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Abstract—Modern large language models (LLMs) serving
systems address distributed deployment challenges through two
key techniques: distributed model partitioning for parallel
computation across accelerators and quantization for reducing
parameter size. While existing systems assume homogeneous
GPU environments, we reveal significant untapped potential in
heterogeneous systems with mixed-capacity accelerators where
two critical limitations persist: (1) uniform partitioning and
quantization strategies fail to adapt to hardware heterogeneity,
exacerbating resource imbalance, and (2) decoupled optimization
of partitioning and quantization overlooks critical performance
synergies between these techniques. We present SplitQuant, a
phase-aware distributed serving system that co-optimizes mixed-
precision quantization, phase-aware model partitioning, and
micro-batch sizing for heterogeneous environments. Our ap-
proach combines analytical modeling of quality-runtime tradeoffs
with a lightweight planning algorithm to maximize throughput
while preserving user-specified model quality targets. Evaluations
across 10 production clusters show SplitQuant achieves up
to 2.34x (1.61x mean) higher throughput than state-of-the-
art approaches without violating accuracy targets. Our results
underscore the value of co-designing quantization and model
partitioning strategies for heterogeneous environments.

Index Terms—Large Language Models (LLMs), Inference,
Heterogeneous Computing, Model Partitioning, Quantization

I. INTRODUCTION

Large language models (LLMs) [1]-[4] have demonstrated
unprecedented capabilities across diverse tasks. The outstand-
ing model performance is largely attributed to a very large
model size ranging from a few hundred million to even half
a trillion parameters. Serving a trained LLM is also resource-
demanding and cost-intensive, as common LLMs cannot fit
into a single GPU, therefore, multiple GPUs are required for
distributed inference.

To cope with the massive size of LLMs, model partition and
compression techniques have been proposed to enable their ef-
ficient deployment in practice. Contemporary frameworks such
as VLLM [5], SGLang [6], and TensorRT-LLM [7] leverage
tensor parallelism (TP) [8] and pipeline parallelism (PP) [9] to
perform model partition at intra- and inter-operator granularity,
coupled with quantization as main compression schemes [10],
[11], converting weights to lower-precision formats (e.g., 8-
bit integers) to reduce the memory footprint. However, the
existing solutions are mainly designed for models serving
on homogeneous clusters, limiting their performance in a
heterogeneous cluster.

While newly built machine learning (ML) clusters typi-
cally employ homogeneous GPUs, production environments
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Fig. 1: Statistics from our production cluster. (a) Distribution
of GPU types in the cluster. (b) Monthly average utilization
rates per GPU type. Usage percent is effective GPU hours
divided by total GPU available hours.

frequently exhibit hardware heterogeneity, incorporating GPU
models from different generations that were purchased at
different times. Utilization of different types of GPUs may
differ substantially. Fig. 1 shows the proportion of different
GPUs in a production cluster, with fewer percentages of high-
calibre GPUs (NVIDIA A100) the majority being relatively
low-calibre inference GPUs (such as T4, V100). The utiliza-
tion rate of other GPUs is much lower than that of A100,
which is used intensively for both training and inference of
large models nowadays, for the best performance. Efficiently
exploiting available heterogeneous GPUs for LLM serving
is worthwhile to explore, to fully utilize available resources
and reduce the cost of provisioning LLM-enabled applications.

Existing PP paradigms evenly partition model operations
across homogeneous GPUs, leading to suboptimal resource
utilization in heterogeneous clusters: High-capacity GPUs
remain underutilized while low-memory devices risk out-of-
memory (OOM) errors. The prior studies of models serving on
heterogeneous clusters [12] focus on the partition of encoder-
based transformer models. However, mainstream LLMs with
decoder-only structures contain two phases during inference:
prompt processing (prefill) and token generation (decode).
While the former phase is similar to the inference of encoder-
based transformers, the latter has a totally different pattern
(see Sec. II-A), making the previous partition solutions not
suitable. Crucially, the relative duration of these phases varies
dynamically based on prompt length and output token count,
a variance further exacerbated in heterogeneous clusters. Ex-
isting approaches that optimize solely for the prefill phase



thus yield poor end-to-end performance. Additionally, extra
memory required for pre- and post-processing during LLM
inference, such as text embedding for converting input tokens
to word vectors, should also be considered, especially when
utilizing GPUs with limited memory.

When the model is partitioned among heterogeneous GPUs,
adopting a uniform quantization precision across all model lay-
ers in different types of GPUs is always suboptimal. Uniform
quantization strategy can select a precision, e.g., INT4, that
is suitable for GPUs with lower memory to avoid the OOM
(out of memory) problem, but causes a notable portion of
memory underutilization for those with abundant GPU mem-
ory. Adaptive mixed-precision quantization for LLM, which is
not investigated in the literature [11], [13], is more desirable.
By using higher precision for model weights on GPUs with
more available memory instead of forcing them to use the
same one in those low-calibre GPUs, adaptive mixed-precision
quantization can not only avoid memory underutilization but
also promote the model quality as well.

Quantization-aware partitioning introduces additional sys-
tem challenges due to hardware heterogeneity. Variations in
arithmetic intensity (FLOPs/Bytes) and hardware support for
quantization primitives (e.g., tensor cores) mean even identical
bitwidths yield divergent performance across devices. Further-
more, layers exhibit varying quantization sensitivity, requiring
rigorous modeling of the accuracy-performance tradeoff to
maximize throughput under user-specified quality constraints.

In this work, we present SplitQuant, a novel system for
efficient LLM generative serving on heterogeneous GPU clus-
ters. When using low-capability GPUs that may struggle to
meet real-time SLOs, SplitQuant focuses on efficient process-
ing of offline serving workloads. It adopts adaptive model
quantization, phase-aware model partition, and efficient micro-
batch scheduling for LLM pipeline serving. Given the LLM,
workload profile, cluster resources, and user-specified quality
targets, it jointly decides on quantization precisions, model
layer partition, and micro-batch sizing. Our contributions can
be summarized as follows:

> We provide a cost model that details the memory require-
ments of LLM serving under a mixed-precision quantization
scheme. We learn a linear regression model to accurately pre-
dict the latency of mixed-precision LLM inference workloads
with varying sequence lengths and batch sizes based on their
phase-aware computational characteristics.

> We introduce adaptive mixed precision in the search
space for the heterogeneous LLM pipeline serving and provide
a variance indicator to measure the sensitivity of the layer
towards the quantization. We develop an iterative algorithm
that first explores possible GPU orderings and different (phase,
micro-batch size) pairs in the pruned search space, and then
solves an integer linear programming (ILP) problem to deter-
mine the best partition and quantization bitwidths.

> We present a prototype of SplitQuant. To validate its
efficacy, we experiment across 10 heterogeneous GPU clusters
comprising prevalent architectures (T4, P100, V100, A100).
Our evaluation shows that SplitQuant achieves up to 2.34x
throughput improvement (1.61x on average) compared to the
latest approaches. SplitQuant is a general-purpose solution that

Fig. 2: Two phases in LLM generative serving: (Top) Prefill
phase takes the prompt sequence to generate the initial key-
value pairs. (Bottom) Decode phase takes previously gener-
ated token & stored KV pairs to generate the next token.

can be adapted to other accelerators [14].

II. BACKGROUND AND MOTIVATION
A. Generative Inference of LLM

LLM generally refers to a suite of decoder-only transformer
models with large parameter sizes [2], [3]. Unlike encoder-
based transformers like ViT-Huge [15] and Bert-Large [16]
that are sequence-to-sequence, LLMs generate tokens one by
one in an inference process that comprises two phases [2],
[3](Fig. 2): prefill and decode [17]. In the prefill phase, the
entire input prompt is processed to produce an initial key/value
(KV) cache. The decode phase then autoregressively generates
one token at a time, using the updated KV cache from previous
steps. In token generation, each layer of the LLM undergoes
a prefill phase followed by several passes in the decode phase
(an example is given in Fig. 2).

The time taken by the prefill and decode phases varies
to the prompt length and output token length. By sampling
10,000 conversations from the ShareGPT [18] dataset, we
found that the prompt length varies substantially: < 128
(14.20%), 129-512 (20.52%), 513-1024 (14.24%), 1025-2048
(14.53%) and others (36.51%). In the upper part of Fig. 3, we
evaluate the time required to process a batch of 8 sequences
and generate 32 tokens per sequence, with prompt lengths
of 1024 and 128 on OPT-13B and OPT-30B models [3],
respectively. The prefill time increases with the prompt length
(as it processes all the prompt tokens once) and is substantial
(> 36%) when the prompt is long. Unlike prefill time, the
decode time is determined by the number of generated tokens.
These characteristics make the inference pattern of LLM more
complicated than encoder-based transformers.

B. Heterogenous Model Parallelization

Tensor Parallelism (TP) [8] and Pipeline Parallelism (PP) [9],
[19] are widely used to distribute LLM parameters across
devices. TP partitions model weights, while PP splits the
model into stages and processes micro-batches in a pipelined
manner. TP has high communication overhead, making it
bandwidth-sensitive. In our work, we force intra-node TP
to avoid intensive cross-node communication and primarily
focus on analyzing PP. Workload balance across PP stages
is essential, as the slowest stage limits the overall pipeline
throughput.
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Fig. 3: Phase time decomposition with different precisions. x
indicates time on P100 compared to V100.

Deriving optimal partitions among heterogeneous devices is
challenging, especially when considering the two-phase token
generation. The lower part of Fig. 3 gives the execution time
of a single layer of the respective model with prompt length
512 and batch size 8. The execution time ratio when running
the same phase on different devices varies substantially. For
example, under FP16, the execution time of the layer in the
prefill phase on P100 is 14.53 x larger than that on V100, while
the execution time ratio is 7.29x for the decode phase. Since
the LLM inference time contains these two phases, pipeline
stage partitioning should consider the execution time of both
phases on each GPU.

Moreover, a full-fledged language model comprises an
embedding layer and an LM-head layer, which handle the
conversion between sentences and word vectors. In hetero-
geneous GPU clusters, these layers can exacerbate memory
and computational imbalances due to the diverse computing
and memory capabilities of different GPU models.

C. Online and Offline Serving

Modern LLM inference workloads fall into two broad
categories. Online serving processes real-time user requests
with variable prompt lengths and token generation counts.
Examples include chatbots, code assistants, and interactive
applications [1]. In this context, token generation latency is
critical, necessitating strict adherence to service-level objective
(SLO) requirements such as Time to First Token (TTFT) and
Time Between Tokens (TBT) [5], [20], [21]. Offline serving,
in contrast, comprises batched prompt processing optimized
for throughput rather than latency. Common use cases in-
clude document summarization [22], synthetic data generation,
model checkpoint evaluation [23], and long-context under-
standing tasks [24]. Offline serving workloads are commonly
predictable: dedicated servers handle specific tasks, enabling
practitioners to profile and optimize workloads in advance.

Lower-tier heterogeneous GPU clusters often struggle to
meet real-time serving demands. SplitQuant therefore special-
izes in offline serving scenarios where prompt length distri-
butions and token generation requirements can be predefined
or statistically predicted.

Opportunity 1: Phase-Aware Model Partition on Hetero-
geneous GPUs. By jointly modeling prefill and decode-phase
execution patterns while accounting for resource demands
from embedding and LM-head layers, we can establish a
comprehensive workload characterization. This characteriza-
tion enables phase-aware model partitioning that achieves sig-
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Fig. 4: BLOOM-3B (a) and OPT-1.3B (b) perplexity & accu-
racy under different quantization schemes. Smaller PPL means
the model is more confident in its prediction.

nificantly improved performance in offline serving deployment
over heterogeneous GPU environments.

D. Quantization in LLM

Quantization is a model compression technique that maps
high-precision values, such as those stored in FP16, to their
low-precision counterparts. For symmetric quantization, the
input data or model weight distribution is evenly partitioned
into a fixed number of bins. Each bin is rounded to an n-bit
quantized value using # = [*2=], where z is the original
value in floating-point format, qu and s, are the zero-point
and scaling factor, respectively, [-] is the rounding function
and 7 is the resulting quantized value in lower-precision form.
For each element x € vector x, the scaling factor is derived
as s, = *meg—min where X;q: and X, are maximum
and minimum values of the vector, and b is the bitwidth.
Dequantization is done with £ = s,% + q,, where Z is the
dequantized value in floating point.

LLM Quantization Schemes. LLMs typically store weights
in FP16/BF16 formats. The colossal memory footprint of these
weights necessitates further compression for efficient serving.
For instance, INT8 quantization halves weight storage by
reducing precision. Standard LLM quantization approaches
fall into two categories: (1) Weight-Activation quantization
(e.g., SmoothQuant [13] and ZeroQuant [25]), which quan-
tizes both weights and activations during inference (e.g.,
W4A4, W4AS, WBAS). (2) weight-only quantization, (e.g.,
GPTQ [11], AWQ [10]), where only weights are quantized
when loaded into GPU memory (e.g., W8A16, W4Al6).
In this work, we adopt weight-activation quantization using
bitsandbytes [26] and SmoothQuant [13]. For weight-only
quantization, we leverage GPTQ [11]’s optimized kernels. We
exclude discussion of configurations like W4A4 and W4AS8
due to their lack of practical speedups over W4A16 and
insufficient accuracy in integrated serving platforms such as
vLLM [5] and SGLang [6].

A limitation of existing LLM quantization works is that they
uniformly quantize all model layers to the same bit precision
by default (e.g., 3, 4, or 8 bits [11], [26]). This approach
results in either underutilized memory on high-end GPUs
or out-of-memory (OOM) issues on low-end GPUs within a
heterogeneous cluster. The root cause is that different types of
GPUs are unable to select the most appropriate precisions to
align with their diverse capabilities.
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Fig. 5: Execution time of prefill and decode phases under
different precisions and batch sizes.

Opportunity 2: Adaptive Quantization for Better Accuracy
and Speed. We advocate adaptive quantization by choosing
potentially different bitwidths for model layers on different
GPUs, to better utilize the available memory, as well as to
improve model quality and computation speed as compared
to uniform quantization. We illustrate the benefits of adaptive
quantization as follows:

1. Adaptive quantization can lead to better model accuracy.
We run BLOOM-3B1 [2] and OPT-1.3B with different preci-
sion setups on A100 and evaluate the perplexity [27], on three
text datasets [28]-[30]. PPL measures how well the model
predicts the next word in a sequence, the lower the better.
We also measure the model accuracy on popular zero-shot
question-answering benchmarks LAMBADA [31], ARC [32]
and PIQA [33]; We use calibration data from the C4 dataset
to determine quantization statistics. In Fig. 4, 'mixed4-8’ and
’mixed3-4’ denote per-layer stochastic quantization strategies
employing random bit-width allocations of {4,8} and {3,4},
respectively. Results show mixed-precision quantization pre-
serves model accuracy more effectively than uniform low-
bit approaches by strategically allocating higher bit-widths to
minimize critical weight compression.

2. Adaptive quantization speeds up inference. The decode
phase of LLM inference is predominantly memory-bound, ex-
acerbated by the widening compute-to-memory gap in modern
GPUs (e.g., T4, A100 200x FLOPs/Bytes intensity). Quanti-
zation alleviates this bottleneck by reducing the volume of data
movement, as validated by prior work [34]. However, the per-
formance impact of quantization represents a trade-off: while
lower precision reduces memory traffic, it increases compute
overheads due to dequantization and arithmetic operations.
Consequently, the net speedup depends on device capabilities
(e.g., bandwidth and FLOPs) and workload characteristics
(i.e., input shape).

Fig. 5 shows how quantization performs with different
device types and input shapes. The latency is measured on
a single layer of OPT-30B with a prompt length of 512.
We observe that uniform low-precision quantization may not
always result in inference speed-up. Crucially, FP16 precision
retains computational advantages during prefill phases versus
low precisions (3,4 bit). When uniform quantization (e.g., to
INTS) leaves residual GPU memory capacity, selectively re-
placing layers with high-precision kernels (FP16) can optimize

TABLE I: Model performance comparison under different
layer quantizations. The best results are marked in bold.
Unselected layers are retained in FP16.

| Model | Layers Quantized to 4-bit | Avg. Perplexity  Avg. Accuracy (%) |
0-8 15.52 62.82
OPT-1.3b 8-16 15.78 62.49
16-24 15.98 61.67
0-10 17.65 60.71
BLOOM-3b 10-20 17.88 60.24
20-30 17.94 60.37

long-context processing. For example, deploying INTS-FP16
hybrid computation on V100 in such memory semi-abundant
scenarios reduces operational overhead.

E. Challenges

Adopting adaptive mixed-precision with an asymmetrically
partitioned model poses new challenges. Quantization bitwidth
(precision) selection must be considered jointly with layer
partition, as the same quantized kernel can perform differently
on different GPUs due to their precision support and vary
FLOPs/Bytes intensity, as shown in Fig. 3 and Fig. 5. For
example, T4 supports fast INT8 due to its tensor core, making
the execution time of the 8-bit layer comparable to FP16,
while V100’s INTS8 performance depends on the input shape.
Other factors, such as micro-batch size, prompt length, and
token generation number, also affect the kernel speed and
pipeline bubbles in the prefill and decode phases. To produce
an optimized inference execution plan, we should take into
account all these factors, which results in a complex problem
with a huge solution space.

First, determining the optimal inference execution plan
requires an accurate estimation of memory and latency across
devices under different precisions. Profiling every possible
combination of precision, GPU type, and input shape for all
partition cases would be very time-consuming. An efficient
cost model is needed to reduce the overhead. Second, different
layers in an LLM may exhibit different sensitivities to quanti-
zation, in terms of model performance impact, when quantized
to the same bit. Table I shows that selecting different layers
of LLMs for quantization can render different model qualities.
This finding highlights the importance of identifying a suitable
layer quantization sensitivity indicator to guide bits selection,
achieving the goal of reducing memory waste and promoting
model quality simultaneously. Last, due to the large solution
space of our joint decision-making problem, offline search for
optimal solutions can still be time-consuming. An efficient
algorithm is in need to effectively prune the solution space.

We design SplitQuant to handle all these challenges and
achieve significant performance gains of LLM serving on
heterogeneous clusters.

ITII. SPLITQUANT OVERVIEW

SplitQuant comprises an offline assigner and a distributed
model inference runtime, as illustrated in Fig. 6. The system
operates in three phases: 0 Input Configuration: Users
specify (i) the pre-trained LLM architecture, (ii) device re-
source configurations in the heterogeneous cluster, (iii) sup-
ported quantization precisions, (iv) a query workload profile
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TABLE II: Notation

hi Hidden dimension of Transformer layers ha Hidden dimension of 2nd MLP layer

v Batch size s Prompt length

t Index of current generated token bit Bitwidth of the current layer

dy Dimension of word embedding projection dy Dimension of position embedding
vocabs Vocabulary size Poss Max position embeddings

(including prompt/output length distributions, and maximum
request counts), and (v) a quality scalar to explicitly balance
model quality against resource efficiency (Sec. IV-C). 9
Offline Optimization: The assigner profiles memory/latency
characteristics across devices using GPU calibration payloads
to fit the cost model. Simultaneously, the Indicator Generator
quantifies per-layer accuracy degradation under varying bit-
widths. These inputs drive the optimizer to determine: (i) per-
layer quantization bits, (ii) cross-device layer partitioning, and
(iii) pipeline micro-batch sizes. Distributed Execution:
The runtime executes generation inference via the optimizer’s
plan. A centralized master engine handles preprocessing (token
embeddings) and postprocessing (logit-to-token conversion),
while dynamically adapting micro-batch sizes across genera-
tion phases. Each worker process manages one pipeline stage
spanning one or multiple (TP) dedicated GPUs.

IV. ASSIGNER DESIGN
A. Cost Model

Memory Cost Model. Memory is a first-class citizen in LLM
serving systems. The peak memory usage of pipeline LLM
serving is largely due to the model weights, the KV cache for
all requests, and the peak activation storage required by the
model layers across different inference phases.

For weights, we consider embedding weights (token em-
beddings of size vocabs; X d;, position embeddings of size
poss X dy, and projections of size 2 X hy xd; when hy # d;), the
LM head of size vocabs x di, and weights in decoder layers.
Embedding weights and the LM head usually stay in FP16
format and are not quantized. For decoder layers, only linear
and layer norm layers contribute to memory. The memory
requirement for quantized decoder layers with precision bit
is calculated as (4 x hf 4+ 2 x hy X hg) x 2L 4+ 6 x hy
or 4 X hy. For KV cache, we reserve it with a size equal
to the sum of the maximum generated token length (a.k.a,

context length) s and token generation number n = ¢,,,4,. The
memory size (in bytes) required by the KV cache for batched
requests is estimated as 2 X v(s+n)h X %, where bity,
is the bitwidth for representing elements in the KV cache. For
activation, we assess the peak activation by considering the
worst case scenario in embedding and decoder layers during
prefill and decode phases.

Latency Cost Model. Computation intensity varies substan-
tially across the prefill and decode phases. For instance, on
an NVIDIA V100 GPU, the arithmetic intensity values (48,
43) during the decode phase for OPT-175B and 30B models
with a batch size of 32 and a prompt length of 512 are notably
lower compared to those (9553, 6354) in the prefill phase. This
significant disparity in arithmetic intensity demands separate
cost modeling for different phases.

Therefore, we model the execution time of the prefill phase
as a function of FLOPs, based on v, s, vs and vs?. The decode
phase is dominated by memory access; we hence use the total
number of bytes accessed (a.k.a, MOPs), to model decoding
time, based on parameters v, v(t + s) and (¢ + s). We profile
the execution time of each phase on one decoder layer under
different precisions with common prompt lengths and batch
sizes. We then use interpolation among the sample points to
obtain a linear regression model for the execution time of one
decoder layer in each phase.

B. Indicator of Model Perturbation by Quantization

We build performance indicators for low-precision weight-
only kernels. INT8 kernel in this paper incurs little perfor-
mance degradation [26], [35], we take the same indicator
format with weight-only kernels for simplicity. State-of-the-art
weight-only quantization of LLMs focuses on linear operators
and [10], [11], [36] typically target the following objective:

Q" = arggnnﬁ(\fvx L(W) = WX - WX[z (D
Here L is the loss function, typically the minimum square
error (MSE). W denotes the set of original FP16 weights of
a decoder layer, and W is the set of quantized weights by
quantization method @, i.e., W = Q(W). X is the input
feature, which refers to the layer input that corresponds to a
small set of data points running through the network [11].
The goal is to identify the quantization method @Q* which
minimizes the loss. Previous research [37] has used the eigen-
values of the Hessian matrix H of £ with respect to W to
measure a layer’s sensitivity (error term) to quantization, as
w = M|Q(W) — W||3, where A is the top eigenvalue of Hes-
sian H. It requires computation of Hessian and quantization
error (|[Q(W) — W/|3) with respect to different precisions,
incurring large computation overhead.

We adopt a different approach to describe a layer’s sen-
sitivity upon quantization. One key observation is that the
quantization error originates from the Round function. For
a vector x, Round rounds each of its elements = to |x]
or [z]. We consider the round variance of quantization for
two widely applied rounding methods, i.e., deterministic and
stochastic [38], and derive an upper bound of the output
variance introduced by quantization.




Theorem 1: The variance of a linear operator’s output
after weight-only quantization using stochastic or deterministic
rounding is:

Var[WX] + Dy Sy iVar[X], Deterministic

Var[WX] = f Lo

Var[WX] + Dw s%,vgaa[x]2 + Var[X]), Stochastic
where Dvy is the dimension of model weights W and Sw is
the scaling factor.

The theorem shows that the variance introduced by quantiza-
tion in each linear operator is proportional to the dimension
and scaling factor of the model weights. The scaling factor Sw

is typically defined as Sw = w (for asymmetric
maz(abs(Wmazx), abs(szn

quantization), or Sy = So—17 (symmet-
ric quantization), where Wmaxz and Wmin are the largest
and smallest weight values in W. Given W, the scaling factor
is a function of quantization bitwidth b, denoted as Swy (b).
Proposition 1 (Variance Indicator): We measure the quan-
tization sensitivity of a decoder layer i using the estimated
quantization variance of the layer’s output, i.e.,
O;
wip = ZDWD (Sw, (6:))’G(X,) 3)

where O; is all linear operator within a layer, W, represents
the weight of linear operator o, X, is the input feature,
and G(X) equals 1Var[X] for deterministic or (E[X]? +
Var[X]) for stochastic, respectively.

The variance indicator w models the extra variance of output
of a layer due to weight quantization. We use this indicator
to rank the model performance impact of different quantiza-
tion precisions for different layers. Operations in G(X), i.e.,
mean and variance, are elementwise, with greatly reduced
computation complexity as compared to Hessian calculation

C. Optimizer

We propose an iterative algorithm that jointly optimizes
three key parameters: quantization bitwidths, micro-batch
sizes, and layer-to-device allocation, balancing the trade-off
between inference latency and output quality degradation in
LLM serving. Our approach systematically explores device
topologies and micro-batch configurations across prefill and
decode phases, then formulates and solves an integer linear
programming (ILP) problem to derive layer partitions and
bitwidth assignments under compute, memory, and quality
constraints. For large-scale deployments or scenarios where
ILP becomes computationally prohibitive, we introduce a
lightweight heuristic that retains near-optimal solutions while
reducing solve time by orders of magnitude.

Bitwidth Assignment and Layer Partition. We define a
binary variable z; ;; to indicate whether layer 7 is assigned
to device j with quantization bitwidth b (1 for yes, O for
no). The symbols B, 7, and £ represent the global batch size
(or maximum concurrent requests [5]), the micro-batch size
in the prefill phase, and the micro-batch size in the decode
phase, respectively. Let L denote the number of layers in the
LLM, and n the number of generated tokens. We assume
input sequences within a batch are padded and dynamically

chunked [21] into prompts of uniform length s, partitioned
into x chunks. The system comprises N devices indexed as
j € {1,2,...,N}, where M; denotes the memory capacity
of device j. BITs represents the set of available quantization
bitwidths, e.g., BITs = {3, 4,8, 16}.

B ec
maz + ’—z - 1-| (TZ - 1)T7r7l7,az + Tpre + Tdec)

(C))

The first parenthesized term in the objective (4) represents
the end-to-end serving latency for a batch’s token generation.
In a pipeline-parallel serving system, the latency of serving a
batch is the execution time of all pipeline stages plus p — 1
times the time taken by the slowest stage, where p is the
number of micro-batches [39]. In our LLM serving system,
the end-to-end inference latency consists of the execution
time of prefill and decode phases, corresponding to micro-
batch numbers p,,. = [%] and figee = [%] for the two
phases, respectively. Given n tokens to generate, the end-to-
end latency is the sum of the prefill time of the first token
and the decode time of the remaining n — 1 tokens. This
latency model can be readily adapted to handle variable-
output-length scenarios by estimating token generation based
on workload distribution. The second term in the objective
function corresponds to the overall degradation in model
quality, which we measure using a variance indicator.

Tpre Tdee T, and Ty.. are contingent upon Z (the
vector of all decision variables z; ; ;) as in constraints (5)-(8) ,
where T' ; is execution time on device j, T_m-‘”” is the maximum
execution cost across pipeline stages. ls’ob represents the
average prefill computatlon time per-batch under prefill micro-
batch size 7, and l ’2 is the average decode computation
time per-batch under decode micro-batch size £, where i, j,b
refers to the layer index, device index, and bitwidth, s is
the prompt length. We halve the token number (3) for time
estimation since decode cost increases linearly with each
additional token in the past sequence for the next token.
Costs are obtained from the latency cost models in Sec. IV-A.
Communication in our system is asynchronous, as specified in
constraint (7), Py and Py, denote the transmission data size
in the prefill and decode phases and f; is the communication
bandwidth between device j and its successor.

Constraints (9) - (11) ensure that only one bitwidth is
assigned to a given layer and each layer can only be placed on
a single device. Constraints (12)-(13) guarantee that memory
consumption on each device j does not exceed its available
memory capacity M, (which is typically the GPU memory
minus those consumed by cuda context), where M} “*" de-
notes memory reservation according to the maximum sequence
length, using our memory cost model. Constraint (13) of
the first device in the given device ordering accommodates
the memory requirement, M,,,;, of embeddings for LLM
pre or postprocessing as well. Constraints (15)-(16) ensure a
continuous layer partition solution, as adjacent layer can be
only placed on same or neighboring stage, where u; ; indicates
whether layer 7 is placed on device j. We solve the ILP using
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an off-the-shelf solver GUROBI [40].

Device Topology and Micro-batch Enumeration. We brute-
force enumerate device topology orderings and micro-batch
size combinations. Each device topology ordering represents
a sequential arrangement of pipeline stages, where one stage
maps to one physical device. All candidate orderings are
generated by permuting available devices. For tensor paral-
lelism (TP) [8], we restrict TP to intra-node configurations,
enumerating valid 2D device meshes (e.g., 2x8, 4x4) [39] that
respect node boundaries while generating permutations. The
micro-batch size set S contains integers u where 1 < u < B.
For each enumerated combination, we solve the corresponding
ILP formulation to determine optimal quantization bitwidth
assignments and layer partitioning.

Complexity of Algorithm. The solution space of the ILP
problem in Equation (4) has size (&) - |Bits|", where (&)
represents the number of possible layer partitions and |Bits|
denotes available bitwidth choices per layer. The algorithm re-
quires at most |G|-|S| enumerations (line 1), resulting in a total
search space complexity of |G| - |S] - (1%7) - | Bits|*. While this
combinatorial explosion raises scalability concerns, we can
efficiently address it with layer grouping and microbatch size
pruning. While the solving time remains acceptable for static
configurations (i.e., one-time cost per-model-per-cluster), the
algorithm’s computational cost grows exponentially with prob-
lem scale, creating a practical bottleneck. To address this, we
propose a heuristic approach that efficiently generates high-
quality solutions.

Heuristic: Bitwidth Transfer. Layer execution performance
differs between GPUs while memory usage remains fixed. This
allows precision conversion and layer partition adjustments be-
tween stages using transformation rules C = (b, byi, nums),
which coordinate bitwidth conversion and layer repartitioning
across pipeline stages. For example, (4,8, 2) replaces one 8-
bit pioneer layer with two 4-bit straggler layers, improving

TABLE III: Cluster Configurations

Cluster | Devices Cluster | Devices

1 1xV100-32G 2 2xV100-32G + 1xA100-40G
3 1xV100-32G + 1xA100-40G | 4 3xV100-32G + 1xA100-40G
5 3xT4-16G + 1xV100-32G 6 3xP100-12G + 1xV100-32G
7 4xT4-16G + 2xV100-32G 3 4xT4-16G

9 4xV100-32G 10 4xA100-40G

precision or reducing layers to accelerate the slowest stage.
Building on this framework, we develop a bitwidth transfer
heuristic for solving the ILP problem (4). First, we remove
the latency objective and solve a simplified ILP (adabits,
compared in Sec. VI-H). We generate all valid transformations,
identify the slowest stage (straggler), and iteratively apply
adjustments to improve the objective value. This heuristic is
effective in most cases.

V. IMPLEMENTATION

SplitQuant integrates with the vLLM (v0.8.5.dev) [5]
as a 964 LoC plugin, enabling phase-aware model
partitioning and mixed-precision inference across mod-
ern quantization schemes—GPTQ [11], AWQ [10], and
SmoothQuant [13]—alongside their optimized implementa-
tions (GPTQModel-Marlin [41], llmcompressor [42]). By
building atop vLLM, our design fully leverages existing in-
ference optimizations such as ChunkedPrefill [21], FlashAt-
tention [43], and PagedAttention.

To bridge compatibility gaps in legacy low-calibre hard-
ware (e.g., NVIDIA P100/T4 GPUs) and resolve edge cases
in heterogeneous configurations that trigger vLLM backend
failures, we implement a PyTorch [44]-native custom backend
(4,655 LoC) that bypasses these limitations. For resource
optimization, the Assigner component (1,355 LoC) integrates
GURORBTI’s [40] ILP solver to automate allocation decisions.

VI. EVALUATION
A. Experimental Setup

Models & Precision. We evaluate four major open-source
model families: Qwen2.5 [45], Llama-3 [23], and OPT [3],
spanning model sizes from 7B to 70B parameters to reflect
diverse serving scenarios. Specifically, we test Qwen2.5-7B-
Instruct, Qwen2.5-14B-Instruct, Qwen2.5-32B-Instruct, OPT-
30B, OPT-66B, and Llama3.3-70B-Instruct. We also test
BLOOM [2] to show the fidelity of the cost model. We
evaluate candidate precisions: BIT's = {3,4, 8,16}, the 3-bit
configuration is only configured by our custom quantization
backend due to incompatibilities in the standard engine.

Baselines. We mainly compare with two baseline policies: (1)
Uniform: A default configuration using uniform quantization
with evenly partitioned model layers. (2) Het: Enumerate
the parallelism schemes and applies uniform quantization but
performs workload-aware balancing across pipeline stages for
layer partitioning [12], [46]. For (1) and (2), we keep lowering
the precision from the maximum (i.e., FP16) until the model
can fit into the devices or no feasible solutions are available.
Workload. We focus on throughput-oriented offline workloads
processed by dedicated inference servers. We choose two
workloads: (1) Summarization, for which we sample prompts
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Fig. 7: The input and output length distribution of (a) CNN
Dailymail Summarization and (b) LooGLE long context un-
derstanding.

from the CNN Dailymail dataset [22], [47] as inputs. (2) Long
Context Understanding, where prompts are sampled from the
LooGLE dataset [24]. As shown in Fig. 7, LooGLE has much
longer input prompts (Avg. 97k) and shorter outputs (Avg.
63). For inference engine hyperparameter setup, we use 2048-
token chunked prefill (Sarathi-Serve [21]), 256 max concurrent
requests, and model-configured max sequence length. We then
synthesize batches of size 256, filtering them based on the
model’s max_position_embeddings to ensure compat-
ibility with the model’s maximum context length. For the
customized backend, considering the capacity, we synthesize a
smaller workload following the setup in the DeepSpeed paper
[19], with a batch size of 32, prompt size 512.

Metrics. We evaluate LLM serving performance by (1) output
token throughput (tkn/s) and (2) model quality, averaging per-
plexity (PPL) on WikiText2 [28], Penn Treebank (PTB) [29],
and C4 [30]. The weight calibration data consists of 128 ran-
domly selected 2048 token segments from the C4 dataset [30].
Clusters. Devices/nodes are in our production cluster. We
construct a number of heterogeneous clusters for model serv-
ing (clusters 2-7 in Table III), with a mix of common types
of GPUs. GPUs of the same type are located on the same
node, intra-connected with NV-LINK; Clusters 1,8,9,10 are
on a single node, and others consist of two nodes. Nodes
in Clusters 6,8 with 100Gbps Ethernet, others with 800Gbps
Ethernet; Each node is equipped with two CPUs, P100 nodes
with Intel Xeon CPU E5-2630 v4 2.2GHz, 64G RAM, V100
with Intel Xeon Gold 6230 2.1GHz, 128G RAM and 450G
RAM, T4 with Intel Xeon Platinum 8260 CPU, 108G RAM,
A100-40G with AMD EPYC 7H12 64-Core, 256G RAM. OS:
Ubuntu 20.04.6 LTS. We also show SplitQuant’s performance
on several homogeneous clusters (clusters 8-10 in Table III).
Experiment Settings Whether to use the heuristic method
and 6 is hand-tuned by selecting values from the set
{1,10, 50,100} to trade off the solving time, solution quality
target and the inference throughput. The problems have an av-
erage solving time of 18.38s (max: 115.981s) using GUROBI
and the heuristic method.

B. Fidelity of Cost Models

We evaluate our memory cost model on BLOOM of sizes
560m and 1b7, and OPT of 13b, 30b, and 66b, with prompt
length uniformly sampled between 128 and 512, the batch size
chosen among 2, 4, and 8, generated token length sampled

15000
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Fig. 8: Comparison of memory and latency reported by the
cost models and obtained in real systems.
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Fig. 9: End-to-end throughput comparison for heterogeneous
devices on VLLM backend. (a) CNN Daily Mail Summariza-
tion and (b) LooGLE long context understanding. The speedup
is derived by comparing with the Uniform baseline.

between 100 and 200, and randomly generated precision set-
ting from the available bitwidth set. We consider the memory
consumption of model weights and KV caching here and
compare the predicted memory usage with those collected
from real systems. We also create 50 unseen workloads with
different precisions, batch sizes (3,5 or 7), prompt lengths, and
past sequence lengths (384 or 768) for each device, evaluate
our latency cost model on them. Fig. 8 shows that the error of
the memory cost model is almost negligible, and the average
error of the latency cost model is less than 6%.

We observed that, during the prefill phase, the cost of
observations typically increases linearly with the workload.
However, it is noteworthy that in the decode phase, a notable
difference in latency occurs only when a substantial change in
context length (50-100) is present.

C. Serving in Heterogeneous Clusters

To isolate the impact of efficiency improvements from po-
tential quality trade-offs, we constrain our solution to maintain
at least the same model quality as the Uniform baseline. This
configuration excludes interference from the quality scalar 6,
which otherwise creates a trade-off between inference speed
and model accuracy (see Sec . VI-G). Our results thus reflect
pure efficiency gains.

Fig. 9 demonstrates that SplitQuant achieves an average
37% throughput improvement over the vLLM backend base-
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line. Notably, while the CNN DailyMail task exhibits sig-
nificantly higher token generation throughput than LooGLE
due to larger output sizes (299 vs. 63 tokens), both workloads
show comparable gains under SplitQuant, highlighting its con-
sistent performance across varying output lengths. The 14B-
Instruct model results reveal that heterogeneous partitioning
alone proves ineffective unless combined with adaptive mixed-
precision optimizations.

Fig. 10 evaluates SplitQuant in a more severe heteroge-
neous cluster environment with legacy low-calibre GPUs. The
Uniform baseline encounters OOM or fails to accommodate
the model in most configurations due to device capability mis-
matches. Even when using basic heterogeneous partitioning
(Het baseline), SplitQuant achieves an average 108% through-
put improvement by exploiting phase-aware optimizations.
These results suggest that increased hardware heterogeneity
amplifies SplitQuant’s optimization opportunities.

D. Serving in Homogeneous Clusters

On homogeneous clusters, Table IV demonstrates that
SplitQuant continues to achieve throughput gains over base-
line approaches, though these improvements are more mod-
est compared to heterogeneous deployments. Clusters 9 and
10 exemplify scenarios where multiple valid GPU topology
configurations exist. Specifically, Cluster 9 achieves optimal
performance with a TP4 (Tensor Parallelism 4) configuration,
while Cluster 10 performs best under a TP2+PP2 (Tensor
Parallelism 2 combined with Pipeline Parallelism 2) arrange-
ment. This divergence underscores the importance of dynamic
device topology reordering, as discussed in Sec. IV-C—to
automatically identify and select the most efficient hardware
mapping for a given workload.

E. Effectiveness of Variance Indicator

To further validate the effectiveness of our variance indi-
cator, we compare it with random assignment, where w; j is
assigned a value sampled from a uniform distribution. In the
random indicator, we force higher bitwidth indicator values to
be kept smaller than lower bitwidth indicator values within a
layer. We also compare our indicator with Hessian-based as
discussed in Section IV-B. We replace the indicator used in

TABLE 1IV: Performance Comparison on CNN dataset in
Homogeneous Clusters. The best throughput is marked in bold.

Cluster Model Scheme Configuration = Throughput Speedup

Uniform - 612.00 1.00x

Cluster 1 7B-Instruct Het - N/A N/A
SplitQuant - 638.91 1.04 x
Uniform PP4 53.12 0.44x
Uniform TP2+PP2 83.12 0.69%x

Cluster 9 70B-Instruct ~ Uniform TP4 120.12 1.00x
Het TP4 120.12 1.00x
SplitQuant Optimal 130.83 1.09x
Uniform PP4 OOM N/A
Uniform TP2+PP2 250.19 0.99x

Cluster 10~ 70B-Instruct ~ Uniform TP4 211.68 0.84x
Het TP2+PP2 251.44 1.00x
SplitQuant Optimal 291.25 1.16x

TABLE V: Effectiveness of SplitQuant’s variance indicator.
PPL is compared with Random, while speedup is compared
with Hessian.

Model | Cluster | Method PPL Overhead (s)
Random 10.33 0
OPT-66b 7 Hessian 10.33 25625.44
SplitQuant ~ 10.31(-0.02)  434.78(58.15x%)
Random 11.04 0
OPT-30b 8 Hessian 10.75 15670.87
SplitQuant ~ 10.75(-0.29)  215.60(72.69x)

TABLE VI: Effectiveness of Grouping and Heuristic ap-
proaches under time limit. The best results are marked in bold.

Model | Cluster | Method Throughput (token/s) Overhead (s)
Group=2 39.70 1.07
OPT-30b 5 Group=1 39.70(+0) 3.29
Heuristic 35.17 5.36
Group=2 14.72 12.29
OPT-30b 6 Group=1 13.93(-0.79) 204.59
Heuristic 14.94(+0.22) 1.99
Group=2 16.64 59.27
OPT-66b 9 Group=1 17.57(+0.93) 127.28
Heuristic 17.97(+1.33) 2.11

SplitQuant and adjust 6 in (4) to ensure that different indicators
lead to similar inference latency, eliminating the influence of
value range of the indicator. In Table V, we observe that
SplitQuant achieve better perplexity than FP16 on cluster 7.
On cluster 8, Hessian-based and our indicators yield the same
perplexity, outperforming the pure random indicator, while our
indicator is much faster.

F. Approaches Expediting Optimizer Algorithm

In SplitQuant, we provide two approaches, layer grouping
and our bitwidth transfer heuristic, to reduce and the complex-
ity of the optimizer’s bitwidth selection, model partition, and
placement. We evaluate the inference throughput and the time
required to derive the solution when applying three strategies
(group = 2, group = 1, and heuristic), on clusters 5, 6 and 9.
group = 2 means group 2 decoder layers together for decision.
We set a 60-second time limit for each run of the ILP solver.
In our optimizer (See Sec. IV-C), the solver will be invoked
several times.

Group = 1 covers the entire solution space and typically
produces better results compared to group = 2 (on clusters 9),
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but it introduces a larger overhead, as shown in Table VI. On
cluster 6, group = I cannot find a good solution within the time
limit. On cluster 5, group = I and group = 2 produce the same
solution. Performance of the heuristic largely depends on the
starting point produced by adabits (start point of optimization
#3 in Sec. IV-C). It leads to the best throughput with the
smallest overhead in clusters 6 and 9. We highlight that the
utilization of heuristics significantly enhances the scalability
of SplitQuant in diverse GPU combinations.

G. Parameter Sensitivity

We next investigate the impact of user quality scalar 6 in (4).
We denote the value of § we used in experiment in Sec. VI-D
as 10x, scale it by 0.1 and 10 to obtain 6 values of 1x,
100x. We evaluate model quality and serving throughput of
SplitQuant under each 6 value. Fig. 11 shows that a larger
0 generally results in lower inference throughput and higher
model accuracy, as less weight is placed on inference latency
and more on model quality in our ILP optimization.

H. Ablation on Pure Adaptive Quantization

To verify the significance of concurrently considering adap-
tive bitwidth, layer partitioning, and micro-batch sizing, we
further compare SplitQuant with adabits used in the heuristic
method. We evaluate the performance of adabits with the same
model setup on clusters 5,6,7, and 8. In Fig. 12 SplitQuant
outperforms adabits in all selected cases, showing that joint
optimization of partition and mixed-precision in SplitQuant
offers optimal performance.

VII. RELATED WORK

CPU-Assisted Inference. Prior work has explored leveraging
auxiliary CPU resources co-located with accelerators to im-
prove inference performance. For offline scenarios, systems
such as FlexGEN [17], Powerlnfer [48], and HeteGen [49]
offload portions of compute or storage workloads (e.g., KV
caches, activations) from GPUs to CPUs. Advanced ap-
proaches like Devotail [50] further investigate CPU-assisted

speculative decoding. In contrast, SplitQuant optimizes GPU-
only offline inference and does not rely on auxiliary CPU
resources, making our work orthogonal to these efforts.
Heterogeneous GPU Serving. Several systems address LLM
serving in heterogeneous GPU environments. For example,
Helix [51] uses a max-flow problem for optimized schedul-
ing, while HexGen employ asymmetric parallelism and graph
partitioning. HexGen-2 [52] extends scenario to disaggregated
environments via graph partitioning and flow optimization.
However, these works do not systematically explore co-design
with quantization techniques, a key focus of the optimization
strategy of SplitQuant.

Quantization Methods for Large Language Models. Recent
advancements in LLM quantization now explore precisions
lower than 8-bit. Methods like Atom [53] focus on very
low-precision configurations such as W4A4. Others, including
QoQ [35] and QQQ [54], have improved W4AS8 performance
with hardware-aware designs. Despite these advances, deploy-
ing these methods on heterogeneous GPUs remains inefficient.
We view them as candidate quantization schemes and can be
effectively integrated into our framework.

VIII. CONCLUSION

We propose SplitQuant, an efficient system for LLM serving
atop heterogeneous clusters. We derive efficient cost models
to accurately predict memory occupation and execution la-
tency of mixed-precision LLM serving. We introduce adaptive
mixed-precision into the search space of pipeline serving and
propose an efficient indicator to guide bitwidth selection in the
search process. We jointly consider serving latency in different
token generation phases based on various precision settings,
micro-batch sizes, and layer partitions, and derive efficient
optimized solutions. Our extensive experiments validate the
performance of SplitQuant on a variety of cluster setups,
which surpasses state-of-the-art approaches of serving LLM
on heterogeneous clusters.
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