
A Non-Asymptotic Convergent Analysis for Scored-Based Graph Generative
Model via a System of Stochastic Differential Equations

Junwei Su 1 Chuan Wu 1

Abstract

Score-based graph generative models (SGGMs)
have proven effective in critical applications such
as drug discovery and protein synthesis. However,
their theoretical behavior, particularly regarding
convergence, remains underexplored. Unlike
common score-based generative models (SGMs),
which are governed by a single stochastic differ-
ential equation (SDE), SGGMs involve a system
of coupled SDEs. In SGGMs, the graph struc-
ture and node features are governed by separate
but interdependent SDEs. This distinction makes
existing convergence analyses from SGMs inap-
plicable for SGGMs. In this work, we present
the first non-asymptotic convergence analysis for
SGGMs, focusing on the convergence bound (the
risk of generative error) across three key graph
generation paradigms: (1) feature generation with
a fixed graph structure, (2) graph structure gener-
ation with fixed node features, and (3) joint gen-
eration of both graph structure and node features.
Our analysis reveals several unique factors spe-
cific to SGGMs (e.g., the topological properties of
the graph structure) which affect the convergence
bound. Additionally, we offer theoretical insights
into the selection of hyperparameters (e.g., sam-
pling steps and diffusion length) and advocate for
techniques like normalization to improve conver-
gence. To validate our theoretical findings, we
conduct a controlled empirical study using syn-
thetic graph models, and the results align with
our theoretical predictions. This work deepens
the theoretical understanding of SGGMs, demon-
strates their applicability in critical domains, and
provides practical guidance for designing effec-
tive models.

1School of Computing and Data Science, University
of Hong Kong. Correspondence to: Junwei Su <jun-
weisu@connect.hku.hk>, Chuan Wu <cwu@cs.hku.hk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Graph-structured data is ubiquitous across a wide range
of domains, including social networks, biological systems,
recommendation engines, and knowledge graphs (Newman,
2018). The graph generation problem involves creating new
graphs that closely resemble real-world data, a task critical
to many graph-based applications. In recent years, score-
based graph generative models (SGGMs) (Niu et al.,
2020; Jo et al., 2022; Vignac et al., 2022; Chen et al., 2023c)
have emerged as a flexible and powerful approach, deliver-
ing state-of-the-art empirical performance in graph gener-
ation tasks. These models have shown significant impact
in critical areas such as molecular generation (Gnaneshwar
et al., 2022), protein design (Lee et al., 2023c), graph-based
recommendation systems (Liu et al., 2024), and automated
program generation (Zhu et al., 2022).

SGGMs are a subclass of the broader family of score-based
generative models (SGMs), also referred to as diffusion
probabilistic models (Song et al., 2020a; Ho et al., 2020;
Nichol & Dhariwal, 2021; Sohl-Dickstein et al., 2015; Song
& Ermon, 2019; Song et al., 2020b; Li et al., 2024; Yang
et al., 2024). SGMs generate data by learning a score func-
tion (see Sec. 3 for more details), which represents the gra-
dient of the log-probability of the data distribution. These
models conceptualize the data generation process as a diffu-
sion process, where data is progressively corrupted by noise
and then reconstructed through a reverse process. The for-
ward process involves gradually adding noise over several
steps, transforming the data into a simple distribution (e.g.,
Gaussian noise), and is governed by a stochastic differen-
tial equation (SDE) (Song et al., 2020b). In the reverse
process, the model uses the learned score function to iter-
atively denoise the data, starting from random noise and
guiding it step-by-step toward the original data distribution.
To efficiently approximate this reverse process, a discrete
sampling approach is employed, using numerical methods
such as the Euler-Maruyama scheme or the exponential
integrator (Chen et al., 2023a).

Understanding the convergence behavior of SGGMs is both
theoretically and practically crucial (Suh & Cheng, 2024;
Huang et al., 2024; Chen et al., 2022a; 2024a; Lee et al.,
2023b). Convergence bounds quantify the discrepancy be-

1

Convergent Analysis of Graph Diffusion Generation

tween the generated graphs and the true data distribution,
indicating whether the diffusion process will eventually
produce samples that align with the desired target distribu-
tion. This is particularly important for SGGMs, as conver-
gence guarantees the reliability and validity of the generated
graphs, which are used in high-stakes applications like drug
discovery. Furthermore, understanding convergence pro-
vides valuable insights into practical considerations, such
as the selection of hyperparameters (e.g., sampling steps
and diffusion length). Convergence analysis also helps iden-
tify sources of error and guides the development of more
effective models.

Gap in Existing Research. Despite the empirical success
of SGGMs in high-stakes applications, their convergence
behavior remains underexplored. Most existing research
has primarily focused on SGMs derived from the image
domain (Yeğin & Amasyalı, 2024; Li et al., 2024; Wang
et al., 2024; Chen et al., 2024b; Benton et al., 2023). There
are two key differences between SGGMs and SGMs. First,
while the generative process of SGMs is governed by a sin-
gle SDE, SGGMs, due to the nature of graph data (which
includes both graph structure and node features), involve a
system of coupled SDEs (Jo et al., 2022; Niu et al., 2020).
In SGGMs, the graph structure and node features are gov-
erned by separate but interdependent SDEs. Second, SGM
convergence analyses often assume independence between
data elements (e.g., pixels in images), while in SGGMs, the
graph structure and node features are inherently coupled
and interdependent (Deshpande et al., 2018). Thus, the for-
mulation and convergence analysis of SGGMs must account
for these relationships. As a result, existing convergence
analyses for SGMs cannot be directly applied to SGGMs,
highlighting the need for new theoretical formulations and
analyses to understand and ensure their convergence.

Problem Studied and Challenges. In this paper, we ad-
dress this gap by extending the convergence analysis to
SGGMs. Several key challenges arise in this extension:
First, the interdependency between graph structure and node
features requires a careful and nuanced formulation. Unlike
the independent elements typically found in conventional
SGMs, the graph structure and node features in SGGMs are
deeply interconnected. Accurately modeling this interde-
pendency is crucial for capturing the true generative process
of SGGMs and deriving meaningful insights. Second, this
interdependency creates entangled dynamics in the genera-
tive process. Changes in the graph structure directly affect
the node features, and vice versa. This reciprocal influ-
ence complicates the convergence analysis, as conventional
methods that assume independence are no longer applica-
ble. The simultaneous evolution of both the graph structure
and node features calls for the development of new tools
and methodologies to analyze the convergence of the entire
system effectively. Finally, it is essential to connect the

factors and insights from this analysis with the practical
SGGM framework. This includes not only understanding
the theoretical results in the context of graph data but also
leveraging these insights to guide model design decisions,
such as hyperparameter tuning (e.g., sampling steps, dif-
fusion length) and implementing regularization techniques.
These challenges make the convergence analysis of SGGMs
both novel and non-trivial.

Our Contributions and Results. We present a comprehen-
sive formulation for SGGMs that captures the complex in-
terdependencies between graph structure, node features, and
the use of graph neural networks (GNNs). Based on this for-
mulation, we present a detailed non-asymptotic convergence
analysis for three common graph generation paradigms: 1)
node feature generation with a fixed graph structure (Theo-
rem 4.1), 2) graph structure generation with fixed node fea-
tures (Theorem 4.2), and 3) joint generation of both graph
structure and node features (Theorem 4.3). Our analysis
provides a detailed account of the factors influencing con-
vergence bound of SGGMs. In addition, our results reveal
several key insights and implications (Sec. 4) regarding the
convergence behavior of SGGMs:

1. Graph size vs. feature dimensionality: There is a non-
isotropic effect between the graph size (number of nodes)
and feature dimensionality. Specifically, increasing the size
of the graph leads to a greater risk of generative error (i.e.,
larger convergence bounds) than increasing the dimensional-
ity of node features. This finding helps explain why SGGMs
are empirically effective for smaller graphs, even when the
node features are complex (Jo et al., 2022).

2. Topological properties of the graph structure: The
topological properties of the graph significantly influ-
ence the convergence bounds of SGGMs. In particular,
graphs with heterogeneous degree distributions—where
some nodes have significantly more connections than oth-
ers—tend to result in a larger generative error. Our findings
suggest that SGGMs perform more reliably when generat-
ing graphs with more uniform degree distributions, as the
risk of large error is lower in these graphs. This insight is
critical for applications where the generated graphs need to
closely match real-world graph structures.

3. Impact of norms on feature matrices: Smaller norms
in the feature matrices reduce the risk of generative error
in the generated graphs, providing theoretical support for
employing normalization techniques in SGGMs. By control-
ling the scale of the feature matrices, these techniques help
tighten the convergence bounds, resulting in more stable
and accurate graph generation.

The empirical results from our controlled experiments us-
ing synthetic graphs are consistent with our theoretical pre-
dictions, thereby validating our analysis and conclusions.

2

Convergent Analysis of Graph Diffusion Generation

These results enhance the theoretical understanding of SG-
GMs, confirm their applicability in high-stakes applications,
and provide practical insights for designing and deploying
more effective SGGMs.

2. Related Work
Graph Generation Methods. The graph generation prob-
lem has a long history of study, with rule-based random
graph models traditionally dominating the field (Barabási
& Albert, 1999; Holland et al., 1983; Erdős et al., 1960;
Newman et al., 2002). A prime example of such models is
the Stochastic Block Model (SBM) (Holland et al., 1983),
which is based on the observation that real-life graphs often
consist of densely connected blocks of vertices exhibiting
similar behaviors (Abbe, 2018; Newman et al., 2002; New-
man & Girvan, 2004; Newman, 2006; Karrer & Newman,
2011; Cherifi et al., 2019; Su & Marbach, 2022). How-
ever, such rule-based models fail to capture the complex and
nuanced distribution of graph-structured data observed in
real-world problems (Russell & Norvig, 2016). As a result,
the focus has shifted towards deep learning-based methods
that can model more intricate graph properties (Zhu et al.,
2022; You et al., 2018; Xie et al., 2021; Liao et al., 2019; Li
et al., 2018; Jensen, 2019; Fu et al., 2021; De Cao & Kipf,
2018; Zang & Wang, 2020; Simonovsky & Komodakis,
2018). Among these, SGGMs have emerged as a promis-
ing approach, showing impressive empirical performance in
graph generation (Niu et al., 2020; Jo et al., 2022; Vignac
et al., 2022; Chen et al., 2023c). Due to the nature of graph
data, the standard formulation of SGGMs involves a sys-
tem of stochastic processes, either manifested as a Markov
chain (discrete) (Chen et al., 2023c; Vignac et al., 2022) or
SDE (continuous) (Jo et al., 2022; Niu et al., 2020). In this
paper, we focus on the formulation with SDE, and point
out our analysis can be extended to the discrete version by
replacement of suitable theoretical tools (Sec. 6).

Convergent Analysis of SGMs. Theoretical studies
on SGMs have garnered significant attention in recent
years (De Bortoli et al., 2021; Zhang et al., 2024; Lee et al.,
2022; 2023a; Wang et al., 2024; Chen et al., 2024b; Li et al.,
2023; Benton et al., 2023; Chen et al., 2022a; 2023a;b).
A central focus of these studies is examining the conver-
gence behavior of these models, specifically how well they
approximate the true data distribution. Existing research
has shown that, under suitable smoothness and regularity
assumptions on the score functions, SGMs provide provable
guarantees for convergence, meaning that the generated sam-
ples increasingly resemble the true data distribution as the
number of iterations increases (Chen et al., 2022a; 2023a;b).
However, much of the existing work has been motivated
by tasks such as image generation, where the generative
process is governed by a single stochastic process. In con-

trast, SGGMs involve a system of dependent SDEs, with
separate equations governing the graph structure and the
node features, respectively. It remains unclear how this in-
terconnectedness nature of graph data is manifested in the
convergent behavior of SGGMs. In this paper, we address
this gap by providing a non-asymptotic convergence anal-
ysis for SGGMs, accounting for the distinctive challenges
posed by graph data.

3. Preliminaries and Problem Formulation
In this section, we introduce the formulation SGGMs via a
system of SDEs, and different graph generation paradigms.

Notation. We use bold upper and lower-case letters to
denote vectors and matrices. For two functions f(x) ≥ 0
and g(x) ≥ 0, we write f(x) ≲ g(x) if f(x) ≤ c · g(x) for
some absolute constant c > 0. For a given SDE, we use x
to denote the forward continuous process, x̄ to denote the
backward continuous process and x̂ to denote the backward
approximated process. A graph G can be formally defined
as a two-tuple G = (X,A), where X ∈ RN×F is the node
feature matrix and A ∈ RN×N is the adjacency matrix
representing the graph structure. Here, N is the number of
nodes in the graph and F is the dimension of node features.
In addition, we use N(a, b) to denote Gaussian distribution
with mean a and variance b.

3.1. SGGMs via System of SDEs.

SGGMs consist of three main components: 1) a forward
process, 2) a reverse process, and 3) a sampling process that
approximates the reverse process to facilitate data genera-
tion. In the following sections, we provide an introduction
to each of these components.

3.1.1. FORWARD PROCESS.

Formally, the forward diffusion process can be described by
the trajectory of random variables {Gt = (Xt,At)}t∈[0,T]

in a fixed time horizon [0, T], where G0 = (X0,A0) is
sampled from the data distribution P(G0) (what we want to
learn). This process is modelled using the following system
of dependent SDEs:

dXt = fX(Gt, t) dt+ gX(Gt, t) dWX,

dAt = fA(Gt, t) dt+ gA(Gt, t) dWA, (3.1)

where the first equation is the forward SDE for the node
feature and the second equation is the forward SDE for the
graph structure. fX(.) and fA(.) are drift coefficients, and
gX(.) and gA(.) are scalar diffusion coefficients. WX,WA

are standard Wiener processes (also known as Brownian mo-
tion) acting in the node feature space and graph structure
space, respectively. This diffusion process gradually adds

3

Convergent Analysis of Graph Diffusion Generation

noise to the initial graph samples, and at the terminal time
T , the sample GT = (XT ,AT) follows a simple convergent
distribution (also referred to as the prior distribution) which
we denote as ΠA and ΠX for the graph structure process
and node feature process respectivelys. In this paper, we
focus on the commonly used standard Gaussian distribu-
tion (with zero mean and unit variance) as the convergent
distribution.

We focus our analysis on the following choices of the drift
and diffusion coefficients:

fX(Gt, t) = −1/2gX(Gt, t)
2Xt,

fA(Gt, t) = −1/2gA(Gt, t)
2At,

gX(Gt, t) = gA(Gt, t) ≡ 1. (3.2)

These choices match those in the original SGMs pa-
per (Song et al., 2020a; Jo et al., 2022), and are commonly
used for similar convergence analysis (Chen et al., 2023a).
We emphasize that our analysis can be adapted for some
other choices of linear drift terms and constant variance
functions as well (we provide a further discussion on this
regard in Appendix A).

Under these choices of coefficients, the forward process
becomes the Ornstein-Uhlenbeck (OU) process (Jacobsen,
1996), which has an explicit conditional density:

Xt|X0 ∼ N(e−1/2tX0, (1− e−t)IN×F),

At|A0 ∼ N(e−1/2tA0, (1− e−t)IN×N). (3.3)

Moreover, the OU process converges exponentially to the
standard Gaussian distribution:

KL(P(Xt)∥ΠX) ≤ e−tKL(P(X0)∥ΠX),

KL(P(At)∥ΠA) ≤ e−tKL(P(A0)∥ΠA),

where KL denotes the Kullback–Leibler (KL) divergence
used to quantify the discrepancy of two distributions (see
Appendix D for a further discussion).

3.1.2. REVERSE PROCESS.

The reverses process aims to generate graph samples from
the convergent distribution by reversing the forward process.
This is also described by a system of SDEs driven by the
score function:

dX̄t =
[
1/2X̄t −∇X logP(Gt)

]
dt+ dW̄X,

dĀt =
[
1/2Āt −∇A logP(Gt)

]
dt+ dW̄A, (3.4)

where X̄t, Āt,W̄X,W̄A are the respective reverse pro-
cesses in time. ∇X logP(Gt) and ∇At

logP(Gt) are the
partial score (partial gradient of log-probility of graph dis-
tribution) with respect to node feature and graph structure
respectively.

Training SGGMs. The partial score functions can be es-
timated by training time-dependent neural networks (also
referred to as the score networks) sθ(.) and sϕ(.), so that

sθ(Gt, t) ≈ ∇X logP(Gt), sϕ(Gt, t) ≈ ∇At
logP(Gt),

where θ and ϕ are learnable parameters. Since the drift
coefficients of the forward diffusion process are linear, the
transition distribution P(Gt|G0) can be decomposed in terms
of Xt and At, as follows:

P(Gt|G0) = P(Xt|X0)P(At|A0).

Notably, it is easy to sample from the transition distributions
of each component, P(Xt|X0) and P(At|A0), as they are
Gaussian distributions with mean and variance determined
by the coefficients of the forward diffusion process given
by Eq. 3.3. Then, with the decomposition above, training
objectives of SGGMs generalize the one from (Song et al.,
2020b) to minimizing the estimation of partial scores on the
given graph dataset:

min
θ

Et

[
EG0EGt|G0

∥∥sθ(Gt, t)−∇X logP(Xt|X0)
∥∥2
2

]
,

min
ϕ

Et

[
EG0

EGt|G0

∥∥sϕ(Gt, t)−∇A logP(At|A0)
∥∥2
2

]
.

The expectations above can be efficiently computed us-
ing Monte Carlo estimation with samples (t,G0,Gt). For
completeness, we provide a more detailed derivation and
discussion on the training objectives in Appendix A.

Functional Form of Score and Score Networks. To cap-
ture and model the dependencies between graph structure
and node features, GNNs, such as Graph Convolutional
Networks (GCNs) (Kipf & Welling, 2017) and Graph Trans-
formers (Dwivedi & Bresson, 2020), are used as the score
networks for SGGMs. A defining characteristic of GNNs
is their usage of graph structure to combine and update
the representation of each node or edge. From a func-
tional perspective, GNNs can be expressed as a function
F (T (A)T ′(X)), where T and T ′ represent some transfor-
mations applied to the adjacency matrix A and the feature
matrix X, respectively. For simplicity and interpretability, in
this paper, we focus on the case where T and T ′ are identity
mappings, corresponding to a vanilla GCN without the nor-
malization. Our analysis and results can be extended to other
transformations by replacing A,X with T (A), T ′(X). In
addition, we focus on a feasible setting where we assume
certain regularity conditions on the data distribution, and
that the score function aligns with the functional form of
GNNs.
Assumption 3.1. The data distributions for node fea-
tures and graph structure are twice differentiable and have
bounded second moments, i.e.,

HX := E∥X∥2 ≤ ∞, HA := E∥A∥2 ≤ ∞.

4

Convergent Analysis of Graph Diffusion Generation

Furthermore, the score functions ∇ logPt are L-Lipschitz
and can be written as a function of the form F (AtXt).

The regularity conditions such as continuity, boundedness
and smoothness of data distributions and score function are
commonly employed in other similar studies (Benton et al.,
2023; Chen et al., 2022a; 2023a;b). We note that the smooth-
ness assumption could be relaxed in recent analysis (Chen
et al., 2023a); however, such a relaxation would complicate
the results. In this paper, we target more user-friendly re-
sults for better interpretability and connection with practical
settings, and hence retain these standard assumptions.

3.1.3. SAMPLING PROCESS.

A discrete-time approximation of the sampling dynamics
in Eq. 3.4 is required for practical implementation. Let
0 = t0 ≤ t1 ≤ · · · ≤ tM = T be the discretization
points. For the k-th discretization step (1 ≤ k ≤ M), we
denote ∆tk := tk − tk−1 as the step size for the k-th step.
Let t′k = T − tM−k be the corresponding discretization
points in the reverse-process SDE. In addition, we make the
following assumption on the learned score functions with
respect to the discretization.
Assumption 3.2. For both score functions sθ(.) and sϕ(.),
we assume that there exist constant ϵX, ϵA for any 1 ≤ i ≤
M :

M∑
i=1

∆ti
T

E ∥∇X logP(Gti)− sθ(Gti , ti)∥
2 ≤ ϵ2X,

M∑
i=1

∆ti
T

E ∥∇A logP(Gti)− sϕ(Gti , ti)∥
2 ≤ ϵ2A.

Assumption 3.2 is commonly used in convergence analyses
of diffusion models with general distributions (Chen et al.,
2022a; Zhang et al., 2024; Chen et al., 2023a). We will
further discuss in Sec. 6 how we can extend the analysis
and relax this assumption to obtain a more precise (but less
general) result, with additional modelling assumptions on
the underlying distribution.

We consider two types of discretization schemes that are
widely used in existing works: the Euler-Maruyama scheme
and the exponential integrator scheme.

Euler-Maruyama Scheme is a simple, first-order discretiza-
tion method that approximates an SDE by applying a first-
order Taylor approximation. For approximated trajectory
X̂t, Ât with the discrete scheme, the progression rule at the
k-th step is given by:

X̂t′k+1
= X̂t′k

+
[
−1/2X̂t′k

− sθ(Ĝt′k
, t′k)

]
∆tk +∆tkW̄X,

Ât′k+1
= Ât′k

+
[
−1/2Ât′k

− sϕ(Ĝt′k
, t′k)

]
∆tk +∆tkW̄A,

(3.5)

where ∆W̄A and ∆W̄A represent the increment in the
Wiener processes within the interval.

Exponential Integrator Scheme provides a more accurate
method for solving SDEs, especially when the system has
a semi-linear structure. It discretizes the nonlinear terms
while retaining the continuous dynamics arising from the
linear terms. Specifically, the nonlinear term is discretized
while the linear part evolves continuously according to:

X̂t′k+1
=e1/2∆tkX̂t′k

+ 2
(
e1/2∆tk − 1

)
sθ(Ĝt′k

, t′k)

+
√
e∆tk − 1ξk,

Ât′k+1
=e1/2∆tkÂt′k

+ 2
(
e1/2∆tk − 1

)
sϕ(Ĝt′k

, t′k)

+
√
e∆tk − 1ξ′k. (3.6)

where ξk and ξ′k are sampled from standard Gaussian.

3.2. Graph Generation Paradigms

For graph generation tasks, there are three distinct
paradigms, each with its unique significance.

Joint Generation of Graph Structure and Node Features.
This paradigm aims to simultaneously generate both the
graph structure and node features. It is particularly signifi-
cant in biological applications, such as protein design (Vi-
gnac et al., 2022; Jo et al., 2022), where the graph structure
represents the interactions between proteins (nodes), and
the node features describe attributes like protein function,
structure, or expression levels. Jointly generating both com-
ponents ensures that the resulting graph is biologically plau-
sible, accurately reflecting both the interaction patterns and
functional properties of the proteins. The corresponding
forward process is given by Eq. 3.1.

Node Feature Generation with Fixed Graph Structure.
In this paradigm, the goal is to generate node features
while maintaining a fixed graph structure. This is particu-
larly important in domains like molecular graph generation,
where the connectivity of atoms is predefined, but their
properties—such as chemical features—can vary (Sanchez-
Lengeling et al., 2017; Simonovsky & Komodakis, 2018;
Jin et al., 2018). By focusing on feature generation, this
paradigm enables the exploration of diverse attribute combi-
nations while maintaining a consistent structural backbone,
facilitating the generation of realistic and varied instances
for a given graph structure. In this setting, node features are
generated based on a fixed graph structure. The correspond-
ing forward process is:

dXt = 1/2Xt dt+ dWX,

dAt = 0, A0 = A∗ (3.7)

5

Convergent Analysis of Graph Diffusion Generation

where A∗ is the fixed graph structure that remains constant
during the feature generation process.

Graph Structure Generation with Fixed Node Features.
This paradigm focuses on generating the graph structure
while keeping the node features fixed. It is particularly
useful when the node features are known or predefined, but
the relationships between the nodes (i.e., the graph structure)
need to be learned or generated (Martı́nez et al., 2016; Zhang
& Chen, 2018; Benson et al., 2016; Niu et al., 2020). For
example, in social network analysis, the characteristics of
individuals (e.g., age, location, interests) are known, but
the interactions or connections between them need to be
inferred. In this setting, the generating process focuses
solely on the graph structure, as modeled by:

dXt = 0, X0 = X∗

dAt = 1/2At dt+ dWA, (3.8)

where X∗ is the node feature matrix that remains constant
during the feature generation process.

4. Main Results
We next present our main results on the convergence
behaviour of SGGMs across the three graph generation
paradigms. We first present the convergence results for each
paradigm, deferring the detailed discussion of these results
until after all paradigms have been presented.

4.1. Convergence Results

Theorem 4.1 (Convergence Bound of Node Feature Gener-
ation with Fixed Structure). Consider the graph generation
paradigm in Eq. 3.7. Under Assumptions 3.1 and 3.2 and
supposing that the fixed graph structure A∗ has a bounded
norm, i.e., ∥A∗∥2 ≤ σ2

A, we have the following results:

• For exponential integration scheme,

KL(P(X0)∥P(X̂0)) ≲ (HX +NF)e−T + Tϵ2X

+NFL

(
σ2
AL

M∑
i=1

∆t2i +

M∑
i=1

∆t3i

)
. (4.1)

• For Euler-Maruyama scheme,

KL(P(X0)∥P(X̂0)) ≲ (HX +NF)e−T + Tϵ2X

+ (NFL2σ2
A +NF)

M∑
i=1

∆t2i + (NFL+HX)

M∑
i=1

∆t3i .

(4.2)

Theorem 4.2 (Convergence Bound of Graph Structure Gen-
eration with Fixed Node Features). Consider the graph
generation paradigm in Eq. 3.8. Under Assumptions 3.1

and 3.2 and supposing the fixed feature matrix X∗ has a
bounded norm, i.e., ∥X∗∥2 ≤ σ2

X, we have the following
results:

• For exponential integration scheme,

KL(P(A0)∥P(Â0)) ≲ (HA +N2)e−T + Tϵ2A

+N2L

(
σ2
XL

M∑
i=1

∆t2i +

M∑
i=1

∆t3i

)
. (4.3)

• For Euler-Maruyama scheme,

KL(P(A0)∥P(Â0)) ≲ (HA +N2)e−T + Tϵ2A

+ (N2L2σ2
X +N2)

M∑
i=1

∆t2i + (N2L+HX)

M∑
i=1

∆t3i .

(4.4)

Theorem 4.3 (Convergence Bound of Joint Generation of
Graph Structure and Node Features). Consider the graph
generation paradigm in Eq. 3.1. Under Assumptions 3.1
and 3.2, we have the following results:

• For exponential integration scheme,

KL(P(X0)∥P(X̂0)) ≲ (HX +NF)e−T + Tϵ2X

+NFL

(
L

M∑
i=1

∆t2i +

M∑
i=1

∆t3i

)
,

KL(P(A0)∥P(Â0)) ≲ (HA +N2)e−T + Tϵ2A

+N2L

(
L

M∑
i=1

∆t2i +

M∑
i=1

∆t3i

)
. (4.5)

• For Euler-Maruyama scheme,

KL(P(X0)∥P(X̂0)) ≲ (HX +N2)e−T + Tϵ2X

+ (NFL+NF)

M∑
i=1

∆t2i + (NFL+HX)

M∑
i=1

∆t3i ,

KL(P(A0)∥P(Â0)) ≲ (HA +N2)e−T + Tϵ2A

+ (N2L+N2)

M∑
i=1

∆t2i + (N2L+HA)

M∑
i=1

∆t3i .

(4.6)

The proofs of Theorem 4.1, Theorem 4.2 and Theorem 4.3
can be found in the Appendix.

4.2. Discussion and Insights.

In this section, we provide a detailed discussion of the con-
vergence results, highlighting several interesting insights
and their implications.

6

Convergent Analysis of Graph Diffusion Generation

Source of Error. From Theorems 4.1, 4.2, and 4.3, we
identify three primary sources of generative errors in SG-
GMs: 1) Distance to convergent distribution: represented
by the first term, (HA +N2)e−T and (HX +NF)e−T , in
the convergence bounds, this error quantifies how far the
forward process has transformed the initial data distribution
towards the convergent distribution. Interestingly, it is inde-
pendent of the initial data distribution and is influenced by
the dimensionality, second moments of the data distribution,
and the length of the diffusion process; 2) Score estimation
error: captured by the second term, Tϵ2X and Tϵ2A in the
convergence bounds, this error arises from inaccuracies in
estimating the underlying score functions; 3) Discretization
error: represented by the remaining terms in the conver-
gence bounds, this error is induced by the discretization of
sampling scheme.

Connection with Graph Data. The convergence bounds
reveal several interesting connections between the prop-
erties of the graph data and the convergence behavior of
the SGGM. The scale of graph data is determined by two
factors: the size of the graph N and the dimension of the
features F . Our convergence results show that these two fac-
tors affect convergence behavior in a non-isotropic manner.
Specifically, we have the following remark:
Remark 4.4. The performance of SGGMs deteriorates more
significantly as the graph size increases compared to an
increase in the feature dimensionality.

This is evident from the convergence bounds, where the
bounds grow quadratically with respect to graph size but
only linearly with respect to feature dimensionality. This
also explains why SGGMs perform well for smaller graphs,
even when the features are complex (Jo et al., 2022).

Additionally, the terms σA and σX, which represent bounds
on the norms of the graph structure and feature matrices, are
significant in the feature generation and structure generation
paradigms respectively. Larger σA and σX lead to a larger
risk of generative errors (i.e., larger convergence bound).
Based on spectral graph theory, σA has an intrinsic connec-
tion with the graph structure. For example, σA is closely
related to the maximum degree of the graph (Spielman,
2012):

σA ≤ max degree(G).

Based on this connection, we make the following remark:
Remark 4.5. SGGMs are better at learning and generating
graphs with uniform degree distributions (more regular-like)
than graphs with heterogeneous degree distributions (e.g.,
power-law graphs).

On the other hand, σX, can be reduced with the commonly
used normalization techniques, leading to a smaller conver-
gence bound. This insight results in the following remark:

Remark 4.6. Applying the normalization technique to X
in the feature generation paradigm can improve the conver-
gence bound of SGGMs.

Hyperparameters. Next, we discuss the implications of
the convergence results for the hyperparameters involved
in SGGM learning, particularly the length of the diffusion
process T and the sampling step M . For clarity, we as-
sume uniform discretization steps and focus on the joint
generation paradigm with the exponential integrator scheme.
The implications also extend to other paradigms and the
Euler-Maruyama scheme (see Appendix D).
Corollary 4.7. Suppose the discretization step is uniform
∆ti = T/M ≤ 1,∀i ∈ 1, ...,M . Then the convergence
results of SGGMs under the exponential integrator scheme
are given by

KL(P(X0)∥P(X̂T)) ≲

(HX +NF)e−T + Tϵ2X +
NFL2T 2

M
,

KL(P(A0)∥P(ÂT)) ≲

(HA +N2)e−T + Tϵ2A +
N2LT 2

M
.

Furthermore, taking

T = max

{
log

(
HX +NF

ϵ2X

)
, log

(
HX +N2

ϵ2A

)}
,

M = max

{
NFL2T 2

ϵ2X
,
N2L2T 2

ϵ2A

}
,

we have that the overall generative error of SGGMs is
bounded by the score estimation errors, i.e.,

KL(P(X0)∥P(X̂T)) ≲ ϵ2X, KL(P(A0)∥P(ÂT)) ≲ ϵ2A.

This corollary provides a clearer formulation for the conver-
gence bounds and offers guidance for choosing the hyperpa-
rameters. It is evident that there is a trade-off in the length
of the diffusion T : larger values of T lead to smaller er-
rors and better convergence to the target distribution, while
a larger sampling step M (which increases computational
complexity) is required to control the sampling error.

Sampling Scheme. When comparing the convergence
bounds under the Euler-Maruyama scheme and the expo-
nential integrator scheme (e.g., Eq.4.1 vs. Eq.4.2), we
observe that the Euler-Maruyama scheme introduces ad-
ditional error terms due to higher-order discretization errors.
As a result, the Euler-Maruyama scheme leads to a larger
convergence bound than the exponential integrator scheme.
Therefore, theoretically, the exponential integrator scheme
is expected to outperform the Euler-Maruyama scheme in
graph generation tasks. This finding aligns with the results
in SGMs (Chen et al., 2023a).

7

Convergent Analysis of Graph Diffusion Generation

(a) Regular Graph (b) Power-law Graph

10 50 100 200 500
Graph Size

5

10

KL
-D

iv
er

ge
nc

e

Regular Graph
Power-law Graph

(c) Graph Size and Structure

10 50 100 200 500
Feature Size

0

1

2

3

KL
-D

iv
er

ge
nc

e

With Normalization
Without Normalization

(d) Feature and Normalization

Figure 1. Performance of SGGMs. Fig. 1(a) and Fig. 1(b) are examples of regular and power-law graphs generated from our synthetic
graph model. Fig. 1(c) plots the performance of SGGMs with respect to increasing graph size for regular and power-law graphs. The
feature size in this experiment is fixed to 50. Fig. 1(d) plots the performance of SGGMs with respect to increasing feature size w./w.o.
normalization. The graph size is fixed to 50.

5. Empirical Study
We next present an empirical study to validate our theoretical
results. Specifically, we answer the following questions:

Q1: Is SGGM more effective at learning and generating
regular graphs compared to power-law graphs in the feature
generation paradigm?

Q2: Does applying normalization techniques improve the
convergence of SGGM in the feature generation paradigm?

Q3: Does increasing graph size result in more significant
performance degradation than increasing feature size?

Experimental Setup. We conduct controlled experiments
using synthetic graph models, consistent with other theoret-
ical studies, to examine how the performance of SGGMs
varies with changes in graph size, graph structure (regu-
lar vs. power-law), feature size, and the application of
normalization techniques. To generate power-law graphs,
we employ the well-known Barabási-Albert model (Pósfai
& Barabási, 2016). Node features for all experiments are
drawn from a Gaussian distribution with a mean of 1 and
a variance of 2 (to distinguish them from the convergent
distribution). The SGGM is implemented using the hy-
perparameters specified in the theoretical analysis, with a
diffusion length T = 100 and sampling steps M = 500,
and a simple one-layer GCN as the score network. For sim-
plicity, we use uniform discretization and the exponential
integrator scheme to facilitate the sampling process. Each
experiment generates 200 independent samples, which are
then split into training, validation, and test sets in a 6:2:2
ratio. Each experiment consists of five independent trials,
with the results averaged across these trials to ensure statisti-
cal robustness. Further technical details of the experiments
and implementation can be found in Appendix E.

Results. The experimental results, summarized in Fig.1,
provide affirmative answers to the questions (Q1-Q3) and
validate our theoretical predictions. Fig.1(c) shows the
performance of SGGMs in the graph structure generation

paradigm as the graph size increases. As predicted, SGGMs
perform better on regular graphs compared to power-law
graphs. Fig.1(d) illustrates the performance of SGGMs as
the feature size increases. As predicted, applying normal-
ization improves SGGMs’ performance. Comparing the
trends in Fig.1(c) and Fig. 1(d), we observe that SGGMs’
performance degrades more rapidly with increasing graph
size than with increasing feature size.

6. Concluding Discussions
This paper presents a novel convergence analysis for SG-
GMs across three common graph generation paradigms. Our
analysis identifies the primary sources of generative error
in SGGMs and provides valuable insights into the factors
unique to graph data that influence their convergence behav-
ior. Specifically, we examine how graph size, structure, and
feature dimensionality affect the convergence bound. Ad-
ditionally, we offer practical recommendations for improv-
ing model performance, including the use of normalization
and the selection of key hyperparameters, such as diffusion
length and sampling step size. Our empirical study using
synthetic graph data validates the theoretical predictions.
Overall, this work advances the theoretical foundation of
score-based generative models, confirms the applicability
of SGGMs in critical applications, and provides actionable
insights for their effective use in graph generation tasks.

6.1. Future Works

Learning Process. Our current analysis assumes a static
outcome of the learning process, as specified in Assump-
tion 3.2. However, in practice, the estimation (or learning)
of score functions is subject to errors that accumulate over
time as the score network learns from data. These errors are
influenced by the specific behavior of the learning algorithm.
Future work could incorporate the dynamics of the learning
process in SGGMs, as explored in studies such as (Chen
et al., 2022a;b; Benton et al., 2024; Zhu et al., 2023), to gain
a more nuanced understanding of SGGMs’ behavior. This

8

Convergent Analysis of Graph Diffusion Generation

would be especially valuable for addressing challenges like
sample complexity in SGGMs and for providing insights
into their empirical performance.

More Precise Analysis with Synthetic Graph Model.
The analysis presented in this paper does not assume any spe-
cific structure for the data distribution, making it applicable
to general smooth and bounded distributions. However, to
make the analysis more precise, one could impose additional
structural assumptions on the underlying data distribution,
similar to case studies with Gaussian mixture models in
SGM research (Chen et al., 2024b; Shah et al., 2023). A
natural extension for graph data would be to assume that
the graph is generated from the contextual stochastic block
model (Deshpande et al., 2018). Integrating this modeling
choice could lead to more accurate convergence bounds and
provide valuable insights that would require a more detailed,
fine-grained analysis.

Impact Statement
This paper presents work whose goal is to advance the under-
standing of score-based graph generation methods. There
are many potential societal consequences of our work, none
which we feel must be specifically highlighted here.

Acknowledgement
We would like to thank the anonymous reviewers and area
chairs for their helpful comments. This work was supported
in part by grants from Hong Kong RGC under the contracts
17207621, 17203522, and C7004-22G (CRF).

References
Abbe, E. Community detection and stochastic block mod-

els: recent developments. Journal of Machine Learning
Research, 18(177):1–86, 2018.

Barabási, A.-L. and Albert, R. Emergence of scaling in
random networks. science, 286(5439):509–512, 1999.

Benson, A. R., Gleich, D. F., and Leskovec, J. Higher-
order organization of complex networks. Science, 353
(6295):163–166, July 2016. ISSN 1095-9203. doi: 10.
1126/science.aad9029. URL http://dx.doi.org/
10.1126/science.aad9029.

Benton, J., Deligiannidis, G., and Doucet, A. Error
bounds for flow matching methods. arXiv preprint
arXiv:2305.16860, 2023.

Benton, J., Bortoli, V., Doucet, A., and Deligiannidis, G.
Nearly d-linear convergence bounds for diffusion models
via stochastic localization. 2024.

Chen, H., Lee, H., and Lu, J. Improved analysis of score-
based generative modeling: User-friendly bounds under
minimal smoothness assumptions. In International Con-
ference on Machine Learning, pp. 4735–4763. PMLR,
2023a.

Chen, M., Huang, K., Zhao, T., and Wang, M. Score approx-
imation, estimation and distribution recovery of diffusion
models on low-dimensional data. In International Con-
ference on Machine Learning, pp. 4672–4712. PMLR,
2023b.

Chen, S., Chewi, S., Li, J., Li, Y., Salim, A., and Zhang,
A. R. Sampling is as easy as learning the score: theory for
diffusion models with minimal data assumptions. arXiv
preprint arXiv:2209.11215, 2022a.

Chen, S., Chewi, S., Lee, H., Li, Y., Lu, J., and Salim, A.
The probability flow ode is provably fast. Advances in
Neural Information Processing Systems, 36, 2024a.

Chen, S., Kontonis, V., and Shah, K. Learning general
gaussian mixtures with efficient score matching. arXiv
preprint arXiv:2404.18893, 2024b.

Chen, X., He, J., Han, X., and Liu, L.-P. Efficient and degree-
guided graph generation via discrete diffusion modeling.
arXiv preprint arXiv:2305.04111, 2023c.

Chen, Y., Chewi, S., Salim, A., and Wibisono, A. Improved
analysis for a proximal algorithm for sampling. In Confer-
ence on Learning Theory, pp. 2984–3014. PMLR, 2022b.

Cherifi, H., Palla, G., Szymanski, B. K., and Lu, X. On
community structure in complex networks: challenges
and opportunities. Applied Network Science, 4(1):1–35,
2019.

Chewi, S., Erdogdu, M. A., Li, M., Shen, R., and Zhang,
M. S. Analysis of langevin monte carlo from poincare to
log-sobolev. Foundations of Computational Mathematics,
pp. 1–51, 2024.

De Bortoli, V., Thornton, J., Heng, J., and Doucet, A. Diffu-
sion schrödinger bridge with applications to score-based
generative modeling. Advances in Neural Information
Processing Systems, 34:17695–17709, 2021.

De Cao, N. and Kipf, T. Molgan: An implicit genera-
tive model for small molecular graphs. arXiv preprint
arXiv:1805.11973, 2018.

Deshpande, Y., Sen, S., Montanari, A., and Mossel, E. Con-
textual stochastic block models. Advances in Neural
Information Processing Systems, 31, 2018.

Dwivedi, V. P. and Bresson, X. A generalization
of transformer networks to graphs. arXiv preprint
arXiv:2012.09699, 2020.

9

http://dx.doi.org/10.1126/science.aad9029
http://dx.doi.org/10.1126/science.aad9029

Convergent Analysis of Graph Diffusion Generation

Erdős, P., Rényi, A., et al. On the evolution of random
graphs. Publ. math. inst. hung. acad. sci, 5(1):17–60,
1960.

Fu, T., Gao, W., Xiao, C., Yasonik, J., Coley, C. W., and
Sun, J. Differentiable scaffolding tree for molecular opti-
mization. arXiv preprint arXiv:2109.10469, 2021.

Gnaneshwar, D., Ramsundar, B., Gandhi, D., Kurchin, R.,
and Viswanathan, V. Score-based generative models for
molecule generation. arXiv preprint arXiv:2203.04698,
2022.

Hagberg, A., Swart, P., and S Chult, D. Exploring net-
work structure, dynamics, and function using networkx.
Technical report, Los Alamos National Lab.(LANL), Los
Alamos, NM (United States), 2008.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in neural information process-
ing systems, 33:6840–6851, 2020.

Holland, P. W., Laskey, K. B., and Leinhardt, S. Stochastic
blockmodels: First steps. Social networks, 5(2):109–137,
1983.

Huang, D. Z., Huang, J., and Lin, Z. Convergence analysis
of probability flow ode for score-based generative mod-
els, 2024. URL https://arxiv.org/abs/2404.
09730.

Jacobsen, M. Laplace and the origin of the ornstein-
uhlenbeck process. Bernoulli, 2(3):271–286, 1996.

Jensen, J. H. A graph-based genetic algorithm and gener-
ative model/monte carlo tree search for the exploration
of chemical space. Chemical science, 10(12):3567–3572,
2019.

Jin, W., Barzilay, R., and Jaakkola, T. Junction tree vari-
ational autoencoder for molecular graph generation. In
International conference on machine learning, pp. 2323–
2332. PMLR, 2018.

Jo, J., Lee, S., and Hwang, S. J. Score-based generative
modeling of graphs via the system of stochastic differen-
tial equations. In International Conference on Machine
Learning, pp. 10362–10383. PMLR, 2022.

Karrer, B. and Newman, M. E. Stochastic blockmodels and
community structure in networks. Physical review E, 83
(1):016107, 2011.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks, 2017.

Lee, H., Lu, J., and Tan, Y. Convergence for score-based
generative modeling with polynomial complexity. Ad-
vances in Neural Information Processing Systems, 35:
22870–22882, 2022.

Lee, H., Lu, J., and Tan, Y. Convergence of score-based
generative modeling for general data distributions. In In-
ternational Conference on Algorithmic Learning Theory,
pp. 946–985. PMLR, 2023a.

Lee, H., Lu, J., and Tan, Y. Convergence for score-based
generative modeling with polynomial complexity, 2023b.
URL https://arxiv.org/abs/2206.06227.

Lee, J. S., Kim, J., and Kim, P. M. Score-based generative
modeling for de novo protein design. Nature Computa-
tional Science, 3(5):382–392, 2023c.

Li, G., Huang, Y., Efimov, T., Wei, Y., Chi, Y., and Chen, Y.
Accelerating convergence of score-based diffusion mod-
els, provably. arXiv preprint arXiv:2403.03852, 2024.

Li, P., Li, Z., Zhang, H., and Bian, J. On the generaliza-
tion properties of diffusion models. Advances in Neural
Information Processing Systems, 36:2097–2127, 2023.

Li, Y., Vinyals, O., Dyer, C., Pascanu, R., and Battaglia,
P. Learning deep generative models of graphs. arXiv
preprint arXiv:1803.03324, 2018.

Liao, R., Li, Y., Song, Y., Wang, S., Hamilton, W., Du-
venaud, D. K., Urtasun, R., and Zemel, R. Efficient
graph generation with graph recurrent attention networks.
Advances in neural information processing systems, 32,
2019.

Liu, C., Zhang, J., Wang, S., Fan, W., and Li, Q. Score-based
generative diffusion models for social recommendations.
arXiv preprint arXiv:2412.15579, 2024.

Martı́nez, V., Berzal, F., and Cubero, J.-C. A survey of link
prediction in complex networks. ACM computing surveys
(CSUR), 49(4):1–33, 2016.

Newman, M. Networks. Oxford university press, 2018.

Newman, M. E. Modularity and community structure in net-
works. Proceedings of the national academy of sciences,
103(23):8577–8582, 2006.

Newman, M. E. and Girvan, M. Finding and evaluating
community structure in networks. Physical review E, 69
(2):026113, 2004.

Newman, M. E., Watts, D. J., and Strogatz, S. H. Random
graph models of social networks. Proceedings of the
national academy of sciences, 99(suppl 1):2566–2572,
2002.

10

https://arxiv.org/abs/2404.09730
https://arxiv.org/abs/2404.09730
https://arxiv.org/abs/2206.06227

Convergent Analysis of Graph Diffusion Generation

Nichol, A. Q. and Dhariwal, P. Improved denoising diffu-
sion probabilistic models. In International conference on
machine learning, pp. 8162–8171. PMLR, 2021.

Niu, C., Song, Y., Song, J., Zhao, S., Grover, A., and Ermon,
S. Permutation invariant graph generation via score-based
generative modeling. In International Conference on Ar-
tificial Intelligence and Statistics, pp. 4474–4484. PMLR,
2020.

Pósfai, M. and Barabási, A.-L. Network science. Citeseer,
2016.

Revuz, D. and Yor, M. Continuous martingales and Brow-
nian motion, volume 293. Springer Science & Business
Media, 2013.

Russell, S. J. and Norvig, P. Artificial intelligence: a modern
approach. Pearson, 2016.

Sanchez-Lengeling, B., Outeiral, C., Guimaraes, G. L., and
Aspuru-Guzik, A. Optimizing distributions over molecu-
lar space. an objective-reinforced generative adversarial
network for inverse-design chemistry (organic). 2017.

Shah, K., Chen, S., and Klivans, A. Learning mixtures of
gaussians using the ddpm objective. Advances in Neural
Information Processing Systems, 36:19636–19649, 2023.

Simonovsky, M. and Komodakis, N. Graphvae: Towards
generation of small graphs using variational autoencoders.
In Artificial Neural Networks and Machine Learning–
ICANN 2018: 27th International Conference on Artificial
Neural Networks, Rhodes, Greece, October 4-7, 2018,
Proceedings, Part I 27, pp. 412–422. Springer, 2018.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In International conference on
machine learning, pp. 2256–2265. PMLR, 2015.

Song, J., Meng, C., and Ermon, S. Denoising diffusion im-
plicit models. arXiv preprint arXiv:2010.02502, 2020a.

Song, Y. and Ermon, S. Generative modeling by estimating
gradients of the data distribution. Advances in neural
information processing systems, 32, 2019.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Spielman, D. Spectral graph theory. Combinatorial scien-
tific computing, 18:18, 2012.

Su, J. and Marbach, P. Structure of core-periphery commu-
nities. In International Conference on Complex Networks
and Their Applications, pp. 151–161. Springer, 2022.

Suh, N. and Cheng, G. A survey on statistical theory of
deep learning: Approximation, training dynamics, and
generative models. Annual Review of Statistics and Its
Application, 12, 2024.

Trench, W. F. Introduction to real analysis. 2013.

Vignac, C., Krawczuk, I., Siraudin, A., Wang, B., Cevher,
V., and Frossard, P. Digress: Discrete denoising diffusion
for graph generation. arXiv preprint arXiv:2209.14734,
2022.

Vincent, P. A connection between score matching and de-
noising autoencoders. Neural computation, 23(7):1661–
1674, 2011.

Wang, P., Zhang, H., Zhang, Z., Chen, S., Ma, Y., and Qu, Q.
Diffusion models learn low-dimensional distributions via
subspace clustering. arXiv preprint arXiv:2409.02426,
2024.

Xie, Y., Shi, C., Zhou, H., Yang, Y., Zhang, W., Yu,
Y., and Li, L. Mars: Markov molecular sampling
for multi-objective drug discovery. arXiv preprint
arXiv:2103.10432, 2021.

Yang, L., Zhang, Z., Song, Y., Hong, S., Xu, R., Zhao, Y.,
Zhang, W., Cui, B., and Yang, M.-H. Diffusion models: A
comprehensive survey of methods and applications, 2024.
URL https://arxiv.org/abs/2209.00796.

Yeğin, M. N. and Amasyalı, M. F. Generative diffusion
models: A survey of current theoretical developments.
Neurocomputing, 608:128373, 2024.

You, J., Liu, B., Ying, Z., Pande, V., and Leskovec, J. Graph
convolutional policy network for goal-directed molecu-
lar graph generation. Advances in neural information
processing systems, 31, 2018.

Zang, C. and Wang, F. Moflow: an invertible flow model for
generating molecular graphs. In Proceedings of the 26th
ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 617–626, 2020.

Zhang, M. and Chen, Y. Link prediction based on graph neu-
ral networks. Advances in neural information processing
systems, 31, 2018.

Zhang, Z., Chen, Z., and Gu, Q. Convergence of score-
based discrete diffusion models: A discrete-time analysis.
arXiv preprint arXiv:2410.02321, 2024.

Zhu, Y., Du, Y., Wang, Y., Xu, Y., Zhang, J., Liu, Q., and
Wu, S. A survey on deep graph generation: Methods
and applications. In Learning on Graphs Conference, pp.
47–1. PMLR, 2022.

11

https://arxiv.org/abs/2209.00796

Convergent Analysis of Graph Diffusion Generation

Zhu, Z., Locatello, F., and Cevher, V. Sample complexity
bounds for score-matching: Causal discovery and gener-
ative modeling, 2023. URL https://arxiv.org/
abs/2310.18123.

12

https://arxiv.org/abs/2310.18123
https://arxiv.org/abs/2310.18123

Convergent Analysis of Graph Diffusion Generation

A. Problem Formulation Discussion
In this appendix, we provide a further discussion on our problem formulation, including the choice of hyper-parameter and
the derivation of the training objectives.

A.1. Choice of Hyper-parameter

For our analysis, we have chosen the following set of hyper-parameter:

fX(Gt, t) = −1/2gX(Gt, t)
2Xt,

fA(Gt, t) = −1/2gA(Gt, t)
2At,

gX(Gt, t) = gA(Gt, t) ≡ 1. (A.1)

As mentioned in the main paper, our analysis can be generalize further to any linear drift function fX(Gt, t) and fA(Gt, t)
and other constant variance functions so long as the underlying process remain a OU process and would converge to the
prior distribution (i.e., the convergent distribution)

Without loss of generality, we can express the set of linear function and constant variance function as,

fX(Gt, t) = ξgX(Gt, t)
2Xt,

fA(Gt, t) = ξgA(Gt, t)
2At,

gX(Gt, t) = gA(Gt, t) ≡ κ, (A.2)

where ξ ∈ (−1, 0) and κ is some positive constant.

The selection of a constant variance function does not result in any loss of generality. This is because altering the variance
function can be viewed as a re-scaling of time, provided that the drift function does not explicitly depend on time. In other
words, changing the variance function only affects the rate at which the diffusion process evolves, but this transformation is
effectively equivalent to adjusting the temporal scale of the process. Consequently, the analysis remains valid even if the
variance function is modified, as long as the time re-scaling is appropriately accounted for.

By changing the coefficient in the linear drift function, this amounts to a different conditional density for the forward process
and score:

Xt|X0 ∼ N(eξtX0, (1− e−2ξt)IN×F),

At|A0 ∼ N(eξtA0, (1− e−2ξt)IN×N). (A.3)

Since all the theoretical tools we use for the analysis are grounded in the OU process and independent of the scale of the
hyper-parameters, all the results and analysis can be immediately applied with the general formulation above. However, in
the paper, we strike for cleaner results for better interpretability and focus on the set of hyper-parameters specified in the
paper.

A.2. Training Objective Derivation

In this appendix, we present a derivation for the Equations used in the problem formulation for completeness. A similar
derivation can be found in (Jo et al., 2022).

The partial score functions can be estimated by training the time-dependent score-based models sθ(.) and sϕ(.), so that

sθ(Gt, t) ≈ ∇X logP(Gt), sϕ(Gt, t) ≈ ∇A logP(Gt).

However, the objectives introduced in SGM for estimating the score function are not directly applicable here, since the partial
score functions are defined as the gradient of each component, rather than the gradient of the data as in the conventional
score function. This interdependence between the two diffusion processes tied by the partial scores adds another layer of
difficulty.

To address this issue, an new objective for estimating the partial scores is needed. Intuitively, the score-based models
should be trained to minimize the distance to the corresponding ground-truth partial scores. The following new objectives

13

Convergent Analysis of Graph Diffusion Generation

generalize score matching (Song et al., 2020b) to the estimation of partial scores for the given graph dataset, as follows:

min
θ

Et

[
EG0EGt|G0

∥∥sθ,t(Gt)−∇X logP(Gt)
∥∥2
2

]
, (A.4)

min
ϕ

Et

[
EG0

EGt|G0

∥∥sϕ,t(Gt)−∇A logP(Gt)
∥∥2
2

]
, (A.5)

where t is uniformly sampled from [0, T]. The expectations are taken over samples G0 ∼ pdata and Gt ∼ P(Gt|G0), where
P(Gt|G0) denotes the transition distribution from 0 to t induced by the forward diffusion process.

Unfortunately, the equations above are still not directly trainable since the ground-truth partial scores are not analytically
accessible in general. This is why we need to underlying process to be an OU process, as we can leverage the known
conditional density of OU process for training.

min
θ

Et

[
EG0

EGt|G0

∥∥sθ,t(Gt, t)−∇X logP(Gt|G0)
∥∥2
2

]
, (A.6)

min
ϕ

Et

[
EG0EGt|G0

∥∥sϕ(Gt, t)−∇A logP(Gt|G0)
∥∥2
2

]
. (A.7)

Since the drift coefficient of the forward diffusion process is linear, the transition distribution P(Gt|G0) can be separated in
terms of Xt and At as follows:

P(Gt|G0) = P(Xt|X0)P(At|A0). (A.8)

Notably, we can easily sample from the transition distributions of each component, P(Xt|X0) and P(At|A0), as they are
Gaussian distributions with mean and variance determined by the coefficients of the forward diffusion process. This leads to
the following training objective:

min
θ

Et

[
EG0EGt|G0

∥∥sθ(Gt, t)−∇X logP(Xt|X0)
∥∥2
2

]
, (A.9)

min
ϕ

Et

[
EG0EGt|G0

∥∥sϕ(Gt, t)−∇A logP(At|A0)
∥∥2
2

]
. (A.10)

The expectations in the equation above can be efficiently computed using the Monte Carlo estimate with the samples
(t,G0,Gt). Note that estimating the partial scores is not equivalent to estimating ∇X logP(Xt) or ∇A logP(At), the main
objective of previous score-based generative models, since estimating the partial scores requires capturing the dependency
between Xt and At determined by the joint probability through time.

A.2.1. DERIVATION OF TRAINING OBJECTIVE A.4

The original score matching objective can be written as follows:

EGt

[
∥sθ(Gt, t)−∇X logP(Gt)∥22

]
= EGt

[
∥sθ(Gt, t)∥22

]
− 2EGt [⟨sθ(Gt, t),∇X logP(Gt)⟩] + C1,

where C1 is a constant that does not depend on W. On the other hand, we have

EGt
EGt|G0

[
∥sθ(Gt, t)−∇X logP(Gt|G0)∥22

]
= EGt

EGt|G0

[
∥sθ(Gt, t)∥22

]
− 2EGt

EGt|G0
[⟨sθ(Gt, t),∇X logP(Gt|G0)⟩] + C2,

For the second term, from the derivation (Appendix A.1 from (Jo et al., 2022)), we know that it has the following
equivalency:

EGt
[⟨sθ(Gt, t),∇X logP(Gt)⟩] = EGt

EGt|G0
[⟨sθ(Gt, t),∇X logP(Gt|G0)⟩]

14

Convergent Analysis of Graph Diffusion Generation

Since the constant C1 and C2 does not affect the optimization results, we can conclude that the following two objectives are
equivalent with respect to θ

EGt
EGt|G0

[
∥sθ(Gt, t)−∇X logP(Gt|G0)∥22

]
EGt

[
∥sθ(Gt, t)−∇X logP(Gt)∥22

]
Similarly, computing the gradient with respect to A, we can show that the following two objectives are also equivalent with
respect to ϕ:

EGtEGt|G0

[
∥sϕ(Gt, t)−∇A logP(Gt|G0)∥22

]
EGt

[
∥sϕ(Gt, t)−∇A logP(Gt)∥22

]
Now, it remains to show that ∇X logP(Gt|G0) is equivalent to ∇X logP(Xt|X0). Using the chain rule, we get that

∂ logP(At|A0)

∂(Xt)ij
= Tr

[
∇A logP(At|A0)

∂At

∂(Xt)ij

]
= 0.

With this result, we have that,

∇X logP(Gt|G0) = ∇X logP(Xt|X0) +∇X logP(At|A0) = ∇X logP(Xt|X0).

Therefore, we can conclude that

∇X logP(Gt|G0) = ∇X logP(Xt|X0)

With a similar computation for At, we can also show that ∇A logP(Gt|G0) is equal to ∇A logP(At|A0).

A.2.2. TRACTABLE TRAINING OBJECTIVE

In the previous section, we have proved the equivalence of the training objective used in our analysis and the common
score-based generative model. It remains to show how we compute this training objective with tractable objects. To simplify
the notation, we define the following for the rest of appendix, for any 0 ≤ t ≤ s ≤ T

σ2
t := 1− e−t,

αt,s := e−1/2(s−t),

αt := α0,t.

Then, using the ideas in (Vincent, 2011), we get the following,

E∥sθ(Gt, t)−∇XP(Gt)∥2

= E∥sθ(Gt, t)∥2 + E∥∇XP(Gt)∥2 − 2E⟨sθ(Gt, t),∇X logP(Gt)⟩
= E∥sθ(Gt, t)∥2 + E∥∇XP(Gt)∥2 − 2E∇ · sθ(Gt, t)

= E∥sθ(Gt, t)∥2 + E∥∇XP(Gt)∥2 − 2EP(G0)EP(Gt|G0)∇ · sθ(Gt, t)

= E∥sθ(Gt, t)∥2 + E∥∇XP(Gt)∥2 − 2EP(G0)EP(Gt|G0)⟨∇X logP(Gt|G0), sθ(Gt, t)⟩
= E∥sθ(Gt, t)∥2 + E∥∇XP(Gt)∥2 − 2EP(G0)EP(Gt|G0)⟨∇X logP(Xt|X0), sθ(Gt, t)⟩

= E∥sθ(Gt, t)∥2 + E∥∇XP(Gt)∥2 − 2EP(G0)EP(Gt|G0)

〈
Xt − αtX0

σ2
t

, sθ(Gt, t)

〉
= E

∥∥∥∥sθ(Gt, t)−
Xt − αtX0

σ2
t

∥∥∥∥2 + E∥∇XP(Gt)∥2 −
d

σ2
t

= E
∥∥∥∥sθ(Gt, t)−

Xt − αtX0

σ2
t

∥∥∥∥2 + C3

15

Convergent Analysis of Graph Diffusion Generation

where C3 is some constant independent of θ. Therefore, we can use the last equation as the training objective. Through a
similar computation, we get that,

E∥sϕ(Gt, t)−∇AP(Gt)∥2 = E
∥∥∥∥sϕ(Gt, t)−

At − αtA0

σ2
t

∥∥∥∥2 + C4

A.2.3. DISCUSSION OF ASSUMPTION 3.2

In this section, we present an argument for why Assumption 3.2 is reasonable and hold in practice. We can observe that

E
∥∥∥∥X− αtX0

σ2
t

∥∥∥∥ =
1

σ2
t

.

Therefore, it is natural to expect the error to scale as

E ∥sθ(Gt, t)−∇X logP(Gt)∥2 ≲
δ2X
σ2
t

.

for some δX. Furthermore, notice that σ2
tk

≃ min{tk, 1}, then we have,

1

T

T∑
i=1

∆tiE∥sθ(Gt, t)−∇X logP(Gt)∥2 ≲
1

T

∫ T

t1

δ2X
t ∧ 1

dt ≲ δ2X log(1/t1).

Through a symmetric argument, we can get a similar result for the structure process.

B. Useful Lemmas
In this appendix, we present a set of useful results that are going to be used in the proof of the main theorem. The proof of
some of the results can also be found in other diffusion convergent analysis (Chen et al., 2023a; 2022a; Zhu et al., 2023; Lee
et al., 2023b; Gnaneshwar et al., 2022). We present the proof for these results for completeness.

To simplify the notation a bit, in the following, we use Pt and P(Xt) interchangeably to represent the density of X at time t.
We use Pt|t′ and P(Xt|Xt′) interchangeably to represent the condition density of X at time t given t′. In addition, we adopt
the Frobenius norm as the matrix norm.

Lemma B.1. Given two Itô processes coupled by the same initial condition and random noise as follows,

dXt = f1(Xt, t)dt+ g(t)dWt, X0 = γ,

dX ′
t = f2(X ′

t , t)dt+ g(t)dWt, X ′
0 = γ,

where f1, f2, g are continuous function. Furthermore, suppose the two SDEs satisfy the following conditions,

1. the two SDEs have unique solutions,

2. Xt,X ′
t admit densities Pt,Qt that are twice continuously differentiable with respect to inputs t > 0.

Then, we denote the relative Fisher information between Pt and Qt by

J(Pt∥Qt) =

∫
Pt(X)

∥∥∥∥∇ log
Pt

Qt

∥∥∥∥2 dX.

Then for any t > 0, the time derivative of KL(Pt∥Qt) is given by,

d

dt
KL(Pt∥Qt) = −g(t)2J(Pt∥Qt) + E

[〈
f1(Xt, t)− f2(Xt, t),∇ log

Pt

Qt

〉]
16

Convergent Analysis of Graph Diffusion Generation

Proof. By definition of KL divergence, we have that

KL(Pt∥Qt) =

∫
Pt(X) log

(
Pt(X)

Qt(X)

)
dX .

Taking the time derivative of the expression above, we obtain,

∂

∂t
KL(Pt∥Qt) =

∂

∂t

[∫
Pt(X) log

(
Pt(X)

Qt(X)

)
dX
]

=

∫
∂Pt(X)

∂t
log

(
Pt(X)

Qt(X)

)
dX −

∫
Pt(X)

Qt(X)

∂Qt(X)

∂t
dX

Then, we can use Fokker-Plank equation to obtain the time derivatives of Pt and Qt which are given by

∂Pt(X)

∂X
= ∇ ·

[
−f1(X , t)Pt(X) +

g(t)2

2
∇Pt(X)

]
,

∂Qt(X)

∂X
= ∇ ·

[
−f2(X , t)Qt(X) +

g(t)2

2
∇Qt(X)

]
.

Substituting the time derivatives of Pt and Qt into the corresponding terms of the time derivative of ∂
∂tKL(Pt∥Qt), we get

that,∫
∂Pt(X)

∂t
log

(
Pt(X)

Qt(X)

)
dX =

∫
∇ ·
[
−f1(X , t)Pt(X) +

g(t)2

2
∇Pt(X)

]
log

(
Pt(X)

Qt(X)

)
dX

=

∫ 〈
∇ log

(
Pt(X)

Qt(X)

)
,Pt(X)f1(X , t)− g(t)2

2
∇Pt(X)

〉
dX ,

=

∫
Pt(X)

〈
f1(X , t),∇ log

(
Pt(X)

Qt(X)

)〉
− g(t)2

2

〈
∇ log

(
Pt(X)

Qt(X)

)
,∇Pt(X)

〉
dX .

∫
Pt(X)

Qt(X)

∂Qt(X)

∂t
dX =

∫
Pt(X)

Qt(X)
∇ ·
[
−f2(X , t)Qt(X) +

g(t)2

2
∇Qt(X)

]
dX ,

=

∫ 〈
∇ Pt(X)

Qt(X)
, f2(X , t)Qt(X)− g(t)2

2
∇Qt(X)

〉
,

=

∫
Qt(X)

〈
∇ Pt

Qt
, f2(X , t)

〉
− g(t)2

2

〈
∇ Pt(X)

Qt(X)
,∇Qt(X)

〉
dX .

Combining the results above, we obtain,

∂

∂t
KL(Pt∥Qt) =

∂

∂t

[∫
Pt(X) log

(
Pt(X)

Qt(X)

)
dX
]
,

=

∫
∂Pt(X)

∂t
log

(
Pt(X)

Qt(X)

)
dX −

∫
Pt(X)

Qt(X)

∂Qt(X)

∂t
dX ,

=

∫
Pt(X)

〈
f1(X , t),∇ log

(
Pt(X)

Qt(X)

)〉
− g(t)2

2

〈
∇ log

(
Pt(X)

Qt(X)

)
,∇Pt(X)

〉
dX − ...∫

Qt(X)

〈
∇ Pt

Qt
, f2(X , t)

〉
+

g(t)2

2

〈
∇ Pt(X)

Qt(X)
,∇Qt(X)

〉
dX ,

=
g(t)2

2

(∫ 〈
∇ Pt(X)

Qt(X)
,∇Qt(X)

〉
−
〈
∇ log

(
Pt(X)

Qt(X)

)
,∇Pt(X)

〉
dX
)
+ ...∫

Pt(X)

〈
f1(X , t),∇ log

Pt(X)

Qt(X)

〉
−Qt(X)

〈
∇ Pt(X)

Qt(X)
, f2(X , t)

〉
dX ,

17

Convergent Analysis of Graph Diffusion Generation

Notice that

∫ 〈
∇ Pt(X)

Qt(X)
,∇Qt(X)

〉
−
〈
∇ log

(
Pt(X)

Qt(X)

)
,∇Pt(X)

〉
dX

=

∫ 〈
Qt(X)∇Pt(X)− Pt(X)∇Qt(X)

Qt(X)
,∇ logQt(X)

〉
− Pt

〈
∇ log

Pt(X)

Qt(X)
,∇ logPt(X)

〉
,

=

∫
Pt(X)

〈
∇ log

Pt(X)

Qt(X)
,∇ logQt(X)

〉
− Pt

〈
∇ log

Pt(X)

Qt(X)
,∇ logPt(X)

〉
dX ,

= −J(Pt(X)∥Qt(X)).

In addition, we have

∫
Pt(X)

〈
f1(X , t),∇ log

Pt(X)

Qt(X)

〉
−Qt(X)

〈
∇ Pt(X)

Qt(X)
, f2(X , t)

〉
dX

=

∫
Pt(X)

〈
f1(X , t),∇ log

Pt(X)

Qt(X)

〉
− Pt(X)

〈
∇ log

Pt(X)

Qt(X)
, f2(X , t)

〉
dX

=

∫
Pt(X)

〈
∇ log

Qt(X)

Pt(X)
, f1(X , t)− f2(X , t)

〉
= E

[〈
f1(X , t)− f2(X , t),∇ log

Qt(X)

Pt(X)

〉]

Combining all the results above, we get that,

∂

∂t
KL(Pt∥Qt) = −g(t)2J(Pt(X)∥Qt(X)) + E

[〈
f1(X , t)− f2(X , t),∇ log

Qt(X)

Pt(X)

〉]

This completes the proof.

The next two lemmas capture the properties of Gaussian perturbation in the forward process.

Lemma B.2. Let P be a probability measure on RN×M . Consider the Gaussian perturbation of P that admits a density
Pµ,σ(X), where X ∈ RN×M . Specifically, we define

Pµ,σ(X) ∝
∫
RN×M

exp

(
−∥X− µY∥2F

2σ2

)
dP(Y)

where ∥ · ∥F is the Frobenius norm. Let Pµ,σ(Y|X) be the conditional probability measure given X, defined as

dPµ,σ(Y|X) ∝ exp

(
−∥X− µY∥2F

2σ2

)
dP(Y)

If P admits a density in C1(RN×M), we have

∇X logPµ,σ(X) =
1

µ
EPµ,σ(Y|X) [∇Y logP(Y)]

18

Convergent Analysis of Graph Diffusion Generation

Proof.

∇ logPµ,σ(X) =

∫
RN×M P(Y)∇X

[
exp

(
−∥X−µY∥2

2σ2

)]
dY∫

RN×M P(Y) exp
(
−∥X−µY∥

2σ2

)
=

−
∫
RN×M P(Y)

[
∇X exp

(
−∥X−µY∥2

2σ2

)]
dY

µ
∫
RN×M P(Y) exp

(
−∥X−µY∥

2σ2

)
dY

=

∫
RN×M P(Y)

[
∇X exp

(
−∥X−µY∥2

2σ2

)]
dY

αt,s

∫
RN×M P(Y) exp

(
−∥X−µY∥

2σ2

)
dY

=
1

µ
EPµ,σ(Y|X)∇Y logP(Y).

Lemma B.3. For 0 ≤ k ≤ M − 1 and for time t ∈ (tk, tk+1], consider the continuous and the discrete approximated
reverse SDE starting from γ,

dX̄t =
[
1/2X̄t +∇X logP(Gt)

]
dt+ dWt, X̄0 = γ,

dX̂t =
[
1/2X̂t + sθ(Ĝt′k

, t′k)
]
dt+ dWt, X̂0 = γ,

for time t ∈ (tk, tk+1]. Let P̄t|tk be the density of X̄t given X̄tk and P̂t|tk be the density of X̂t given X̂tk . Then we have that

1. For any γ, the two processes above satisfy: 1) there is a unique solution; and 2) the density functions are two
continuously differentiable for t > 0.

2. For a.e. γ (with respect to he Lebesgue measure), we have that

lim
t 7→t+k

KL
(
P̄t|tk(.|γ)∥P̂t|tk(.|γ)

)
= 0

Proof. Let P[t′k,t]
and Q[t′k,t]

denote the path measure of (X̄s)t′k≤s≤t and (X̂s)t′k≤s≤t, respectively. For any Y ∈ RN×M ,
we have

KL(P̄t|t′k(.|Y)∥P̂t|t′k(.|Y)) ≤ KL(P[t′k,t]
(.|Y)∥Q[t′k,t]

(.|Y).

Thus, it suffices to show
lim

t→t′k+
KL(P[t′k,t]

(.|Y)∥Q[t′k,t]
(.|Y)) = 0,

for a.e. Y ∈ RN×M . It is easy to check the Novikov condition satisfied under Assumption 3.1 and 3.2. Therefore, we
can apply Girsanov change of measure (Revuz & Yor, 2013) on P[t′k,t]

(.|Y) and Q[t′k,t]
(.|Y). Then, for the exponential

integrator scheme, we have that

KL(P[t′k,t]
(.|Y)∥Q[t′k,t]

(.|Y)) = E
[∫ t

tk

∥∇X logP(G)− sθ(Ĝt′i
, t′i)∥2|X̄tk = γ

]
Again, by Assumption 3.2, we have that ∥∇X logP(G)−sθ(Ĝt′i

, t′i)∥2 is bounded and therefore, we can apply the dominated
convergence theorem (Trench, 2013) and move the limit inside the expectation, i.e.,

lim
t→t′k+

KL(P[t′k,t]
(.|Y)∥Q[t′k,t]

(.|Y)) = lim
t→t′k+

E
[∫ t

tk

∥∇X logP(G)− sθ(Ĝt′i
, t′i)∥2|X̄ti = γ

]
= E

[
lim

t→t′k+

∫ t

tk

∥∇X logP(G)− sθ(Ĝt′i
, t′i)∥2|X̄ti = γ

]
= 0

19

Convergent Analysis of Graph Diffusion Generation

This complete the proof for the exponential integrator scheme. Similarly for the Euler-Maruyama scheme, we have that

KL(P[t′k,t]
(.|Y)∥Q[t′k,t]

(.|Y)) = E
[∫ t

tk

∥∇X logP(Gt)− sθ(Ĝt′i
, t′i) + 1/2(Gt − γ)∥2|X̄ti = γ

]
.

Again, by Assumption 3.1 and 3.2, we can conclude that ∥∇X logP(Gt)− sθ(Ĝt′i
, t′i) + 1/2(Gt − γ)∥2 is bounded. Then,

again, by the dominant convergence theorem, we get that

lim
t→t′k+

KL(P[t′k,t]
(.|Y)∥Q[t′k,t]

(.|Y)) = E
[∫ t

tk

∥∇X logP(Gt)− sθ(Ĝt′i
, t′i) + 1/2(Gt − γ)∥2|X̄ti = γ

]
= E

[
lim

t→t′k+

∫ t

tk

∥∇X logP(Gt)− sθ(Ĝt′i
, t′i) + 1/2(Gt − γ)∥2|X̄ti = γ

]
= 0

This completes the proof.

We have the following results for the decomposition of the convergence bound for the Euler-Maruyama scheme and the
exponential integrator scheme. We emphasize that the result below is independent of the generation paradigms.

Lemma B.4. For the exponential integrator scheme, we have that,

KL(P(X)∥P(X̂T)) ≲ KL(P(XT)∥ΠX) +

M∑
i=1

∫ ti

ti−1

∥sθ(Gt, t)−∇X logP(Gti)∥2dt (B.1)

+

M∑
i=1

∫ ti

ti−1

E∥∇X logPt(Gt)−∇X logP(Gti)∥2dt,

KL(P(A)∥P(ÂT)) ≲ KL(P(AT)∥ΠA) +

M∑
i=1

∫ ti

ti−1

∥sϕ(Gt, t)−∇A logP(Gti)∥2dt (B.2)

+

M∑
i=1

∫ ti

ti−1

E∥∇A logP(Gt)−∇A logP(Gti)∥2dt.

For the Euler-Maruyama scheme, we have that,

KL(P(X)∥P(X̂T)) ≲ KL(P(XT)∥ΠX) +

M∑
i=1

∫ ti

ti−1

∥sθ(Gt, t)−∇X logP(Gti)∥2dt (B.3)

+

M∑
i=1

∫ ti

ti−1

(
E∥∇X logPt(Gt)−∇X logP(Gti−1)∥2 + E∥Xt −Xti∥2

)
dt,

KL(P(A)∥P(ÂT)) ≲ KL(P(AT)∥ΠA) +

M∑
i=1

∫ ti

ti−1

∥sϕ(Gt, t)−∇A logP(Gti)∥2dt (B.4)

+

M∑
i=1

∫ ti

ti−1

(
E∥∇A logP(Gt)−∇A logP(Gti)∥2 + E∥At −Ati∥2

)
dt.

Proof. We start with deriving the expression for the feature progression. Consider an arbitrary time interval ti < t ≤ ti+1,
let P̄t|ti denote the distribution of X̄t given X̄ti . Let P̂t|ti denote the distribution of the discrete approximation X̂t given
X̄ti .

Then for any γ ∈ RN×F , by the chain rule of KL-divergence, we can get the following progression relation,

KL(P̄t′i+1
||P̂t′i+1

) ≤ EP̄t′
KL(P̄t′i+1|t′i(.|γ))∥P̂t′i+1|t′i(.|γ)) + KL(P̄t′i

||P̂t′i
). (B.5)

20

Convergent Analysis of Graph Diffusion Generation

Equivalently, we have that

KL(P̄t′i+1
||P̂t′i+1

)−KL(P̄t′i
||P̂t′i

) ≤ EP̄t′
KL(P̄t′i+1|t′i(.|γ))∥P̂t′i+1|t′i(.|γ)).

We can observe that if we do a telescope sum over 0 ≤ i ≤ M , the left-hand side can cancel most of the term and left of
KL(P̄T ||P̂T) and KL(P̄0||P̂0).

Therefore, we can focus on the right hand side and deriving an expression for

EP̄t′
KL(P̄t′i+1|t′i(.|γ))∥P̂t′i+1|t′i(.|γ)).

By Lemma B.3 we have that the two process satisfy the conditions: 1) unique solution and 2) twice continuously differentiable.
Then, by Lemma B.1, we have the following time evolution relation for any γ and t > ti

d

dt
EP̄t′

KL(P̄t′i+1|t′i(.|γ))∥P̂t′i+1|t′i(.|γ)) =− 1

2
EP̄t′|t′

i
(Xt′ |γ)

∥∥∥∥∥∇ log
P̄t′|t′i(Xt|γ)
P̂t′|t′i(Xt′ |γ)

∥∥∥∥∥
2

+ EP̄t′|t′
i
(Xt′ |γ)

[〈
∇ log P̄′

t(G′
t)− sθ(Gt′

i
,t′i)

+
1

2
(Xt −Xt′i

),∇ log
P̄t′|t′i(X|γ)
P̂t′|t′i(X|γ)

〉]

Using the fact that ⟨a, b⟩ ≤ 1
2∥a∥

2 + 1
2∥b∥

2, we get that

≤− 1

2
EP̄t′|t′

i
(Xt′ |γ)

∥∥∥∥∥∇ log
P̄t′|t′i(Xt′ |γ)
P̂t′|t′i(Xt′ |γ)

∥∥∥∥∥
2

+
1

2
EP̄t′|t′

i
(Xt′ |γ)

∥∥∥∥∇ log P̄t′(Xt′)− sθ(Gt′i
, t′i) +

1

2
(Xt′ −Xt′i

)

∥∥∥∥2
+

1

2
EP̄t′|t′

i
(Xt′ |γ)

∥∥∥∥∥∇ log
P̄t′|t′i(Xt′ |γ)
P̂t′|t′i(Xt′ |γ)

∥∥∥∥∥
2

=
1

2
EP̄t′|t′

i
(Xt′ |γ)

∥∥∥∥∇ log P̄t′(Xt′)− sθ(Gt′i
, t′i) +

1

2
(Xt′ −Xt′i

)

∥∥∥∥2
This means that we have,

d

dt
KL(P̄t′|t′i∥P̂t′|t′i(.|γ)) ≤

1

2
EP̄t′|t′

i
(Xt′ |γ)

∥∥∥∥∇ log P̄t′(Xt′)− sθ(Gt′i
, t′i) +

1

2
(Xt′ −Xt′i

)

∥∥∥∥2
≤ 1

2
EP̄t|ti (X|γ)

(∥∥∇ log P̄t′(Xt′)− sθ(Gt′i
, t′i)
∥∥2 + ∥∥∥∥12(Xt′ −Xt′i

)

∥∥∥∥2
)
,

≤ 1

2
EP̄t′|t′

i
(Xt′ |γ)

∥∥∇ log P̄t′(Xt′)− sθ(Gt′i
, t′i)
∥∥2 + 1

2
EP̄t′|t′

i

∥∥∥∥12(Xt′ −Xt′i
)

∥∥∥∥2
Then, by Lemma B.3, for a.e. γ, we have

lim
t′ 7→t′+i

KL(P̄t′|t′i(.|γ)∥P̂t′|t′i(.|γ)) = 0.

This means that P̄t′|t′i(.|γ) and P̂t′|t′i(.|γ) become increasingly similar as the approximation interval become small. Then,
by the derivation above and taking the integral from t′i to t′i+1, we get that,

KL(P̄t′i+1|t′i(.|γ)∥P̂t′i+1|t′i(.|γ)) ≤

1

2

∫ t′i+1

t′i

EP̄t′|t′
i
(Xt′ |γ)

∥∥∇ log P̄t′(Xt′)− sθ(Gt′i
, t′i)
∥∥2 + 1

2
EP̄t′|t′

i

∥∥∥∥12(Xt′ −Xt′i
)

∥∥∥∥2 dt.
21

Convergent Analysis of Graph Diffusion Generation

Because of the fact that P̄′
t(Xt′) is absolutely continuous with respect to the Lebesgue measure, integrating both sides above

with respect to P̄t′i
we get,

EP̄t′
i

KL(P̄t′i+1|t′i(.|γ)∥P̂t′i+1|t′i(.|γ)) ≤

1

2

∫ t′i+1

t′i

EP̄t′

∥∥∇ log P̄t′(Xt′)− sθ(Gt′i
, t′i)
∥∥2 + 1

2
EP̄t′ (Xt′)

∥∥∥∥12(Xt′ −Xt′i
)

∥∥∥∥2 dt
Substitute the above result into the progression relation given in Eq. B.5, we get the following progression relation,

KL(P̄t′i+1
|P̂t′i

) ≤KL(P̄t′i
|P̂t′)+

1

2

∫ t′i+1

t′i

EP̄t′ (Xt′)

∥∥∇ log P̄t′(Xt′)− sθ(Gt′i
, t′i)
∥∥2 + 1

2
EP̄t′ (Xt′)

∥∥∥∥12(Xt′ −Xt′i
)

∥∥∥∥2 dt
= KL(P̄t′i

|P̂t′)+

1

2

∫ t′i+1

t′i

EP̄t′ (Xt′)

∥∥∇ log P̄t′(Xt′)− sθ(Gt′i
, t′i)
∥∥2 + 1

2
EP̄t′ (X)

∥∥∥∥12(Xt′ −Xt′i
)

∥∥∥∥2 dt
Then, summing above iterative relation over 0 ≤ i ≤ M and replacing Pt′ = PT−t, we can obtain,

KL(P0∥P̂T) ≤ KL(PT ∥γ) +
1

2

M∑
i=0

∫ ti+1

ti

EP̄t(X)

∥∥∇ log P̄(Gt)− sθ(Gti+1 , ti+1)
∥∥2 + 1

2
EP̄t(X)

∥∥∥∥12(Xt −Xti+1)

∥∥∥∥2 dt
= KL(PT ∥γ) +

1

2

M∑
i=0

∫ ti+1

ti

EP̄t(X)

∥∥∇X log P̄(Gt)−∇X log P̄(Gti+1) +∇X log P̄(Gti+1)− sθ(Gti+1 , ti+1)
∥∥2

+
1

2
EP̄t(X)

∥∥∥∥12(Xt −Xti+1
)

∥∥∥∥2 dt
≤ KL(PT ∥γ) +

1

2

M∑
i=0

∫ ti+1

ti

EP̄t(X)

∥∥∇X log P̄(Gt)−∇X log P̄(Gti) +∇X log P̄(Gti)− sθ(Gti , ti)
∥∥2

+
1

2
EP̄t(X)

∥∥∥∥12(Xt −Xti)

∥∥∥∥2 dt
≤ 1

2

M∑
i=0

∫ ti+1

ti

EP̄t(X)

∥∥∇X log P̄(Gt)−∇X log P̄(Gti+1)∥2 + EP̄t(X)∥∇X log P̄(Gti+1)− sθ(Gti+1 , ti+1)
∥∥2

+
1

2
EP̄t(X)

∥∥∥∥12(Xt −Xti+1)

∥∥∥∥2 dt
This completes the derivation for the Euler-Marumaya scheme for the feature matrix. The derivation for the structure matrix
is symmetric.

Furthermore, to obtain the derivation for the exponential integrator scheme, we only need to replace the time derivative with,

d

dt
KL(P̄t|ti∥P̂t|ti(.|γ)) ≤

1

2
EP̄t|ti (X|γ)

∥∥∇ log P̄t(X)− sθ(Gti , ti)
∥∥2 .

Then, we can go through the derivation above in a similar manner to obtain the derivation for feature and structure with the
exponential integrator scheme.

Lemma B.5. Under Assumption 3.1, for T > 1, we have

KL(PT (X)∥ΠX) ≤ (NF +HX)e−T ,

KL(PT (A)∥ΠA) ≤ (N2 +HX)e−T .

22

Convergent Analysis of Graph Diffusion Generation

Proof. First, we note that that f(x) = x log x is a convex function for x > 0. Then, for any t > 0, we can use Jensen’s
inequality to bound the entropy of Pt:

∫
Pt(X) logPt(X) dX =

∫ (∫
Pt|0(X|Y)P(Y) dY

)
log

(∫
Pt|0(X|Y)P(Y) dY

)
dX,

≤
∫ ∫

Pt|0(X|Y) logPt|0(X|Y) dP(Y) dX,

=

∫ (∫
Pt|0(X|Y) logPt|0(X|Y) dX

)
dP(Y).

Since Xt|X0 = Y ∼ N(αX0, σ
2
t I), we have

∫
Pt|0(X|Y) logPt|0(X|Y) dX = −NF

2
log
(
2πσ2

t

)
− NF

2
.

Substitute this back into the derivation before, we have

∫
Pt(X) logPt(X) dX ≤ −NF

2
log
(
2πσ2

t

)
− NF

2
. (B.6)

Then, by the definition of KL divergence, we have that,

KL(Pt∥Π) =

∫
Pt(X) log

Pt(X)

ΠX
dX

=

∫
Pt(X) [logPt(X)− logΠX] dX

Substitute int the definition of standard Gaussian for ΠX, we get

=

∫
Pt(X) logPt(X) dX+ EPt

[
∥X∥2

2
+

NF

2
log(2π)

]
Subsitute in the result of Eq. B.6 and rearrange the terms, we get

≤ NF

2
log σ−2

t +
1

2
(HX −NF).

Since Langevin dynamics with strongly log-concave stationary distribution converge exponentially, we can obtain

KL(Pt∥Π) ≤ e−T+tNF

2
log σ−2

t +
1

2
(HX −NF),

Picking t = log 2, et log
(

1
σ2
t

)
≲ 1, we obtain

≤ e−T (NF +HX).

The proof for the structure is symmetric by replace the dimension of NF with N2.

Lemma B.6. Suppose the step size ∆i for the Euler-Maruyama scheme satisfies ∆i ≤ 1, then for 1 ≤ i ≤ M , we have

E∥Xt −Xti∥2 ≤ NF (ti − t) +HX(ti − t)2, ti−1 ≤ t ≤ ti,

E∥At −Ati∥2 ≤ N2(ti − t) +HA(ti − t)2, ti−1 ≤ t ≤ ti,

23

Convergent Analysis of Graph Diffusion Generation

Proof. We start with the feature matrix. By the definition of the forward process, we get that

E∥Xt −Xti∥2 = E
∥∥∥∥∫ ti

t

1

2
Xsds−

∫ ti

t

1

2
dWs

∥∥∥∥2
≤ E

∥∥∥∥∫ ti

t

1

2
Xsds

∥∥∥∥2 + E
∥∥∥∥∫ ti

t

1

2
dWs

∥∥∥∥2
By Cauchy-Schwartz inequality, we can get

≲ (ti − t)

∫ ti

t

E ∥Xs∥2 ds+NF (ti − t)

In addition, we have the explicit expression for the conditional density Xs|X0 given by,

N(e−1/2sX0, (1− e−s)I).

Then, based on the expression and the Assumption 3.1 that the second moment is bounded, we can get that

E∥Xs∥2 ≤ HX +NF.

Substitute this back into the derivation before, we get

E∥Xt −Xti∥2 ≲ NF (ti − t) + (NF +HX)(ti − t)2.

Similarly, for the structure matrix, we have that,

E∥At −Ati∥2 = E
∥∥∥∥∫ ti

t

1

2
Asds−

∫ ti

t

1

2
dWs

∥∥∥∥2
≤ E

∥∥∥∥∫ ti

t

1

2
Asds

∥∥∥∥2 + E
∥∥∥∥∫ ti

t

1

2
dWs

∥∥∥∥2
By Cauchy-Schwartz inequality, we can get

≲ (ti − t)

∫ ti

t

E ∥As∥2 ds+N2(ti − t)

In addition, we have the explicit expression for the conditional density As|A0 given by,

N(e−1/2sA0, (1− e−s)I).

Then, based on the expression and the Assumption 3.1 that the second moment is bounded, we can get that

E∥As∥2 ≤ HA +N2.

Substitute this back into the derivation before, we get

E∥At −Ati∥2 ≲ N2(ti − t) + (N2 +HX)(ti − t)2.

Lemma B.7 ((Chewi et al., 2024)). Let P be a continuously differentiable probability density. Suppose ∇ logP is L-Lipschitz,
we have

E∥∇X logP(G)∥2 ≤ NFL,

E∥∇A logP(G)∥2 ≤ N2L.

24

Convergent Analysis of Graph Diffusion Generation

Proof. Using integration by parts for feature X , we have:

E∥∇X logP(G)∥2 =

∫
P(X)∥∇X logP(G)∥2dX

=

∫
⟨∇P(X),∇X logP(G)⟩ dX,

=

∫
P(X)∆ logP(X)dX

≤ NFL.

The derivation for the structure is similar.

Lemma B.8. For any 0 ≤ t ≤ s ≤ T , the forward process satisfies

E
[
∥∇X logP(Gt)−∇X logP(Gs)∥2

]
≲

E
[
∥∇X logP(Gt)−∇X logP(α−1

t,sGs)∥2
]
+ E

[
∥∇X logP(Gt)∥2

] (
1− α−1

t,s

)2
.

E
[
∥∇A logP(Gt)−∇A logP(Gs)∥2

]
≲

E
[
∥∇A logP(Gt)−∇A logP(α−1

t,sGs)∥2
]
+ E

[
∥∇A logP(Gt)∥2

] (
1− α−1

t,s

)2
.

Proof. We start with proving for the feature X. By our choice of hyper-parameter, the forward process is a OU process with
condition density:

Xs|Xt ∼ N(αt,sXt, (1− α2
t,s)I)

As|At ∼ N(αt,sAt, (1− α2
t,s)I)

from Lemma B.2, we can rewrite ∇X logP(Gs) as

∇X logP(Gs) = α−1
t,sEPt|s∇X logPt(G),

where Pt|s is the conditional density of Gt given Gs. Thus the discretization error can be bounded by

E
[
∥∇X logP(α−1

t,sGs)−∇X logP(Gs)∥2
]
= EPs

[
∥α−1

t,sEPt|s∇X logP(Gt)−∇X logPt(α
−1
t,sGs)∥2

]
≤ E

[
∥α−1

t,s∇X logP(Gt)−∇X logP(α−1
t,sGs)∥2

]
≤ 2(1− α−1

t,s)
2E
[
∥∇X logP(Gt)∥2

]
+

2E
[
∥∇X logPt(Gt)−∇X logP(α−1

t,sGs)∥2
]
.

Therefore, splitting the error into the space-discretization and the time-discretization error, we have

E
[
∥∇X logP(Gt)−∇X logP(α−1

t,sGs)∥2
]

≤ 2E
[
∥∇X logP(Gt)−∇X logP(α−1

t,sGs)∥2
]
+ 2E

[
∥∇X logP(α−1

t,sGs)−∇X logP(Gs)∥2
]

≤ 2(1− α−1
t,s)

2E
[
∥∇X logP(Gt)∥2

]
+ 4E

[
∥∇X logP(Gt)−∇ logP(α−1

t,sGs)∥2
]

≲ E
[
∥∇X logP(Gt)∥2

] (
1− α−1

t,s

)2
+ E

[
∥∇X logP(Gt)−∇X logP(α−1

t,sGs)∥2
]
.

The proof for the structure matrix A is symmetric and therefore obmitted here.

Lemma B.9. For tk−1 ≤ t ≤ tk, if L ≥ 1 and ∆tk ≤ 1, we have:

E∥∇X logP(Gt)−∇X logP(Gtk)∥2 ≲ NFL2(tk − t) +NFL(tk − t)2,

E∥∇A logP(Gt)−∇A logP(Gtk)∥2 ≲ N2L2(tk − t) +N2L(tk − t)2.

25

Convergent Analysis of Graph Diffusion Generation

Proof. We start with proving for the feature X.

By Lemmas B.8, we have that

E∥∇X logP(Gt)−∇X logP(Gtk)∥

≲ E
[
∥∇X logP(Gt)−∇X logP(α−1

t,tk
Gt)∥2

]
+ E

[
∥∇X logP(Gt)∥2

] (
1− α−1

t,s

)2
.

Next, we tackle each term of the equation above. By Assumption 3.1, we have that,

E∥∇X logP(Gt)−∇X logP(Gtk)∥2

= E∥∇X logP(Gt)−∇X logP(α−1
t,tk

Gt)∥2

≤ NFL2E∥AtXt − α−2
t,tk

AtXt∥2

= NFL2(e2(tk−t) − 1)

Using the premise that tk − t ≤ ∆k ≤ 1:

E∥∇X logP(Gt)−∇X logP(Gtk)∥ ≲ NFL2(tk − t)

Then, by Lemma B.7, we have that

E∥∇X logP(Gt)∥2(1− α−1
t,k)

2 ≤ NFL(tk − t)

Thus, we conclude that:

E∥∇X logP(Gt)−∇X logP(Gtk)∥2 ≲ NFL2(tk − t) +NFL(tk − t)2

Similarly for the structure, we have that By Lemmas B.8, we have that

E∥∇A logP(Gt)−∇A logP(Gtk)∥

≲ E
[
∥∇A logP(Gt)−∇A logP(α−1

t,tk
Gt)∥2

]
+ E

[
∥∇A logP(Gt)∥2

] (
1− α−1

t,s

)2
.

Next, we tackle each term of the equation above. By Assumption 3.1, we have that,

E∥∇A logP(Gt)−∇A logP(Gtk)∥2

= E∥∇A logP(Gt)−∇A logP(α−1
t,tk

Gt)∥2

≤ N2L2E∥AtXt − α−2
t,tk

AtXt∥2

= N2L2(e2(tk−t) − 1)

Using the premise that tk − t ≤ ∆k ≤ 1:

E∥∇A logP(Gt)−∇A logP(Gtk)∥ ≲ N2L2(tk − t)2

Then, by Lemma B.7, we have that

E∥∇A logP(Gt)∥2(1− α−1
t,k)

2 ≤ N2(tk − t)

Thus, we conclude that:

E∥∇X logP(Gt)−∇X logP(Gtk)∥2 ≲ N2L2(tk − t) +N2L(tk − t)2

26

Convergent Analysis of Graph Diffusion Generation

Lemma B.10. For the graph paradigm given by Eq. 3.7, under the premise ∥A∗∥2 ≤ σ2
A, for tk−1 ≤ t ≤ tk, if L ≥ 1 and

∆tk ≤ 1, we have:

E∥∇X logP(Gt)−∇X logP(Gtk)∥2 ≲ NFL2(tk − t)σ2
A +NFL(tk − t)2,

Proof. By Lemmas B.8, we have that

E∥∇X logP(Gt)−∇X logP(Gtk)∥
≲ E∥∇X logP(Gt)−∇X logP(Gtk)∥2 + E∥∇X logP(Gt)∥2(1− α−1

t,k)
2.

Next, we tackle each term of the equation above. By Assumption 3.1, we have that,

E∥∇X logP(Gt)−∇X logP(Gtk)∥2

= E∥∇X logP(Gt)−∇X logP(α−1
t,tk

Gt)∥2

≤ NFL2E∥Xt − α−1
t,tk

Xt∥2∥A∗∥2

= NFL2(etk−t − 1)σ2
A

Using the premise that tk − t ≤ ∆k ≤ 1:

E∥∇X logP(Gt)−∇X logP(Gtk)∥2 ≲ NFL2(tk − t)σ2
A

Then, by Lemma B.7, we have that

E∥∇X logP(Gt)∥2(1− α−1
t,k)

2 ≤ NFL(tk − t)2

Thus, we conclude that:

E∥∇X logP(Gt)−∇X logP(Gtk)∥2 ≲ NFL2(tk − t)σ2
A +NFL(tk − t)2

We complete the proof.

Lemma B.11. For graph generation paradigm given by Eq. 3.8, under the premise that ∥X∥2 ≤ σ2
X, for tk−1 ≤ t ≤ tk, if

L ≥ 1 and ∆tk ≤ 1, we have:

E∥∇A logP(Gt)−∇A logP(Gtk)∥2 ≲ N2L2(tk − t)σ2
A +N2L(tk − t)2,

Proof. By Lemmas B.8, we have that

E∥∇A logP(Gt)−∇A logP(Gtk)∥
≲ E∥∇A logP(Gt)−∇A logP(Gtk)∥2 + E∥∇A logP(Gt)∥2(1− α−1

t,k)
2.

Next, we tackle each term of the equation above. By Assumption 3.1, we have that,

E∥∇A logP(Gt)−∇A logP(Gtk)∥2

= E∥∇A logP(Gt)−∇X logP(α−1
t,tk

Gt)∥2

≤ N2L2E∥X∗∥2E∥At − α−1
t,tk

At∥2

= N2L2(etk−t − 1)σ2
X

Using the premise that tk − t ≤ ∆k ≤ 1:

E∥∇A logP(Gt)−∇A logP(Gtk)∥2 ≲ N2L2(tk − t)σ2
X

27

Convergent Analysis of Graph Diffusion Generation

Then, by Lemma B.7, we have that

E∥∇A logP(Gt)∥2(1− α−1
t,k)

2 ≤ N2(tk − T)2

Thus, we conclude that:

E∥∇ logP(Gt)−∇ logP(Gtk)∥2 ≲ N2L2(tk − t)σ2
A +N2L(tk − t)2

We complete the proof.

Lemma B.12. For tk−1 ≤ t ≤ tk, if L ≥ 1 and ∆tk ≤ 1, we have:

E∥∇X logP(Gt)−∇X logP(Gtk)∥2 ≲ NFL2(tk − t)2,

Proof. By Lemmas B.8, we have that

E∥∇X logP(Gt)−∇X logP(Gtk)∥
≲ E∥∇X logP(Gt)−∇X logP(Gtk)∥2 + E∥∇X logP(Gt)∥2(1− α−1

t,k)
2.

Next, we tackle each term of the equation above. By Assumption 3.1, we have that,

E∥∇X logP(Gt)−∇X logP(Gtk)∥2

= E∥∇X logP(Gt)−∇X logP(α−1
t,tk

Gt)∥2

≤ NFL2E∥Xt − α−1
t,tk

Xt∥2E∥At − α−1
t,tk

At∥2

= NFL2(etk−t − 1)2

Using the premise that tk − t ≤ ∆k ≤ 1:

E∥∇X logP(Gt)−∇X logP(Gtk)∥2 ≲ NFL2(tk − t)2

Then, by Lemma B.7, we have that

E∥∇X logP(Gt)∥2(1− α−1
t,k)

2 ≤ NF (tk)

Thus, we conclude that:

≲ dL2(tk − t) + dL(tk − t)2 ≲ dL2(tk − t).

We complete the proof.

C. Proof of Main Results
In this section, we present the proof of the main results. The overall structure of the proof for each paradigm is similar. We
first use Lemma B.4 to obtain the decomposition of the convergence bound and then apply the intermediate results we prove
in the last section to get the final expression.

C.1. Proof of Theorem 4.1

In this section, we present the proof for Theorem 4.1.

28

Convergent Analysis of Graph Diffusion Generation

Proof of Theorem 4.1. Let P0 be the data distribution and P̂T is the learned distribution through the sampling scheme. We
start with considering the exponential integrator scheme. By Lemma B.4, we can decompose the KL divergence of P0 and
P̂T as follows,

KL(P(X0)∥P(X̂T)) ≲ KL(P(XT)∥ΠX) +

M∑
i=1

∫ ti

ti−1

∥sθ(Gti , ti)−∇X logP(Gti)∥2dt (C.1)

+

M∑
i=1

∫ ti

ti−1

E∥∇X logP(Gt)−∇X logP(Gt)∥2dt.

Then, we tackle each term in the equation above.
By Lemma B.5, we can immediately bound the first term as follows,

KL(PT (X)∥ΠX) ≲ (NF +HX)e−T .

Next, we tackle the second term. By Assumption 3.2, we have that,

M∑
i=1

∫ ti

ti−1

∥sθ(Gti , ti)−∇X logP(Gti)∥2dt

=

M∑
i=1

∆ti∥sθ(Gti , ti)−∇X logP(Gti)∥2

≤ Tϵ2X

Therefore, it remains to tackle the last term. By Lemma B.10, we immediately get that

M∑
i=1

∫ ti

ti−1

E∥∇X logP(Gti)−∇X logP(Gt)∥2dt

≲
M∑
i=1

NFL2σ2
A

∫ ti

ti−1

(ti − t)dt+NFL

∫ ti

ti−1

(ti − t)2

≲
M∑
i=1

NFL2σ2
A∆2

ti +NFL∆3
ti

Combining all the results above, we get that,

KL(P(X0)∥P̂(XT)) ≲ KL(P(XT)∥ΠX) +

M∑
i=1

∫ ti

ti−1

∥sθ(Gti , ti)−∇X logP(Gti)∥2dt

+

M∑
i=1

∫ ti

ti−1

E∥∇X logP(Gti)−∇X logP(Gt)∥2dt

≲ (NF +HX)e−T + Tϵ2X +

M∑
i=1

NFL2σ2
A∆2

ti +NFL∆3
ti

This completes the derivation for the exponential integrator scheme.

Again, from Lemma B.4, we have that the decomposition of the convergence bound of the Euler-Marumaya scheme is given
by,

KL(P(X)∥PT (X̂)) ≲ KL(P(XT)∥ΠX) +

M∑
i=1

∫ ti

ti−1

∥sθ(Gti , ti)−∇X logP(Gti)∥2dt (C.2)

+

M∑
i=1

∫ ti

ti−1

(
E∥∇X logPt(Gt)−∇X logP(Gti)∥2 + E∥Xt −Xti∥2

)
dt,

29

Convergent Analysis of Graph Diffusion Generation

From comparing the decomposition of Eulery-Marumaya and the exponential integrator scheme, we can easily see that the
difference between the Euler-Marumaya scheme and the exponential integrator scheme is the extra term on

M∑
i=1

∫ ti

ti−1

E∥Xt −Xti∥2dt

For this, we can use Lemma B.6 and immediately get that

E∥Xt −Xti∥2 ≤ NF (ti − t) +HX(ti − t)2, ti−1 ≤ t ≤ ti

Substituting this result into the extra term, we have that,

M∑
i=1

∫ ti

ti−1

E∥Xt −Xti∥2dt

≤
M∑
i=1

∫ ti

ti−1

NF (ti − t) +HX(ti − t)2dt

≤
M∑
i=1

NF (ti − t)2 +HX(ti − t)3

≤
M∑
i=1

NF∆2
ti +HX∆3

ti

Therefore, combining this result and the result of the exponential integrator scheme, we have,

KL(P(X0)∥P̂(XT)) ≲ KL(P(XT)∥ΠX) +

M∑
i=1

∫ ti

ti−1

∥sθ(Gti−1
, ti−1)−∇X logP(Gti−1

)∥2dt

+

M∑
i=1

∫ ti

ti−1

E∥∇X logP(Gt)−∇X logP(Gt)∥2dt

≲ (NF +HX)e−T + Tϵ2X +

M∑
i=1

NFL2σ2
A∆2

ti +NFL∆3
ti +

M∑
i=1

NF∆2
ti +HX∆3

ti

This completes the proof.

C.2. Proof of Theorem 4.2

In this section, we present the proof for Theorem 4.2.

Proof of Theorem 4.2. Let P0 be the data distribution and P̂T is the learned distribution through the sampling scheme. We
start with considering the exponential integrator scheme. By Lemma B.4, we can decompose the KL divergence of P0 and
P̂T as follows,

KL(P(A0)∥P(ÂT)) ≲ KL(P(AT)∥ΠA) +

M∑
i=1

∫ ti

ti−1

∥sθ(Gti , ti)−∇A logP(Gti)∥2dt (C.3)

+

M∑
i=1

∫ ti

ti−1

E∥∇A logP(Gti)−∇A logP(Gt)∥2dt.

Then, we tackle each term in the equation above.
By Lemma B.5, we can immediately bound the first term as follows,

KL(PT (A)∥ΠA) ≲ (N2 +HA)e−T .

30

Convergent Analysis of Graph Diffusion Generation

Next, we tackle the second term. By Assumption 3.2, we have that,

M∑
i=1

∫ ti

ti−1

∥sϕ(Gti , ti)−∇A logP(Gti)∥2dt

=

M∑
i=1

∆ti∥sϕ(Gti , ti)−∇A logP(Gti)∥2

≤ Tϵ2A

Therefore, it remains to tackle the last term. By Lemma B.11, we immediately get that

M∑
i=1

∫ ti

ti−1

E∥∇A logP(Gt)−∇A logP(Gti)∥2dt

≲
M∑
i=1

∫ ti

ti−1

N2L2(ti − t)σ2
A +N2L(ti − t)2dt

≲ N2L2σ2
A

M∑
i=1

∆2
ti +N2L

M∑
i=1

∆3
ti

Combining all the results above, we get that,

KL(P(A0)∥P(ÂT)) ≲ KL(P(AT)∥ΠA) +

M∑
i=1

∫ ti

ti−1

∥sϕ(Gti , ti)−∇A logP(Gti)∥2dt

+

M∑
i=1

∫ ti

ti−1

E∥∇A logP(Gti)−∇A logP(Gt)∥2dt

≲ (N2 +HX)e−T + Tϵ2A +N2L2σ2
X

M∑
i=1

∆2
ti +N2L

M∑
i=1

∆3
ti

= (N2 +HX)e−T + Tϵ2A +N2L

(
Lσ2

X

M∑
i=1

∆2
ti +

M∑
i=1

∆3
ti

)

This complete the derivation for the exponential integrator scheme.

Again, from Lemma B.4, we have that the decomposition of convergence bound of the Euler-Marumaya scheme is given by,

KL(P(A)∥PT (Â)) ≲ KL(P(AT)∥ΠA) +

M∑
i=1

∫ ti

ti−1

∥sϕ(Gti , ti)−∇A logP(Gti)∥2dt (C.4)

+

M∑
i=1

∫ ti

ti−1

(
E∥∇A logPt(Gt)−∇A logP(Gti)∥2 + E∥At −Ati∥2

)
dt,

From comparing the decomposition of Eulery-Marumaya and the exponential integrator scheme, we can easily see that the
difference between Euler-Marumaya scheme and the exponential integrator scheme is the extra term on

M∑
i=1

∫ ti

ti−1

E∥At −Ati∥2dt

For this, we can use Lemma B.6 and immediately get that

E∥At −Ati∥2 ≤ N2(ti − t) +HA(ti − t)2, ti−1 ≤ t ≤ ti

31

Convergent Analysis of Graph Diffusion Generation

Substituting this result into the extra term, we have that,
M∑
i=1

∫ ti

ti−1

E∥At −Atk∥2dt

≤
M∑
i=1

∫ ti

ti−1

N2(ti − t) +HA(ti − t)2

≤
M∑
i=1

N2(ti − t)2 +HA(ti − t)3

≤
M∑
i=1

N2∆2
ti +HA∆3

ti

Therefore, combining this result and the result of the exponential integrator scheme, we have,

KL(P(A0)∥P̂(AT)) ≲ KL(P(AT)∥ΠA) +

M∑
i=1

∫ ti

ti−1

∥sϕ(Gti , ti)−∇A logP(Gti)∥2dt

+

M∑
i=1

∫ ti

ti−1

E∥∇A logP(Gt)−∇A logP(Gti)∥2dt

≲ (N2 +HX)e−T + Tϵ2A +N2L2σ2
X

M∑
i=1

∆2
ti +N2L

M∑
i=1

∆3
ti +

M∑
i=1

N2∆2
ti +HA∆3

ti

= (N2 +HX)e−T + Tϵ2A + (N2L2σ2
X +N2)

M∑
i=1

∆2
ti + (N2L+HA)

M∑
i=1

∆3
ti

This completes the proof.

C.3. Proof of Theorem 4.3

In this section, we present the proof for Theorem 4.3.

Proof of Theorem 4.3. We start with proving the result for the exponential integrator scheme.

Let P0 be the data distribution and P̂T is the learned distribution through the sampling scheme. We start with considering
the exponetial integrator scheme. By Lemma B.4, we can decompose the KL divergence of P0 and P̂T as follows,

KL(P(X0)∥P(X̂T)) ≲ KL(P(XT)∥ΠX) +

M∑
i=1

∫ ti

ti−1

∥sθ(Gti , ti)−∇X logP(Gti)∥2dt (C.5)

+

M∑
i=1

∫ ti

ti−1

E∥∇X logP(Gti)−∇X logP(Gt)∥2dt.

Then, we tackle each term in the equation above.
By Lemma B.5, we can immediately bound the first term as follows,

KL(PT (X)∥ΠX) ≲ (NF +HX)e−T .

Next, we tackle the second term. By Assumption 3.2, we have that,
M∑
i=1

∫ ti

ti−1

∥sθ(Gti , ti)−∇X logP(Gti)∥2dt

=

M∑
i=1

∆ti∥sθ(Gti , ti)−∇X logP(Gti)∥2

≤ Tϵ2X

32

Convergent Analysis of Graph Diffusion Generation

Therefore, it remains to tackle the last term. By Lemma B.9, we immediately get that

M∑
i=1

∫ ti

ti−1

E∥∇X logP(Gt)−∇X logP(Gt)∥2dt

≲
M∑
i=1

∫ ti

ti−1

NFL2(tk − t) +NFL(tk − t)2dt

≲ NFL2
M∑
i=1

∆2
ti +NFL

M∑
i=1

∆3
ti

Combining all the results above, we get that,

KL(P(X0)∥P(X̂T)) ≲ KL(P(XT)∥ΠX) +

M∑
i=1

∫ ti

ti−1

∥sθ(Gti , ti)−∇X logP(Gti)∥2dt

+

M∑
i=1

∫ ti

ti−1

E∥∇X logP(Gt)−∇X logP(Gti)∥2dt

≲ (NF +HX)e−T + Tϵ2X +NFL2
M∑
i=1

∆2
ti +NFL

M∑
i=1

∆3
ti

= (NF +HX)e−T + Tϵ2X +NFL

(
L

M∑
i=1

∆2
ti +

M∑
i=1

∆3
ti

)

This complete the derivation for the exponential integrator scheme.

Again, from Lemma B.4, we have that the decomposition of convergence bound of the Euler-Marumaya scheme is given by,

KL(P(X)∥PT (X̂)) ≲ KL(P(XT)∥ΠX) +

M∑
i=1

∫ ti

ti−1

∥sθ(Gti , ti)−∇X logP(Gti)∥2dt (C.6)

+

M∑
i=1

∫ ti

ti−1

(
E∥∇X logPt(Gt)−∇X logP(Gti)∥2 + E∥Xt −Xti∥2

)
dt,

From comparing the decomposition of Eulery-Marumaya and the exponential integrator scheme, we can easily see that the
difference between Euler-Marumaya scheme and the exponential integrator scheme is the extra term on

M∑
i=1

∫ ti

ti−1

E∥Xt −Xtk∥2dt

For this, we can use Lemma B.6 and immediately get that

E∥Xt −Xti∥2 ≤ NF (ti − t) +HX(ti − t)2, ti−1 ≤ t ≤ ti

33

Convergent Analysis of Graph Diffusion Generation

Substituting this result into the extra term, we have that,

M∑
i=1

∫ ti

ti−1

E∥Xt −Xtk∥2dt

≤
M∑
i=1

∫ ti

ti−1

NF (ti − t) +HX(ti − t)2

≤
M∑
i=1

NF (ti − t)2 +HX(ti − t)3

≤
M∑
i=1

NF∆2
ti +HX∆3

ti

Therefore, combining this result and the result of the exponential integrator scheme, we have,

KL(P(X0)∥P̂(XT)) ≲ KL(P(XT)∥ΠX) +
M∑
i=1

∫ ti

ti−1

∥sθ(Gti−1
, ti−1)−∇X logP(Gti−1

)∥2dt

+

M∑
i=1

∫ ti

ti−1

E∥∇X logP(Gt)−∇X logP(Gt)∥2dt

≲ (NF +HX)e−T + Tϵ2X +NFL2
M∑
i=1

∆2
ti +NFL

M∑
i=1

∆3
ti +

M∑
i=1

NF∆2
ti +HX∆3

ti

This completes the proof.

The derivation for the structure matrix A is similar and therefore is omitted here

D. Additional Results
In this appendix, we present additional results on the selection of hyper-parameters.

Corollary D.1. Suppose the discretization step is uniform ∆ti = T/M ≤ 1,∀i ∈ 1, ...,M . Then the convergence results of
SGGMs under the exponential integrator scheme are given by

KL(P(X0)∥P(X̂T)) ≲ (HX +NF)e−T + Tϵ2X +
NFL2T 2

M
,

KL(P(A0)∥P(ÂT)) ≲ (HA +N2)e−T + Tϵ2A +
N2LT 2

M
.

Furthermore, taking

T = max

{
log

(
HX +NF

ϵ2X

)
, log

(
HX +N2

ϵ2A

)}
,

M = max

{
NFL2T 2

ϵ2X
,
N2L2T 2

ϵ2A

}
,

we have that the overall generative error of SGGMs is bounded by the score estimation errors, i.e.,

KL(P(X0)∥P(X̂T)) ≲ ϵ2X, KL(P(A0)∥P(ÂT)) ≲ ϵ2A.

34

Convergent Analysis of Graph Diffusion Generation

Proof. By Theorem 4.3, we have that,

KL(P(X0)∥P(X̂T)) ≲ (HX +NF)e−T + Tϵ2X

+NFL

(
L

M∑
i

∆t2i +

M∑
i

∆t3i

)
,

KL(P(A0)∥P̂T (A)) ≲ (HA +N2)e−T + Tϵ2A

+N2L

(
L

M∑
i

∆t2i +

M∑
i

∆t3i

)
(D.1)

By premise, we have that ∆t3i ≤ 1. This means that

∆t2i ≥ ∆t3i

This means that we can absorb the higher-order term with a larger constant. This leads to:

KL(P(X0)∥P(X̂T)) ≲ (HX +NF)e−T + Tϵ2X

+NFL

(
L

M∑
i

∆t2i

)
,

KL(P(A0)∥P̂T (A)) ≲ (HA +N2)e−T + Tϵ2A

+N2L

(
L

M∑
i

∆t2i

)
(D.2)

Then, replacing ∆ti with T/M we get,

KL(P(X0)∥P(X̂T)) ≲ (HX +NF)e−T + Tϵ2X

+NFL
(
LT 2/M

)
,

KL(P(A0)∥P̂(Â)) ≲ (HA +N2)e−T + Tϵ2A

+N2L
(
LT 2/M

)
(D.3)

With some algebra, we arrive

KL(P(X0)∥P(X̂T)) ≲ (HX +NF)e−T + Tϵ2X +
NFL2T 2

M
,

KL(P(A0)∥P(ÂT)) ≲ (HA +N2)e−T + Tϵ2A +
N2LT 2

M
.

Next, substituting in our choice of T and M

T = max

{
log

(
HX +NF

ϵ2X

)
, log

(
HX +N2

ϵ2A

)}
,

M = max

{
NFL2T 2

ϵ2X
,
N2L2T 2

ϵ2A

}
,

It is easy to check that the overall generative error of SGGMs is bounded by the score estimation errors, i.e.,

KL(P(X0)∥P(X̂T)) ≲ ϵ2X,

KL(P(A0)∥P(ÂT)) ≲ ϵ2A.

Similarly, we have the following result for the Euler-Marumaya scheme and omit the proof due to similarity.

35

Convergent Analysis of Graph Diffusion Generation

Corollary D.2. Suppose the discretization step is uniform ∆ti = T/M ≤ 1,∀i ∈ 1, ...,M . Then the convergence results of
SGGMs under Euler-Marumaya scheme are given by

KL(P(X0)∥P(X̂T)) ≲ (HX +NF)e−T + Tϵ2X +
NFL2T 2

M
,

KL(P(A0)∥P(ÂT)) ≲ (HA +N2)e−T + Tϵ2A +
N2LT 2

M
.

Furthermore, taking

T = max

{
log

(
HX +NF

ϵ2X

)
, log

(
HX +N2

ϵ2A

)}
,

M = max

{
NFL2T 2

ϵ2X
,
N2L2T 2

ϵ2A

}
,

we have that the overall generative error of SGGMs is bounded by the score estimation errors, i.e.,

KL(P(X0)∥P(X̂0)) ≲ ϵ2X, KL(P(A0)∥P(Â0)) ≲ ϵ2A.

D.1. Bound with Other Measures

In the context of generative models and their convergence properties, it is often useful to bound the discrepancy between
two probability distributions, P and Q, using different metrics. Among the most commonly used divergence measures are
the Kullback-Leibler (KL) divergence, Wasserstein distance, and total variation (TV) distance. In this paper, we adopt the
KL divergence as the measure for the analysis of its direct relation with the training objectives. In this section, we present a
discussion of how our result with KL divergence also immediately implies a bound on the other two bounds. We start by
providing a brief introduction to each of the metrics.

The Kullback-Leibler (KL) divergence, is defined as:

KL(P∥Q) = EP

[
log

dP
dQ

]
,

measures the expected logarithmic difference between the probability densities P and Q corresponding to the distributions P
and Q. This divergence is widely used in variational inference and optimization because of its convenient properties, such
as non-negativity and the fact that it is always zero when P = Q. However, KL divergence is not symmetric and does not
satisfy the triangle inequality, making it less suitable as a distance metric in certain contexts.

In contrast, the Wasserstein distance, is defined as:

Wp(P,Q) = inf
γ∈Γ(P,Q)

(
E(X,Y)∼γ∥X−Y∥p

)1/p
,

It measures the ”cost” of transforming one distribution into another by considering the optimal transport plan γ that
minimizes this cost. It is a more intuitive and geometrically meaningful metric compared to KL divergence, especially in
high-dimensional spaces. Wasserstein distance has the advantage of being symmetric and satisfying the triangle inequality,
which makes it a true metric. When p = 1, the Wasserstein distance is often referred to as the Earth Mover’s Distance
(EMD).

Total variation (TV) distance is another useful metric defined as:

TV(P,Q) =
1

2

∫
|P(x)−Q(x)|dx,

which quantifies the maximum difference between the probabilities assigned to the same event by two distributions. TV
distance is symmetric and satisfies the triangle inequality, making it a true distance metric. It is tightly connected to other
divergences like KL divergence and can be bounded in terms of them.

36

Convergent Analysis of Graph Diffusion Generation

D.1.1. RELATIONSHIP BETWEEN KL DIVERGENCE, WASSERSTEIN DISTANCE, AND TV DISTANCE

It is known that the KL divergence can be bounded in terms of both the Wasserstein distance and the total variation distance.
Specifically, the following inequalities provide useful bounds:

• KL Divergence and Total Variation Distance:

KL(P∥Q) ≥ 2TV(P,Q)2 for distributions with bounded support.

The result above is known to be Pinsker’s inequality. It shows that while KL divergence is at least as large as the square
of the TV distance, up to a constant factor.

• Wasserstein Distance AND Total Variation Distance:

W1(P,Q) ≲ TV(P,Q),

where W1(P,Q) is the Wasserstein distance with p = 1. The relation above holds for bounded metric space. Then, by
transitivity property, we get that W1(P,Q) ≲ KL(P∥Q).

The results above show that our results in this paper immediately imply a (growth) bound with the other two commonly used
measures (at least in some cases) as well.

E. Experiment Details
In this appendix, we provide additional details on our experimental study. This section elaborates on the testbed setup, graph
generation model, the implementation of score-based graph generative models (SGGMs), and the hyperparameter search.

E.1. Testbed

Our experiments were conducted on a Dell PowerEdge C4140 server. The key specifications of this server, relevant to our
research, are as follows:
CPU: Dual Intel Xeon Gold 6230 processors, each offering 20 cores and 40 threads.
GPU: Four NVIDIA Tesla V100 SXM2 units, each equipped with 32GB of memory, tailored for NV Link.
Memory: A total of 256GB RAM, distributed across eight 32GB RDIMM modules.
Storage: Dual 1.92TB SSDs with a 6Gbps SATA interface.
Networking: Dual 1Gbps NICs and a Mellanox ConnectX-5 EX Dual Port 40/100GbE QSFP28 Adapter with GPUDirect
support.
Operating System: Ubuntu 18.04 LTS.

E.2. Graph Generation Model

For our experiments, we primarily utilize the NetworkX Python library (Hagberg et al., 2008). Specifically, we use the
default implementations of regular graph generation and the Barabási-Albert model (Pósfai & Barabási, 2016) provided by
NetworkX. The Barabási-Albert (BA) model is widely used to generate scale-free networks characterized by a power-law
degree distribution. The core idea behind the BA model is preferential attachment, where new nodes are more likely to
connect to existing nodes with a higher degree of connections. This mechanism mirrors real-world networks, such as social
networks, where popular individuals (nodes) tend to attract more connections.

Procedure of the Barabási-Albert Model. The Barabási-Albert model generates a network through the following steps:

1. Initialization: Start with a small connected network of m0 nodes.

2. Growth: Add one new node at a time. Each new node forms m edges connecting it to m existing nodes.

37

Convergent Analysis of Graph Diffusion Generation

3. Preferential Attachment: The probability that a new node connects to an existing node i is proportional to the degree
of node i. Formally, the probability P (i) that the new node connects to node i is given by:

P (i) =
ki∑
j kj

where ki is the degree of node i, and the sum is taken over all existing nodes.

Hyperparameters. The BA model has two key hyperparameters:

• m0 : The initial number of nodes in the network.

• m : The number of edges each new node adds when it is introduced to the network. This parameter influences the
density and structure of the resulting network.

E.3. Score Networks and Diffusion

In the experiments, we use a simple one-layer Graph Convolutional Network (GCN) as the score network. However, to
ensure sufficient capacity for learning, we use two-layer MLPs (multi-layer perceptrons) preceding the GCN layer. The
hidden layer size is set to 500 for all experiments. For the diffusion process, we set the diffusion length T = 50 to ensure
sufficient diffusion, and we use a uniform step size of 0.1 for the sampling scheme. For simplicity, our experiments focus on
the Euler-Maruyama scheme, and early stopping is employed to prevent variance explosion near the end.

E.4. Hyperparameter Search for Learning Algorithm

To train the SGGMs, we use the widely adopted Adam optimizer (Kingma & Ba, 2014). A simple parameter search is
performed for the learning rate, testing values from the set [0.1, 0.01, 0.001, 0.0001]. The implementation of the Adam
algorithm is provided by the PyTorch library.

38

