586 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 3, MARCH 2019

NFVactor: A Resilient NFV System Using the
Distributed Actor Model

Jingpu Duan, Xiaodong Yi, Shixiong Zhao, Chuan Wu

Abstract— Resilience functionality, including failure resilience
and flow migration, is of pivotal importance in practical network
function virtualization (NFV) systems. However, existing failure
recovery procedures incur high packet processing delay due to
heavyweight process checkpointing, while flow migration has
poor performance due to centralized control. This paper proposes
NFVactor, a novel NFV system that aims to provide lightweight
failure resilience and high-performance flow migration. NFVac-
torenables these by using actor model to provide a per-flow
execution environment, so that each flow can replicate and
migrate itself with improved parallelism, while the efficiency of
the actor model is guaranteed by a carefully designed runtime
system. Moreover, NF Vactorachieves transparent resilience: once
a new network function (NF) is implemented for NFVactor,
the NF automatically acquires resilience support. Our evaluation
result shows that NFVactorachieves 10-Gbps packet processing,
flow migration completion time that is 144 times faster than the
existing system, and packet processing delay stabilized at around
20 ps during replication.

Index Terms—NFYV, SDN, actor model, failure resilience, flow
migration, elastic scaling.

I. INTRODUCTION

ETWORK function virtualization (NFV) advocates mov-
Ning network functions (NFs) out of dedicated hardware
middleboxes and running them as virtualized applications
on commodity servers [1]. To enable effective large-scale
deployment of virtual NFs, a number of NFV management
systems have been proposed in recent years [2]-[7], imple-
menting a broad range of management functionalities. Among
these functionalities, resilience guarantee, supported by flow

Manuscript received October 11, 2018; revised December 27, 2018;
accepted January 11, 2019. Date of publication February 4, 2019; date of
current version February 14, 2019. This work was supported in part by
grants from Hong Kong RGC under Contracts HKU 17204715, 17225516,
and C7036-15G (CRF), in part by NSFC under Grant 61628209, in part by
the HKU URC Matching Funding, in part by Huawei HIRP under Grant
HO2016050002BE, in part by the HK RGC Early Career Scheme under
Grant 27200916, in part by the RGC General Research Fund under Grants
17207117 and 17202318, in part by the Croucher Innovation Award, and in
part by the Project PCL Future Regional Network Facilities for Large-scale
Experiments and Applications under Grant PCL2018KPO0O01. (Corresponding
author: Jingpu Duan.)

J. Duan is with the Institute of Future Networks, Southern University of
Science and Technology, Shenzhen 518005, China, and also with the PCL
Research Center of Networks and Communications, Peng Cheng Laboratory,
Shenzhen 518005, China (e-mail: duanjp@sustc.edu.cn).

X. Yi, S. Zhao, C. Wu, and H. Cui are with the Department of Computer
Science, The University of Hong Kong, Hong Kong (e-mail: xdyi@cs.hku.hk;
sxzhao@cs.hku.hk; cwu@cs.hku.hk; heming @cs.hku.hk).

F. Le is with the IBM T. J. Watson Research Center, Yorktown Heights,
NY 10598 USA (e-mail: fle@us.ibm.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2019.2894287

, Heming Cui, and Franck Le

migration and failure recovery mechanisms, is of particular
importance in practical NFV systems.

Resilience to failures [8], [9] is crucial for stateful NFs.
Many NFs maintain important per-flow states [10]: IDSs such
as Bro [11] store and update protocol-related states for each
flow for issuing alerts for potential attacks; firewalls [12] parse
TCP SYN/ACK/FIN packets and maintain TCP connection
related states for each flow; load balancers [13] may retain
mapping between a flow identifier and the server address, for
modifying destination address of packets in the flow. It is
critical to ensure correct recovery of flow states in case of
NF failures, such that the connections handled by the failed
NFs do not have to be reset — a simple approach strongly
rejected by middlebox vendors [8].

Efficient flow migration [14]-[16] is important for
long-lived flows in case of dynamic system scaling. Existing
NFV systems [2], [6] mostly assume dispatching new flows
to newly created NF instances when existing instances are
overloaded, or waiting for remaining flows to complete before
shutting down a mostly idle instance, which are efficient for
short flows. Long flows are common on the Internet: a web
browser uses one TCP connection to exchange many requests
and responses with a web server [17]; video-streaming [18]
and file-downloading [19] systems maintain long-lived
TCP connections for fetching large volumes of data from
CDN servers. When NF instances handling such flows are
overloaded or under-loaded, migrating flows to other available
NF instances enables timely hotspot resolution or system cost
minimization [15].

Even though failure resilience and efficient flow migration
are important for NFV systems, enabling light-weight failure
resilience and high-performance flow migration within existing
NF software architecture has been a challenging task.

Failure resilience in the existing systems [8], [9] is typically
implemented through checkpointing: each NF process is regu-
larly checkpointed by saving its process image and execution
traces to a reliable storage, and any failed NF process can
be recovered by the system using the saved image and traces.
Compared to the normal packet processing delay of an NF that
lies within tens of microseconds, the process of checkpointing
is heavyweight and can cause extra delay up to thousands of
microseconds [8], [9].

Flow migration in existing systems [14], [15] is typically
governed by a centralized controller. It fully monitors the
migration process of each flow by installing SDN rule to
update the route of the flow and exchanging messages with the
NFs over inefficient kernel networking stack [20]. However,

0733-8716 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3144-4398

DUAN et al.: NFVACTOR: A RESILIENT NFV SYSTEM USING THE DISTRIBUTED ACTOR MODEL 587

a practical NFV system needs to manage tens of running NFs
and handle tens of thousands of concurrent flows. To migrate
these flows, the controller needs to sequentially execute the
migration process of each flow, install a large number of SDN
rules and exchange many migration protocol messages through
inefficient communication channel, which may prolong the
flow migration completion time and inhibit flow migration
from serving as a practical NFV management task.

Besides, enabling flow migration with existing NF software
is not trivial: OpenNF [15] reports that thousands lines of
patch code must be added to existing NF software [11], [21] in
order to extract and serialize flow states, communicate with the
controller and control flow migration. This approach mixes the
logic for controlling flow migration together with the core NF
logic. To maintain and upgrade such an NF, the developer must
well understand both the core NF logic and the complicated
flow migration process, which adds additional burden on the
developer.

In this paper, we present the design and implementation
of NFVactor, a new software framework for building NFV
systems with high-performance flow migration and lightweight
failure resilience. Unlike previous systems [8], [9], [14], [15]
which augment existing NF software with resilience support,
NFVactor explores new research opportunities brought by a
holistic approach: NFVactor provides a general framework
with built-in resilience support by exploiting the distributed
actor model [22], and exposes several easy-to-use APIs for
implementing NFs. Internally, NFVactor delegates the process-
ing of each individual flow to an unique flow actor. The
flow actors run in high-performance runtime systems, handle
flow processing and ensure their own resilience in a largely
decentralized fashion. NFVactor has three major novelties over
existing systems.

> Lightweight failure resilience. With the actor abstrac-
tion and cleanly separated NF states, each flow actor in
NFVactor can independently replicate itself by constantly
saving its per-flow state to another actor that serves as a
replica. This lightweight resilience operation eliminates the
overhead of checkpointing the entire NF process. As a result,
failure resilience in NFVactor achieves good throughput, short
recovery time and a small packet processing delay.

> High-performance flow migration. The use of the actor
model enables NFVactor to adopt a largely decentralized
flow migration process: each flow actor can migrate itself
by exchanging messages with other flow actors, while a
centralized controller only initiates flow migration by instruct-
ing a runtime system about the amount of the flow actors
that should be migrated. As a result, NFVactor is able to
concurrently migrate a large number of flows among multi-
ple pairs of runtime systems. NFVactor also replaces SDN
switch with a lightweight virtual switch for flow redirection,
simplifying flow redirection from updating SDN rule into
modifying an runtime identifier number. The increased par-
allelism and simplified flow redirection jointly enhance the
performance of flow migration. The protocol designed for the
migration achieves loss avoidance property, making packet
loss a rare thing even when concurrently migrating many
flows.

> Transparent resilience. NFVactor ensures that once the
NFs are correctly implemented with the provided APIs, failure
resilience of the NFs is immediately achieved. NFVactor
decouples resilience logic from core NF logic by incorporating
resilience operations within the framework and only exposing
APIs for building NFs. Using the APIs, programmers are fully
liberated from reasoning about details of resilience operations,
but only focus on implementing the processing logic of NFs
and handling simple interaction for synchronizing shared states
of NFs during resilience operations. The exposed APIs also
ensure a clean separation between the core processing logic
and important NF states, facilitating resilience operations.

Our major technical challenge is to build an actor run-
time system to satisfy the stringent performance requirement
of NFV application. Even one of the fastest actor runtime
systems [23] may fail to deliver satisfactory packet processing
performance due to their actor scheduling strategies and the
use of kernel networking stack. To address this challenge,
we carefully craft a high-performance actor runtime system
by combining the performance benefits of (i) a module graph
scheduler to effectively schedule multiple flow actors, (ii) a
DPDK-based [24] fast packet I/O framework [25] to acceler-
ate network packet processing and (iii) an efficient user-space
message passing channel which completely bypasses the ker-
nel network stack and improves the performance of both fail-
ure resilience and flow migration. When being compared with
one of the fastest actor libraries [23], the packet processing
throughput of our customized runtime increases by over 100%
due to the improved actor scheduling strategy, while the speed
for transmitting remote actor messages increases up to over
500% due to the removal of the kernel networking stack.

We implement NFVactor and build several useful NFs using
the exposed APIs. Our testbed experiments show that NFVac-
tor achieves 10Gbps line-rate processing for 64-byte packets,
concurrent migration of 600K flows using around 700 millisec-
onds, and recovery of a single runtime within 70 milliseconds
in case of failure. Compared with OpenNF [15], flow migra-
tion completion time in NFVactor can be 144 times faster.
Compare with FTMB [8] for replication performance, NFVac-
tor achieves similar packet processing throughput and recovery
time, but with packet processing latency stabilized at around
20 microseconds.

In summary, we make the following contributions in this
paper:

o We introduce actor model to build resilient NFV system,
and we demonstrate that the actor model can effectively
improve the parallelism of resilience functionalities for
better performance.

o We identify performance bottlenecks in existing actor
runtime system when processing network function work-
load, and we design a new actor runtime to overcome
these bottlenecks.

o We implement NFVactor and extensively evaluate NF'Vac-
tor to verify its effectiveness. The source code and
detailed documentation of NFVactor is available at [26].

The rest of the paper is organized as follows. Section II
discusses the related work of NFVactor. Section III motivates
the use of actor model. Section IV presents the overall

588 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 3, MARCH 2019

architecture of NFVactor framework. Section V describes
the APIs exposed by NFVactor for building network func-
tions. Section VI discusses how failure resilience and flow
migration are done in NFVactor. Section VII introduces key
techniques used to implement NF'Vactor runtime. Section VIII
presents the evaluation results. Section IX discusses how
to run NFVactor in multi-network environments. Section X
gives a concluding remark and discusses future directions for
improving NFVactor.

II. RELATED WORK

Since the introduction of NFV [1], a broad range of studies
have been carried out, to bridge the performance gap between
specialized hardware boxes and virtualized network functions,
dynamically manage NFV systems, migrate flows between
different NF instances for better scalability, replicate important
NF states to resist devastating failures, e.r.c. The rest of
this section first reviews several existing works on various
aspects of NFV technology. Then a comparison is given
between NFVactor and multiple representative works that
directly influence the design and implementation of NFVactor.

High-performance Packet Processing. A major challenge
in NFV technology is how to improve the performance
of packet processing in virtualized environment. Both
NetVM [27] and ClickOS [28] use a mapped memory area as
an efficient communication channel between hypervisor and
virtual machine to accelerate packet processing. NetVM also
relies on the DPDK library [24] to fetch packets from virtual
NICs. Similar to NetVM, NFVactor relies on DPDK to provide
fast packet accessing. A major difference between NFVac-
tor and NetVM is that the runtimes of NFVactor run in light-
weight containers instead of heavyweight virtual machines,
to achieve better performance.

Modern NFV system usually runs inside a cluster, where
multiple NF instances collaborate to work. Inspired by
Click [29] modular router, the BESS [30] software switch is
a high-performance tool for connecting different NF instances
within a cluster. NFVactor reuses BESS when connecting
different runtimes. The runtime scheduler of NFVactor is also
inspired by the module graph scheduler of BESS, and becomes
a key enabler for an efficient actor library that is suitable for
various NF tasks.

NFV System Management. Complex NFV systems
are usually designed as distributed systems running in
high-performance clusters or geo-distributed datacenters.
To better manage the NFV system, Stratos [6] predicts future
workload and designs an algorithm to provision NF based on
the prediction inside a single datacenter. E2 [2] uses a similar
approach to provision NF instances according to workload
prediction, but E2 uses BESS to construct a high-performance
dataplane and ensure line-rate processing. Neither Stratos
nor E2 support flow migration, so they can not promptly
eliminate overload caused by long-lasting flows like NFVac-
tor. Flurries [31] manages NFV system at the granularity
of per-flow NFs. For each new flow, Flurries launch a new
container running a per-flow NF. NFVactor manages NFV
system at the granularity of flow actors. For each flow, a new

actor is created to process the flow. Efficient flow migration
and failure resilience are then enabled on top of the actor
model of NFVactor, which are not available in Flurries.

The management of NFV system is further extended
to geo-distributed datacenters to cover a wider area.
Duan et al. [32] propose to dynamically scale distributed ser-
vice chains over geo-distributed clouds. Qazi et al. [33] and
Bagaa er al. [34] study how to scale EPC cores across
geo-distributed datacenters. Qazi ef al. [33] focus on imple-
menting a global management system while Bagaa et al. [34]
propose a placement algorithm for the core NFs of
EPC. NFVactor is optimized for a high-performance cluster
and can not directly run in a geo-distributed environment.
The geo-distributed environment has to be divided into several
clusters first, then NFVactor can be independently deployed
inside each cluster.

Flow Migration for Dynamic Scaling. Flow migration
is a key technique for dynamic scaling as it can promptly
eliminate overload caused by long-lasting flows. To implement
flow migration, existing systems [14], [15], [35] rely on a
centralized SDN controller to carry out the migration proto-
col, involving non-negligible overhead. NFVactor overcomes
this issues using a largely distributed framework to achieve
efficient flow migration, where migration is achieved directly
between runtimes with only 3 steps of request-response.
StateAlyzr [36] uses static analysis to automate flow state
extraction and simplify human effort for enabling flow migra-
tion. However, enabling high-performance flow migration still
requires a holistic design like NFVactor. Qazi et al. [16] design
a new ECP core and use flow migration to alleviate system
overload. The migration protocol used by Qazi ef al. [16]
is not carefully designed and may cause packet loss during
migration, while the migration protocol of NFVactor satisfies
loss avoidance property and does not incur packet loss in
practice. In [37], an approach for ensuring end-to-end QoS
of user traffic is proposed using the queue support of Open-
Flow. NFVactor preserves end-to-end QoS by dynamic scaling
through flow migration, and achieves better performance with
an efficient architecture.

Replicate NF State to Resist Failure. Failure resilience
in existing systems [8], [9] usually involves check-pointing
the entire NF process image, which may pause the NF
process, lose packets and prolong the processing delay. NFVac-
tor is able to replicate individual flow by saving the flow
state to a replica, resulting in minimized loss and delay.
StatelessNF [38] shares similar design goals with NFVac-
tor, i.e., to enable transparent system scalability and failure
resilience. However, the methodology used by StatelessNF
is orthogonal to that of NFVactor: StatelessNF stores flow
states in a reliable database [39] to achieve failure resilience,
while NFVactor exploits the actor model. Compared with
StatelessNF, NFVactor can approach line-rate packet process-
ing and does not rely on RDMA equipment.

NFV in Mobile Networks NFV technology is extensively
adopted in mobile networks to dynamically manage resources
and improve user experience. There are many theoretical
advancements for applying NFV technology in mobile net-
works. The works in [40]-[43] study how to optimally place

DUAN et al.: NFVACTOR: A RESILIENT NFV SYSTEM USING THE DISTRIBUTED ACTOR MODEL 589

TABLE I
COMPARISON WITH REPRESENTATIVE WORKS

Project Name Support Flow Migration | Support Failure Resilience | Rely On Special-purpose Hardware
OpenNF [15] Yes, low-performance. Yes, low-performance. No.

Split/Merge [14] | Yes, low-performance. Yes, low-performance. No.

FTMB [8] No. Yes, high-performance. No.

StatelessNF [38] | No. Yes, high-performance. Yes, rely on RDMA.

NFVactor Yes, high-performance. | Yes, high-performance. No.

core network functions of 5G mobile networks in both carrier
and public clouds under different constraints. Addad et al. [44]
propose an algorithm for computing the optimal network slice
in a 5G mobile network to improve the efficiency of resource
allocation. While the focus of NFVactor is to build an NFV
system with high-performance resilience functionality, these
theoretical results can be borrowed in the future version
of NFVactor to improve the scheduling of runtimes in the
cluster.

Comparison with Representative Works. We present
a comparison between NFVactor and several representative
works in the fields of flow migration and failure resilience. The
result is shown in Table I. We can see that NF'Vactor is a com-
plete solution as it provides high-performance flow migration
and failure resilience, while not depending on special-purpose
hardware.

III. MOTIVATIONS FOR USING THE ACTOR MODEL

Systems that enable failure resilience [8], [9] and flow
migration [14], [15] typically achieve a low level of paral-
lelism: a centralized controller governs the migration of all the
flows among multiple NF instances, while an entire NF process
has to be checkpointed for replication. If we can improve
the parallelism by providing an efficient per-flow execution
environment, then each flow can migrate and replicate itself
without full-process checkpointing and centralized migration
control, leading to improved resilience performance. Such a
per-flow execution environment can be modeled by actors.

The actor programming model [22], [45]-[47] has a long
history of being used to construct massive, distributed
systems [22], [46], [48], [49]. Each actor is a lightweight and
independent execution unit. In the simplest form, an actor
contains a global unique address, a message queue (mailbox)
for accepting incoming messages, several message handlers
and an internal actor state (e.g., statistic counter, number of
outgoing requests). An actor can send messages to other actors
by referring to their addresses, process incoming messages
using message handlers, update its internal state, and create
new actors. Multiple actors run asynchronously as if they were
running in their own threads, simplifying programmability of
distributed protocols and eliminating potential race conditions
that may cause system crash. Actors typically run on a
powerful runtime system [47], which can schedule millions
of lightweight actors simultaneously.

The actor model is a natural fit to provide a per-flow exe-
cution environment for resilient NFV system. We can create
one actor as the basic execution environment for a flow and
equip the actor with necessary message handlers for service
chain processing, flow state replication and migration. Then
each actor can process network packets and handle its own

Control RPCs /
Dynamic Scaling

Populate Cluster|
Composition

Dataplane

A==

Actor

Flow Migration /
Replication

Actor

Runtime

Actor
\ Se rverj

Fig. 1. An overview of the basic components of NFVactor. Three
clusters are shown in this figure: a cluster for provisioning service chain
‘NF1—NF2—NF3’, a cluster for service chain ‘NF4—NF5’ and a cluster
for service chain ‘NF6—NF7’.

Actor

Runtime

Runtime

resilience by creating new actors and exchanging messages
with other actors.

There are several popular actor frameworks [45]-[47], [50],
but none of these frameworks are optimized for building NFV
systems. In our initial implementation, we built NFVactor on
top of libcaf [47], one of the fastest actor system [23]. But
the overall performance turned out to be less than satisfactory.
This motivates us to customize a high-performance actor
runtime system for NFVactor.

IV. THE NFVACTOR FRAMEWORK
A. Overview

At the highest level, NFVactor has a layered structure as
shown in Fig. 1. There are three key elements in NFVactor:
(i) runtime systems (referred to as runtime for short) that
enable flow processing using actors; (ii) virtual switches for
distributing flows to runtime systems and sending flows to
final destinations; and (iii) a lightweight coordinator for basic
system management.

A runtime (Section IV-B) is the execution environment of
flow actors, running on a Docker container [51] for quick
launching and rebooting, and is assigned a globally unique
ID upon creation. A virtual switch is a special runtime
(Section IV-C) and serves as the gateway to runtimes.

Runtimes and virtual switches are partitioned into several
virtual clusters. In a cluster, runtimes are initialized with the
same service chain (Section IV-B.3) and the virtual switches
dispatch flows to the runtimes within the same cluster. The
partitioning of virtual clusters enables NFVactor to simultane-
ously provision multiple service chains.

Each virtual switch is configured with an entry IP address.
The coordinator sets up proper switching rules to direct data-
plane flows to virtual switches, which further dispatch them to
runtimes within the same cluster. A runtime creates a dedicated
flow actor to process each flow and forward flow packet to
its final destination. The coordinator also manages dynamic
scaling and failure recovery of NFVactor by interacting with

590 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 3, MARCH 2019

Output
Port
Dataplane Flow
Flow > 1
© Tnput | 0| Classifier]]
Port ,”"_Flow Actor L
R ; 1 Actor
e g iai Message
Control Actor 1 Lﬂfgrn 9
Port Message
a=——"7 Sl A
Worker Thread S:ha:ad
Ring Buffer
RPC Thread A
RPC: V

Fig. 2. The internal structure of a runtime.

runtimes and virtual switches through a series of control RPCs
(Section IV-D).

Dataplane flows can be migrated and replicated from one
runtime to another runtime within the same cluster in a distrib-
uted fashion without persistent involvement of the coordinator.
The details of flow migration and replication are further
introduced in Section VI.

B. Runtime

NFVactor employs a carefully designed, uniform runtime
system to run flow actors. Within a runtime, we adopt a
one-actor-one-flow design principle: a dedicated flow actor
is created to handle each flow received by the runtime.
Packet processing by NFs and resilience operations are all
implemented as reactive message handlers of the flow actor.
The runtime timely schedules each flow actor to react to
the various events, so that each flow actor can process flow
packets and manage its own resilience in a largely decentral-
ized fashion. Our one-actor-one-flow principle improves the
parallelism of resilience operations and serves as the basis for
high-performance resilience support.

1) Internal Structure: Fig. 2 shows the internal structure of
a runtime. Each runtime is configured with one worker thread
and one RPC thread. The worker thread actively polls the
three ports shown in Fig. 2 and works in a run-to-completion
mode. It is pinned to a dedicated CPU core to minimize the
performance impact caused by thread scheduling. The RPC
thread responds to RPC requests sent from the coordinator,
for basic system management operations (Section IV-D). The
three ports are high-speed virtual NICs (ZeroCopyVPort in
BESS [25]) and they are connected to a virtual L2 switch
(L2Forward module of BESS) inside a physical server. The
worker thread can bypass the kernel and directly fetch network
packets from these ports.

2) Work Flow: The runtime has three basic work flows:
Process Dataplane Flows: The worker thread constantly polls
dataplane flow packets from the input port. For each packet,
the worker thread uses the 5-tuple of the packet (i.e., source
IP address, destination IP address, transport-layer protocol,
source port and destination port) to retrieve the corresponding
flow actor and sends the packet to the flow actor for process-
ing. Running in its own logical thread, the flow actor processes

the packet along the configured service chain and then sends
the processed packet out from the output port.

Process Remote Actor Messages: During distributed
flow migration and replication, remote actor messages are
exchanged among actors running on different runtimes. The
runtime is equipped with a reliable message passing channel
(Section VII) to reliably send and receive remote actor mes-
sages over the control port. The received remote actor mes-
sages are handed over to the destination actors for processing.
The sent remote actor messages are reliably delivered to their
receivers.

Process Control RPCs: The RPC thread forwards received
RPC requests to a liaison actor in the worker thread through
the shared ring buffer. The liaison actor coordinates with flow
actors via local actor messages, to handle RPC requests sent
from the coordinator.

3) Service Chain: Each runtime is configured with a
sequential service chain (e.g., firewall— NAT—load-balancer)
and initializes all the NFs along the service chain upon
booting. When the flow actor processes packets, it calls the
process_pkt(input_pkt, fs,ss) API (Section V) of each NF
according to the service chain structure to implement the
service chain processing logic.

C. Virtual Switch

A virtual switch is a special runtime where the actors do
not run service chains but only a flow forwarding function.
An actor in a virtual switch is referred to as a virtual switch
actor. The virtual switch serves as a load-balancing gateway
when forwarding flows and a lightweight flow redirector when
executing resilience operations.

For flow forwarding, a virtual switch learns runtimes that
it can dispatch flows to through RPC requests sent from the
coordinator. When a new flow arrives, a virtual switch actor
selects a runtime with the smallest workload as the destination
and saves its ID. For each flow packet, the virtual switch actor
replaces the destination MAC address with the MAC address
of the input port of the destination runtime and forwards the
packet.

During flow migration and replication, each virtual switch
actor can independently update the flow route by simply
modifying the ID of the destination runtime. Compared with
installing flow rules on an SDN switch [14], [15], the route
update process is lightweight and improves flow migration
performance for NFVactor.

D. Coordinator

The coordinator in NFVactor is responsible for basic cluster
management routines. As compared to centralized controllers
in the existing NFV systems [14], [15], the coordinator only
uses light-weight RPC calls to initiate the flow migration and
replication process.

The coordinator communicates with runtimes via a num-
ber of control RPCs summarized in Table II. It uses
poll_workload() to acquire the current workload on a runtime.
It updates cluster composition (including MAC addresses of

DUAN et al.: NFVACTOR: A RESILIENT NFV SYSTEM USING THE DISTRIBUTED ACTOR MODEL 591

TABLE 11
CONTROL RPCs EXPOSED AT EACH RUNTIME

Control RPC Functionality

Poll the load information

from a runtime.

Notify a runtime/virtual switch
the current cluster composition.
Initiate flow migration. It tells
the runtime to migrate
migration_num of flows to the
runtime with runtime_id.

Set the runtimes with IDs

in runtime_id_list as the replica.
Recover all the flows replicated
from runtime with runtime_id.

poll_workload()

notify_cluster_cfg(cfg)

set_migration_target(runtime_id,
migration_number)

set_replicas(runtime_id_list)

recover(runtime_id)

input/output/control ports, workload status and IDs of all run-
times and virtual switches in the cluster) to all the runtimes and
virtual switches in a cluster using notify_cluster_cfg(cfg).

To deploy a cluster, the system operator first specifies
the composition of a service chain to the coordinator. The
coordinator then creates a new cluster with one runtime and
one virtual switch, configures the runtime with the specified
service chain and installs proper switching rules to forward
matching input flows to the virtual switch. The cluster is then
dynamically scaled and recovered under the control of the
coordinator.

The last three RPCs shown in Table II are used to initiate
flow migration and replication. After issuing these three calls,
migration and replication are automatically executed among
runtimes without further involving the coordinator.

Dynamic Scaling. The coordinator performs dynamic scal-
ing of the runtimes and virtual switches by exploiting the
distributed flow migration mechanism. The coordinator peri-
odically polls the workload statistics from all the runtimes,
containing the number of dropped packets on the input port,
the current packet processing throughput and the number of
active flows. In the current NFVactor prototype, the runtime
is identified as overloaded if the number of dropped packets
exceeds a fixed threshold (100 as in our experiments). This is
an effective overload indicator for NFVactor: an overloaded
runtime can not timely poll all the packets from its input
port, therefore increasing the number of dropped packets
significantly, while the CPU usage is rendered ineffective as
the worker thread is a busy-polling thread and uses 100% of
the CPU all the time.

If there is an overloaded runtime in a cluster, the coordinator
launches a new runtime in the same cluster and keeps migrat-
ing a configurable number of flows (500 as in our experiments)
from overloaded runtime to the new runtime, until half of
the workload on the overloaded runtime is migrated away.
If the new runtime becomes overloaded, more runtimes are
added.We add new runtimes instead of moving flows across
existing runtimes, since the load on existing runtimes is largely
balanced, due to the load-balancing functionality of virtual
switches.

If runtimes in a cluster become largely idle, the coordinator
carries out scale-in: it selects a runtime with the smallest
throughput, migrates all its flows to the other runtimes, and
shuts the runtime down when all the flows have been success-
fully moved out.

TABLE III
APIS FOR IMPLEMENTING NFs IN NFVactor

API Usage

Allocate a singleton object
containing the shared states.
Create and initialize a new

flow state object.

Deallocate the flow state object
upon expiration of the flow actor.
Process the input packet using
the current flow states of the flow
and the shared states of the NF.
Update the shared states according
to final flow states upon
expiration of the flow actor.
Update the shared states using
the flow states during flow
migration and replication.

nf.allocate_shared_state()

nf.allocate_new_fs()

nf.deallocate_fs(fs)

* nf.process_pkt(input_pkt, fs, ss)

nf.flow_expires(fs, ss)

nf. flow_migrate_out(fs, ss)
nf. flow_migrate_in(fs, ss)
nf. flow_recover(fs, ss)

V. NF APIs

To create an NF with full resilience support, the programmer
should properly implement the APIs listed in Table III and
ensure that the implemented APIs correctly satisfy the usage
description in Table III. We follow two principles when
designing these APIs.

First, StatelessNF [38] and Split/Merge [14] demonstrate
that it is possible to build practical NFs by processing
each individual flow with its per-flow state and shared state.
Inspired by this principle, NFVactor employs a core API
process_pkt(input_pkt, fs,ss) to accomplish the core NF
processing logic. It is called by each flow actor when process-
ing the input packet, taking per-flow state and shared state
as additional arguments. Several supporting APIs are also
provided to manage important NF states. This design ensures
a clean separation between useful NF states and the core
processing logic of an NF, so that the flow actor always has
direct and efficient access to the latest flow states to ease flow
migration and replication.

Second, to properly handle shared state, we treat shared
state accessing by an NF as allocating resource from a shared
resource pool. For instance, when a NAT processes a flow,
accessing shared state usually means allocating an address
from a shared address pool. Therefore, when the flow expires,
the resource that the flow acquired should be properly released
back to the shared resource pool. With the NAT example,
this means that the allocated address should be put back into
the address pool when the flow expires. However, when the
flow is migrated or recovered on another NF instance, without
proper synchronization, the resource obtained by the flow may
not be correctly released back to the shared resource pool.
To resolve this issue in NFVactor, the programmer should
properly store the allocated resource in the per-flow state.
He should further implement the last four APIs in Table III
to release the acquired resource so that the shared state is
correctly synchronized. Our runtime guarantees that the three
APIs are timely invoked during flow migration and replication
(Section VI).

A. How Runtime Uses the APIs

When a runtime is created, the shared state of each NF
along the configured service chain is initialized by calling
allocate_shared_state() and stored by a storage actor. After

592 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 3, MARCH 2019

a flow actor is created to process a new flow, it first calls
allocate_new_fs() to create a flow state for each NF and
stores these flow states throughout its lifetime. The flow actor
processes a packet along the service chain by sequentially
calling process_pkt(input_pkt, fs, ss) for each NF, passing
in the per-flow state, and shared state obtained from the storage
actor. The shared state is sent back to the storage actor when
the flow actor finishes processing the packet. When the flow
actor expires (this is triggered by a per-actor timer), the flow
actor first calls flow_expires(fs, ss) for each NF to update
the shared state and then executes some clean-up procedures,
including calling deallocate_fs(fs) to free the flow state.
When a flow is migrated or recovered, the flow actor calls
the last three APIs shown in Table III to synchronize the flow
state with the shared state for each NF, followed by executing
some clean-up procedures.

B. Example NFs

Using these APIs, we create four example NFs, ie., a
firewall, an intrusion prevention system (IPS), a load balancer
and a NAT.

The firewall updates the connection information (per-flow
state) and compare the 5-tuple of the flow with the access
control list (shared state) to decide whether to drop the flow
packet. The IPS scans the packet payload using an automaton
(shared state) built with the Aho-Corasick algorithm [52],
saves an index (per-flow state) to the current automaton state,
and drops the flow packet if an attack signature is found. Since
both shared states of the firewall and the IPS are read-only,
i.e. the flow only reads the shared state without acquiring any
resource from it, there is no need to implement the last three
APIs in Table III to synchronize the shared state.

The load balancer forwards each input flow to a server
with the smallest workload among a set of backend servers.
To achieve this, after selecting a server (per-flow state),
the load balancer increases the workload counter (shared state)
of the selected server to reflect the load balancing decision.
Therefore, when the flow expires, or when the flow is migrated
or recovered, the workload counter on that server should
be properly decreased by implementing the last three APIs
in Table III.

The NAT operates by substituting the source IP address
and source port of the flow packet with an allocated address
(per-flow state) from a shared address pool (shared state).
Within a cluster, the address pool of each NAT contains
non-overlapping addresses. There is no need to implement the
last 3 APIs in Table III: we treat the address allocation from
the address pool as persistent allocation that lasts throughout
the lifetime of the flow, i.e., the flow only releases the address
back to the address pool when it expires.

VI. SYSTEM MANAGEMENT OPERATIONS
A. Fault Tolerance

1) Replicating Runtimes: To perform lightweight runtime
replication, we leverage the actor abstraction and state sepa-
ration. In a runtime, important states associated with a flow
are stored by the flow actor. The runtime can replicate each

RT
=Runtime * b 2 P
LA P RT .2
. k V4 :(, ,Runtime >
pa Virtual g] 1 vs &
Switch u ! «paVitual o7 / .
. . Switch/ | p < f‘ .
“* Runtime , ‘ .
rs® " . < N

nti|

(a) Flow replication. (b) Flow recover when the origi-

nal runtime has failed.

Fig. 3. Flow replication and recovery: RT - replication target actor,
RS - Replication source actor, LA - liaison actor, VS - virtual switch actor;
dotted line - flow packets, dashed line - actor messages.)

flow actor independently without check-pointing the entire
container image [8], [9]. While achieving good throughput
and fast flow recovery, this replication strategy also improves
the packet processing delay and has good scalability, as each
flow actor can replicate itself on another runtime without the
need of dedicated back-up servers.

The detailed flow replication process is illustrated in Fig. 3.
When a runtime is launched, the coordinator sends a list of
runtimes in the same cluster to its liaison actor via RPC
set_replicas(runtime_id_list). When a flow actor is created
on the runtime, it acquires its replication target runtime from
the liaison actor, selected in a round-robin fashion among all
available runtimes received from the coordinator.

When a flow actor has finished processing a flow packet,
it sends a replication actor message, containing the current
flow states of all the NFs and the packet, directly to the liaison
actor on the replication target runtime. The liaison actor further
forwards the replication message to a replica flow actor sharing
the same 5-tuple as the flow actor. The replica flow actor first
stores latest flow states contained in the message, then sends
the packet out, as shown in Fig. 3a.

This design guarantees the same output-commit property as
in [8]: the packet is sent out from the system only when all
the state changes caused by the packet have been replicated.
This property is straightforward to verify. The output packet
can only be sent out from the replica flow actor. To produce an
output packet, the replica actor must have saved the updated
flow state associated with the packet.

The coordinator monitors the liveness of a runtime by
sending heartbeat messages to the liaison actor of the runtime.
When a runtime fails, the coordinator sends recovery RPC
requests recover(runtime_id) to all the runtimes containing
replica flows of the failed runtime. When a runtime R receives
this RPC, it instructs each replica flow actor on runtime
R to send a request to the virtual switch actor, asking it
to change the destination runtime to runtime R. After the
acknowledge message from the virtual switch actor is received,
the replica flow actor synchronizes the shared states by calling
flow_recover (Table III) and the flow is successfully restored
on runtime R (Fig. 3b). To recover a runtime processing n
flows, the time complexity is O(n) as each flow is recovered
using one request-response.

DUAN et al.: NFVACTOR: A RESILIENT NFV SYSTEM USING THE DISTRIBUTED ACTOR MODEL 593

2) Replicating Virtual Switches: Since a virtual switch is in
fact a special runtime (Section IV-C), the virtual switch can
be replicated in the same way as described in Section VI-A.1.
The only difference is that when the source virtual switch
fails, the replica flow actors in the replication target virtual
switch immediately become the primary flow actors without
sending out a request to change the forwarding route. Instead,
the coordinator takes control and updates the SDN rules to
forward the input flows to the replication target virtual switch.

3) Replicating Coordinator: Since the coordinator is a
single-threaded module, we can log and replicate informa-
tion it maintains into a reliable storage system such as
ZooKeeper [53]. The liveness of the coordinator is monitored
by a guard process and it is restarted immediately in case of
failure. On a reboot, the coordinator can reconstruct the system
view by replaying logs.

B. Flow Migration

1) Flow Migration Protocol: Based on the actor model,
flow migration in NFVactor can be regarded as a transaction
between a source flow actor and a target flow actor, where the
source actor delivers its entire state and processing tasks to
the target actor. Flow migration is successful once the target
actor has completely taken over packet processing of the flow.
In case of unsuccessful flow migration, the source flow actor
can fall back to regular packet processing and instruct to
destroy the target actor.

In NFVactor, the coordinator starts flow migration by calling
set_maigration_target RPC method on a runtime, asking it to
migrate a number of flows to another runtime. After receiving
the ID of a migration target runtime, the flow actor starts
migration by itself. The flow migration protocol used by flow
actors is shown in Fig. 4, consisting of three request-response
steps. In case of request timeout, the migration source actor
performs clean-up procedures and reverts to normal packet
processing. To migrate n flows out of a runtime, the time
complexity is O(n) as each flow is migrated within 3 steps of
request-response.

First req-res step: The source flow actor sends 5-tuple of
its flow to the liaison actor on the migration target runtime.
The liaison actor creates a migration target actor using the
5-tuple, and sends a response back to the migration source
actor. Meanwhile, migration source actor continues to process
packets as usual.

Second req-res step: The source flow actor sends the
5-tuple of its flow and the ID of the migration target runtime
to the liaison actor on the virtual switch. The liaison actor uses
the 5-tuple to identify the virtual switch actor in charge and
notifies it to change the destination runtime to the migration
target runtime. After this change, the virtual switch actor
sends a response back, which is encapsulated in a packet
and traverses the same network path as the flow packets, and
the migration target actor starts to receive packets. Instead of
processing the packets, the target actor buffers all the received
packets until it receives the request in the third step from
the source actor. The migration source actor keeps processing
received flow packets until it receives the response from the
virtual switch.

LA> Runtime)
' -
ﬂuntlmeNYr ‘l 4. MT wed .‘ AMT‘
T A Runtime .' LI
Virtual = . VS = - Virtual _*
pu o m 11 Virtual A pu o w] 1
Switch 3, =y Pugich A X Switch '
. [y, LAg™, \. & n [} -
MS . LR = ‘Ms
! > s o .
Runtime R:n“me - Runtime
(a) First req-res step. (b) Second req-res (¢) Third req-res step.

step.

Fig. 4. The 3 flow migration steps: MT - migration target flow actor,
MS - migration source flow actor, LA - liaison actor, VS - virtual switch
actor; dotted line - flow packets, dashed line - actor messages.

Third req-res step: The source flow actor sends its
flow states to the migration target actor. After receiving
the flow states, the migration target actor saves them, calls
flow_migrate_in (Table III) to synchronize the shared states,
and immediately starts processing all the buffered packets
while sending a response to the source actor. The migration
source actor calls flow_migrate_out (Table III) to synchro-
nize the shared states and then destroys itself.

2) Loss Avoidance Property: If the following assumptions
hold,

1) The network is lossless and does not reorder packets.

2) The buffer of the migration target actor does not over-
flow.

3) Runtimes involved in flow migration do not overload.

then the flow migration protocol of NFVactor satisfies the
following property.

Loss Avoidance: All the packets are processed by migration
source and target runtimes in the same order that they are
received at the virtual switch. No packets are lost and no
packets are processed out of order during flow migration.

To prove this property, let p; be the i*" packet of a flow f
received by the virtual switch, let S; be the updated flow state
of f after p; is processed by the flow actor, let reg;(1 <=
i <= 3) be the request sent during the i'h reg-res step and
res;(1 <= i <= 3) be the response, let ¢; be a time point
during the flow migration process. Since runtime has a single
thread, everything in the runtime happens in a linear order.

Consider the time point ¢; when the virtual switch actor
receives reqo. Assume that the virtual switch actor has
received p; — pi(1 < k) packets before ¢, then p; — py are
sent to the migration target actor as the destination runtime
of virtual switch actor is not changed before ¢;. After ti,
the virtual switch actor responds ress to migration source
actor. When the migration source actor receives ress, it should
finish processing p; — pr and update the flow state to Sk.
This is because ress is encapsulated in a single packet and
traverses the same network path as p; — pg. According to
assumption 1, reso must have arrived at migration source after
after py. Therefore, the flow state contained in reqs is Sk.

On the other hand, as the destination runtime of virtual
switch is changed to migration target actor after ¢;, packets
starting from py4; are sent to the migration target actor by
the virtual switch actor after ¢;.

Consider another time point o when the migration target
actor receives reqs. Assume that before to, migration target

594 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 3, MARCH 2019

- - . _
Polling / Actor \ / Module Graph
Thread (Scheduler \ [Scheduler
(Kernel i
| Input Port Reliable Message
Neg::;f"g Module Passing Module e
2. G scheduled =
th hedul .
1.Send a byieschecte] Actor Execution Input Port
packet CEED Module Module
message Remote actor ORIt Port
N messages. utput Pol
2 Output Port Module
Work Module
eher g Control Port)
\ / Worker
Thread I /
\) \\\ // \7 Module Thread

(a) Libcaf runtime, which is aban- (b) NFVactor runtime, which is
doned due to its unsatisfactory designed to overcome the draw-
performance. backs of libcaf runtime.

Fig. 5. Comparison of runtime architecture.

actor has received and buffered pi.1 —pim(k+1 < m) packets
without dropping a single packet (assumption 2). After to,
the migration target actor starts processing all the buffered
packets using flow state S, and updates the flow state to .S,,.
According to assumption 3, no packets are dropped due to
overload when migration target actor processes the buffered
packets. Therefore, when migration target finishes processing
the buffer, it continues to process packets starting from p,, 4 1.
This proves the loss avoidance property.

3) Summary: In practice, the assumptions of the loss
avoidance property can be satisfied for most of the time.
In fact, packet drop caused by the flow migration proto-
col rarely happens, even when concurrently migrating hun-
dreds of thousands of flows (Section VIII-D). It has been
a common understanding that providing good properties for
flow migration would trade off the performance of flow
migration [15]. NFVactor mitigates this trade-off using dis-
tributed, high-performance flow migration based on the actor
model.

VII. IMPLEMENTATION
A. Libcaf Runtime

Throughout the development process of NFVactor, we ini-
tially choose libcaf [47] as the runtime, whose architecture
is shown in Fig. 5a. We prioritize libcaf over other actor
runtime systems [22], [45], [46] because libcaf has better
performance [23]. On the other hand, it is easier to integrate
a high-performance packet I/O framework into libcaf due to
its C++-based implementation.

However, the performance of libcaf [47] runtime is less
than satisfactory, for both packet processing and resilience
operations. We believe that the performance problems of libcaf
runtime come from two aspects. First, the actor scheduler
of libcaf is not suitable for handling IO of raw network
packets. According to Fig. S5a, the scheduler schedules an
actor run according to whether the actor has received a
message. To inject dataplane packets into libcaf runtime,
we have to set up a dedicated polling thread to poll the NIC
port using DPDK [24] and send received packets to actors
running in another worker thread by enqueueing the packet
into actor’s message queue. As verified in Section VIII-A.1,
there is an expensive synchronization overhead between the
polling thread and the worker thread, which decreases packet

processing throughput by over 100%. Second, libcaf runtime
still relies on inefficient kernel networking thread to exchange
remote actor messages with other runtimes.

B. NFVactor Runtime

Realizing the problems, we abandon libcaf runtime and
design a new actor runtime for NFVactor as shown in Fig. 5b,
by leveraging two optimizations. First, we implement a mod-
ule graph scheduler to schedule actors according to several
pre-defined module graphs. The module graph scheduler com-
bines various IO operations (polling NIC port, exchanging
remote actor messages) with actor scheduling inside a single
worker thread, effectively eliminating the thread synchroniza-
tion overhead as in libcaf. Second, we bypass inefficient kernel
networking stack and implement a high-performance, reliable
message passing module running in user-space.

The tradeoff point when designing the customized runtime
is programmability, as the programming interface exposed
by the customized runtime is not as easy to use as the
libcaf runtime. However, we believe that such a tradeoff is
worthwhile due to improved performance.

1) Module Graph Scheduler: Inspired by the scheduler
design of BESS [25] and Click [29], the module graph sched-
uler keeps scheduling several module graphs to run. A mod-
ule graph consists of several processing modules, connected
together into an acyclic graph. Inside a module graph, the actor
messages are generated by a source module, flow through
the connected module for processing before reaching the sink
module, which consumes each message by either freeing it
or sending it to the outside. Inside a module, the message
handler of the corresponding actor is called for each actor
message. The actor then pushes the processed message to the
next connected module. When all the generated actor messages
are consumed, the scheduler moves on to run the next module
graph. For our current prototype implementation, the scheduler
uses round-robin algorithm to schedule all the module graphs,
which is chosen to maximize the performance of the runtime.

Fig. 5b illustrates two module graphs. The first module
graph polls dataplane packets from the input port and generates
packet messages, which are pushed along the module graph,
processed by the flow actors and sent out from the output port.
The second module graph fetches remote actor messages from
the reliable message passing module and sends the remote
actor message out from one of the three ports. There are two
other module graphs that are used for receiving reliable actor
messages and interacting with the RPC requests.

2) Reliable Message Passing: Based on the module graph
scheduler, we build a reliable message passing module, which
inserts remote actor messages into a reliable packet stream
for transmission. The module creates one ring buffer for each
remote runtime and virtual switch. When a flow actor on this
runtime sends a remote actor message, the module creates
a packet, copies the content of the message into the packet
and then enqueues the packet into the respective ring buffer.
These packets are configured with a sequential number each,
and appended with a special header to differentiate them from
dataplane packets. When the second module graph in Fig. 5b

DUAN et al.: NFVACTOR: A RESILIENT NFV SYSTEM USING THE DISTRIBUTED ACTOR MODEL 595

Ethernet Switch

Server2

.
@ ®®
@®®

Server3 J

Traffic
Generator

(@ @) @
@@@

Servert

Fig. 6. The network topology of the testbed for evaluating NFVactor.
VS - virtual switch runtime, RT - runtime.

is scheduled to run, the worker thread dequeues these packets
from the ring buffers, and sends them to respective remote run-
times. A remote runtime acknowledges receipt of such packets.
Retransmission is fired in case that the acknowledgement for
a packet is not received after a configurable timeout (e.g.,
10 times the RTT in our current implementation). Running
entirely in user-space, the performance of the reliable message
passing module is good enough to saturate a 10Gbps link
(Section VIII-A.2).

Since our goal is to reliably transmit remote actor mes-
sages over an inter-connected L2 network, we do not use
user-level TCP [54], which may impose additional overhead
for reconstructing byte streams into messages. In addition,
packet-based reliable message passing provides additional
benefits during flow migration and replication. Because the
response in 2nd request-response step of flow migration is
sent as a packet using the same path as the dataplane packets
(Section VI-B.1), reliable actor message passing enables us
to implement loss-avoidance migration (Section VI-B.2) with
ease.

VIII. EVALUATION

We evaluate NFVactor on a testbed with 4 Dell
R430 servers, each equipped with an Intel Xeon E5-2650 CPU
running at 2.30GHz with 20 logical CPU cores, 4GB memory
and 2 Intel X710 10Gb NICs. The topology of the testbed is
shown in Fig. 6. The servers are connected through a 10GB
Dell Ethernet switch. We use a single server to generate the
traffic. We set up 6 virtual switches on another server, which
are capable of handling input traffic at 10Gbps line rate and
do not render bottlenecks. The rest of the two servers are used
to run runtimes.

In each server, the worker thread of each runtime is pinned
to a dedicated logical core, while the RPC threads of all the
runtimes are collectively pinned to logical core 0 to minimize
the performance impact on the worker thread. To generate test
traffic, we rely on the traffic generation module of BESS [25],
which has been used for testing complex NFV system [2] and
is capable of generating input traffic up to 10Gbps (at around
14Mpps) with 64-byte packets.

A. Performance of the Runtime

1) Packet Processing Throughput and Latency: We first
evaluate the packet processing throughput (number of packets

— == Baseline 3.0-
34'5 == NFVactor o == Baseline
a 40 wa Libcaf, 1 thread S 2.5 = NFVactor
=35 == Libcaf, 2 threads 0 & == Libcaf, 1 thread
3.0 O £ 2.0 = Libcaf, 2 threads
325 o<
<50 o g 1.5-
[=) <5
315 £ 1.0
= 1.0 i
= 27 05-
0.5 g
0- < i

©
=)

Firewall NAT Load IPS Firewall NAT Load
balancer balancer
Network Function Network Function
(a) (b)
% 70 T _ e . NFVactor
55 T - Libcaf

geo % s
F 50 g‘g 4 -
c ‘\
S 40- Sa3 S
=1 o \,
S 30- 8L, w_
[~.,
£20 =5 ~u
g =1
o 10- S e----- [P S—— [ST— ! - -
0 —— . 64 128 256 512 1024

NFVactor Libcaf Message Size

(©) d)

Fig. 7. Performance of the Runtime.

processed per second) and latency (difference between the time
that a packet enters the runtime to the time this packet is
released from the runtime) of the NFVactor runtime by running
the four implemented NFs. The traffic generator produces
flows with 64-byte TCP packets, a 10pps (packets per second)
flow rate and a 10-second active time. The overall packet
rate of the input traffic is SMpps. For comparison, we also
evaluate performance of libcaf runtime to verify the perfor-
mance advantages of our customized actor runtime. We vary
the number of worker threads used by the libcaf runtime to
reflect the performance overhead of thread synchronization.
Finally, we compare with four baseline NFs. The baseline
NFs are implemented using a normal packet processing loop,
sharing similar processing logic as the process_pkt APIL. The
per-flow state in each baseline NF is stored in a fast hash
table [55] without using the actor abstraction. By comparing
with fast baseline NFs, we can observe the overhead imposed
by the actor runtime.

Fig. 7a and Fig. 7b show that NFVactor runtime achieves
significantly larger throughput and smaller processing latency
than libcaf runtime, and the performance of the NFs in NFVac-
tor is close to that of the baseline NFs, as the actor abstraction
does introduce a small overhead. According to Fig. 7a, when
the number of the worker threads used by libcaf is increased,
the total throughput drops by a small margin, due to increased
synchronization overhead between the polling thread and
multiple worker threads.

2) Actor Launch Time and Sending Rate of Remote Actor
Messages: An important performance indicator of actor sys-
tem is the actor launch time [23]. In NFVactor, the actor
launch time is measured as the interval between the time
when the first packet of a flow is received by the runtime
and the time when the flow actor is created to handle the
first packet. A small launch time indicates that the runtime
is capable of creating a large number of actors instantly
to handle the increasing workload. Fig. 7c illustrates the

596

14 - - FA-NAT-LB =) 1.0- e e
@ e FANAT-IPS - iy
212- / -~ Iy
[y ¢ 2 0.8- I
S % » i
=10- et 1
5 X 4 w 0.6 =
a 8 7 a '.' 1
56 - Co4
=1 s il
_g 4- /" 0.2 il
= }‘, il -- FW-NAT-LB

’ l/ | |
0.0 ==t —. FW-NAT-IPS
12 4 6 8 10 12 14 0 20 40 60 80 100
of runtimes Latency(us)
(a) (b)

1.6- T m — Throughput
m 14 : Ew-::l-:_PBS %4' - inco_ming traffic
ol = -« runtimel
Q15 T:-;’ .- runtime2
g 33 runtime3
= 1.0- %\ ~ runtime4
8-0.8' =2 runtime5
= <

| £
g\O.G £
©0.4- = 1-
< I
£o2 g
0.0 Mow MR IR SN e MM OO0 T e
12 3 4 5 6 7 0 10 20 30 40 50 60 70
Runtime ID Time (s)
(c) (d) Dynamic scaling.
Fig. 8. System scalability.

average actor launch time achieved by NFVactor runtime and
libcaf runtime respectively, using the same input traffic as
in Section VIII-A.1. We see that the average actor launch time
in NFVactor is much smaller than that of the libcaf runtime,
as NFVactor pre-allocates flow actors into a ring buffer to
speed-up actor launch time.

Fig. 7d shows the average sending rate of remote actor mes-
sages between two runtimes running on different servers. For
various message sizes, the message rate achieved by NFVac-
tor is significantly larger than that of libcaf. Especially, when
the message size is larger than 256 bytes, we measure the
consumed bandwidth of NFVactor to be around 9.1Gbps,
which is close to the 10Gbps line rate. This result reflects
that our user-space message passing module can significantly
improve the performance of remote actor communication.

B. System Scalability

We now evaluate the maximum packet processing through-
put of NFVactor as the number of runtimes increases. We use
two servers and configure the runtimes with service chain
‘firewall (FW) — NAT — load balancer (LB)’ (in one set of
experiments) or service chain ‘firewall (FW) — NAT — IDS’
(in another set of experiments). To fully stress the system,
we configure traffic generators to produce a mixture of short
flows and long flows up to 10Gbps line rate. A short flow
consists of 64-byte TCP packets with a 10pps packet rate and
lasts for 1 second. A long flow consists of 64-byte TCP packets
with a 10pps packet rate and lasts for 10 seconds. Each type
of flow consumes half of generated bandwidth. We gradually
increase the number of active runtimes and collect the total
throughput achieved by the runtimes.

Fig. 8a shows the overall packet processing throughput
increases linearly with the increase of the runtimes. Over-
all throughput of 14.49Mpps (9.70Gbps) and 14.39Mpps
(9.67Gbps) are achieved when the runtimes run service chain

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 3, MARCH 2019

‘FW — NAT — LB’and ‘FW — NAT — IDS’, respectively.
This verifies that NFVactor can approach 10Gbps line-rate
packet processing for 64-byte small packets, even when the
input traffic consists of many short-lived flows.

Fig. 8b shows the CDF of packet processing latencies,
collected during a 20s period when 10 and 14 runtimes are
used to run ‘FW — NAT — LB’ and ‘FW — NAT — IDS’,
respectively. The average latency for both service chain is
around 20us.

We next run the two service chains concurrently in the
system. We run 5 runtimes in one server configured with
‘FW — NAT — LB’ and 7 runtimes in another server config-
ured with ‘FW — NAT — IDS’. The input traffic has a total
packet rate of 14.50Mpps and shares the same mixed pattern
to produce Fig. 8a. The input traffic is evenly split among
the two service chains. Fig. 8c shows the throughput of each
runtime. We can see that a total throughput of 7.25Mpps can be
reached by each service chain. The workload is also evenly
balanced among runtimes in the same server, demonstrating
the effectiveness of our virtual switches for load balancing
under mixed short and long flows.

Finally, the performance of the dynamic scaling con-
trolled by the coordinator is shown in Fig. 8d. We initialize
the cluster with two runtimes (runtime 1 and 2) running
‘FW — NAT — IDS’ service chain. 40K flows are injected
into the cluster, and each flow lasts for 60 seconds. For the first
15 seconds, the total packet rate of the 40K flows is increased
from OMpps to 4.2Mpps. For the last 45 seconds, the total
packet rate decreases 0.7Mpps for every 7 seconds, until it
reaches OMpps. Starting from the 10th second in Fig. 8d,
runtime 1 and 2 are detected as overloaded and their workload
is gradually migrated away to runtime 4 and 5, respectively.
With flow migration, NFVactor can effectively scale-out and
eliminate system overload created by long-lasting flows, as the
achieved throughout always matches the input traffic during
the experiment.

C. Performance of Flow Replication

In this set of experiments, input flows are produced fol-
lowing the same mixed pattern to produce Fig. 8a. The
coordinator chooses two servers and launches the same number
of runtimes on them. The coordinator instructs each runtime
on a server to replicate its flows to a distinct runtime in
another server. We gradually increase packet rate of the input
traffic and the number of runtimes running on each server,
to investigate throughput and scalability when flow replication
is enabled.

Fig. 9a shows that both service chains can scale up to handle
the handle the maximum replication packet rate of 5.22Mpps
when six runtimes running on a server concurrently replicate
their traffic to six replica runtimes on another server. We can
see that the maximum replication packet rate can not reach the
line rate, which is around 14.4Mpps for 64-byte packets. This
is because when the replication throughput reaches 5.22Mpps,
the bandwidth for transmitting replication messages reaches
around 10Gbps, fully saturating the link for transmitting the
replication messages. If the bandwidth of this link is increased

DUAN et al.: NFVACTOR: A RESILIENT NFV SYSTEM USING THE DISTRIBUTED ACTOR MODEL 597

5= FW-NAT-LB Ee—c—B=uell e
@ e FW-NAT-IPS A 10 i,/:"
FW-NAT-LB, /' L)
4 <lpcaf ' & 08 :E
= / &
S3 o w 0.6 i
| 5 {
o2 Coas i
o wu.” et 0.2 ‘l
= N RS ot D E i ' -~ FW-NAT-IPS
0 € | ‘ | | | 0.0- ———= —FW-NATB
1 2 3 4 5 6 0 10 20 30 40 50 60
of replicated runtimes Latency(us)
(a) (b)
Fig. 9. Performance of flow replication.

TABLE IV
RECOVERY TIME AND # OF FLOWS RECOVERED

FW—-NAT—-LB FW—NAT—IDS

66.6ms

FW—NAT—LB, libcaf
934.2ms

Average recovery time

for each runtime

Number of flows recovered
on each runtime

65.3ms

at least 87k flows | at least 87k flows | at least 20k flows

to 40Gbps or more, the maximum replication throughput
achieved by NFVactor can be further improved. Finally, when
the libcaf version of implementation is used, the replication
throughput is significantly lower.

Fig. 9b shows the CDF of packet processing latencies
of NFVactor when flow replication is enabled. The latency
measured in this experiment is difference between the time
that the packet enters replication source runtime to the time
this packet is released from the replication target runtime. For
both service chains, the number of runtimes on each of the
two servers is 6 while the input packet rate is 5.22Mpps. The
average latency is around 20us for both service chains.

Table IV shows the average recovery time of 6 replication
target runtimes. We simulate a server crash which is a common
failure in datacenters by shutting down all the 6 replication
source runtimes simultaneously. We can see that NFVactor has
a much shorter recovery time than the libcaf version even when
processing a larger number of flows.

1) Comparison With FTMB: Due to the unavailability of
FTMB’s source code, we only compare the performance of
flow replication in NFVactor with the reported performance
of FTMB paper [8]. While OpenNF [15] can also be used for
failure resilience, its performance is not good enough for a
direct comparison according to Section VIII-D.

Both systems achieve throughput up to millions of pack-
ets per second and recovery time of tens of milliseconds
with flow replication enabled. NFVactor has a more sta-
ble packet processing latency (according to Fig. 9b, smaller
than 70 microseconds, with an average of 20 microseconds)
because it does not need to checkpoint the runtime, whereas
FTMB introduces a relatively high packet processing latency
(up to 3000 microseconds) when checkpointing kicks in.
Finally, the recovery time complexity of FTMB is O(m) where
m is the number of packet logs replayed during recovery, while
the recovery complexity of NFVactor is O(n) where n is the
number of recovered flows.

@ == OpenNF W 700 = FANAT-LB *
E200 w Libcaf cE - FA-NAT-IPS P
9] = NFVactor S T 600 g
S E 150 BE el
=5 05500 e
© c o e >
.2 100 € 6400 o
s °) 77
o 29 390 e
S 50 >35 I/
1S <g
IS 200 _.*
ST | S .
500 1000 90k 150k 300k 450k 600k
of migrated flows Total # of migrated flows
(a) (b)
Fig. 10. Flow migration completion time.

D. Performance of Flow Migration

We first compare flow migration performance among
NFVactor, libcaf runtime, and OpenNF. Both NFVactor and
libcaf runtime run the example firewall. We also port the exam-
ple firewall to work with OpenNF. We send the same number
of flows to the three firewalls and each flow has a 10pps packet
rate. In Fig. 10a, the time to migrate the respective number of
flows is much smaller with NFVactor (0.7ms for 500 flows and
1.5ms for 1000 flows), when compared to OpenNF (101ms for
500 flows and 217ms for 1000 flows) and the libcaf runtime
(59ms for 500 flows and 105ms for 1000 flows). Due to
efficient runtime design, NFVactor can out-perform OpenNF
by 144 times when migrating 1000 flows. The flow migration
time complexities of both OpenNF and NFVactor are O(n)
where n is the number of flows for migration.

We next show the time taken for concurrently migrating a
large number of flows among multiple pairs of runtimes. The
traffic generator produces a number of flows with a 10pps flow
rate, each lasting for 1 minute. The flows are first sent to three
runtimes running in one server. Then the coordinator instructs
the three runtimes to concurrently migrate all the flows to three
runtimes running in another server.

Fig. 10b shows the average migration completion time of
the three migration source runtimes. The standard deviation
of the completion time is shown as error bar in Fig. 10b as
well. NFVactor can migrate 600K flows (with 6Mpps total
throughput) from three migration source runtimes running
in one server to three migration target runtimes running in
another server using around 700ms. Besides the performance
boost enabled by efficient runtime design, the decentralized
flow migration also contributes to the performance. Since
the flow migration are concurrently carried out among three
pairs of runtimes, each pair of runtime only needs migrates
around 200K flows. This significantly reduce the eventual flow
migration completion time for all the 600K flows. If the 600K
flows are sequentially migrated, the resulted flow migration
completion time may be prolonged to over 2 seconds. Finally,
throughout the evaluation in Fig. 10b, we observe zero packet
loss caused by our flow migration protocol.

IX. DISCUSSIONS

NFVactor holds a basic assumption about running in a clus-
ter where all the servers are connected through a high-speed
LAN network. Under this assumption, runtimes of NFVac-
torenjoy high-speed, low-latency network connections which

598

can deliver input packets at line rate and exchanges mes-
sages within microseconds. This is the basic assumption that
is shared by other high-performance NFV frameworks like
E2 [2], StatelessNF [38] and FTMB [8].

However, this assumption is violated when NF'Vactor runs in
a multi-network environment. Under this setting, the environ-
ment consists of multiple networks, which may be connected
over a slow WAN network. When packets are transmitted from
one network to another, they may experience prolonged trans-
mission delay and limited bandwidth due to complex routing
schemes of the WAN network. In this case, NFVactorcan not
achieve a similar performance as in a local cluster.

To avoid this, it is highly recommended that the network
operators divide a multi-network environment into distinct
clusters, guarantee high-performance LAN connection within
each cluster, and deploy different instances of NFVactor for
each cluster.

X. CONCLUSIONS AND FUTURE WORK

We have presented NFVactor, an NFV system using actor
model to achieve transparent and highly efficient failure
resilience. NFVactor advocates a novel one-flow-one-actor
principle to improve the parallelism and performance of
resilience operations, while the efficiency of the actor model is
guaranteed by a high-performance runtime. Our experiments
show that NFVactor achieves good scalability and high packet
processing speed, as well as fast flow migration and failure
recovery.

We identify two future directions to improve NFVac-
tor. First, we will continue to develop the runtime system
of NFVactor, making it faster and more robust. Second,
to facilitate porting existing NFs to NFVactor, we plan to
develop a compiler framework that can automatically trans-
form existing NF code to NFVactor-compatible code. This
may require parsing the structure of existing NF code, replac-
ing important API calls with NFVactor APIs, and automati-
cally implementing the APIs for releasing acquired resource.

ACKNOWLEDGMENT

The authors would like to thank all the reviewers for their
helpful comments on improving the paper. The major part of
this work was done when J. Duan was with The University of
Hong Kong, Hong Kong.

REFERENCES

[1]1 (2018). NFV White Paper. [Online]. Available: https://portal.etsi.org/
nfv/nfv_white_paper.pdf

[2] S. Palkar et al., “E2: A framework for NFV applications,” in Proc. 25th
Symp. Oper. Syst. Princ. (SOSP), 2015, pp. 121-136.

[3] A.Bremler-Barr, Y. Harchol, and D. Hay, “OpenBox: A software-defined
framework for developing, deploying, and managing network functions,”
in Proc. ACM SIGCOMM Conf. (SIGCOMM), 2016, pp. 511-524.

[4] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design and
implementation of a consolidated middlebox architecture,” presented as
the 9th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2012,
pp. 323-336.

[5] J. W. Anderson, R. Braud, R. Kapoor, G. Porter, and A. Vahdat,
“xOMB: Extensible open middleboxes with commodity servers,” in
Proc. ACM/IEEE Symp. Architectures Netw. Commun. Syst. (ANCS),
Oct. 2012, pp. 49-60.

[6] A. Gember, R. Grandl, A. Anand, T. Benson, and A. Akella, “Stratos:
Virtual middleboxes as first-class entities,” UW-Madison, Madison, WI,
USA, Tech. Rep. TR1771, 2012.

[7]

[8]

[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]
[20]
[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 3, MARCH 2019

W. Zhang et al., “OpenNetVM: A platform for high performance
network service chains,” in Proc. Workshop Hot Topics Middleboxes
Netw. Function Virtualization (HotMIddlebox), 2016, pp. 26-31.

J. Sherry et al., “Rollback-recovery for middleboxes,” in Proc. ACM
Conf. Special Interest Group Data Commun. (SIGCOMM), 2015,
pp. 227-240.

S. Rajagopalan, D. Williams, and H. Jamjoom, “Pico replication: A high
availability framework for middleboxes,” in Proc. 4th Annu. Symp. Cloud
Comput. (SOCC), 2013, pp. 1:1-1:15.

H. Ballani er al., “Enabling end-host network functions,” in Proc.
ACM Conf. Special Interest Group Data Commun. (SIGCOMM), 2015,
pp. 493-507.

(2018). Bro. [Online]. Available: https://www.bro.org/

S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and J. M. Smith,
“Implementing a distributed firewall,” in Proc. 7th ACM Conf. Comput.
Commun. Secur., 2000, pp. 190-199.
(2018). Linux Virtual Server.
linuxvirtualserver.org/

S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
“Split/merge: System support for elastic execution in virtual middle-
boxes,” presented as the 10th USENIX Symp. Netw. Syst. Design
Implement. (NSDI), 2013, pp. 227-240.

A. Gember-Jacobson et al., “OpenNF: Enabling innovation in network
function control,” in Proc. ACM Conf. SIGCOMM (SIGCOMM), 2014,
pp. 163-174.

Z. A. Qazi, M. Walls, A. Panda, V. Sekar, S. Ratnasamy, and S. Shenker,
“A high performance packet core for next generation cellular networks,”
in Proc. Conf. ACM Special Interest Group Data Commun. (SIGCOMM),
2017, pp. 348-361.

(2018). Hypertext Transfer Protocol (HTTP) Keep-Alive Header.
[Online]. Available: https://tools.ietf.org/id/draft-thomson-hybi-http-
timeout-01.html

(2018). FFmpeg. [Online]. Available: https:/ffmpeg.org/

(2018). File Transfer Protocol (FTP). [Online]. Available: https://tools.
ietf.org/html/rfc959.html

(2018). Netmap. [Online]. Available: info.iet.unipi.it/~luigi/netmap/
(2018). Squid Caching Proxy. [Online]. Available: www.squid-
cache.org/

G. A. Agha, “ACTORS: A model of concurrent computation in distrib-
uted systems,” MIT Artif. Intell. LAB, Cambridge, MA, USA, Tech.
Rep. AITR-844, 1985.

D. Charousset, R. Hiesgen, and T. C. Schmidt, “Revisiting actor pro-
gramming in C+4-” Comput. Lang. Syst. Struct., vol. 45, pp. 105-131,
Apr. 2016.

(2018). Intel Data Plane Development Kit.
http://dpdk.org/

(2018). Bess: Berkeley Extensible Software Switch. [Online]. Available:
https://github.com/NetSys/bess

(2018). The NFVActor Project. [Online]. Available: https://github.com/
duanjp8617/nfvactor

J. Hwang, K. K. Ramakrishnan, and T. Wood, “NetVM: High per-
formance and flexible networking using virtualization on commod-
ity platforms,” IEEE Trans. Netw. Service Manage., vol. 12, no. 1,
pp. 34-47, Mar. 2015.

J. Martins et al., “Clickos and the art of network function virtualiza-
tion,” in Proc. 11th USENIX Symp. Networked Syst. Design Implement.
(NSDI), 2014, pp. 459-473.

E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek,
“The click modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3,
pp. 263-297, Aug. 2000.

S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy,
“SoftNIC: A software NIC to augment hardware,” Dept. Elect. Eng.
Comput. Sci., Univ. California, Berkeley, Berkeley, CA, USA, Tech.
Rep., 2015.

W. Zhang, J. Hwang, S. Rajagopalan, K. Ramakrishnan, and T. Wood,
“Flurries: Countless fine-grained NFs for flexible per-flow customiza-
tion,” in Proc. 12th Int. Conf. Emerg. Netw. Exp. Technol. (CoNEXT),
2016, pp. 3—-17.

J. Duan, C. Wu, F. Le, A. X. Liu, and Y. Peng, “Dynamic scaling of
virtualized, distributed service chains: A case study of IMS,” IEEE J.
Sel. Areas Commun., vol. 35, no. 11, pp. 2501-2511, Nov. 2017.

Z. A. Qazi, P. K. Penumarthi, V. Sekar, V. Gopalakrishnan, K. Joshi,
and S. R. Das, “KLEIN: A minimally disruptive design for an elastic
cellular core,” in Proc. Symp. SDN Res. (SOSR), 2016, pp. 2:1-2:12.
M. Bagaa, T. Taleb, A. Laghrissi, and A. Ksentini, “Efficient virtual
evolved packet core deployment across multiple cloud domains,” in Proc.
IEEE Wireless Commun. Netw. Conf. (WCNC), Apr. 2018, pp. 1-6.

[Online]. Available: www.

[Online]. Available:

DUAN et al.: NFVACTOR: A RESILIENT NFV SYSTEM USING THE DISTRIBUTED ACTOR MODEL

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]
[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

L. Liu, H. Xu, Z. Niu, P. Wang, and D. Han, “U-haul: Efficient state
migration in nfv,” in Proc. 7th ACM SIGOPS Asia—Pacific Workshop
Syst. (APSys), 2016, p. 2:1-2:8.

J. Khalid, A. Gember-Jacobson, R. Michael, A. Abhashkumar, and
A. Akella, “Paving the way for NFV: Simplifying middlebox modifica-
tions using statealyzr,” in Proc. 13th USENIX Symp. Netw. Syst. Design
Implement. (NSDI), 2016, pp. 239-253.

D. L. C. Dutra, M. Bagaa, T. Taleb, and K. Samdanis, “Ensuring end-to-
end QoS based on multi-paths routing using SDN technology,” in Proc.
IEEE Global Commun. Conf., Dec. 2017, pp. 1-6.

M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network
functions: Breaking the tight coupling of state and processing,” in
Proc. 14th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2017,
pp. 97-112.

D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and
M. Rosenblum, “Fast crash recovery in ramcloud,” in Proc. 23rd ACM
Symp. Oper. Syst. Princ., 2011, pp. 29-41.

T. Taleb, M. Bagaa, and A. Ksentini, “User mobility-aware virtual
network function placement for virtual 5G network infrastructure,” in
Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2015, pp. 3879-3884.

A. Laghrissi, T. Taleb, M. Bagaa, and H. Flinck, “Towards edge slicing:
VNF placement algorithms for a dynamic & Realistic edge cloud
environment,” in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Dec. 2017, pp. 1-6.

M. Bagaa, T. Taleb, and A. Ksentini, “Service-aware network
function placement for efficient traffic handling in carrier cloud,”
in Proc. IEEE Wireless Commun. Netw. Conf., Apr. 2014,
pp. 2402-2407.

A. Ksentini, M. Bagaa, and T. Taleb, “On using SDN in 5G:
The controller placement problem,” in Proc. IEEE Global Commun.
Conf. (GLOBECOM), Dec. 2016, pp. 1-6.

R. A. Addad, T. Taleb, M. Bagaa, D. Dutra, and H. Flinck, “Towards
modeling cross-domain network slices for 5G,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Dec. 2018, pp. 1-6.

(2018). Erlang. [Online]. Available: https://www.erlang.org/

(2018). Scala Akka. [Online]. Available: akka.io/

(2018). C++ Actor Framework. [Online]. Available: http://actor-
framework.org/

A. Newell, G. Kliot, I. Menache, A. Gopalan, S. Akiyama, and
M. Silberstein, “Optimizing distributed actor systems for dynamic inter-
active services,” in Proc. 11th Eur. Conf. Comput. Syst. (EuroSys), 2016,
pp. 38:1-38:15.

S. Mohindra, D. Hook, A. Prout, A.-H. Sanh, A. Tran, and C. Yee, “Big
data analysis using distributed actors framework,” in Proc. [EEE High
Perform. Extreme Comput. Conf. (HPEC), 2013, pp. 1-5.

(2018). Orleans. [Online]. Available: research.microsoft.com/en-
us/projects/orleans/

(2018). Docker Container. [Online]. Available: https://www.docker.com/
A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to
bibliographic search,” Commun. ACM, vol. 18, no. 6, pp. 333-340,
Jun. 1975.

P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: Wait-free
coordination for Internet-scale systems,” in Proc. Conf. USENIX Annu.
Tech. Conf. (ATC), 2010, p. 11.

E. Jeong, S. Woo, M. Jamshed, and H. Jeong, “mTCP: A highly scalable
user-level TCP stack for multicore systems,” in Proc. 11th USENIX
Symp. Networked Syst. Design Implement. (NSDI), 2014, pp. 489-502.
R. Pagh and F. F. Rodler, “Cuckoo hashing,” in Proc. 9th Annu. Eur.
Symp. Algorithms, 2001.

Jingpu Duan received the B.E. degree from the
Huazhong University of Science and Technology
in 2013 and the Ph.D. degree from The University
of Hong Kong in 2018. He is currently an Assistant
Researcher with the Institute of Future Networks,
Southern University of Science and Technology. His
research interests include designing and implement-
ing high-performance networking systems.

599

Xiaodong Yi received the B.E. degree from the
Department of Computer Science, Huazhong Uni-
versity of Science and Technology, in 2017. He is
currently pursuing the Ph.D. degree with the Depart-
ment of Computer Science, The University of
Hong Kong. His research interests include network
function virtualization, GPU, and deep learning.

Shixiong Zhao received the B.E. degree from The
University of Hong Kong and the M.Sc. degree
from The Hong Kong University of Science and
Technology. He is currently pursuing the Ph.D.
degree with the Department of Computer Science,
The University of Hong Kong. His research interests
include distributed systems for high-performance
computing, de-centralized distributed systems, and
system security.

Chuan Wu received the B.E. and M.E. degrees
from Tsinghua University, China, in 2000 and 2002,
respectively, and the Ph.D. degree from the Uni-
versity of Toronto, Canada, in 2008. She is cur-
rently an Associate Professor with the Department
of Computer Science, The University of Hong Kong.
Her research interests include cloud computing, net-
work function virtualization, and distributed machine
learning.

Heming Cui received the Ph.D. degree from
Columbia University, New York City, NY, USA,
in 2014. He is currently an Assistant Professor
with the Department of Computer Science, The
University of Hong Kong. His research interests
include operating systems, programming languages,
distributed systems, and cloud computing, with a
particular focus on building software infrastructures
and tools to improve reliability and security of
real-world software.

Franck Le received the Ph.D. degree from
Carnegie Mellon University, Pittsburgh, PA, USA,
and the Diplome d’Ingenieur degree from the Ecole
Nationale Superieure des Telecommunications de
Bretagne, France. He is currently a Researcher with
the IBM T. J. Watson Center, Yorktown Heights, NY,
USA.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

