runtime objects on the heap (Sec. III-C). Therefore
a natural question to ask is whether the performance of
NetStar is good enough to approach line-rate processing.
To answer this question, we design a series of experiments
to evaluate the maximum throughput achieved by the Net-
Star NFs. We also compare NetStar with several NFs that are
implemented with fast, low-overhead callback-based method
to reveal the overhead associated with using future/promise
abstraction. The second question involves the effectiveness of
future/promise abstraction for simplifying the implementation.
To answer this question, we adopt a similar quantitative
methodology [9] used for evaluating F# [9] future/promise
abstraction and compare the required lines of code for imple-
menting the core processing logic between NetStar NFs and
NFs built with callback method.

A. Methodology

1) Testbed: Our testbed consists of 5 servers: three
Dell R430 servers, each equipped with one Intel Xeon
E5-2650 CPU 2.30GHz with 10 physical cores and 48GB
memory, and two Supermicro servers, each with one Intel
Xeon E5-1620 CPU 3.50GHz with 4 physical cores and 32GB
memory. All servers are equipped with two Intel X710 10Gbps
NICs and they are connected through a Dell 10Gbps Ethernet
switch. We divide the servers to run our NFs and traffic
generators (flow sources and destinations).

2) Traffic Generation: We use two types of traffic genera-
tors. The first is a custom packet generator that we build on
top of NetStar, which can generate 64-bytes UDP/TCP packets
at 14Mpps (packets per second), i.e., 10Gbps. The number
of flows and the packet size for generation are adjustable.
This generator is used to inject flows into NFs such as
the packet forwarder (Sec. VII-B and Sec. VII-G) and the
NFs from StatelessNF paper (Sec. VII-C). To measure packet
processing latency, this generator tags each produced packet
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with a generation time and computes the packet processing
latency by an NF after receiving the packet back from the
NF (in this case, source and destination of the flows are
the same). The second traffic generator is the default HTTP
benchmarking tool provided by Seastar. The tool runs in a
client-server setting by sending a large number of HTTP
requests from a client and receiving corresponding HTTP
responses at the server. We modified this tool, including adding
support for HTTP POST method for a client to upload files
to the server and recording the HTTP transaction completion
time, which is the time interval between sending HTTP request
and receiving HTTP response. We use flows produced by this
traffic generator to evaluate NFs such as the HTTP reverse
proxy (Sec. VII-D), the IDS (Sec. VII-E) and the malware
detector (Sec. VII-F).

3) Metric: We focus on three types of key performance
metrics. (1) Packet processing throughput achieved by an
NF, measured in the number of processed packets per second
(Sec. VII-B, VII-C, VII-G), the number of processed HTTP
requests per second (Sec. VII-D) and total bandwidth con-
sumed by all the HTTP connections (Sec. VII-E, VII-F).
(2) Latency, computed as average packet processing delay
(Sec. VII-C) or the average HTTP transaction comple-
tion time (Sec. VII-D, VII-E, VII-F). (3) Lines of code
(LOC) for implementing the core packet processing logic,
meant for comparing the implementation difficulty using our
future/promise based framework and the callback-based asyn-
chronous programming.

4) Baselines: To compare with NFs implemented using
NetStar, we implement several NFs using callback based
asynchronous programming (except for HAProxy [3] and
TinyProxy [43]), following the practice in existing NF
implementation.

B. Micro Benchmarks

We first run a set of micro benchmarks to evaluate the
performance of NetStar for basic packet processing and asyn-
chronous operations.

1) Packet Processing Throughput: As a high-performance
framework for building dataplane NFs, NetStar should have
adequate performance and multi-core scalability for basic
packet forwarding task. To evaluate this, we build a simple
packet forwarder using NetStar, where the processing logic in
each async-flow object is to forward all the received packets.

For comparison, we also build a baseline forwarder using
DPDK [19], which classifies packets into different flows
by checking their flow-5-tuple against a cuckoo hash table
adopted from the BESS virtual switch [44], and passes packets
belonging to a flow to its flow object for forwarding. Com-
pared with NetStar, the baseline forwarder has no overhead
for creating future objects and chaining continuation functions,
making it run faster. We evaluate NetStar using small packets
to better understand its packet forwarding performance, since
larger packets can easily saturate the NIC bandwidth, mak-
ing NIC a bottleneck rather than revealing any performance
bottleneck in our framework.

Fig. 5a shows packet processing throughput when the NFs
are running on a single thread. 10K UDP flows with different

Fig. 5. Micro benchmarking on packet processing speed.

packet sizes are sent to an NF at the rate that is slightly
larger than the maximum throughput achieved by the NF. The
throughput achieved by NetStar is very close to the baseline.

Fig. 5b illustrates the multi-core scalability when the NF
runs with multiple threads on different CPU cores. 100K UDP
flows with 64-byte packets at 10Gbps line rate are injected to
test the NF. According to Fig. 5b, the throughput of NetStar is
always close to the baseline. With 6 cores, NetStar achieves
10Gbps line rate.

Since NetStar carries out additional work for managing
async-flow objects and future/promise objects, the single core
throughput achieved by NetStar cannot match that achieved
by a DPDK-enabled NF. However, due to the multi-core
scalability brought by NetStar’s shared-nothing architecture,
we believe that NetStar can still scale up to process input
traffic at 40Gbps when running on a modern multi-core server.

2) Asynchronous Database Query: We next develop a sim-
ple NF, whose core processing logic is to read from and write
to a mica database for each received packet. A write operation
stores a key-value pair to the database, where the key is the
packet’s flow-5-tuple and the value is a 24-byte random array.
A read operation retrieves a key-value pair from the database
using the packet’s flow-5-tuple. We also implement a similar
NF using a callback-based framework built on top of DPDK:
a callback function is registered with each database query, and
is invoked when the response arrives.

Compared with the NetStar-based implementation, this
framework imposes minimum runtime overhead when exe-
cuting asynchronous operations: the registered callback is
simply a function pointer without any heap allocation, whereas
dynamic allocation and deallocation of future/promise object
on the heap are involved in a future/promise-based framework.

We use 100K UDP flows with 64-byte small packets at
10Gbps line rate for testing. We vary the number of database
read/write carried out by the NF when processing each packet.
After receiving each packet, those read/write operations are
consecutively carried out, before sending the packet out. Both
NetStar and the callback implementation run with 10 threads.
Fig. 6 shows that the packet processing throughput and the
number of database queries that NetStar can achieve is very
close to that of the callback-based implementation. The aver-
age performance gap under different database access patterns
is 4.23% for packet throughput and 3.98% for database oper-
ations per second.
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Fig. 6. Micro benchmarking on asynchronous DB queries.

Fig. 7. Performance comparison: NFs from the StatelessNF paper.

C. NFs From the StatelessNF paper [1]

We compare our NetStar based implementation of the four
NFs with callback-based implementation. We inject 100K TCP
flows at 10Gbps to stress test the NFs and vary the size of the
flow packets. Each NF runs using 10 threads on a server, and
accesses the mica database on a different server.

In Fig. 7a and Fig. 7b, we observe that the packet
processing throughput of our NetStar NFs is very compa-
rable with the callback-based NFs. When more complicated
packet processing logic is involved (e.g. intrusion detection
in IDS) to process each packet besides executing asynchronous
operations, the performance gap between NetStar and the
callback-based implementation decreases to only 2%. We also
measure the packet processing throughput when the packet
size is 256, 512 and 1024 bytes respectively. With a larger
packet size, the NFs (except the IDS) can approach a 10Gbps
processing rate. For IDS, the rate can reach 6.78 Gbps when
processing 1024 bytes packets.

Fig. 7c and Fig. 7d show the CDF of packet processing
latency at the firewall and the IDS when the packet size is
64 bytes. The packet processing latency between NetStar and
the baseline is close to each other.

TABLE I

LOC COMPARISON: NFS FROM THE STATELESSNF PAPER

Fig. 8. Performance comparison: different proxies.

To compare the implementation difficulty, we list the LOC
for implementing the core processing logic of the four NFs
using NetStar and the callback framework in Table I. We only
count the core processing code because a full-fledged imple-
mentation of each NF involves a large volume of auxiliary
code on memory management, packet preprocessing and com-
munication with mica. We can see that with the future/promise
abstraction, the LOC can be reduced by as much as 21.9%.

In Table I, the total LOC for each NF is also represented
as a sum between the LOC for basic packet processing
functionality (left-hand-side of the + operator) and the LOC
for error handling (right-hand-side of the + operator). Due to
consolidated error handling in NetStar, only 7 lines of code
are needed for handling all the errors in the four NFs.

D. HTTP Reverse Proxy

We compare our proxy implemented using NetStar with
both HAProxy version 1.8 [3] and TinyProxy version
1.8.4 [43]. TinyProxy does not use a callback-based asynchro-
nous design; instead, it creates a new thread to handle each
TCP flow in a synchronous manner, and relies on the kernel
scheduler to schedule different threads. Both HAProxy and
TinyProxy use the TCP/IP stack of Linux kernel, whereas Net-
Star proxy uses the user-space TCP/IP stack of NetStar. Each
proxy runs on 10 threads. We use the HTTP benchmarking
tool to generate 200 connections that go through the proxy,
and then keeps producing HTTP requests at the generator’s
maximal capability.

In Fig. 8a, we see that NetStar out-performs HAProxy by up
to 20% and is way better than TinyProxy. As the payload size
of HTTP response increases, the consumed bandwidth on the
NIC gradually reaches 10Gbps, making the NIC a bottleneck
and hence decreasing the performance gap. Fig. 8b shows that
the smallest HTTP transaction completion time is achieved by
NetStar.
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Fig. 9. Performance comparison: IDS.

The performance gain of NetStar over HAProxy is primarily
due to the user-space TCP/IP stack used by NetStar, as the
kernel network stack used by HAProxy introduces significant
overhead for context switching [45]. To verify this, we also
test the performance of NetStar using the same kernel network
stack as HAProxy, and find that the performance of Net-
Star is worse than HAProxy when the payload size is smaller
than 8KB.

Note that we implement our proxy by translating the
processing logic in TinyProxy, as our future/promise based
framework can easily mimic a synchronous execution flow.
The a translated NetStar proxy is easy to implement, runs in
full asynchrony and has superior performance even compared
to HAProxy, as shown by the above results.

E. IDS

We compare the IDS built with NetStar and one built with
mOS [23], which is one of the fastest frameworks for building
middleboxes that process L7 application payload. mOS exten-
sively uses the callback-based event-driven model. Our IDS
implementation in mOS registers various callback functions to
the mOS framework to obtain reconstructed TCP byte stream
and parses HTTP requests for intrusion detection. We generate
24K concurrent HTTP connections to pass through each IDS.
To test the scalability, the number of the threads used by each
IDS is varied from 1 thread to 6 threads.

In Fig. 9, we can see that the performance of NetStar is
very close to the mOS-based implementation. On the other
hand, 493 lines of code are written to implement the core
processing logic of our NetStar IDS, whereas 689 lines are
used in the mOS-based implementation, achieving a 28%
reduction. Together with the results discussed in Sec. VII-C,
it shows that simplifying implementation using NetStar is a
worthwhile choice especially when building NFs that require
complex asynchronous operations.

F. Malware Detector

We compare our NetStar malware detector that queries an
external database and a DNS server (both run in the same
cluster as the malware detector) with a local malware detector
that only visits a local hash table stored in its own memory.
Both detectors are implemented using NetStar. We generate
1000 HTTP connections that pass through the detector and
send files over these connections. We randomly populate the

TABLE II

PERFORMANCE OF MALWARE DETECTORS

content of the file with malware. The size of the files is 8K
and 32K bytes respectively. Both detectors run in one thread.

In Table II, we can see that compared with the local detector,
the NetStar detector experiences a 14% throughput drop when
the size of the transmitted file is 8K and 8.8% throughput drop
when the size increases to 32K. The process of accessing
external database and DNS server adds a 1.97ms/3.48ms
latency respectively.

We purposely compare our NetStar detector with a local
detector, instead of a callback-based detector, in order to
show the following: the performance of the NetStar detec-
tor is already comparable with a fast local detector, not to
mention a callback-based detector; with NetStar, complicated
asynchronous operations can be enabled on NFs without large
performance drop, and the future/promise abstraction provided
by NetStar renders easy implementation of the asynchronous
operations.

G. Comparison With Coroutine

We compare NetStar with a coroutine-based NF framework.
The coroutine-based framework is built on top of Seastar,
leveraging Seastar’s coroutine facility. For each new flow,
a new coroutine is created and a stack with 4K size is allocated
to the coroutine. A packet processing loop runs within the
coroutine to process each input packet of the flow. Whenever
a coroutine needs to wait for an asynchronous event, it saves
stack information and yields its control to other coroutines in
the NF. When the asynchronous event arrives, the coroutine
waiting for the event is resumed by restoring the stack.

We compare the NetStar NF carrying out database queries
in Sec. VII-B.2 with a coroutine-based implementation. Each
NF runs in a single thread and reads the database once
when processing each packet. Both of the two NFs are
straightforward to implement with the two frameworks: the
core processing logic of NetStar NF requires 18 lines of code,
while that of coroutine-based NF needs 16 lines.

First, we configure the traffic generator to produce
dynamically-generated UDP flows. For each second, 1K new
UDP flows are generated and sent to the NFs under testing.
Each UDP flow has a 10-second active time, resulting a total
of 10K active UDP flows. A 714K pps throughput is achieved
by the NF implemented with NetStar, while the throughput
of the coroutine-based NF is 609K pps. Compared with Net-
Star NF, constant stack allocation and context switching of
coroutine-based NF lead to a 14.7% performance loss.

Then we directly send 10K long-lasting UDP flows to the
two NFs. We find that the NetStar NF achieves a 759K
pps throughput while the coroutine-based NF has a 740K
pps throughput, suffering a 2.5% performance degradation.
Compared with the previous experiment, the coroutine stacks
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are only allocated once at the beginning, and the major
overhead comes from frequent context switching.

We can see that NetStar NF achieves better results regard-
less of the traffic pattern. Under a more realistic setting with
highly-dynamic traffic, the NetStar NF is 14.7% faster than
coroutine-based NF.

VIII. DISCUSSIONS

We have shown that using NetStar framework can effec-
tively simplify asynchronous programming in NFs, but the
learning curve of future/promise abstraction may hinder further
adoption of NetStar. Learning to use the NetStar indeed
takes some efforts, as future/promise abstraction makes use
of various C++11/14 features including move semantics,
lambda functions and template meta programming. Our own
experience is that, once a programmer has spent some time
getting familiar with the future/promise abstraction, he can
greatly improve his productivity when programming asyn-
chronous code. There are also valuable text book [36] and
online documentation [17], [20] that can simplify the learning
process for the programmer. We believe that learning to
use NetStar may produce higher reward for any interested
programmer in the long run.

In addition, porting existing NF code to our NetStar frame-
work is feasible, but may require some extra efforts on
converting the callback-based programming interfaces to the
future/promise abstraction, which usually involves exposing
a new interface that returns a future object containing an
asynchronous response. Once the concept of future/promise
is mastered, this process can be made relatively easy.

The coroutines discussed previously are stackful coroutines.
They maintain their own stacks and run synchronous code
in asynchronous fashion. Besides stackful coroutines, there
are stackless coroutines [46], as each coroutine has no stack
and runs faster. Stackless coroutines are very similar to
future/promise paradigm: they can only mimic synchronous
program by chaining multiple callback functions together and
save context information in special runtime object. However,
to build real-world NF applications using stackless coroutines,
one still needs a complete framework like NetStar that pro-
vides both high-performance packet IO, user-space TCP/IP
stack and other management functionalities.

Even though C++ standard library [47] has provided
future/promise paradigm, it does not support chaining arbitrary
number of continuation functions as in NetStar. When it comes
to building complex asynchronous NFs, NetStar is a better
choice over C++ standard library.

Finally, this paper explores how to apply ideas in advanced
programming abstractions to low-level programming tasks like
processing dataplane packets. As NFs become more complex
and involve more external interactions [1], [28], we believe
that with the approach that we adopt in NetStar, we can
make future NF software highly efficient, fully asynchronous,
extremely robust and easy to implement.

IX. CONCLUSION AND FUTURE WORK

This paper proposes NetStar, the first attempt to bring
the future/promise abstraction to the NF dataplane for

flow processing. To fully utilize the power of future/promise,
we carefully design an async-flow interface that chains a
number of future/promise and continuation functions for effi-
ciently handling a series of asynchronous operations. Using
NetStar, asynchronous programming in NFs is made easy,
while good packet processing performance is still guaranteed.
Our extensive evaluation shows that NetStar can effectively
simplify asynchronous programming asynchronous in NFs,
while easily achieve line-rate packet processing for NFs.

For future work, we plan to reimplement NetStar using
Rust [48] programming language. Rust is system program-
ming language with zero runtime overhead just like C/C++,
but has a powerful type system that eliminates many runtime
bugs such as invalid memory access and race condition.
We are aware that Rust has a more efficient future/promise
implementation than that of Seastar library. By porting to
Rust, the performance and robustness of NetStar can be further
improved.
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