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Abstract—In light of the success of graph neural networks
(GNNs), recent years have seen significant developments in mod-
eling graph-structured data. Heterogeneous graphs have been
widely adopted to model complex systems for various ML tasks.
However, although some researchers have proposed methods
for heterogeneous graphs, they merely focus on node features
while neglecting the effectiveness of edge features. Besides, some
research projects attempted incorporating edges into GNNs, but
most regarded edge features as shared weights between node
pairs. In this paper, we propose a two-stage method HES to
learn the correlations among edge neighbors: (1) Graph Trans-
formation: We convert the original heterogeneous graph into an
undirected graph while preserving the orientation information,
(2) Group Edge Sampling: To reduce the computation cost for
the edge sampling in a heterogeneous graph, we propose to
sample the most important edges over a group of edge neighbors
instead of the whole graph, which leverages the edge features
based on the one-hot encodings to describe the mutual influences
between any adjacent edges. Finally, the experimental results
on multiple public datasets show that HES outperforms existing
state-of-the-art (SOTA) graph sampling methods. We further
apply our approach to some existing GNN models as a pre-
training process, demonstrating that HES can augment GNN-
based models effectively.

Index Terms—Edge Sampling, Graph Neural Networks

I. INTRODUCTION

Recent years have seen significant developments of deep
learning models for graph-structured data [1]–[3], as a het-
erogeneous graph, with nodes and oriented edges, is naturally
suitable to describe the entities and their inner-relationships
among data [4]. Generally, a heterogeneous graph contains
nodes and oriented edges, in which objects of different types
interact in various ways [5]. Considering a citation network
[6], there are five types of nodes representing multiple charac-
ters: authors, papers, venues, institutes, and fields. Besides, the
oriented edges are used to present high-dimensional relation-
ships between two neighboring nodes, e.g., paper-cite-paper,
author-write-paper, author-in-institute, paper-in-field, paper-
show-venue, etc. For instance, the edge between a paper and an
author, indicates “the author writes this paper”. However, for
a paper with a group of co-authors, it is necessary to measure
the importance of each co-author on this paper. Besides,
the edge orientation is commonly ignored [7], [8], which
usually contains important information about the graph [9].
For example, machine learning papers cite other theoretical
papers in a citation network. However, theoretical papers may
rarely cite machine learning papers. In a graph, each edge is
used to describe the relationship strengths or other properties
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between two edges, which is commonly shared by these two
neighboring nodes [7]–[9]. Nevertheless, sharing the weights is
not practical in most cases, as the edge orientation information
affects both endpoints differently in a heterogeneous graph.

Neural networks were firstly adopted into graphs by
Scarselli et al. [10]. Recently some graph-structured neural
networks were proposed to provide better performance for
graph learning, e.g., graph convolutional network (GCNs)
[7], graph attention network(GAT) [8]. But these models
commonly neglected the edge information, which are not
designed for heterogeneous graphs. Several works [4], [9], [11]
attempted to incorporate the edge features into the graph neural
networks but still faced a key limitation: they merely regard
edges features as sharing weights between two neighboring
nodes, making these frameworks hard to implement in het-
erogeneous graphs. For heterogeneous graph learning, Wang
et al. [12] introduced heterogeneous graph attention networks
(HANs) based on GAT [8], and Hu et al. [5] recently proposed
the heterogeneous graph transformer (HGT) inspired by the
Transformer [13]. However, their works still focused more
on node features while neglecting the importance of edges.
So it is important to explore a better method to augment
graph learning in a heterogeneous graph based on the edge
information.

To empower the influences of edge information in a graph,
edge sampling can be applied to sample a subgraph, in which
more influential (high-degree) nodes with more edges can be
sampled [14]. Nevertheless, we observe only a limited number
of research works based on edge sampling for heterogeneous
graphs. Edge sampling has been well-studied for undirected
graphs (UG), or homogeneous graphs [15]–[17]. Penalized
likelihood-based methods have been widely adopted to fit a
UG on a given dataset, which preserves symmetry in the
adjacency matrix constructed based on the data, e.g., the least
angle regression (LARS) [15], the least absolute shrinkage and
selection operator (LASSO) [16]. Specifically, the symmetry
of the adjacent matrix is typically compulsory for edge se-
lection [18]. However, guaranteeing symmetry is challenging
on a heterogeneous graph, as the oriented edge often affects
two adjacent edges differently. Furthermore, most studies [15],
[16], [18] mainly focused on a small UG and sampled edges
from the entire graph, which made them difficult to implement
for a complex heterogeneous graph directly.

In light of these challenges, we tend to propose a more
effective edge sampling method based on the edge information
in a heterogeneous graph. Firstly, we consider transforming the
original heterogeneous graph into an undirected graph while
maintaining the orientation information of edges for each node



and preserving the symmetry. Secondly, we partially select
a neighbor set for each edge and catch the most correlated
neighbors based on the edge selection function, to achieve
more effective edge sampling. Our work can also be extended
to existing neural networks (like GCNs [7], GAT [8]) as
the pre-training stage to select effective neighboring edges.
As each sampled edge links two neighboring nodes, we can
construct a neighbor set for each node instead of searching for
all neighbors by adopting random walks. [7].

In summary, the contributions of this work are given as
follows:

• We propose HES, an edge sampling method for hetero-
geneous graphs that can be verified as an effective way
for graph sampling as the most correlated edge neighbors
can be selected.

• We demonstrate the effectiveness of HES on several
public datasets by comparing it with other sampling
methods, including the standard and the state-of-the-art
methods.

• We apply our method to GNN-based models as the pre-
training process. The experimental results can verify that
HES can perform better than the random walks for the
classification tasks.

II. BACKGROUND AND RELATED WORK

A. Current Sampling Methods

Generally, we can divide the sampling methods into three
categories, i.e., node-based sampling and edge-based sam-
pling, and topology-based sampling.

Random node (RN) sampling [19] is one of the most
apparent node-based sampling methods, which samples a fixed
fraction of nodes from the whole graph, where nodes are cho-
sen independently and randomly. Then PageRank algorithm
[20] adopted by Google can be regarded as the state-of-the-art
node-based sampling method, which measures the importance
of each node within the graph.

Edge sampling focus on sampling edges rather than nodes,
where an edge is sampled with two nodes selected at each step.
Compared with node-based sampling, each node is selected in
proportion to its degree in the sampled graph, as high-degree
nodes tend to have more connected edges with other nodes.
We omit the discussions of edge sampling methods here and
present more details and comparisons in the next subsection
to avoid repetitive conversations.

The most popular topology-based sampling method is the
random walk sampler (RW) [21], which randomly picks a
starting node, simulates a random walk on the graph, and
then collects nodes after a number of walking steps. Recently
a common neighbor-aware random walk sampler (CNARW)
[22] was proposed by leveraging weighted walking at each
step, which can be regarded as a state-of-the-art algorithm.

B. Edge Sampling for Graphs

Some previous works have studied edge sampling in undi-
rected graphs (UG). Tan et al. [16] presented a LASSO-based
method, which can fit in a small homogeneous graph and

estimate all correlations among each edge pair. Ong et al.
[15] proposed a LARS-based method to sample edges in an
undirected graph that preserves the symmetry. However, these
two methods can not be applied to a large graph, as it is too
computationally costly to estimate all distances of each edge
pair within the whole graph. Ahmed et al. [23] optimized
classic edge sampling and proposed a totally induced edge
sampling (TIES) method, in which they induced all the edges
between the sampled nodes instead of the sampled edges.
Yousuf et al. [24] recently presented a totally induced weighted
edge sampling (TIWES) method by introducing the weights,
which randomly samples an edge and then increases the
sampling probability of its neighbors. Nevertheless, TIWES
may increase the sampling bias sharply, as only the neighbors
of sampled edges have more sampling opportunities while
ignoring the inner correlations among edges.

For directed graphs, some hybrid method methods consid-
ered the effectiveness of edges. Ribeiro et al. [25] adopted
directed unbiased random walk (DURW) to sample sub-
graphs, which neglected those multiple attributes for edges in
a heterogeneous graph. Xu et al. [26] and Voudigari et al. [27]
only focused on the nodal properties in a directed graph while
ignoring the edge features. Furthermore, these works can not
sample these correlated edges in a heterogeneous graph.

To fill in the gap of edge sampling for heterogeneous graphs,
we propose an efficient way to transform a heterogeneous
graph into a UG, namely graph transformation (GT). Then
we sample these important edges from the neighbor set of
each edge instead of the whole graph, which assures that our
method can be applied to big graphs.

C. Incorporating Edges into GNNs

As edge features contain some important information in a
graph, some researchers attempted to exploit edge information
in GNN models. Schlichtkrull et al. [11] introduced relational
graph convolutional networks (R-GCNs) with edges based
on GCNs [7]. However, R-GCNs can not accept edges with
multiple attributes. Gong et al. [9] proposed edge enhanced
graph neural network (EGNN) to augment GCNs [7] and GAT
[8] with edges features. However, EGNN merely regards these
edges as weights between any neighboring nodes. Chen et al.
[4] presented edge-featured graph attention networks (EGAT)
based on GAT [8], which processed edges as the same as nodes
powered by attention networks. However, EGAT is not enough
to process heterogeneous graphs as neighboring nodes share
the same edge attributes. Recently Gong et al. [28] adopted
an edge selection function when building the graph neural
networks, which solely selects the edges based on the features
of the adjacent points.

Compared with these works, we aim to incorporate multiple
edge features into GNNs and leverage edges to show the
mutual influences between any node pairs.

D. Heterogeneous Graphs

There are some existing works to adopt GNNs to learn with
heterogeneous graphs. Wang et al. [12] firstly introduced het-



erogeneous graph attention networks (HANs), which focused
more on nodes while neglecting the edge features. Yun et
al. [29] proposed graph transformer networks (GTNs) based
on Transformer [13], which still focused more on learning
effective node representations while edges are merely used
to design meta-paths. Zhang et al. [30] presented a heteroge-
neous graph neural network (HetGNN) model, which mainly
sampled correlated neighbors for each node and grouped them
based on the node types while neglecting the edge features.
Hu et al. [5] recently proposed the heterogeneous graph trans-
former (HGT) architecture to process various heterogeneous
graphs, which sampled sub-graphs in which different types
of nodes are with similar proportion while neglecting the
importance of selected edge features.

We observe that all these works only adopted the edge
features in the learning process of node presentations but
ignored selecting essential edge features in a heterogeneous
graph. Unlike them, we tend to explore the correlations of
edges and sample correlated edges for graph learning.

III. METHOD

A. Basic Notations

Consider a heterogeneous graph G = (N , E ,A,R) (N ∈
RF , E ∈ RP ) with M nodes and D edges, in which each
node s ∈ N and each edge e ∈ E , τ(n) : N → A and
ϕ(e) : E → R are type mapping functions. For node s, we
denote its neighboring edge set is Es and its neighboring node
set is Us. For an edge e linking two neighboring nodes s and
t with orientation information σ(s, t) (e.g., from s to t), let a
quadruplet Qe = [τ(s), ϕ(e), τ(t), σ(s, t)] be the meta relation
for edge e. Note that σ(s, t) ∈ {−1, 0, 1}, where σ(s, t) = −1
(or 1) indicates that s points to t (or t points to 1), σ(s, t) = 0
indicates that there is no directed edge between s with t. And
Q denotes the set of all meta relations. Besides, we denote that
n is an F-dimensional vector presenting the node, and e is a
P-dimensional vector indicating the edge. A high-dimensional
vector for presenting a node has been well-adopted [5], [9],
[12], and a high-dimensional vector for presenting an edge can
be an advantage for augmenting the edge vector with more
important features. For example, in an “author-write-paper”
network, a higher dimensional vector can be used to present
the authorship order and author type, e.g., the first author, the
last author, and the corresponding author, which can be an
important factor that indicates the contribution of each author.

B. Problem Formulation

Given a larger heterogeneous graph, we tend to study the
correlations of edges and sample some important edges, as
edges contain multiple important information [5]. However,
traditional edge sampling methods [15], [16], [24] can only
work for undirected graphs because of the limitation of pre-
serving the symmetry. So our first challenge is maintaining
symmetry for a heterogeneous graph. Besides, these works
are not efficient in a graph as they tend to sample edges in
the whole graph, which can be pretty challenging facing a

TABLE I: Summary of Notations

s, t refers to a node e refers to an edge
N the set of nodes E the set of edges
A the set of node types R the set of edge types
M the number of nodes D the number of edges
J the edge sample size S upper bound of edge neighbors
W number of hidden layers H the dimension of hidden layer
G,G′ the original graph, and the reconstructed graph by GT
Us, Es the neighboring node/edge set for node s
τ(s), ϕ(e) node/edge type mapping function
σ(s, t) the orientation information between nodes s and t
Qe the quadruplet representing the meta relation for edge e
Q the set of all edge meta relations
is, os the in-degree and out-degree values for node s
ds the degree vector for node s, ds = [is, os]
d(e,j) the shared degree vector for both edges e and j
Xe, X the edge feature for edge e, the set of edge features
N

(1)
e , N(2)

e the first-order/second-order edge neighbors for edge e

Eout, E(e)
out the sampled edge set, the sampled edge set for edge e

N
(e)
out the reconstructed neighboring node set based on E

(e)
out

Nout, N(s)
out the sampled node set, the sampled node set for node s

large graph. Then our second challenge is to propose a more
efficient sampling method in a heterogeneous graph.

To address these challenges, we propose a two-stage method
for sampling effective edges in a heterogeneous graph:

1 Graph Transformation (GT). We notice that the biggest
difference for a UG and a heterogeneous graph is that the
latter contains each edge’s orientation information linking
two neighboring nodes. We propose an effective way of
converting the original heterogeneous graph into a UG
while preserving the orientation information.

2 Group Edge Sampling. To reduce the computation cost
for the edge sampling in a heterogeneous graph, we tend
to sample the most important edges over a group of edge
neighbors instead of the whole graph.

C. Graph Transformation

To convert a heterogeneous graph into a UG, prior methods
[31], [32] just simply replace the oriented edges into undi-
rected edges, in which any neighboring node pairs share the
same influence of the edge. However, such transformation
can cause avoidable mistakes. For example, in a citation
network in Fig. 1, paper B (node 1) cites paper A (node
0). If we just remove the orientation information, the citation
information can be misunderstood in the new graph. Based
on the directed graph theory [33], we observe that for each
node, it contains both in-degree and out-degree values, where
in-degree indicates the number of incoming edges, while
outdegree presents the number of outgoing edges. To describe
the orientation information for each node s, we adopt a two-
dimensional vector ds = [is, os], in which in =

∑
j∈Us

σ(s, j)
is the in-degree value and in =

∑
j∈Us

σ(j, s) is the out-
degree value. As shown in Fig. 1, we illustrate these two steps
for graph transformation:

• STEP 1: We replace the original oriented edges with
undirected edges and preserve both in-degree and out-



degree values for each node by adding a two-dimensional
feature [is, os] (s ∈ N );

• STEP 2: We convert the positions of nodes and edges,
and then obtain a new reconstructed graph G′. Note that
we preserve prior notations to avoid any conflicts. In the
graph G′, any neighboring edges e and j share the same
degree vector d(e,j) = ds, where e, j ∈ Es.

Fig. 1: Graph Transformation (GT) consists of two steps. STEP
1: Use node degrees to preserve the orientation information;
STEP 2: Convert the positions of nodes and edges.

D. Group Edge Sampling

After the graph transformation, we tend to sample a fixed
number of edges for each target edge in the newly constructed
graph G′. Prior work [34] tended to find the weight distribution
matrix from all edges, which presents all correlation weights
for any edge pairs, which is computationally expensive for a
large-scale graph with millions of edges.

To address this challenge, sampling the edges on a partial
graph [15] can be a promising solution. For example, we
can only sample the first-order neighbors (and second-order
neighbors) for computing the weight distribution for a target
edge. Note that first-order neighbors mean these edges con-
nected directly with the target edge. Second-order neighbors
indicate these edges that walk through another edge before
arriving at the target edge. However, sampling some edges
on a partial graph can not guarantee symmetry all the time
[35], as if edge j is selected in the sampled set of edge e,
there is no guaranty that the edge t would be selected as a
sampled significant edge of j. Recall that the set of edges
is E, the set of edge meta relations is Q, the first-order
neighborhood for edge e is N

(1)
e (while N

(2)
e includes both

the first-order and second-order neighbors). Λ is the learnt
parameters that present the edge weight distribution for each
edge, and βej = −Λej/

√
ΛeeΛjj . Inspired by the “MB-OR”

method in [18], we adopt a consistency procedure (CP) to
preserve symmetry when sampling the edges, in which edges
j or e can be sampled at each side when βej ̸= 0 or βje ̸= 0.

As Qe is a quadruplet presenting diverse attributes, we can
pre-trained each attribute of the edge meta relation (Qe =
[τ(s), τ(t), ϕ(i), σ(s, t)]) into an edge feature separately us-
ing one-hot encoding method [36] and finally concatenate
these vectors as the edge feature Xe ∈ RdE (dE is the
dimension of edge features). For example, considering Qe =
[τ(s), ϕ(e), τ(t), σ(s, t)] after using one-hot encoding, τ(s),
ϕ(e), τ(t) and σ(s, t) can be represented as “0001”, “0100”,
“1000”, “10” separately. So the final edge representation can

be set as “00010100100010”. After getting all edge repre-
sentations, we scale them into the set of edge features X ,
in which Xe for edge e satisfies the Gaussian distribution
(Xe = (Xe1, Xe2, ..., XedG

) ∼ N (0,Σ), where each element
in Σ satisfies Σpq = 1) and dG is the dimension of edge
features. Inspired by the LARS-based method in [15], we
measure the distance between the original edge meta relation
and its edge neighbors. Then we can obtain the original
objective function by minimizing L(Λ) into the form with
only the partial neighboring edges as follows:

L(Λ) =
1

2

∑
e∈E

(d(e, j)||Xe −
∑
j∈N·

e

βej

√
Λjj

Λee
Xj ||22) + κ

∑
x<j

|fpen|,

(1)

where a shrinkage parameter κ is adopted to avoid the over-
fitting issue [15] by multiplying the non-negative penalty
function fpen (normally fpen = Λtj), in which κ can be
determined by cross-validation [37]. Note that the “·” in N ·

e

can be set to (1) or (2), which indicates the first-order (and
second-order) neighborhood for edge e.

As d(e, j) is a two-dimensional vector, we investigate the
influence for both in-degree and out-degree values separately.
Recall that it is essential to describe the physical mean-
ings from both dimensions in the citation network: the first-
dimension weight means the number of cited papers, and the
other weight represents the citation number by other articles.
So we adopt d(e,j) = [vej1, vej2]. Besides, a novel method
[38] was recently proposed to optimize the loss function by
introducing the edge sample size J . Based on these prior
studies, then we can optimize the original objective (Equation
1) and obtain the following:

Lo(Λ) =
1

2

∑
k∈{0,1}

∑
e∈E

(−J log vejk + vejk||Xe

−
∑
j∈N ·

e

βej

√
Λjj

Λee
Xj ||22) + κ

∑
x<j

|fpen|,
(2)

in which we calculate the distances weighted on both in-degree
and out-degree values for each neighboring edge and finally
regard their sum as the final loss.

Theorem 1. Given the sampled size J and shrinkage size κ,
Lo(Λ) is a convex function, which converges to a minimum
that satisfies all edge neighbors.

Proof. Here we can regard Lo(Λ) as a special case of the
objective function in [38], where we sample a group of neigh-
bors N

(·)
e instead of the whole edge set. Since −J log vejk

and κ
∑

x<j |fpen| are obviously convex functions, we mainly
focus on the second term vejk||Xe−

∑
j∈N ·

e
βejXj ||22. For the

second term, we can obtain the following:



vejk||Xe −
∑
j∈N ·

e

βej

√
Λjj

Λee
Xj ||22

= vejk||Xe +
∑
j∈N ·

e

Λej

Λee
Xj ||22

= vejk||
1

Λee
(ΛeeXe +

∑
j∈N ·

e

ΛejXj)

=
vejk
Λ2
ee

||
∑

j∈N ·
e

⋃
{e}

ΛejXj ||22

=
vejk
Λ2
ee

(Λ
(e)′

·e X(e)′X(e)Λ
(e)
·e ),

(3)

where Λ
(e)′

·j X(e)′X(e)Λ
(e)
·j is the quadratic form that is com-

puted on set N ·
e

⋃
{e}. Note that Λ(e) is the partial matrix in

Λ for all edge’s neighbors (including itself).
As the quadratic form in Equation 3 is jointly convex of

Λ(e), combining with other two convex terms −J log vejk
and κ

∑
x<j |fpen|, we can obtain that the objective function

Lo(Λ) is a jointly convex function of Λ.

E. Complete Algorithm

Then we present the heterogeneous edge sampling algorithm
(HES) based on Stochastic Gradient Descent (SGD) [39] in
Algorithm 1. Suppose the epoch is Z, and each step is indexed
by z. Note that the complexity of Algorithm 1 is O(MD +
ZD2 + JD). However, as we calculate the gradients based
on the adjacent edges for each edge, the edge neighborhood’s
size is upper bound by S ≪ D, indicating that O(ZD2) can
reduce to O(ZDS) in our scheme. So the complexity can
reduce to O(MD) by ignoring the small constants, i.e., Z,
J , and S. According to the complexity analysis, it costs more
computation resources on graph transformation while reducing
the computation cost for edge sampling. Note that the sampled
set is Eout ∈ RD×J , and the correlated edge set for edge e is
E

(e)
out ∈ RJ .

F. Augmenting GNN-based Models

Our heterogeneous edge sampling algorithm can be adopted
as the pre-training process to augment these standard GNN-
based models, e.g., GCNs [7], GAT [8]. Note that we omit
further discussion for other frameworks discussed in related
work, as most of them relied on the designs of GCNs [7] and
GAT [8] and commonly sampled the node/edge neighbors by
random walks. Instead of sampling nodes by adopting random
walks among a group of nodes, we can optimize the sampling
process and further reduce the number of node neighbors based
on the sampled edge set Eout. For example, for a sampled
edge set E(e)

out of edge e, we can collect all neighboring nodes
N

(e)
out = {s : ds = (e, j), j ∈ E

(e)
out} based on the degree

vector d(e,j), in which e and j share the degree vector ds for
node s. Considering the size of edge sampling is J , the final
size of total neighboring nodes Nout (N

(e)
out ∈ Nout) is smaller

Algorithm 1: Heterogeneous Edge Sampling (HES)
Input: The original graph G, the meta relation

quadruplet set Q, learning rate η, randomly
selected Λ that preserve symmetry, the total
training rounds Z, edge sample size J

Output: Sampled edge set Eout

1 Compute both the in-degree and out-degree values for
each node s in G: ds = [iS , os];

2 Transform G into G′ by converting the positions of
nodes and edges;

3 Transform the edge meta relation into edge features:
Q→ X;

4 for z ∈ {1, 2, .., Z} do
5 Compute the gradients: g ←▽Lo(Λ);
6 Update the Λ: Λ← Λ− ηg;
7 for each symmetric elements Λpq and Λqp in Λ do

if Λpq = 0 AND Λqp = 0 then
Continue;

else
Λpq = Λgp = (Λpq + Λgp)/2;

end if
8 end
9 end

10 Sample the edges with Top− J correlation weights in
each row of Λ and construct the sampled set Eout;

11 return Sampled edge set Eout.

than JD. Then we can sample all the neighboring nodes N (s)
out

(N (s)
out ∈ Nout) for node s in Nout.

IV. EVALUATION

In this section, we evaluate our proposed method (HES)
using several public datasets, in which we tend to answer the
following questions:

Q1 What is the effectiveness of HES comparing with other
edge sampling methods?

Q2 How does the sampling fraction (the portion of sampled
subgraph over the whole graph) affect the sampling
performance?

Q3 Can HES augment other GNN-based methods for some
downstream tasks?

A. Setup

1) Datasets: To evaluate the effectiveness of our method,
we adopt four public datasets: two citation network datsets
Cora [40] and Pubmed [41], a social network dataset Face-
book [42] The main statistics of these datasets are summarized
in Table II. Note that all networks are directed. For all datasets,
we split 60%, 20%, and 20% of the whole dataset for training,
validation, and testing, respectively. For HES, we set the edge
sample size J to 10 for Cora and Pubmed, and set it to 20 for
Facebook if not mentioned, which has covered most first-order
and second-order neighbors for each edge.



TABLE II: Summary of Datasets

Dataset # of Nodes # of Edges Entries
Cora 2,708 5,429 Seven Classes of Publications

Pubmed 19,717 44,338 Three Classes of Medical Papers
Facebook 46,952 876,993 Facebook Users, Posts

2) Metrics: To measure the sampling performance of HES,
we adopt the normalized root mean squared error (NRMSE)
[25], [26] as follows:

NRMSE(χ̂e(J)) =

√
(χ̂e(J)− χe)2

χe
, e ∈ E , (4)

which measures the relative error of the estimate χ̂e(J)
concerning its true value χe(J) when the sample size is J .
NRMSE has been verified as a better metric than the mean
squared error (MSE) in prior studies [25], [26], as it allows
different approaches to compare on a standard scale. Note that
the estimates χ̂e(J) and χe can be evaluated as follows:

χ̂e(J) =
∑

j∈E
(e)
out

Xj , χe =
∑
j∈N ·

e

Xj (5)

To evaluate how well HES augments GNN-based models,
we run each model several rounds and record the mean
and standard deviation of the classification accuracy, which
measures if the test sample is classified into the right class.

3) Baselines: We compare HES with other four standard
edge-based sampling methods: (i) the standard Edge Sampling
(ES) [43], (ii), the Weighted Edge Sampling (WES) [44],
(iii) an optimized version, Totally Induced Edge Sampling
(TIES) [23], (iv) the state-of-the-art (SOTA), Totally Induced
Weighted Edge Sampling (TIWES) [24]. Besides, we compare
HES with two other hybrid methods for directed graphs: (i)
an optimized graph sampling method based on the random
walk, Directed Unbiased Random Walk (DURW) [25], (ii)
the state-of-the-art, Rank Degree (RD) [27]. Furthermore, We
further compare with the well-known method (i) random walk
sampler (RW) [21], and other SOTA approaches: (ii) the node-
based sampling method, PageRank [20], (iii) the topology-
based sampling method, Common Neighbor Aware Random
Walk sampler (CNARW) [22].

We select two GNN-based baselines to test the augmentation
performance of HES on the classification task: (i) the graph
convolutional network (GCN) [7], (ii) the graph attention
network (GAT) [8].

4) Implementation: For these experiments on Cora,
Pubmed and Facebook, we adopt TensorFlow 2.0 [45] to
implement our method on a server equipped with one Nvidia
GTX 1080 GPU, an Intel Xeon E5-1620 CPU with four cores,
and 32GB memory. To implement HES based on the SGD
algorithm effectively, we summarize the details concerning
various datasets in Table III based on the hands-on experience
when the trained model achieves minimal loss. Besides, we
set the momentum of SGD to 0.9 [46] for accelerating the
weight updates.

TABLE III: Summary of Implementation Details

Dataset Epoch Learning Rate Edge Sampling Size
Cora 10 0.01 10

Pubmed 20 0.01 10
Facebook 30 0.005 20

(a) HES vs. Edge-based Methods (b) HES vs. Other Methods

Fig. 2: NRMSE values of the degree: HES vs. Baseline Models

B. Evaluation Results

1) The Overall Results of HES (Q1): Note that the other
four edge sampling baselines merely transform the directed
graph into an undirected graph, so they combine both in-
degree values and out-degree values when calculating the
node degree. We first fix the sampling fraction to 2% of
the whole dataset [27] and then repeat each experiment 20
times. We compute the averaged NRMSE values of the degree
and summarize all experimental results on these benchmark
datasets. Note that smaller NRMSE values indicate higher
correlations of sampled edges. In Fig. 2a, we observe that
HES outperforms other baselines on all datasets. Compared
with ES and WES, TIES and TIWES also perform well as
they add the neighbors of each sampled edge into the sampled
list. However, they neglect the diverse weights of neighbors on
the sampled edge, which can wrongly add the adjacent edges
that are less correlated with the sampled one.

We further add experiments on other types of sampling
methods and summarize the experimental results in Fig. 2b.
We note that the PageRank algorithm performs worst among
all methods, while HES can achieve the most competitive
performance.

2) The Effectiveness of Sampling Fraction (Q2): To evalu-
ate the effectiveness of sampling fraction, we choose it from
the set θ = {0.02, 0.04, 0.06, 0.08, 0.1} [24] and show the
NRMSE value versus the sampling fraction for all methods on
each dataset. We do not increase the sampling fraction over
0.1 as extracting a subgraph with more samples is too costly to
serve the sampling purpose [26]. We first compare all methods
on the Cora dataset. In Fig. 3a, we show that our scheme
(HES) always outperforms other baselines when varying the
sampling fraction. Besides, we observe that the NRMSE values
of the degree for these methods tend to decrease with a larger
sampling fraction as more highly correlated adjacent edges can
be sampled. Furthermore, the NRMSE values tend to decrease
more slightly, which indicates that most correlated edges of
sampled edges have been sampled. Similar observations can
be found in Fig. 3b and Fig. 3c when we test these methods



(a) Cora Dataset (b) Pubmed Dataset (c) Facebook Dataset

Fig. 3: (Edge-based sampling methods) NRMSE values vs. the sampling fraction on public datasets

(a) Cora Dataset (b) Pubmed Dataset (c) Facebook Dataset

Fig. 4: (Other Methods) NRMSE values vs. the sampling fraction on public datasets

on Pubmed and Facebook datasets.
Furthermore, we also observe that WES performs worse

than ES at some sampling fractions, which further indicates
that it is not adequate to apply the same weights on the neigh-
bors of sampled edges as the influences of these neighbors on
the sampled edge vary a lot.

Finally, we compare HES with other baselines and summa-
rize all experimental results in Fig. 4a, Fig. 4b, and Fig. 4c. We
observe that our proposed method HES outperforms PageRank
all the time. Compared with other SOTA methods, HES can
also provide comparable performances under various settings.

3) The Effectiveness of Augmenting GNNs (Q3): As these
GNN-based baselines [7], [8] adopt the random walk sampler
(RW) [21] to sample the neighbors of each node and generate
node representations, we replace the neighbor set of each
node with the selected neighbor set by HES instead. Then
we conduct experiments on Cora and Pubmed with these
four models for classification problems. To achieve more
equal comparisons, we select the first-order and second-order
neighbors by random walks for baselines advised in [7]. We
run each model 20 times and summarize the mean and standard
deviation of the classification accuracies in Fig. IV. Here the
GCN-based models with HES are denoted as GCN-HES and
GAT-HES separately. From the experimental results in Fig. IV,
we observe that GCN-HES and GAT-HES outperform the orig-
inal baselines on both datasets considering the classification
accuracies. Furthermore, we can obtain a smaller standard

deviation of accuracy on each augmented model, indicating
HES brings higher stability as the selected neighbors correlate
more with the sampled node.

TABLE IV: Classification Accuracies on Two Citation Net-
works

Model GCN GCN-HES GAT GAT-HES
Cora 72.0 ± 1.2% 75.0 ± 0.5% 79.0 ± 1.0% 82.1 ± 0.4%

Pubmed 83.4 ± 0.2% 84.1 ± 0.1% 83.4 ± 0.2% 84.2 ± 0.1%

V. CONCLUSION

This paper introduces HES, an effective edge sampling
method for heterogeneous graphs. We propose the graph
transformation to fill in the gap of preserving the symmetry for
a heterogeneous graph. Then we suggest sampling edges based
on the edge neighbors group and verify that our objective can
converge to a minimum from the theoretical perspective. We
conduct extensive experiments on several benchmark datasets,
and the experimental results show that our proposed HES
outperforms other baselines significantly and consistently on
various sizes of sampled graphs. Finally, we replace the
random walk sampler with HES in GNNs, in which further
evaluations verify that HES can augment GNNs effectively.

For future work, we plan to adopt HES in a web-scale graph,
e.g., the open academic graph (OAG) [6] with more than 2
billion edges, explore existing challenges considering various
downstream tasks and propose more practical and effective
sampling solutions accordingly.
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