
1

A Non-Intrusive Elderly Home Monitoring
System

Le Fang, Yu Wu, Chuan Wu, Yizhou Yu

Abstract—Home anomaly monitoring is crucial for the elderly
who live alone. A number of IoT-based home monitoring systems
have been available, but most rely on privacy-intrusive cameras.
With more and more concerns on privacy and security of human
data, anomaly detection based on non-intrusive IoT devices be-
comes more desirable. Considering the elderly consumers, a low-
cost system with good detection accuracy is further critical for
the system’s acceptability by elderly users. We propose a smart
home monitoring system for living-alone senior citizens, relying
on carefully designed, low-cost infrared sensor devices, as well as
a cloud-based data processing and anomaly detection platform.
Our PIR sensor device is effective in continuous monitoring
of motion data in a user’s apartment, and an open-hardware
software platform is devised to support sensors manufactured
by various vendors in the IoT system, all for cost reduction
purpose. For privacy preservation, we encrypt collected data and
store data indices in a blockchain system, to achieve efficient data
access control and auditing. For motion anomaly detection, we
propose a simple but effective environment adaptation method
to work with the one-class Support Vector Machine (OCSVM)
method. Experiments driven by real-world traces show good
reliability, accuracy and efficiency of our system.

Index Terms—Home monitoring, IoT, blockchain, anomaly
detection.

I. INTRODUCTION

OVER the past few decades, the aging population has
rapidly increased globally and is expected to exceed 2

billion by 2050 [1].In developing and developed countries,
majority of the young generation work in big cities and/or
live quite far away from their elderly parents, with a very
busy work or life schedule. Most older people owning their
own homes would like to live in their own places, instead of
in the elderly care homes, as long as they can still handle their
basic daily life [2] [3]. Technology, represented by IoT systems
[4]–[8], can be an enabler to promote aging in place, i.e., live
in one’s own home and community, safely and independently
[9].

Though living-alone older people can handle their basic
daily living, emergency situations do happen from time to
time: an old person may fall accidentally and cannot get up
by him/herself, pass out due to some unexpected medical
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situation, or undergo some mental disturbance. For timely
detection and reaction to unexpected emergencies, monitoring
of elderly persons living alone has emerging as an area of
significant potential in the elderly care domain.

Though using cameras for monitoring may be most ef-
fective, few elderly people would like their daily life to be
under full surveillance, even if it is only their own child
who is checking out the cameras. In addition, camera-based
monitoring is typically limited to a few areas in a home,
mainly due to the cost of camera installation. In comparison,
non-intrusive monitoring using cost-effective sensors (such as
light sensors, contact sensors and motion sensors) has been
proposed [10] [11]. Prices for sensors also differ in a quite
wide range depending on the accuracy/sensitivity and data
transmission capabilities (with Bluetooth, WiFi and/or cellular
connectivity). Few older persons would be willing to install
an expensive smart home IoT system, with high-end sensors
deployed. Therefore, we focus on developing a cost-effective
IoT home monitoring system, while relying on efficient and
reliable approaches and methodologies designed and deployed
in our cloud data analytics platform for accurate behavior
monitoring and abnormal event detection.

Our main contributions in this paper are summarized as
follows:

• We investigate problems of existing home monitoring
systems and carefully design a PIR (pyroelectric infrared
sensor) sensing device, which is cost-efficient while
effective in continuous motion monitoring in a user’s
apartment.

• We devise an open-hardware software platform to support
sensors manufactured by various vendors in our IoT
system, for further cost reduction.

• For data security, we encrypt collected data and store data
indices in a blockchain system, to achieve efficient data
access control and auditing.

• For cloud-based motion anomaly detection, we propose
a simple but effective environment adaptation method to
work with the one-class SVM method.

• We implement a prototype of our system and carry out
real-world experiments. Evaluation results show good
reliability, accuracy and efficiency of our system.

The rest of this paper is organized as follows. In Section II,
we introduce our motivation and related work. In Section III,
we describe in detail the architecture of the monitoring system.
In Section IV, we analyze the design of dynamic anomaly
detection. We evaluate the system performance in Section V.
Finally we conclude our work in Section VI.
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II. MOTIVATION AND RELATED WORK

To achieve a cost-efficient high-accuracy motion anomaly
detection system, we focus on three key aspects.

A. Cost-effective IoT Platform

There are several types of systems for motion monitor-
ing: camera-based, wearable device-based, and environmental
sensor-based.

Existing commercial home monitoring systems, e.g., ADT
Pulse [12], Vivint Smart Home [13], SimpliSafe home security
system [14], Wink Lookout [15], Abode Home Security Starter
Kit [16] and Xiaomi [17], mostly adopt camera-like devices.
Furthermore, they are usually developed as closed ecosystems,
and consumers might become “locked in”, prohibiting oppor-
tunities of using sensors/products from different vendors in the
system to suit their best needs (in terms of affordability and
functionality).

Tyndall-DMS-Mote [18] is a wireless sensor device that
monitors user vital signs within and outside their home;
the user needs to carry the device round the wrist for data
collection, as well as a smartphone for local data processing.
Mitsufuji established a sub-brand “Hamon” [19] manufac-
turing smart clothing by putting IoT devices to the fabric;
the devices continuously monitor data including breath, heart
rate, humidity, activities, etc. Subasi et al. [20] presented
an IoT system based on smart mobile devices and wearable
body sensors for elderly activity monitoring. Based on the
technology of Global Positioning System (GPS), Shende et
al. [21] equipped the belt with a fall detector for activity
monitoring and fall detection. With such a solution, users need
to wear devices all the time for monitoring purpose.

Ramlee et al. [22] proposed the overall design of a Home
Automation System (HAS) based on wirelessly connected
appliances and environmental sensors, e.g., humidity sensor
and temperature sensor, which is designed to fulfill the needs
of the elderly and disabled at home. Aiming to keep elderly
citizens safe in their homes, IBM has carried out pilot projects
equipping hundreds of apartments with IoT sensors (motion
detectors, flush-detecting sensors, carbon dioxide and monox-
ide sensors), with collected data sent to IBM Watson platform
for behavior analysis [23] [24] [25]. These works do not
provide evaluation results.

Compared to using environmental sensors, the camera-based
and wearable device-based systems can be more intrusive
and costly [10] [11]. We adopt environmental PIR sensors
for motion monitoring. As compared to systems like IBM’s,
our system is more lightweight and achieves better privacy
preservation.

In addition, the development of IoT industries is confined
in several ways, including operating system chaos and incom-
patible interfaces for application development. To the best of
our knowledge, there is no standard software platform that
can readily work with sensors from different vendors. The
integration of different sensors inevitably adds to development
efforts and the cost. To address this issue, we have developed
an open-hardware software platform, which supports devices
manufactured from different vendors in a unified manner.

B. Data Access Control

One of the most important challenges for IoT deployment
is the privacy issue, as sensor devices are collecting data from
human users all the time. Those data are sensitive, and who
can access what portion of the data matters. For instance, some
data should be exclusively restricted to the elderly person and
some family members only, while some can be shared/viewed
by other caregivers and/or doctors. The data storage system
should desirably be able to trace the access activities too, to
enforce auditing of data usage.

Blockchain, with the unique features of decentralization,
traceability and cryptography, is an ideal technology to enable
management of a large number of devices, and multi-levels of
privacy and data security. Blockchain is a list of blocks (as
shown in Fig. 1), where each block encapsulates transactions
labeled with timestamps, and blocks are linked using cryp-
tography [26]. Blockchain is by design an open distributed
ledger that can record transactions/events among parties in a
verifiable, permanent and distributed way. It ensures integrity
and security without authentication from a third trustful party.
Thus, inherently blockchain can serve as a distributed database
[27]–[31], and provide plausible solutions for IoT security.

Fig. 1. Blockchain Architecture

Singh et al. [32] proposed a blockchain network to provide
small data storage for transactions produced by IoT devices.
Naveed et al. [33] proposed a blockchain-based fog computing
framework for activity monitoring, which achieved multi-
class cooperative categorization. Gautami et al. [34] stored
sensory health records using the blockchain mechanism in a
distributed manner. She et al. [35] proposed a homomorphic
consortium blockchain, which was used to encrypt sensitive
data of all gateway peers. Thitinan et al. [36] contributed to
digital signature for IoT device authentication using Ethereum
blockchain and implemented a one-time password for better
access control in the smart home system.

Reyna et al. [37] pointed out challenges of integrating
blockchain with IoT. As the chain grows longer, information
broadcast can cause long delay for data processing. In this
work, we use hybrid on-chain index storage and off-chain data
storage for secure, privacy-preserving data storage. Compared
with prior studies, we propose a user-based tamper-proof
architecture for the storage system to fulfill the needs of
privacy preservation, which provides multi-level access control
based on different roles, e.g., caregivers and relatives.
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C. Anomaly Detection

An anomaly can be regarded as an abnormal or dangerous
activity that is far from normal activities. Anomaly detec-
tion usually consists of two phases: normal daily activity
recognition and abnormal behavior detection. The normal
daily activity pattern is the baseline for anomaly detection.
A few categories of methods have been adopted for anomaly
detection.

Rule-based methods rely on domain knowledge, expert’s
information or specific user’s habit to form detailed rules.
In [38], Markov Logic Network is used to incorporate rules
in both soft and hard forms. Yuan et al. [39] used a Fuzzy
Logic System as their model to recognize activity types. A
rule-based method can be more detailed and personalized for
normal daily activity recognition, but requires more human
efforts to formulate the rules, and can lead to more false
positives since some normal behaviors may not be formulated
by specific rules or ignored by the system designer.

Among machine learning methods for anomaly detection,
one-class Support Vector Machine (OCSVM) [40] is com-
monly used. Abnormal behavior is rare and unexpected, and
hence the normal daily activity data will be much more than
abnormal data. This kind of bias in training data may degrade
the performance of traditional machine learning algorithms,
and OCSVM can be used to address this problem. Jakkula
et al. [41] adopted OCSVM to build an anomaly detection
system, based on collected data including date, time, sensor
number, annotation from human, etc. Yin et al. [42] applied
OCSVM by filtering out normal behaviour with high proba-
bility.

Another commonly used machine learning method for
anomaly detection is unsupervised clustering. Hoque et al.
[43] proposed to do clustering on every day’s data in a week,
separately for modeling individual activities. Lee et al. [44]
adopted a moving window to extract features from data, and
classified current activity as registered or abnormal using
clustering.

Deep learning is also a choice. Erfani et al. [45] applied
the Deep Belief Network (DBN) to extract underlying features.
Lotfi et al. [46] used clustering to separate the normal activities
and abnormal ones to produce the training dataset; then they
trained a predictive model using this dataset based on the
Recurrent Neural Network for binary time series prediction.

We adopt OCSVM in our system for anomaly detection,
together with a simple but effective environmental adaption
method. Compared with other methods, e.g., support vector
data description (SVDD) [47], Isolation Forest [48], we can
train the OCSVM model based on the majority of normal
behavior data while addressing data sample bias and avoiding
the need for labeling.

III. SYSTEM DESIGN

Fig. 2 illustrates the overall design of our home monitoring
system. The deployed IoT devices collect the user’s motion
data and then upload them to the cloud data storage system.
The cloud data storage preserves the collected data and pro-
vides privacy assurance. Then the protected data would be used

Fig. 2. Overview of the elderly home monitoring system

for data analysis, model learning, etc.. Specially, after detect-
ing the anomalous condition, the emergency alarm would be
sent to assigned contacts (relatives, elderly caregivers, etc.)
instantly to avoid any secondary injuries. In the following, we
detail the design of three major parts of our system. The first
is on IoT deployment, including the PIR sensor model for
motion tracking and the open-hardware platform for sensor
compatibility. In the second part, we discuss our data stor-
age solution based on blockchain and off-chain technologies.
Next, we propose an efficient method for dynamic anomaly
detection.

A. IoT Front-end
To provide reliable monitoring services for in-home older

people and trigger alarms in case of any dangerous situa-
tions, varieties of sensors need to be deployed to collect and
process multi-dimensional data from the caretakers, includ-
ing movement, position, etc. These data are used to infer
mood/health state and predict potential risks, e.g., diseases and
falls. Therefore, our system should be easy to be integrated
with various sensor types, such as Pyroelectric infrared (PIR)
sensors, pressure sensors, magnetic sensors and RFID readers.
However, embedded systems vary widely in terms of their
vendors, hardware specifications, architectures, underlying op-
erating systems, etc.

Furthermore, considering the potential wide deployment of
the devices in many households, the continuously collected
sensor data is too overwhelming to be uploaded to the central
cloud for analysis. Therefore, the IoT system should desirably
provide local data processing capabilities, to save otherwise
tremendous network traffic especially when the number of
users grows. Instead of transmitting the live footage, the edge
devices can compress or process the collected data before
uploading it to the cloud. In general, apps (machine learning
model, data cleaning/aggregation/compression, etc.) should be
able to be installed flexibly in the IoT edge systems for
this purpose. However, logic on IoT devices is traditionally
programmed in hardware-dependent languages, which is fairly
difficult to port across different platforms. Challenges arise
when the elderly monitoring system involves various sensor
hardware from different vendors. What’s worse, future up-
grades of the firmware and models on such "hard" coded
platforms are simply impossible.

We design and implement an open-source middleware solu-
tion for the elderly monitoring system, which abstracts away
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the underlying software/hardware complexity and provides full
flexibility for programming at the edge. Inspired by the success
of Android and JavaME, we select Java as the language in
our platform (named Open Hardware Platform), with more
than 4000 standard class libraries out there and even more
provided by active open-source developers. The runtime of our
developed middleware is fully compatible with standard Java
Virtual Machine (JVM), and any JVM-based technologies can
be applied. In other words, with Java, enormous collections of
device API are either ready or easy to expand for working with
low-level protocols, e.g., serial peripheral interface (SPI), inter-
integrated circuit (I2C), near-field communication protocols
including ZigBee, Lora, etc. As shown in Fig. 3, the underlying
IoT operating system (“IoT OS”) remains the same across
different platforms and the “Open Hardware System” layer
provides unified and standard Java API to the upper “apps”.
The “apps” refers to any application logic such as the above-
mentioned machine learning, data cleaning, etc. Once an app
is developed, our middleware solution makes it available for
most different or even future products, with each optimized
for specific application scenarios.

Our middleware has been ported to various existing archi-
tectures, such as Linux, Arm, etc., and is compatible with
most low-level IoT operating systems, including RTThread,
ThreadX, etc. Therefore, the platform can easily support
various sensor devices and different communication protocols
dynamically. We extracted a Java-level API for accessing
generic device peripherals on embedded devices, including
General Purpose Input/Output (GPIO), Inter-integrated Cir-
cuit Bus (I2C), Universal Asynchronous Receiver/Transmitter
(UART) and Serial Peripheral Interface, etc. Whenever a new
sensor or peripheral is to be adapted, the only job is to develop
a driver app for that specific sensor. For most common types of
sensors, the drivers are already either provided by the vendors
or by the community. Once the driver app is installed, the
IoT device can exchange data with the new sensor. A more
interesting scenario is when a new sensor is detected, the driver
app will be pulled automatically by the device from the cloud.
Catering to resource constraint on sensor devices, our platform
has a small memory footprint, requiring less than 100KB
RAM, which is much lower than that of existing platforms
such as Android.

Besides, we also set up extra over-the-air (OTA) servers,
which can be deployed on either public cloud or private cloud.
The OTA servers can communicate with and manage remote
edge devices wirelessly through standard “OTA” protocols.
Therefore, we can take firmware upgrades and model updates
by pushing the “apps” from the cloud to the edge devices.
Therefore, developers can partially update the software compo-
nents while keeping the firmware unchanged. This is especially
important for embedded devices where energy-saving and
stability are among top concerns.

For the proof-of-concept purpose, we design and implement
a 5 × 5 PIR sensor model (shown as Fig. 4) based on our
middleware, for dynamic motion tracking in an older person’s
household. The core of the device consists of two Printed
Circuit Boards (PCBs). The lower one Fig. 4 (a) is a simple
PIR sensor array, and the upper one Fig. 4 (b) is the control

Fig. 3. Open-hardware platform

unit where our middleware sits. These two PCBs are pinned
together where the sensed data is transmitted. Such a loosely
coupled structure is easy to expand to other sensor types. The
device can cover a 5 × 5 square-meter area when installed in
the middle of the ceiling. The device detects coarse-grained
mobility information in a passive, non-intrusive manner. Fig. 5
illustrates how the PIR sensor device on the ceiling can
monitor the position and trajectory of a person.

B. Blockchain-based Data Storage

Collected data, after pre-processing on the devices, will be
sent to the cloud back-end for storage and analysis.

Data integrity and authenticity of personal data are critical
for user acceptance of the monitoring system. Meanwhile,
data sharing is important as the data should be allowed to be
accessed and analyzed by third parties such as caregivers or
doctors. Therefore, we design a tamper-proof storage method-
ology supporting secured data sharing without compromising
data ownership. The fundamental functions of the storage
system include:

Role-based access control. Roles are used to distinguish
eligibility of users to access certain data. In our system,
we associate users with different roles, including caretakers,
caregivers, relatives, doctors, etc. Access behaviors should be
strictly regulated and logged. Data are accessible only by the
authorized roles.

Data Integrity and Traceability. The private data and the
access logs are immutable and secured, so that any access by
any role can be tracked when data leakage happens.

We adopt a blockchain-based storage system to enable
multi-levels of privacy and data security. Though enabling
decentralization, traceability and cryptography, blockchain is
not suitable for storing large files for two reasons: 1) the block
size is a hard limit on the amount of data stored on the chain;
2) its throughput is constrained by the consensus mechanisms.

Therefore, we advocate an off-chain methodology for actual
data storage: the collected data is stored in the cloud in
an encrypted manner off the chain, while the hash of each
data block,i.e., indices of data, is stored on the blockchain.
The original file can not be tampered even if it is not on
the chain since any change in the file would result in a
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(a) The PIR sensor device

(b) The design of the device

Fig. 4. Illustration of the PIR device

Fig. 5. Movement detection with PIR sensor device

Fig. 6. Blockchain-based data storage

completely new hash value. Our system supports various off-
chain storage types, e.g., Hadoop Distributed File System
(HDFS) [28], InterPlanetary File System (IPFS) [29], etc.
IPFS is a peer-to-peer distributed file system, not relying on
any central entity. Data in IPFS is managed via hashes and
read/write operations are realized in a content-centric manner.
Its underlying mechanisms meet the need of our design (Fig. 6)
quite well, and we, therefore, implement data storage on IPFS
in our prototype system. By default, the bootstrapped IPFS
nodes connect to the public IPFS network which is not what
we desire. Instead, we create a private network for the proof
of concept, by generating a swarm key that will be referenced
by all the nodes in the network.

We choose the consortium chain [49] as our underlying
blockchain platform, to strike a balance between performance
(throughput) and security, considering its much higher consen-
sus efficiency as compared to the public chain [50]. As shown
in Fig. 7, a consortium blockchain allows a hybrid access
method. Instead of providing a fully open system by the public
chain, the consensus in a consortium chain is determined by
a set of dominant nodes, like family members, While the
common nodes only access to read, like caregivers. Based on
our hands-on experience, the most efficient method is to store
a file’s index/hash on the consortium chain while keeping the
original file in the cloud. The footprint of a file hash is far
less than that of the original file, so this solution mitigates the
storage burden of the blockchain and greatly enhances the I/O
throughput and transaction speed. Besides, this methodology
can provide a tamper-proof architecture as any changes in the
original file would result in a new hash created and stored in
the consortium chain.

Our system enforces role-based access control via smart
contract mechanisms. Only registered accounts can access the
relevant records after the credential check by invoking the
corresponding contract script. We categorize identities into
different roles, e.g., care-takers, family members, doctors, etc.,
and each role can only access a specified portion of the
records. If necessary, even more fine-grained access control
can be realized by adding extra auditing to the contract script.
In our implementation, we build the blockchain system based
on Hyperledger Fabric [31] with 10 server nodes, which is
a fair choice in real-life consortium blockchain system [51].
We select 3 nodes to provide the Kafka-based ordering service
and the consensus efficiency is superior as compared to other
counterparts, e.g., pBFT. Especially, Chaincode is adopted as
the “smart contract” program in Hyperledger Fabric that runs
on the peers and creates transactions, which can be written to
read and update the ledger state.

Fig. 6 illustrates our designed data storage system. The
data stream collected from the sensors flows into our storage
system, and the stream is cached and exported as file chunks
at intervals. The chunk is then encrypted and uploaded to the
cloud storage. Meanwhile, the chunk is hashed and the result
is broadcast to the blockchain as the index of the chunk, which
will be later encapsulated inside a new block. Besides chunk
indexes, a block also contains metadata (filename, etc.) for the
chunk for future query purposes and the owner’s signature for
later verification. We utilize the “world state” (mechanisms
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Fig. 7. Public Chain (left) vs Consortium Chain (right)

like “global variables” in Hyperledger) to track the latest
chunks to expedite the query operations.

Access to the stored data happens in two phases. The
indexes of the target chunks are first retrieved from the on-
chain system by querying the “world state” tracker, or the
chain itself if the chunks are too old for a “cache hit” in the
“world state”. The retrieved index is used to access the original
data from off-chain storage.

The above-mentioned write and query operations of indexes
are programmed in smart contracts. For “write” operations,
When indexes are to be uploaded to the chain, a put contract
is called and this transaction will be successful after the
owner’s signature is verified. The “world state” is updated
once the write operation is executed on the chain. For “read”
operations, a get contract is called with metadata of target
data given, and the query indexes are returned after the
owner’s approval. Our system does not enforce any specific
key distribution methodologies, and any mainstream one will
work.

IV. ANOMALY DETECTION

We consider two types of anomalies in our design: still time
anomaly and trajectory anomaly. Still time anomaly means that
the older person stays in a position for an unexpectedly long
time and trajectory anomaly takes into account the unusual
movement of the user. We propose an efficient environment
adaptation method for identifying indoor areas of different
activity levels for abnormal still time detection and apply
OCSVM for identifying abnormal trajectories.

A. Position Identification

Using our simple PIR sensor device, many sensors might get
triggered simultaneously when a user is in a specific position
in a room. For example, in the left figure in Fig. 5, four sensors
are triggered. We identify the actual position of a user using
posterior processing.

We illustrate our idea using an example case where a 5× 5
PIR sensor device is installed in the center of the ceiling of
a 5 × 5m2 room. In Fig. 8, a green box represents the actual
location of the person, and a grey box represents that the PIR
sensor shooting at the respective grid is triggered (the person
may or may not be in that grid). There are three cases:

Case 1: When the person is located in one of the green
locations as in Fig. 8(a), four sensors may be triggered. For

example, when the person is in the grid (2, 2), the sensors
shooting at grids (1, 1), (1, 2), (2, 1) and (2, 2) are triggered.

Case 2: When the person is located in one of the green
locations as in Fig. 8(b), two sensors may be triggered. For
example, when the person is in the grid (2, 3), the sensors
shooting at grids (2, 3) and (1, 3) are triggered.

Case 3: When the person is located in one of the green
locations as in Fig. 8(c), only the sensor shooting at the
particular grid will be triggered.

We can then decide the location of the person using the
mappings as shown in Table I.

TABLE I
POSITION MAPPING

Cases Triggered Sensors User’s Position

Case 1 (1, 1), (1, 2), (2, 1), (2, 2) (2, 2)
Case 1 (1, 4), (1, 5), (2, 4), (2, 5) (2, 4)
Case 1 (4, 1), (4, 2), (5, 1), (5, 2) (4, 2)
Case 1 (4, 4), (4, 5), (5, 4), (5, 5) (4, 4)
Case 2 (3, 2), (2, 2) (3, 2)
Case 2 (1, 3), (2, 3) (2, 3)
Case 2 (3, 4), (3, 5) (3, 4)
Case 2 (4, 3), (5, 3) (4, 3)
Case 3 (1, 1) (1, 1)
Case 3 (1, 2) (1, 2)
Case 3 (1, 3) (1, 3)
Case 3 (1, 4) (1, 4)
Case 3 (1, 5) (1, 5)
Case 3 (2, 1) (2, 1)
Case 3 (2, 5) (2, 5)
Case 3 (3, 1) (3, 1)
Case 3 (3, 3) (3, 3)
Case 3 (3, 5) (3, 5)
Case 3 (4, 1) (4, 1)
Case 3 (4, 5) (4, 5)
Case 3 (5, 1) (5, 1)
Case 3 (5, 2) (5, 2)
Case 3 (5, 3) (5, 3)
Case 3 (5, 4) (5, 4)
Case 3 (5, 5) (5, 5)

B. Environment Adaptation for Still Time Anomaly Detection

To facilitate anomaly detection, we divide the area under
monitoring into several specific and normal divisions. The
specific areas are where the user stays very long, e.g., the
bed area and study area; the normal areas see normal user
appearances where the user usually does not stay for a long
time, e.g., the walking area and the entrance area.

We divide the room areas using a clustering method: we
compute the average still time for each area (after position
identification as the above) and cluster the results using the
k means method [52]; the clusters with the longest average
still times (which are much longer than the rest) correspond
to specific areas and the other areas are categorized as normal
areas.

Based on the area division, we propose a threshold-based
method for detecting emergencies due to unexpected long still
time in a position. For a specific area xi , we set Tspeci f ic[xi]
as the EA (Environmental Adaption) threshold for triggering
an alarm. For the normal areas, we set Tnormal as the EA
threshold to issue anomaly alarms when the user has stayed in
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(a) Case 1 (b) Case 2 (c) Case 3

Fig. 8. Diverse cases of sensor activation

an normal area for longer than usual. To set the EA thresholds,
we record the still time in each area and use the maximal still
time value in each area as the EA thresholds, Tspeci f ic[xi] and
Tnormal , respectively. For better performance of the method,
we update the thresholds periodically, e.g., once a week, twice
a month.

C. OCSVM for Trajectory Anomaly Detection

We adopt OCSVM for detecting abnormal user movement
trajectories. Abnormal trajectories may correspond to situa-
tions which need caregivers’ attention, such as unsettled pacing
due to unstable mental status, slow-than-usual walking due to
unwellness. OCSVM is a special case of two-class classifiers
without labeled responses, whose training focuses only on the
target class [53]. The other class is the outlier class, which
consists of outliers. OCSVM is trained on the samples of the
target class without any outliers, and identifies a boundary
around the target class. The trained classifier can be used to
tell if an input sample belongs to the target class, or not (hence
is an outlier, as anomaly).

Specifically, a one-class classification algorithm first maps
input samples into a high dimensional feature space via a ker-
nel function, and then finds the maximal margin hyperplane,
which best separates the training data from the origin chosen
from the outlier class [40].

In our case, each sample is a sequence of data points,
corresponding to positions of the user (i.e., each sample is a
movement trajectory). Each sample corresponds to one activity
of the user. In our experiments, the user moves through 3
to 7 data points (sensor triggers) according to the designed
routes. We use three data sequence lengths, e.g., 3, 5 and
7, for extracting features and compare their effectiveness in
Section V. The default sequence length is 5 data points, as in
our experiments. We adopt the Gaussian Radial Basis Function
(RBF) [54] as the kernel function, which achieves a better data
description by avoiding some noisy features extracted from
these data sequences.

V. EVALUATION

We implement a prototype of our monitoring system and
deploy it in a room setting as shown in Fig. 9. A PIR device

with 5 × 5 infrared sensors is installed in the center of the
ceiling, which sends data to the cloud back-end through a
GPRS connection of 20kbps. We implement the cloud back-
end using the Spark computing framework [55] and HDFS
storage system [28].

We evaluate performance of our system in four aspects.

A. IoT Deployment

To present the efficiency of the middleware platform, we
evaluate its power consumption and latency from when the
sensor data is collected to when the data is received by the
cloud storage. During the experiment, we kept the sensors
triggered and the sensor data is continuously transmitted in
the form of 5 × 5 matrix with each cell indicating whether
the corresponding sensor was triggered (1 - triggered, 0
- not triggered). The power consumption of our prototype
sensor device is very low at less than 0.6W, due to our
efficient middleware design. The latency depends on the event
scheduling frequency of our middleware system, which can
be configurable. We tuned it to 50 milliseconds based on our
experience, which is fairly sufficient for the anomaly detection
purpose.

B. Blockchain-based Storage

To prove the consortium chain in use is a feasible storage
solution, we gauge the transaction throughput while storing
the data and generating the hash index. Under a 10-node
blockchain network, we generate random transactions as much
as possible, and 107 TPS (transactions per second) is success-
fully appended to the chain, which is much higher than public
blockchain systems such as Bitcoin and Ethereum [56], since
the consensus is conducted much more efficient in consortium
chain due to a much smaller number of nodes compared to
the public chain system. We also conduct a stress test on
our off-chain storage methodology, where we train different
typical machine learning models on top of our off-chain
storage system. The updated models, in terms of gradients,
are saved on the blockchain after training. Table II presents
the experimental results. The “Parameter Number” describes
the model size. “Read” and “Write” show the upload and
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download time of the corresponding updated models, which
is quite ideal, exhibiting practicality of our designed off-chain
storage system.

TABLE II
READ/WRITE LATENCY WHEN TRAINING DIFFERENT MACHINE

LEARNING MODELS ON THE CHAIN

Model Parameter Number Read Write
mobileNetV2 3,538,984 155.27ms 469.72ms
mobileNet 4,253,864 153.91ms 470.09ms
NASNetMobile 5,326,716 189.37ms 489.08ms
DenseNet121 8,062,504 329.48ms 640.33ms
DenseNet169 14,307,880 891.38ms 901.10ms
DenseNet201 20,242,984 1.43s 1.24s

C. Environment Adaptation

Fig. 9. Room setting for in-home monitoring

We collect our normal data set as follows. We have a user
move on normal daily paths in the room in Fig. 9, emulating
an older person’s daily life, e.g., walking to the bed, walking
to the table, wandering alongside the window, walking to
the bookshelf. We emulate 7-day activity monitoring with
activities summarized as in Table III. We also emulate still
time in the designated areas, e.g., at the table, bed, etc. We
collect 400 sample trajectories, each containing a sequence of
activation time and sensors triggered along the path (default
trajectory length is 5).

(a) normal(white), specific_1(grey),
specific_2(blue)

(b) Percentages of specific/normal ar-
eas

Fig. 10. Area Division

Fig. 10 shows the specific/normal area division results. The
percentage of specific/normal areas in terms of the entire room

area is given in Fig. 10(b). The “specific” areas with the
longest still time, labeled with IDs 43, 44, 54, 55 (Fig. 9), are
the bed areas of the room, while the other set of “specific”
areas are the study areas of the bedroom with IDs 43 and 44.
The rest are “normal” areas.

We derive the maximal still time in an area as the EA
threshold for triggering emergency alarms for that area. Table
IV gives the results. We have Tspeci f ic[x1] = 31046.891,
Tspeci f ic[x2] = 3651.004 and Tnormal = 4.977.

D. Anomaly Detection

We further collect 100 samples with random paths as
anomaly data. As abnormal situations happen rarely in reality,
we set the ratio of normal samples and abnormal samples to
10 : 1 in the following experiments (400 normal samples vs
40 random anomaly samples by default), which is a common
ratio used for anomaly detection in existing literature [42],
[57].

We evaluate the performance of our OCSVM abnormal
trajectory detection using the following metrics, where TP
stands for true positive, FP is false positive, TN is true negative
and FN is false negative, respectively:

Precision =
TP

TP + FP
(1)

FPR =
FP

FP + T N
(2)

Recall =
TP

TP + FN
(3)

Here, Recall, also referred to as the true positive rate (TPR),
is the proportion of real positive cases (anomaly) that are cor-
rectly predicted. Conversely, Precision denotes the proportion
of predicted positive cases that are correctly real positives.
FPR presents the proportion of real negative cases that are
predicted positive [58]. We plot the Precision-Recall (PR)
curve with the recall value on x-axis and the precision value on
y-axis, and the Receiver Operating Characteristic (ROC) curve
with the FPR value on x-axis and the TPR value on y-axis.
We compute the Area under Curve (AUC) for these curves,
which is the normalized area under a curve, for evaluating the
performance of the classifier [59]: the larger AUC is, the better
capability of distinction between classes is achieved. AUC has
been approved to be an effective method for measuring the
performance of classifiers with unbalanced class distribution
and multiple classes [60].

We plot the PR and ROC curves in Fig. 11 and Fig. 12
when the length of data sequence per sample is 5. We compare
the impact of the length of the data sequence for anomaly
detection in Fig. 13: we run each experiment 10 times, and
present the average AUC values as well as the maximal and
minimal values in each case. The average AUC value of
the PR Curve reaches the largest value (0.8694) when the
sequence length is 7, whereas the value is the smallest (0.4825)
if the length is 3. As the sequence gets longer, it contains
more information along the trajectory, potentially capturing
more characteristics of the normal activities, such that the
anomaly can be distinguished more easily. The average AUC
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TABLE III
7-DAY IN-HOME MONITORING

Day Activities Position

Day 1 Enter the room → go to bed 25 → 53, 43, 54, 44
Day 2 Get up→ the window site→ leave the room→ enter the room

→ lunch break → window site → read → leave the room →
enter the room → go to bed

53, 43 → 21, 31, 41 → 25 → 53, 43 → 31 → 32, 42 → 25
→ 53, 43, 54, 44

Day 3 Get up → leave the room → enter the room → read → leave
the room → enter the room → lunch break → read → leave
the room → enter the room → go to bed

53, 43, 54, 43 → 25 → 12, 13, 14 → 32, 42 → 25 → 53, 43
→ 32, 42 → 25 → 53, 43

Day 4 Get up→ leave the room→ enter the room→ the window site
→ leave the room → enter the room → lunch break → read
→ leave the room → enter the room → go to bed

53, 43→ 25→ 21,31,41→ 25→ 53,43→ 12,13,14→ 32,42
→ 25 → 53,43

Day 5 Get up → leave the room → enter the room → lunch break →
read → leave the room → enter the room → go to bed

53,43 → 25 → 53,43 → 31,21,41 → 32,42 → 25 → 53,43

Day 6 Get up → leave the room → enter the room → read → lunch
break → read → leave the room → enter the room → go to
bed

53,43 → 25 → 42,32 → 53,43 → 31,21,41 → 32,42 → 25 →
53,43

Day 7 Get up → leave the room → enter the room → lunch break →
leave the room → enter the room → read → go to bed

53,43 → 25 → 53,43 → 25 → 31,21,41 → 32,42 → 53,43

Fig. 11. PR Curve Fig. 12. ROC Curve Fig. 13. AUC with different sequence
lengths

Fig. 14. AUC with different training
dataset sizes

TABLE IV
STILL TIME IN DIFFERENT AREAS

Areas Average Still Time
(seconds)

Maximal Still Time
(seconds)

specific_1 (53, 43, 54, 44) 15674.141 31046.891
specific_2 (32, 42) 2975.951 3651.004
normal (the rest) 3.425 4.977

of the ROC Curve achieves the largest value (0.9764) when
the sequence length is 5, which avoids more false positive
examples.

We next increase the number of samples used for training
our OCSVM classifier and present the anomaly detection
results in Fig. 14. We observe that the performance does
not change much with more training samples. We summarize
the results in Table V. We observe that we can obtain a
better AUC of PR by increasing the sequence length. As
each trajectory consists of continuous data points, a longer
sequence can capture normal activities better by containing
more information.

E. Comparison with Existing Systems

We compare our results with existing IoT systems which
focus on activity recognition and anomaly detection [42],
[61]–[69], and show the results in Table VI. These works
adopted diverse methods for achieving activity recognition and
anomaly detection, e.g., Support Vector Machine (SVM) [70],

Dynamic Range-Doppler Trajectory (DRDT) [67], Bayesian
statistics [71], convolutional neural network (CNN) [72], gen-
erative adversarial network (GAN) [73], principal component
analysis network (PCANet) [74], kernel nonlinear regression
(KNLR) [75], etc.. Note that F-Measure in [61]–[63] is a
metric combining both precision and recall, as follows:

F − Measure =
2

precision−1 + recall−1 (4)

Accuracy =
TP + T N

TP + FP + T N + FN
(5)

Comparing with the existing sensor-based anomaly detec-
tion systems (e.g., [42] [68] [64] [69]), our system provides
comparable performance while replying on simpler environ-
mental sensor devices and methods. Comparing with our sys-
tem, video-based systems (e.g., [65] [66]) are more expensive
and hard to implement in the elderly household environment,
due to severe privacy and cost concerns.

VI. CONCLUSION

This paper proposes a cost-effective, efficient smart home
monitoring system for living-alone elderly people. The key
components include a non-intrusive, efficient front-end sensor
device and open-hardware middleware, blockchain-based data
storage, and simple but effective anomaly detection methods.
Our PIR device can be easily installed in the home environ-
ment and connected with extra online services via the open-
hardware platform. Our cloud data storage provides secure,
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TABLE V
SUMMARY OF TRAJECTORY ANOMALY DETECTION RESULTS

Sequence Length Samples Ave_AUC(PR) Ave_AUC(ROC) Max_AUC(PR) Max_AUC(ROC)

5 400 0.8531 0.9764 0.8712 0.9863
3 400 0.4825 0.8789 0.6024 0.9039
7 400 0.8694 0.8995 0.9540 0.9602
5 800 0.8592 0.9679 0.8791 0.9893
5 1200 0.8571 0.9701 0.8807 0.9826

TABLE VI
PERFORMANCE COMPARISON WITH EXISTING IOT MONITORING SYSTEMS

Ref. Type IoT deployment Method Detection objectives Performance

[61] Activity
Recognition

MEMS sensors SVM 2 kinds of activities: atom activities (cook
lunch/breakfast, eat lunch, etc.) and interactive
activities (sleep, walk, leave home, etc.)

Accuracy:0.87,
Precision:0.82,
F_Measure :0.848

[62] Activity
Recognition

Micro-Doppler
Radar

GAN 7 kinds of activities: boxing while standing in
place, crawling on the ground, creeping, jumping
forward, running, standing and walking

Max F-Measure : 0.7461

[63] Activity
Recognition

Acceleration and
gyro sensor

CNN Diverse transportation methods: ride a car/bike,
take the bus/train/subway, run, walk and keep
still

Max F-Measure : 0.82

[67] Activity
Recognition

FMCW Radar DRDT 6 typical human motions: falling, stepping,
Jumping, squatting, walking and jogging

Average accuracy : 0.919

[64] Activity
Recognition

Accelerometers
and gyroscopes
of mobile phones

CNN 6 types of physical activities, walk, walk-
upstairs, walk-downstairs, sit, stand and lay.

Max accuracy : 0.93926

[65] Activity
Recognition

Camera CNN 1000 object classes Max accuracy : 0.875

[66] Anomaly
Detection

Video
surveillance

PCA+CNN+SVM Motion tracking and anomalous object detection Max accuracy : 0.94

[42] Anomaly
Detection

Wearable Sensors SVM+KNLR 112 abnormal traces like falling down back-
wards/forwards, slipping, etc.

AUC of ROC: 0.985

[68] Anomaly
Detection

Infrared (IR) Mo-
tion Sensors

SVDD 10 different types of abnormal conditions: falls,
weakness, seizures, dead, etc.

AUC of ROC : 0.96

[69] Anomaly
Detection

RFM Wireless
Sensors

Bayesian Statis-
tics

Daily activity monitoring of 3 people: an au-
tonomous and independent adult man, an el-
derly woman with Parkinson’s disease and an
autonomous elderly woman

AUC of ROC : 0.9455

Our
work

Anomaly
Detection

PIR Sensors EA+OCSVM Still time anomaly and trajectory anomaly AUC of ROC: 0.9863

multi-level access control by adopting both on-blockchain and
off-chain technologies. For anomaly detection, we propose
an environment adaptation method for still time anomaly
detection and adopt OCSVM for trajectory anomalies. We
implement a prototype system and evaluate it in a real-world
environment. Extensive experiments show timeliness, low cost
and accuracy of our solutions.

For future work, we are planning to conduct long-term
behavior studies of the elder users based on more advanced
machine learning methods, to learn more valuable information
such as emotional and psychological status.
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