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a b s t r a c t

To provide precise recommendations, traditional recommender systems (RS) collect personal data, user
preference and feedback, which are sensitive to each user if such information is maliciously used
for extra analysis. In recent years, differential privacy (DP) has been widely applied in RS to provide
privacy protection for sensitive information. Prior studies explored the combination of DP and RS,
while neglecting the disparate effect on model accuracy of imbalanced subgroups as large user groups
control the trained model, and DP can worsen the disparate effect of degrading the performance of
recommender systems significantly. Besides, the number of uploaded contributions can differ among
users for training a recommender system, so it is necessary to set the user-level privacy guarantee.

In this paper, we make four contributions. First, we propose an efficient way of constructing
datasets for training a recommender system based on prior theories. Second, we compute the user-
level priors based on user metadata to optimize the VAE model. Besides, we add noise into the
calculation process to protect user metadata. Third, we analyze and propose a tighter theoretical bound
on gradient updates for DP Stochastic Gradient Descent (DPSGD). Finally, we exploit these theoretical
results and propose a novel DP-VAE based recommender system. Extensive experimental results on
multiple datasets show that our system can achieve high recommendation precision while maintaining
a reasonable privacy guarantee.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Recommender systems (RS) have been widely applied in var-
ous services [1–6], such as in the recommendation engines of
etflix [7], Amazon [8] and Alibaba [9]. A standard RS extracts
ach user’s information, learns the relationship among users and
tems and provides the recommended item(s) accordingly. The
rocess is quite privacy-intrusive as the user data needed for
aking recommendations is usually quite sensitive. For exam-
le, users may have to answer some sensitive questions raised
y the system periodically to achieve a higher recommendation
recision, such as location and age [10]. Differential privacy (DP)
as been applied for privacy guarantee in RS [11–17]. McSherry
t al. [7] first integrated DP to film recommendation and focused
n ensuring the same privacy guarantee for each user, while
eglecting that the added noise may affect differently on the rec-
mmendation performance among users with different amounts
f rating information [18]. In case of different user contributions,
ser-level differential privacy can be applied in a RS, which pro-
ides the privacy guarantee at the privacy level that each user
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ttps://doi.org/10.1016/j.knosys.2022.109044
950-7051/© 2022 Elsevier B.V. All rights reserved.
specifies according to its need. Collaborative filtering (CF) based
methods [19–21] are widely applied in recommender systems,
which predict what items a user prefers by measuring the simi-
larities across users and items. Recently, variational autoencoder
(VAE) models [22] have been introduced into RS design [23–25]
to involve side information for better recommendation, e.g., to
combine ratings with other user metadata. It can address the
drawbacks of CF-based methods in terms of the rating informa-
tion matrix sparsity and the cold start issue [26] (that it is hard
to recommend items to new users without any previous rating
information), as VAE [22,23] is a non-linear model powered by
neural network that can capture more complex patterns in the
data. We adopt VAE as the RS model and apply user-level DP for
a better privacy guarantee.

Besides, most prior works assumed that each user only con-
tributes one rating score for a specific item, which does not
address the real-world scenario: one may contribute multiple sets
of rating information with different timestamps for a particu-
lar item. For example, a user can rate some items with higher
or lower scores due to the taste change, which is common in
video/commodity recommendation [9,27]. Here allowing more
data contribution implies that we need to add more noise to
protect individual users with DP, which increases the variance
of user contribution and leads to a significant downgrade of the
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erformance of RS [28]. Amin et al. [28] discussed the bias–
ariance trade-off introduced by bounding user contributions
ith DP, analyzed user contributions (covered portions of the
hole dataset) on the expected error of differentially private
mpirical risk minimization in the model training process, and
roposed an optimal clipping bound. Besides, if there is a high
ontribution bias among users, the bias can cause a disparate
ffect on the final accuracy of the underrepresented users when
ifferential privacy [18] is applied. Juba et al. [29] analyzed the
recision–recall curve considering the classification task of imbal-
nced data and stated that a larger number of examples would
e necessary and sufficient to address class imbalance. Similar
bservation has been made by McMahan et al. [30] and they
rgued that increasing the size of the dataset can improve the
ccuracy while maintaining privacy protection.
We strategically design a DP-VAE RS in this paper, aiming

o provide precise recommendations while maintaining an ap-
ropriate privacy guarantee for each user. Our contribution is
ourfold:

• We propose anovel DP-VAE recommender system to achieve
high recommendation precision while maintaining a reason-
able privacy guarantee.
• We propose the user-level priors based on the user meta-

data for optimizing the VAE-based models and add noise
into the calculation process of user-level priors to protect
the metadata.
• We propose an efficient way of building training datasets,

which handles the problem of the uneven contribution
among users and avoids the model performance degradation
of the trained model.
• We propose an optimal clipping bound for the Gaussian

Mechanism when conducting DPSGD, which avoids a sig-
nificant decline in recommendation performance caused by
excessive privacy guarantee.

. Preliminaries and related work

.1. Differential privacy

Differential privacy is a mechanism that ensures privacy pro-
ection over a group of participants by adding randomness into
he training process, which can protect all participants from
redicting the participation of each of them concisely.

efinition 1 (Differential privacy [31,32].). Given a dataset of n
samples, a randomized mechanism M : D → O is (ϵ, δ)-
ifferential private if given any pairs of datasets D and D′, which
iffers exactly in one record, the inequality Pr(M(D) ∈ O) ≤

exp(ϵ) · Pr(M(D′) ∈ O) holds with a probability of 1 − δ under
he given protection level ϵ:

Pr(M(D) ∈ O) ≤ exp(ϵ) · Pr(M(D′) ∈ O)+ δ (1)

Here ϵ and δ are a pair of parameters for controlling the level
of privacy protection. ϵ ∈ (0,+∞) is the privacy budget and δ ∈
0, 1] is the given probability. Note that each smaller value of both
ndicates a higher privacy guarantee. For user-level differential
rivacy, we can specify different ϵk and δk for different user k,
hich is useful when different users are allowed to specify the
rivacy guarantee within their interests.

efinition 2 (User-level adjacent datasets [30].). Considering two
atasets Dk and D′k both from user k, Dk and D′k are user-level
djacent datasets if D′k can be formed from Dk by adding or
emoving one single data sample from user k.
2

Definition 3 (User-Level l2 Sensitivity [31,32].). Considering two
user-level adjacent datasets Dk and D′k from user k, given the
query function for the specific kth user, f k : Dk → Ok, the l2
sensitivity is defined as follows:

△
k
f 2 = max

Dk,D′k
∥f (Dk)− f (D′k)∥2. (2)

△
k
f 2 defines the maximal change after adding/removing any

single data sample from the specific kth user. Specially, the l2
sensitivity is applied in the Gaussian mechanism [31,32], which
preserves the (ϵ, δ)-differential privacy by adding noise sampled
from Gaussian distribution with standard deviation

√
2 log 1.25

δk
△

k
f 2
ϵk

. For SGD-based method, △k
f 2 is defined as the maximal l2-

orm change of gradients for adjacent datasets D and D′. Noises
re added into each gradient update in the training process when
dopting differential privacy (Table 1).As introduced in [33], we
lip each user’s gradient based on a clipping bound S and then add
oise into each gradient before averaging the gradient updates.

.2. Differentially-private recommender system

Differential privacy was first adopted in a movie recommender
ystem for user privacy protection [7], where the noise was added
o the rating information when building an item-to-item covari-
nce matrix. Differentially private matrix factorization (DPMF)
13,34] added noise to the sampled rating information for collab-
rative filtering. Differentially private recommender system with
he auto-encoder (DPAE) [14,15] adopted an auto-encoder as the
ramework and noise was added to the objective function. Unlike
rior works, our design adopts the VAE architecture with user-
evel differential privacy that can efficiently address some issues
rom representative CF methods such as cold-start, sparsity, etc.
esides, we analyze and propose an optimal gradient clipping
ound in DPSGD.

.3. Recommender system with VAEs

Variational autoencoders have been applied in recommender
ystems [23,35,36], which consist of an inference model (en-
oder) and a generative model (decoder). Here we input the user–
tem matrix containing the rating information into the encoder
o generate a low-dimension latent vector with the variational
istribution. Then the decoder generates new rating scores by
econstructing the matrix from the latent vector. Items with high
redicted scores can be recommended to users accordingly. An
llustration is given in Fig. 1.

.3.1. Encoder
The encoder reduces the original matrix dimension as most

aluable features can be preserved in a low-dimension layer,
hich can reduce the computational cost. Let xk be the input of
ser k to the encoder and zk denote the generated latent vector
or user k. The goal of the encoder is to find a plausible qφ(zk|xk)
o approximate the intractable posterior q(zk|xk). We compute
he true posterior qφ(zk|xk) parameterized by φ and adopt the
ata-dependent function gφ = [µφ(xk), σφ(xk)] ∈ R2K [37] to
et qφ(zk|xk) be a variational distribution (Gaussian distribution is
sed). According to another prior work [38], we can approximate
he true posterior with a variational distribution: qφ(zk|xk) =
(µφ(xk), diag{σ 2

φ (xk)}), where µφ(xk) ∈ RK and σ 2
φ (xk) ∈ RK2

arameterized by φ can be learned by the encoder.
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Table 1
Summary of all notations.
k refers to a specific user U the total number of users

i refers to a specific item I the total number of items

X refers to the user–item matrix
and X ∈ RU×I

C the total number of item
categories

K the dimension of the latent
representation vector in VAE

ck the preference category list for
user k

ci the category for item i xk uploaded ratings from user k

x′k new ratings for user k zk sampled latent vector for user
k

β regulation parameter for ELBO ω, δ the accuracy, the probability

d the dimension of selected
categories for dataset
construction

pk the weight factor determining
the actual dataset size for user
k

r tki refers to the tth rating score of
item i uploaded by user k

Rki the final rating score of item i
for user k

U the number of sampled users
in each batch for DPSGD

J the number of sampled
examples for each user in each
batch

S the optimal clipping bound on
gradient updates for DPSGD

η refers to the learning rate for
DPSGD

ḡk the gradient by adding noise
into ĝk

gk , ĝk the original gradient and the
clipped gradient for user k

r the ranking position in the
recommendation list

ik(r) the recommended item at rank
r for user k

Qk items in the recommendation
list for user k

ϵk , δk privacy parameters for user k

o refers to the number of
metadata categories

φ, θ parameter pairs for encoder
and decoder

mk represented metadata vector
for user k

µw, γw mean–variance pairs for each
metadata category, w ∈ [1, o]

σk the noise parameter in
Gaussian Mechanism

µk , γ 2
k user-level priors for sampling

zk for user k
Fig. 1. Overview of the VAE-based RS.
2.3.2. Decoder
The decoder reconstructs the original matrix and sends new

item recommendations with high generated rating scores. The
decoder starts with sampling a low K -dimensional latent repre-
sentation vector zk ∈ RK from the Gaussian prior (zk ∼ N (0, IK ))
as input. Then a non-linear function fθ ∈ RI with parameters θ
maps zk to a probability distribution over I items, which is defined
as π θ (zk) and π θ (zk) ∝ exp{fθ (zk)}. Besides, we assume that each
ser–item matrix row xk (xki denoting the ith value) is drawn

from a multinomial distribution Mult() with probability π θ (zk),
that is xk ∼ Mult(Nk, π

θ (zk)), where number of item ratings for
user k. We can define the log-likelihood for xk as log pθ (xk|zk) =∑

i∈I log(π
θ
i (zk)).

2.3.3. Learning process
For each user, the objective is to maximize the evidence lower

bound (ELBO) as given in Eq. (3), which assures that the distance
3

between qφ(zk|xk) and pθ (zk|xk) can be minimized. The first term
is the negative reconstruction error that measures how input fits
our trained model and qualifies the reconstruction performance;
the second term is the Kullback–Leibler (KL) divergence [39] that
can be regarded as a regulation term.

L(xk;φ, θ ) ≡ Eqφ (zk|xk)[log(pθ (xk|zk))]
− KL(qφ(zk|xk) ∥ p(zk))

(3)

Lemma 1. The objective function L(xk;φ, θ ) in Eq. (3) for VAE
is equivalent to maximizing the log-likelihood of input user–item
matrix and minimizing the KL-divergence between posterior of zk
evaluated by encoder and decoder at the same time.

Proof. We have known that the encoder aims to make qφ(zk|xk)
parameterized by φ approximate the intractable posterior q(z |x )
k k
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hen considering the input xk from user k. For the decoder, we
an also obtain pθ (zk|xk) parameterized by θ that should also
pproximate the true posterior q(zk|xk). For both qφ(zk|xk) and

pθ (zk|xk), we use the Kullback–Leibler (KL) divergence to measure
the similarity of them. So we can obtain the basic objective
function as follows:

min KL(qφ(zk|xk) ∥ pθ (zk|xk)) (4)

Besides, for input xk with pθ (xk), we can define a new function
L(xk;φ, θ ) and the log-likelihood of xk as follows:

log pθ (xk) = KL(qφ(zk|xk) ∥ pθ (zk|xk))+ L(xk;φ, θ ) (5)

Then we can obtain L(xk;φ, θ ):

L(xk;φ, θ ) = log pθ (xk)− KL(qφ(zk|xk) ∥ pθ (zk|xk))
= Eqφ (zk|xk)[− log (qφ(zk|xk))+ log pθ (xk|zk)pθ (zk)]

= Eqφ (zk|xk)[log (
pθ (zk)

qφ(zk|xk)
)+ log pθ (xk|zk)]

= Eqφ (zk|xk)[log(pθ (zk|xk))] − KL(qφ(zk|xk) ∥ pθ (zk))

(6)

So the new objective function is maxL(xk;φ, θ ), which is
proportional to maximizing log pθ (xk) and minimizing Eq. (4). □

Prior work [23] adopted an additional parameter (β ∈ [0, 1])
with the ELBO to calibrate the trade-off between how well we
can fit the data and how close the approximate posterior qφ(zk|xk)
is to the prior p(zk). We also adopt the best β in our design to
maximize the model precision by gradually increasing β from 0
to 1.
Lβ (xk;φ, θ ) ≡ Eqφ (zk|xk)[log(pθ (xk|zk))]

− β · KL(qφ(zk|xk) ∥ p(zk))
(7)

We design our VAE-based model based on the VAE architec-
ture for item recommendation in [23]. We optimize the latent
vector zk by replacing the standard Gaussian distribution N (0, IK )
with the user-level priors N (µk, σ

2
k ) that can be computed with

user metadata such as gender, age, location and hobbies, prior
observed item categories. Another work [36] for VAE-based RS
proposed an optimized way for generating zk with user-level
priors N (µk, σ

2
k ) by training a Latent Dirichlet Allocation (LDA)

model [40], while we directly compute these priors based on
public pre-trained word embeddings. None of these works studies
how to protect user privacy. We study VAE-based RS and apply
4

user-level differential privacy for user privacy protection. Besides,
we propose a tight threshold of collecting user training examples
for better recommendation precision and identify a trade-off be-
tween privacy and accuracy for clipping each gradient in DPSGD
and adding noise accordingly before sending gradient updates.

3. Methods

3.1. System overview

As shown in Fig. 2, the input is the user–item matrix X ∈ RU×I ,
where U is the number of users, I is the number of items, and
each component is a vector representing the closeness of the
relationship between the specific user and the item that the user
has interactions with, including two main factors: the ratings of
the user to the item and the number of user–item interactions.
We decide the number of sampled contributions from each user
and ensure better recommendation accuracy. We also propose a
technique for building the user–item matrix when a user con-
tributes a set of rating information for a specific item, rather
than one. Inspired by prior work [36], we propose an efficient
way to generate user-level priors for sampling the latent vector
zk based on the user metadata. We further add user-specified
oise into the user-level priors to protect the metadata from
dversary analysis. Besides, we use VAE and adopt DPSGD [30]
or training the VAE model. Instead of adopting global differential
rivacy for all users [30], we apply user-level differential privacy,
hich allows each user to specify its privacy budget. We also
ropose a gradient clipping bound in DPSGD, which preserves
ore valuable updates and ensures that the trained model is not
ontrolled by users who contribute more.

.2. Constructing training datasets

We note that the uneven contribution problem among users
an degrade the model performance sharply [28]. To our best
nowledge, there is no theoretical study on deciding the size
f the training dataset (especially the number of contributions
or each user) when training a recommender system. However,
rior work has investigated that the size of the training dataset
ffects the model accuracy when training classifiers [41]. Since
ach user is different from others considering their personalities,
tem preferences, etc., we can regard each user as a classifier.
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he collected data from a specific user can present the user’s
references, which are distinct from others.
As proven in existing work [41], a trained recommendation

odel can achieve an accuracy more than 1 − ω (error rate
) with the probability at least 1 − δ when setting the lower
ound Ω( 1

ω
(d + log 1

δ
)) and upper bound O( 1

ω
(d + log 1

δ
)) with

he dimension d of selected categories (here d approximates the
umber of items I if we set the bound for each user), respectively,
or collecting the training examples from each user. Here we unify
oth bounds into Θ( 1

ω
(d+ log 1

δ
)) on labeled examples to achieve

he accuracy 1−ω with probability 1−δ. We decide the number of
raining examples for user k as pk

ω
(d+log 1

δ
) with the weight factor

k ∈ (0, 1] representing user contributions: pk = 0 indicates that
user k does not upload any examples and pk = 1 means that
user k contributes enough examples satisfying the contribution
bound. Furthermore, we can bound pk ∈ [pmin, 1] and filter
sers with pk < pmin, where pmin determines the minimal user
ontribution and will be set to the value allowing the maximal
odel precision, by gradually increasing value of pmin from 0 to
. The total number of examples is then

∑U
k=1 pk
ω

(d+ log 1
δ
)).

heorem 1. We set the bound of uploaded examples for user k as
pk
ω
(d + log 1

δ
) with the weight factor pk and the trained model can

chieve approximate accuracy 1− ω∑U
k=1 pk

with a probability at least
− δ.

roof. We define V = {x1, x2, . . . , xU }, where each xk is a set
of samples from user k and independent from other users. We
define a process h(b) to predict if the rating score b belongs to xk
and return values −1 (wrong prediction) or 1 (correct prediction)
accordingly, where h ∈ {h1, h2, . . . , hU }. So we define the list
of all the examples with wrong predictions as ER(h) = {b ∈
V : h(b) = −1} and the error rate of the prediction process
as er(h). Then we define a ‘‘Majority Function’’ Maj(Vj) = 2 ×
1[

∑
b∈Vj

h(b) > 0]−1 with Vj ⊆ V (j ∈ N), where 1 is the indicator
function. Note that Maj(Vj) = 1 indicates that most predictions
are correct while Maj(Vj) < −1 show that there are more wrong
predictions.

Algorithm 1: A(V , Z)
Input: two datasets V and Z
Output: a set of subsets Q

1 Compute the length of V as ls;
2 if ls ≤ 3 then
3 Q ← V ∪ Z ;
4 Return Q ;
5 end
6 else
7 for j ∈ {0, 1, 2, 3} do
8 Vj ← Vjls/4+1:(j+1)ls/4 ;
9 end

10 Z1 ← V2 ∪ V3 ∪ Z , Z2 ← V1 ∪ V3 ∪ Z Z3 ← V1 ∪ V2 ∪ Z ;
11 Return A(V0, Z1) ∪ A(V0, Z2) ∪ A(V0, Z3) ;
12 end

To prove the theorem, we need to prove that with the proba-
ility at least 1−δ (δ ∈ (0, 1)), we have the error rate er ≤ ω∑U

k=1 pk

when the number of uploaded examples is
∑U

k=1 pk
ω

(d + log 1
δ
)).

With the probability 1− δ and m′ ≤ c log( 1
δ
)− 1(m′ ∈ N), we set

he numerical constant and get the inequality as follows:

r(h) ≤ 1 ≤
c

(d+ log
1
). (8)
m′ + 1 δ

5

Besides, we denote V0 = V1:m/4, Vj = Vjm/4+1:(j+1)m/4, where
j ∈ {1, 2, 3}. Besides, we define L(·) as the empirical risk min-
imizer. And we can denote hj = Major(L(A(V0, V/{Vj, V0}))).
Hanneke [41] proposed Algorithm 1 to generate finite subsets,
where each subset contains no more than 3 training examples.
Then we can define hmaj = Maj(L(A(V ,∅))). And Hanneke [41]
has proved that if we set m > c log( 1

δ
) − 1 > m′, we can obtain

the following:

er(hmaj) ≤
c

m+ 1
(d+ log

1
δ
). (9)

As c is a numerical value, we can set c =1, select m =∑U
k=1 pk
ω

(d+ log 1
δ
) and obtain the following:

er(hmaj) ≤
1

m+ 1
(d+ log

1
δ
)

≤
1∑U

k=1 pk
ω

(d+ log 1
δ
)
(d+ log

1
δ
) =

ω∑U
k=1 pk

. (10)

This shows that the error rate is no more than ω∑U
k=1 pk

, ending the
proof. □

As we allow each user to contribute a set of rating scores for a
specific item, we can compute the rating information in the user–
item matrix by Rki =

∑m
t=1 r

t
ki(

2t
m(m+1) ), where Rki is the final rating

score between user k and item i, r tki is the tth rating score of item
i uploaded by user k and t ranges in [1,m]. As new rating scores
can commonly describe user’s preference better, we adopt factor

2t
m(m+1) (

∑m
t=1

2t
m(m+1) = 1) in calculating Rki.

3.3. Training the VAE model

3.3.1. Estimating the user-level priors
We focus on the VAE design introduced in [23], but use an op-

timized ELBO and combine it with user-level differential privacy,
which can achieve both good recommendation performance and
user-specified privacy guarantee. Inspired by another work [36],
we replace the standard Gaussian distribution by adopting the
user-level priors µk ∈ RK and γ 2

k ∈ RK×K (zk ∼ N (µk, γ
2
k )),

which can be computed based on user metadata (as shown
in Eq. (11)). We note that it is not compulsory to access user
metadata for training the VAE model. Herein we aim to provide
the privacy guarantee when using the metadata to augment the
recommender systems [36].

To estimate µk and γ 2
k , we use the ‘‘Global Vectors’’ (GloVe)

embeddings [42], which are pre-trained vector representations
that show the similarities among words and can be used to
compute the embeddings of user metadata, where µk can be
regarded as the mean of the user’s embeddings, and γ 2

k is a
diagonal covariance matrix where each diagonal value equals the
deviation of the user’s mean embeddings.

Here we select o kinds of metadata provided by each user, such
as gender, occupation, age, etc. We define the metadata matrix
mk ∈ Ro×K for user k as mk = [mk1,mk2,mk3, . . . ,mko]

⊤ and mkw
(w ∈ [1, o]) is a K -dimensional vector where each component
mkwj ranges in [0, 1] (j ∈ [0, K ] indicates the jth dimension
of the latent vector). Then we can define the K -dimensional
mean–variance pairs for each metadata as (µw, γ 2

w), where µwj =
1
U

∑U
k=1 mkwj, γ

2
wj =

1
U

∑U
k=1 (mkwj − µwj)2. We can compute each

value µkj in µk and each diagonal value γ 2
kj in γ 2

k (as shown
in Eq. (11)). Besides, we add noise sampled from N (0, σ 2

k ) with

σk =
√
2 log 1.25

δk

△
k
f 2
ϵk

into the final results based on the user-level
privacy for user k, as the metadata can release some exact infor-
mation of user k. For example, adversaries may access and collect
the exact location, age, ID number of user k for illegal use after
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onfirming the user information. Applying DP into the calculation
revents the adversary attacker from inferring whether the priors
elong to a target user. Therefore, the attacker cannot be sure if
he metadata belongs to the user even when the attacker accesses
he metadata.

µkj =

o∑
w=1

mkwjµwj + N (0, σ 2
k ),

2
kj =

o∑
w=1

(mkwj − µkj)2 + N (0, σ 2
k ).

(11)

heorem 2. To estimate user-level priors, we add user-level dif-
erential privacy into the mean–variance pairs under the Gaus-
ian Mechanism with noise sampled from N (0, σ 2

k ) with σk =

2 log 1.25
δk

△
k
f 2
ϵk

for protecting the metadata from user k; our com-
utation process is (ϵk, δk)-differentially private.

roof. We select o kinds of metadata provided by each user, such
s gender, age, etc. Then we compute the mean–variance pairs
k and γ 2

k for user k. For example, we can extract two vector
epresentations for gender words ‘‘male’’ and ‘‘female’’ according
o the method proposed by Pennington et al. [42]. Then we can
ompute the normalized element-wise mean and the diagonal
ovariance matrix for the ‘‘gender’’ metadata after collecting the
‘gender’’ information from U users. Following the same way, we
an compute the mean–variance pairs for other metadata.
For two given neighboring metadata matrices mk and m′k,

hich only differ in one vector mkw(w ∈ [1, o]) from user k’s
etadata. We define the function of computing the scalar value
kj as f : mk → Ok, where f =

∑o
w=1 mkwjµwj and the noise yk is

ampled from N (0, σ 2
k ).

1 According to Eq. (2), we can define the
2-sensitivity for user k as △k

f 2 = maxmk,m′k
∥f (mk)− f (m′k)∥2.

To prove that our process is differentially private, we have to
ssure the privacy loss can be bounded by the privacy budget ϵk
y adding the noise yk sampled by N(0, σ 2

k ). So we consider the
bsolute privacy loss for any plausible output ψk with noise as
ollows:

|f (mk)||f (m′k)|
= | ln

Pr[f (mk)+ yk = ψk]

Pr[f (mk)+ yk +△k
f 2 = ψk]

|

= | ln
e(−1/2σ

2
k )yk

2

e(−1/2σ
2
k )(yk+△

k
f 2)

2
|

= | ln e(−1/2σ
2
k )[y

2
k−(yk+△

k
f 2)

2
]
|

= | −
1

2σ 2
k
(2yk △k

f 2 +(△
k
f 2)

2)|.

(12)

So here we obtain that L|f (mk)||f (m′k)|
can be bounded by ϵk when

yk| <
σ2
k ϵk

△
k
f 2
−
△

k
f 2
2 . To assure the privacy loss is bounded by ϵk

under the probability 1− δk, we require

Pr[|yk| ≥
σ 2
k ϵk

△
k
f 2
−
△

k
f 2

2
] < δk. (13)

As yk is sampled from the standard Gaussian distribution, if we

nly consider the scenario yk ≥
σ2
k ϵk

△
k
f 2
−
△

k
f 2
2 , we need to maintain

r[yk ≥
σ 2
k ϵk

△
k
f 2
−
△

k
f 2

2
] <

δk

2
. (14)

1 Note that the process of computing γkj is as same as the way of calculating
µkj (as shown in Eq. (11)), so we omit the discussion on the privacy guarantee
for this one.
6

Then we use the tail bound Pr[yk > a] ≤ aσk√
2π

e
−a2

2σ2k in [32] and

set a = σ2
k ϵk

△
k
f 2
−
△

k
f 2
2 . So we require

σk

a
√
2π

e
−a2

2σ2k <
δk

2
⇔

σk

a
e
−a2

2σ2k <
√
2π
δk

2

⇔
a
σk

e
a2

2σ2k >
2

√
2πδk

⇔ ln(
a
σk

)+
a2

2σ 2
k
> ln(

2
√
2πδk

)

⇔ ln[
1
σk

(
σ 2
k ϵk

△
k
f 2
−
△

k
f 2

2
)] +

( σ
2
k ϵk

△
k
f 2
−
△

k
f 2
2 )2

2σ 2
k

> ln(

√
2
π

1
δk

).

(15)

Here we make sure the first term ln[ 1
σk
( σ

2
k ϵk

△
k
f 2
−
△

k
f 2
2 )] ≥ 0. And

e rewrite σk =
bk△k

f 2
ϵk

, where bk ≥ 1. So we can obtain

1
σk

(
σ 2
k ϵk

△
k
f 2
−
△

k
f 2

2
) =

ϵk

bk△k
f 2
[(
bk△k

f 2

ϵk
)2 ×

ϵk

△
k
f 2
−
△

k
f 2

2
]

=
ϵk

bk△k
f 2
(
b2k△

k
f 2

ϵk
−
△

k
f 2

2
) = bk −

ϵk

2bk
.

(16)

As ϵk ≤ 1 ≤ bk, we know that bk −
ϵk
2bk
≥ bk − 1/2. So we have

k ≥ 3/2 to support ln[ 1
σk
( σ

2
k ϵk

△
k
f 2
−
△

k
f 2
2 )] ≥ 0.

Then we consider the second term:

( σ
2
k ϵk

△
k
f 2
−
△

k
f 2
2 )2

2σ 2
k

=
ϵ2k

2b2k
[
σ 2
k ϵk

△
k
f 2
×

b2k(△
k
f 2)

2

ϵ2k
−
△

k
f 2

2
]
2

=
1
2
(
b2k
ϵk
−

1
2
)2 ×

ϵ2k

b2k
=

1
2
(b2k − ϵk +

ϵ2k

4b2k
).

(17)

As we have ϵk ≤ 1 and we need bk ≥ 3/2, so we have
b2k − ϵk +

ϵ2k
4b2k
≥ b2k − 8/9 > 2 ln(

√
2
π

1
δk
). And we obtain that

bk >
√
2 ln( 1.25

δk
) that can satisfy condition (15).

We set events Y1 = {yk : |yk| ≤
b2k△

k
f 2

ϵk
−
△

k
f 2
2 } and Y2 =

yk : |yk| >
b2k△

k
f 2

ϵk
−
△

k
f 2
2 }, and Ok1 = {f (mk) + yk|yk ∈ Y1},

Ok2 = {f (mk)+ yk|yk ∈ Y2}, for any plausible output Ok. We have:

Pr[f (mk) ∈ Ok] = Pr[f (mk)+ yk ∈ Ok1]

+ Pr[f (mk)+ yk ∈ Ok2]

= Pr[f (mk)+ yk ∈ Ok1] + Pr[Y2]

≤ eϵkPr[f (m′k) ∈ Ok] + δk.

(18)

This shows our calculation process is (ϵk, δk)-differentially private
for user k, ending the proof. □

Based on the user-level priors, the optimized ELBO (ELBO-O)
for user k can be modified as:

Lβ (xk;φ, θ,µk, γ
2
k ) ≡ Eqφ (zk|xk)[log(pθ (xk|zk))]

− β · KL(qφ(zk|xk) ∥ p(zk;µk, γ
2
k )).

(19)

3.3.2. Computing the optimal clipping bound
To apply DP, we clip each sample’s gradient with a clipping

bound and then add Gaussian noise into the clipped gradient
accordingly. In [33], they adopted the median value of all gradi-
ent norms as the threshold for clipping each gradient. Another
work [28] proposed a 1 − 1

Uϵ -quantile method based on the
Laplace mechanism and chose the { 1 }th largest gradient norm as
ϵ
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he threshold. For each batch, suppose we sample U users, and
ach user contributes J samples in the model training process.

We compute the sum of gradients as follows: ĝ = 1
U

∑
k∈U ĝk,

here ĝk is the average gradient of user k after clipping and noise
ddition. Given the original gradient, gkj, which is the gradient of

the jth sample for user k, the clipping operation is performed as
¯kj = gkj×min(1, S

∥gkj∥2
), and then the average gradient for user k

is g̃k = 1
J

∑J
j=1 ḡkj. The noise addition operation is ĝk = g̃k + Zk,

where Zk is the l-dimensional random variable with each dimen-
sion sampled independently from the distribution N (0, σ 2

k ), with

σk =
√
2 log 1.25

δk

△
k
f 2
ϵk

.
To find the optimal clipping bound S, we define an objective

unction H(S) in the proof of Theorem 3 to minimize the expected
rror of actual gradients and estimated ones, and find S from all
omputed gradients based on a recursive algorithm (Algorithm 2).

Algorithm 2: Optimal_Clip(Lg , ϵ, δ)
Input: A list of gradients Lg , privacy parameters ϵ, δ
Output: the optimal clipping bound S

1 Compute the length of Lg as l;
2 for j ∈ {⌊ l

2⌋ − 1, ⌊ l
2⌋, ⌊

l
2⌋ + 1} do

3 Hj ← H(||gj||2) ;
4 end
5 if H

⌊
l
2 ⌋
≤ H

⌊
l
2 ⌋−1

,H
⌊
l
2 ⌋
≤ H

⌊
l
2 ⌋+1

then
6 Return ||g

⌊
l
2 ⌋
||2 ;

7 end
8 else
9 if H

⌊
l
2 ⌋+1
≤ H

⌊
l
2 ⌋
≤ H

⌊
l
2 ⌋−1

then
10 Lg = {g⌊ l2 ⌋+1, ..., gl} ;
11 end
12 else
13 Lg = {g1, ..., g⌊ l2 ⌋−1} ;
14 end
15 Return Optimal_Clip(Lg , ϵ, δ) ;
16 end

Theorem 3. For the user-level DPSGD training process with noise

cale of
√
2 log 1.25

δk

△
k
f 2
ϵk

for user k, the optimal clipping bound S
or all users can be decided by a recursive algorithm. The algorithm
omplexity is O(log(UJ )).

roof. For each user, we can compute the expected error caused
y estimated gradient ĝ (which describes the distance of the
ctual gradients and perturbed ones.), as follows:

|ĝ − g| ≤ E|ĝ − g̃| + E|g̃ − g|

≤
1
U

∑
k∈U

[E|ĝk − g̃k| +
1
J

∑
j∈J

(E|g̃k − ḡkj| + E|ḡkj − gkj|)]

≤
1
U

∑
k∈U

{l
√
2/π

√
2 log

1.25
δk

S
ϵk
+

1
J

∑
j∈J

[E|g̃k − ḡkj|

+
|gkj|
∥gkj∥2

×max(0, ∥gkj∥2 − S)]}.

Then we can define a function H(S):

H(S) =
1
U

∑
k∈U

{l
√
2/π

√
2 log

1.25
δk

S
ϵk
+

1
J

∑
j∈J

[E|g̃k − ḡkj| +
|gkj|

×max(0, ∥gkj∥2 − S)]}.

(20)
∥gkj∥2
7

So our objective is to minimize the convex function H(S) [28].
s shown in Eq. (20), if we set S = 0, the error is 1

UJ

∑
k∈U

∑
j∈J

|gkj|, where the first term can be quite large if we set a large S.
We give a plausible assumption that some gradient norms are no
larger than S while other gradient norms are larger than S [28].
We sort all l2 gradients from the largest to the smallest based on
the gradient norms as Lg = {g1, g2, . . . , gl}. Then we obtain S by
recursively using the bisection method. As shown in Algorithm
2, we can obtain the optimal clipping bound S = Optimal_Clip
(Lg , ϵk, δk), which assures that H(S) is minimized considering all
orms of gradients. □

.3.3. Designing the complete algorithm
We next present the complete user-level DP-VAE algorithm

n Algorithm 3. The privacy parameter pairs (ϵk, δk) can be set
nitially for each user. Besides, for additional metadata (such as
ender, location, age and hobbies) provided by the user k, we

can compute the user’s word embeddings for generating mean–
variance pairs (µk, γ

2
k ) before training the VAE model. For user

k, the computed gradients of the jth training example xkj are
θLβ (xkj) and ▽φLβ (xkj). We compute the clipping bound S =
ptimal_Clip(Lg , ϵk, δk) based on the ordered gradient list Lg and
rivacy parameters. Then we clip each gradient based on the
lipping bound S, average the gradients for each user and add
oise based on the user-level differential privacy. Finally, we
ompute the average gradients and carry out gradient updates.

Algorithm 3: Training the DP-VAE model with user-
specified noise

Input: user-item matrix X ∈ RU×I , learning rate η,
randomly selected φ, θ , the total training rounds T ,
privacy parameters {(ϵ1, δ1), ..., (ϵU , δU )}, clipping
bound S, computed mean-variance pairs
{(µ1, γ

2
1 ), ..., (µU , γ

2
U )}

Output: φ, θ
1 for t ∈ {1, 2, .., T } do
2 Sample U users as a batch ;
3 for each sampled user k do
4 Sample zk ∈ Rk via N (µk, γ

2
k ) ;

5 Sample J training examples ;
6 for j ∈ {0, 1, ...,J } do
7 Compute the gradients: gkjφ ←▽φLβ (xkj) and

gkjθ ←▽θLβ (xkj) ;
8 end
9 Allocate gradients into a list and sort it from

largest to smallest as Lg ;
10 Update S: S = Optimal_Clip(Lg , ϵk, δk) ;
11 for j ∈ {0, 1, ...,J } do
12 Clip the gradients: gkjφ ← gkjφ ×min(1, S

||gkj||2
)

and gkjθ ← gkjθ ×min(1, S
||gkj||2

) ;
13 end
14 Average the gradients: g̃kφ ← 1

J

∑
j∈J gkjφ and

g̃kθ ← 1
J

∑
j∈J gkjθ ;

15 Add noise: ĝkφ ← g̃kφ + N (0, σ 2
k ) and

ĝkθ ← g̃kθ + N (0, σ 2
k ) ;

16 end
17 Average the gradients: ĝφ ← 1

U

∑
k∈U ĝkφ and

ĝθ ← 1
U

∑
k∈U ĝkθ ;

18 Update φ and θ : φ← φ − ηĝφ and θ ← θ − ηĝθ ;
19 end

Theorem 4. For Gaussian Mechanism M(gk) = f (gk) + Zk for
user k in DPSGD, where S = Optimal_Clip(L , ϵ , δ ) and noise
g k k



L. Fang, B. Du and C. Wu Knowledge-Based Systems 250 (2022) 109044

Z
p

P
N

w

s
o
p

f

4

D

R

R

R

R

R

R

4

4

d
1
f
t
A
a
[

p
c
W
t

S

4

c
r
a
n
t
p
m

R

f
i

k ∼ N (0, σ 2
k ), the Gaussian Mechanism satisfies (ϵk, δk)-differential

rivacy.

roof. In Algorithm 3, we add noises sampled from Zk ∼
(0, σ 2

k ) to g̃kφ (which equals to ĝkφ).
Prior work [30] have proven that: there exists constants c1, c2,

sampling probability q and the number of steps T such that for
function f with sensitivity smaller than 1, for any ϵk < c1q2T , the
mechanism M(gk) = f (gk) + Zk satisfies (ϵk, δk) for any δk > 0 if

e choose σk ≥ c2
q
√

T log(1/δk)
ϵk

.
Due to the clipping operation ḡkj = gkj × min(1, S

∥gkj∥2
), the

ensitivity of f is upper bounded by S. Since the variance of
ur mechanism is σ 2

k for user k, and we only select J exam-
les with the probability U

U for T rounds, it suffices to have

σk ≥ c2
U
√

J T log(1/δk)
Uϵk

, which satisfies (ϵk, δk)-differential privacy
or user k. □

. Evaluation

In this section, we evaluate our proposed methods and the
P-VAE based RS, to answer the following questions:

Q1 How effective is our method of training dataset construc-
tion?

Q2 How effective are our proposed user-level priors for training
the DP-VAE model?

Q3 How effective is the optimal clipping bound on gradient
updates for the DP-VAE model?

Q4 Can our proposed DP-VAE model outperform other standard
schemes?

Q5 How does the user-level privacy parameter (ϵk) affect the
performance of the DP-VAE model?

Q6 Can we apply our proposed DPSGD algorithm with the op-
timal clipping bound to other models?

.1. Evaluation setup

.1.1. Datasets
We evaluate our methods on three standard benchmark

atasets for testing recommender systems: Movielens-100k (ML-
00K) [43], Movielens-20 m (ML-20M) [44], Netflix Prize (Net-
lix) [45]. Table 2 gives details of these datasets. ‘‘OL’’ indicates
he original version while ‘‘PD’’ presents the pre-processed one.
s the original Netflix dataset is very large, we randomly extract
round 70 million ratings. We set ω = 0.05 and δ = 0.1 with pk ∈
0.001, 1] for all users. Table 2 summarizes details of the pre-
rocessed datasets, where we omit users and items that do not
onstitute enough training examples satisfying pk

ω
(d+ 1+ log 1

δ
).

e split each dataset and set the ratio of training, validation and
est examples to 8:1:1.

The sparsity is measured as follows:

parsity = 1− R÷ (U × I) (21)

.1.2. Metrics
We adopt Recall@R and the truncated normalized discounted

umulative gain (NDCG@R) to evaluate the performance of the
ecommender system. Recall@R compares the predicted rank of
n item with the true rank by sorting R items. NDCG@R is the
ormalized DCG@Rwhich ranges in [0, 1]. DCG@R adopts a mono-
onically increasing discount to show that higher ranks affect the
erformance of RS more than lower ranks. Let ik(r) be the recom-
ended item i at rank r to user k. Q indicates all recommended
k

8

Table 2
Attributes of benchmark datasets.
Dataset ML-100K ML-20M Netflix

# of users OL 943 138,493 311,266
PD 943 96,772 279,128

# of items OL 1,682 26,744 17523
PD 1,682 11,210 17,509

# of ratings OL 100,000 20,000,263 70,613,395
PD 100,000 18,723,768 69,511,359

Sparsity OL 93.70% 99.46% 98.71%
PD 93.70% 98.27% 98.58%

items. Recall@R, DCG@R can be calculated as follows:

ecall@R(k) =
∑R

i 1[ik(r) ∈ Qk]

min(Qk, R)
,

DCG@R(k) =
R∑
i

21[ik(r)∈Qk] − 1
log2(i+ 1)

.

(22)

For both metrics, the higher values imply the better per-
ormance of the recommender system. For example, consider-
ng user k with 3 recommended items, the best DCG@3(k) is
DCG@3(k)Best = 1

log2 2 +
1

log2 3 +
1

log2 4 = 2.13. And the true
DCG@3(k) is DCG@3(k) = 1

log2 2 +
0

log2 3 +
1

log2 4 = 1.5 if ik(2)
does not belong to Qk. So the NDCG@3(k) = 1.5

2.13 = 0.70. In this
case, Recall@3(k) = 2

3 = 0.67. In our final experimental results,
we follow the VAE model in [23] and mainly select NDCG@100,
Recall@20 and Recall@50 for model comparisons.

4.1.3. Default settings
For the user-level DP-VAE model, we set the privacy budget

ϵk in (0, 1], which simulates that each user can randomly choose
the privacy guarantee level within their interests. Herein another
privacy parameter δk is set to the inverse of the training data size
as suggested by Dwork et al. [32]. For other DP models, we set
the privacy budget to 1 if not specified. Table 3 summarizes these
parameters for training the VAE model. Besides, we adopt the best
β optimizing the DP-VAE model, with which both NDCG@R and
Recall@R reach the peak.

4.1.4. Baselines
We compare our DP-VAE recommendation model with the

following schemes:
(i) k-nearest neighbor (KNN) [19] recommendation: ; (ii) sin-

gular value decomposition (SVD) based recommendation, which
is a standard method widely applied in RS design [20]; (iii) a hy-
brid matrix factorization model called LightFM [46], which com-
bines both content-based and collaborative models; (iv) the non-
DP VAE model in [23]; two state-of-the-art DP models (v) DPMF,
a differentially private model using matrix factorization [13,34]
and (vi) DPAE, a differentially private autoencoder model [14,15].
Note that we do not compare our model with the Bayesian-based
approach [47], as the similar work [23] has verified that its per-
formance cannot be on par with VAE-based methods. We further
summarize all details of the model structures and parameters in
Table 4.

4.1.5. Implementation
We use TensorFlow 2.0 [49] to train our models, on a server

equipped with one Nvidia GTX 1080 GPU, an Intel Xeon E5-1620
CPU with 4 cores, and 32 GB memory. In our evaluation part, we
repeat each experiment five times with different random seeds
to verify the effectiveness of the proposed methods and then
calculate the average Recall and NDCG values as the final results.
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Table 3
Experimental settings for training the VAE model.
Dataset Batch Size Epoch β Latent Dimension # of parameters

ML-100K 10 30 0.5 20 275,802
ML-20M 20 150 0.2 30 5,384,804
Netflix 20 250 0.1 50 3,587,070
Table 4
Parameters and network structures for compared models.
Model Model Structure Optimizer Parameters Settingsa

KNN [19] The K-nearest neighbor (KNN)
algorithm, which classifies each
input based on its closest Top-K
neighbors

Not
applicable

Compute the Euclidean distance
between input tuples and select
the optimal K in [1, 40] by
retraining the KNN model

SVD [20] The Singular value decomposition
(SVD) algorithm, which is a MF
technique by producing low-rank
approximations

SGD Select the lower-dimensional
latent factor (rank) to 100, as a
higher latent typically brings in
better prediction results

LightFM
[46]

The hybrid content-collaborative
model, which is close to the
factorization machine (FM)
algorithm

SGD Implement the Weighted
Approximate-Rank Pairwise
(WARP) loss that outperforms the
Bayesian Personalized Ranking
(BPR) loss [48]

Non-DP VAE
[23]

The variational autoencoder (VAE)
model as shown in Fig. 1

SGD Adopt the same parameters
settings as the DPVAE model
except for all the privacy
parameters

DPMF
[13,34]

The matrix factorization (MF)
technique, which can decompose
the item-based matrix and the
user profile matrix

SGD Apply DP into the decomposed
user profile matrix, privacy
parameters ϵ = 1, same δ as the
DPVAE

DPAE
[14,15]

The autoencoder and the latent
dimension is set to 20, 30, 50
separately for ML-100K, ML-20M
and Netflix

DPSGD Truncate, aggregate and update
gradients based on the DPSGD
[33], privacy parameters ϵ = 1,
same δ as the DPVAE

a Note that the we set the learning rate to 0.005 and regulation term to 0.02 if not specified.
Table 5
Recommendation model performance comparison on original/pre-processed datasets: ‘‘OL’’ indicates the original dataset, ‘‘PD’’
indicates the pre-processed dataset, ‘‘PP’’ indicates the improvement percentage point.
Metrics NDCG@100 Recall@20 Recall@50

ML-20M OL PD PP(%) OL PD PP (%) OL PD PP(%)

DP-VAE 0.24 0.28 16.67 0.45 0.47 4.44 0.42 0.43 2.38
KNN 0.21 0.26 23.81 0.36 0.38 5.56 0.39 0.40 2.56
SVD 0.22 0.27 22.73 0.40 0.40 – 0.41 0.42 2.44
LightFM 0.15 0.16 6.67 0.13 0.14 7.69 0.22 0.24 9.09
VAE 0.33 0.33 – 0.51 0.53 3.92 0.49 0.50 2.04
DPMF 0.19 0.21 10.53 0.31 0.32 3.23 0.32 0.34 6.25
DPAE 0.22 0.22 – 0.32 0.35 9.38 0.33 0.36 9.09
Netflix OL PD PP(%) OL PD PP(%) OL PD PP(%)

DP-VAE 0.50 0.52 4 0.62 0.64 3.23 0.58 0.60 3.45
KNN 0.48 0.49 2.08 0.14 0.16 14.29 0.16 0.17 6.25
SVD 0.50 0.50 – 0.14 0.17 21.43 0.18 0.21 16.67
LightFM 0.16 0.17 6.25 0.12 0.16 33.33 0.17 0.19 11.76
VAE 0.52 0.54 3.85 0.65 0.66 1.54 0.60 0.61 1.67
DPMF 0.35 0.35 – 0.13 0.15 15.38 0.16 0.18 12.5
DPAE 0.46 0.47 2.17 0.35 0.37 5.71 0.39 0.42 7.69
f

4.2. Evaluation results

4.2.1. Effectiveness of training dataset construction (RQ1)
We first compare the performance of the recommendation

odel trained using the original dataset and pre-processed
ataset, respectively. As the computed bound on the number of
xamples contributed by each user on ML-100k is [3, 1772], all
amples are preserved after pre-processing. We hence only use
he other two datasets. We use a constant clipping bound S = 2
ased on prior studies [18]. In Table 5, ‘‘OL’’ indicates the original
ataset, and ‘‘PD’’ refers to the processed dataset, ‘‘PP’’ indicates
he improvement percentage point. The results in Table 5 show
 u

9

that our method of constructing training datasets can improve
the RS performance significantly for all recommendation models.

4.2.2. Effectiveness of the user-level priors (RQ2)
We further conduct experiments on three processed datasets

to test the effectiveness of the user-level priors. Similar to prior
settings [18], we adopt a constant clipping bound S = 1.5 for ML-
100k and S = 2 for ML-20M and Netflix, in our DP-VAE model.
Besides, we set a randomly chosen privacy budget ϵk within (0, 1]
or user k. In Table 6, ‘‘ULP’’ denotes the VAE-based model with
ser-level priors, and ‘‘NUP’’ represents the original VAE-based
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Table 6
Effectiveness of using the user-level priors: ‘ULP’’ denotes the VAE-based model with user-level priors, and ‘‘NUP’’ represents the
original VAE-based model, ‘‘PP’’ indicates the improvement percentage point.
Metrics NDCG@100 Recall@20 Recall@50

DP-VAE NUP ULP PP(%) NUP ULP PP(%) NUP ULP PP(%)

ML-100K 0.40 0.42 5 0.52 0.53 1.92 0.50 0.52 4
ML-20M 0.28 0.28 – 0.47 0.48 2.12 0.43 0.44 2.32
Netflix 0.52 0.53 1.92 0.64 0.65 1.56 0.60 0.62 3.3

VAE NUP ULP PP(%) NUP ULP PP(%) NUP ULP PP(%)

ML-100K 0.42 0.44 4.76 0.61 0.62 1.64 0.60 0.60 –
ML-20M 0.33 0.34 3.03 0.53 0.55 3.77 0.50 0.52 4
Netflix 0.54 0.54 – 0.66 0.68 3.03 0.61 0.62 1.64
Table 7
Effectiveness of using the optimal clipping bound: ‘‘CCB’’ indicates using a constant clipping bound and ‘‘OCB’’ refers to using the
optimal clipping bound, ‘‘PP’’ indicates the improvement percentage point.
Metrics NDCG@100 Recall@20 Recall@50

DP-VAE CCB OCB PP(%) CCB OCB PP(%) CCB OCB PP(%)

ML-100K 0.40 0.41 2.44 0.52 0.53 1.92 0.50 0.52 4
ML-20M 0.28 0.29 3.57 0.47 0.47 – 0.43 0.45 4.65
Netflix 0.52 0.53 1.92 0.64 0.66 3.13 0.60 0.61 1.67
Table 8
Comparison Results on ML-100K.
MODEL DP-VAE KNN SVD LightFM VAE DPMF DPAE

NDCG@100 0.41 0.26 0.26 0.25 0.44 0.21 0.26
Recall@20 0.53 0.35 0.34 0.18 0.62 0.17 0.36
Recall@50 0.52 0.36 0.35 0.28 0.60 0.21 0.37
Table 9
Performance of the optimized DP-VAE model: ‘‘NV’’ indicates the original DP-VAE model and ‘‘OV’’ refers to the optimized version
that apply both the optimal clipping bound and user-level priors, ‘‘PP’’ indicates the improvement percentage point.
Metrics NDCG@100 Recall@20 Recall@50

DP-VAE NV OV PP(%) NV OV PP(%) NV OV PP(%)

ML-20M 0.28 0.30 7.14 0.47 0.48 2.13 0.43 0.45 4.65
Netflix 0.52 0.54 3.85 0.64 0.68 6.25 0.60 0.62 3.33
V

model. The experimental results show that adopting the user-
level priors can improve the recommendation performance of
VAE-based models as we calculate the user-level priors from the
user metadata that can indicate user preferences. Especially, for
the DP-VAE model on ML-100K, we achieve a 5% improvement
for NDCG@100 and a 4% improvement for Recall@50, indicating
that using the metadata information can generate a larger latent
VAE space that improves the recommendation performance.

4.2.3. Effectiveness of the optimal clipping bound (RQ3)
We next evaluate the effect of using the optimal clipping

bound in the DPSGD training process of our DP-VAE model. In
Table 7, ‘‘CCB’’ indicates using a constant clipping bound and
‘‘OCB’’ refers to using the optimal clipping bound. Based on prior
work [18], we set a constant clipping bound S = 1.5 for ML-
00k and S = 2 for both ML-20M and Netflix. Note that we do
ot apply the user-level priors here so that each latent vector
k is sampled from the standard Gaussian distribution. The re-
ults in Table 7 show that with the optimal clipping bound, the
erformance of the DP-VAE model is improved on all datasets,
here an optimal clipping bound assures that the most effective
pdates are preserved, and large gradient updates cannot control
he trained model.

.2.4. Performance comparison with baselines (RQ4)
Here we apply both user-level priors and optimal clipping

ound for our DP-VAE model. We train the recommendation
odels on ML-100K, and the results are given in Table 8. Com-

aring the performance of DP-VAE and VAE, we observe that o

10
there is only about 6.8% loss of NDCG@100. Though the Recall
values are around 16% lower, our proposed DP-VAE model can
still perform better than other standard models. We note that
the performance loss is unavoidable as the clipping operation
and noise addition in DPSGD may discard some valuable features.
As shown in Fig. 3(a), we also vary R values and obtain the
experimental results on ML-100k, which show that DP-VAE still
outperforms other baselines compared to Recall@R. For NDCG@R,
although KNN and SVD perform slightly better than DP-VAE for
NDCG@10 (which are still worse than VAE), their performance
degrades sharply when increasing R.

We further test our DP-VAE model on the pre-processed ML-
20M and Netflix datasets. The evaluation results are given in
Table 9. Note that ‘‘NV’’ indicates the original DP-VAE model and
‘‘OV’’ refers to the optimized version that applies the optimal
clipping bound and user-level priors. Compared with other base-
line models (except for the VAE-based model) in Table 5, our
proposed DP-VAE model achieves better performance in terms of
NDCG@100. For both Recall@20 and Recall@50, our proposed DP-
VAE model also outperforms other standard baseline models. We
further evaluate the performances of all models on ML-20M and
Netflix by varying the R values. As shown in Fig. 3(b) and Fig. 3(c),
we observe that DP-VAE and VAE based methods still outperform
other baselines compared to Recall@R. Besides, except for the
AE-based model, our proposed DP-VAE model can outperform

ther baselines in terms of NDCG@R with a bigger R ∈ [20, 100].
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Fig. 3. NDCG and Recall vs. R.
Table 10
Experimental results by varying the privacy budgets.
Model VAE DP-VAE (0.3) DP-VAE (0.5) DP-VAE (1) DP-VAE (1.5)

NDCG@100 0.44 0.28 0.38 0.41 0.42
Recall@20 0.62 0.20 0.49 0.53 0.55
Recall@50 0.60 0.22 0.48 0.52 0.54
4.2.5. Trade-off between the privacy guarantee and model perfor-
mance (RQ5)

We further set the highest privacy budget to 0.3, 0.5, 1.0,
nd 1.5 separately. For user-level differential privacy, each user
an randomly choose the privacy budget no bigger than 0.3, 0.5,
.0, and 1.5 accordingly. We test the trade-off between privacy
uarantee and the model performance on ML-100k and obtain
he results shown in Table 10. The experimental results verify
hat our solutions can achieve comparable performance under a
igher privacy guarantee (ϵk ≤ 0.5). When we reduce the highest
rivacy budget to 0.5, the DP-VAE model is still much better
han the baselines except for the VAE model, comparing with
he performances of baselines in Table 8. However, if we set the
ighest privacy budget to 0.3 with a strict privacy guarantee, the
erformance of the DP-VAE model degrades shapely considering
ecall@20 and Recall@50. So we recommend setting the privacy
udget ϵ to 0.5 when training the DP-VAE model, which achieves
k

11
the comparable performance with other baselines and provides
an appropriate privacy guarantee.

4.2.6. Generalization of the DPSGD algorithm with the optimal clip-
ping bound (RQ6)

To test the generalization ability of the DPSGD algorithm with
the optimal clipping bound, we select three models widely ap-
plied to recommendations with the SGD optimizer: SVD, MF
and the autoencoder model (AE). We set all model parameters
and structures the same as described in Table 4. To verify the
generalization of our DP strategy, we compare our method with
the general DPSGD algorithm [33] on these models and set the
privacy budget to 1 for a fair comparison. We evaluate all models
on ML-100K and summarize all results in Table 11: ‘‘OL’’ refers
to the original model, ‘‘DP’’ indicates the model with the general
DPSGD algorithm [33], ‘‘DP-O’’ represents the model with our



L. Fang, B. Du and C. Wu Knowledge-Based Systems 250 (2022) 109044

w
a
b

Table 11
Generalization performance of our DPSGD algorithm with the optimal clipping bound: ‘‘OL’’ refers to the original model without
differential privacy, ‘‘DP’’ indicates the model with the DPSGD algorithm [33], ‘‘DP-O’’ represents the model with our DP strategy.
Models SVD MF AE

Versions OL DP DP-O OL DP DP-O OL DP DP-O

NDCG@100 0.26 0.22 0.24 0.24 0.20 0.22 0.33 0.26 0.28
Recall@20 0.34 0.29 0.32 0.21 0.18 0.19 0.42 0.36 0.38
Recall@50 0.35 0.31 0.33 0.25 0.21 0.23 0.45 0.37 0.41
DP strategy. Considering NDCG@100, Recall@20, and Recall@50,
the ‘‘DP-O’’ version outperforms the ‘‘DP’’ one for each selective
model, which verifies that our DP strategy can be effective in
other models as well.

5. Discussions

5.1. Differential privacy

In this paper, we investigate the application of differential
privacy to variational autoencoders for recommendation tasks
to provide privacy guarantees from the user-level perspectives.
A recommender system analyzes taste similarities of users, but
prior work [7] pointed out that it can be overly sensitive to the in-
put of individual users. Narayanan et al. [50] analyzed the privacy
leakage issue and demonstrated that analyzing users’ historical
data can disclose a large amount of sensitive information such
as users’ hobbies and health recordings, etc. For example, movie
recommendations from a service provider (such as Netflix) are
based on users’ general information and viewing histories. Then
an attacker may resemble a target user by creating a fictitious
profile and obtaining the movie recommendations within the
user’s interests. So the attacker could infer that a new recommen-
dation might be included in the target user’s recommendation
list. So it is significant and pivotal to provide privacy protection
mechanisms for a recommender system.

Differential privacy conquers the privacy leakage issue as
mentioned above and provides strong privacy protection, even
when an attacker may access a substantial amount of personal
information about the target user [32]. Herein, we point out that
differential privacy is a property that results from the compu-
tation process (by adding noise) but not from the output itself.
In other words, the computation process is differentially private
when the model with similar entries produces the same output.
Like the above instance for movie recommendations, a differ-
entially private recommender system assures that the attacker
cannot correctly infer whether the recommended movie is in the
recommendation list of the target user. However, differential pri-
vacy provides this property by adding noise (scaled by the privacy
parameters) into the computation process, which degrades the
model performance. To be specific, there is a trade-off between
the model performance and the privacy protection level based on
the privacy budget ϵk: higher ϵk typically indicates lower privacy
protection (versus poorer model performance), while a lower ϵk
usually presents higher privacy protection (versus better model
performance).

5.2. Novelties of our work and applications in other models

In this part, we further clarify the novelties of our work and
discuss potential applications of our proposed methods in other
algorithms/models from three perspectives.

First, our proposed dataset construction method can be an
intuitive guideline for other works when training their RS models.
Especially, our proposed benchmark bound pk

ω
(d + 1 + log 1

δ
),

hich is adopted to handle the uneven contribution problem [28]
mong users, has been proven to improve the model performance
ased on both theoretical analysis and experimental results.
12
Second, we adopt differential privacy when metadata is
adopted to provide better model performance [36], where we
inject Gaussian noise into the intermediate latent vectors. As
word embeddings [42] are widely employed in existing recom-
mender systems [36,51], our proposed method can be applied to
the calculation process of generating the word representations,
which can provide privacy protection for those models.

Finally, we study the existing DPSGD [33] and convert the
process of computing the optimal clipping bound to a simple con-
vex problem. Our proposed clipping bound can achieve a better
trade-off between the model performance and privacy guaran-
tee compared with the original clipping bound. As numerous
RS models adopt SGD or DPSGD as the optimizer, e.g., machine
learning models [13,19,20], deep learning-based methods [52],
the emerging graph neural network models [53–55], we believe
our proposed DPSGD algorithm with the optimal clipping bound
can be effective to avoid severe privacy leakage and maintain
good model performance.

5.3. Limitations

Although prior works [56,57] analyzed the contribution size
in their experimental parts, we investigate and propose the con-
tribution size of each user from the theoretical perspective when
building the datasets for an RS model. However, a tighter bound
should be considered from the trade-off between the model
performance and dataset size based on the current research
findings [29,41]. Although the evaluation performance verifies
the effectiveness of the proposed benchmark threshold, we still
need more profound theoretical research and more experimental
results. Especially for the uneven contribution problem among
users, we mainly handle the disparate effect that causes severe
model degradation. However, investigating the ‘‘fairness’’ prob-
lem [58] could be more critical in designing a fair RS, where
the RS model tends to provide better performance for users
with higher contributions. Besides, we mainly apply our methods
to the VAE model and test the DP strategy on some baseline
models. Although we discuss the potential applications on other
RS algorithms or models, more extensive designs on SOTA models
should be conducted to verify the generalization of proposed
methods, as our future research directions.

6. Conclusion and future work

This paper presents a novel DP-VAE model for recommender
systems. We first present an efficient way of deciding the number
of training examples from each user to ensure that the dataset is
not controlled by users with large contributions. We then com-
pute the user-level priors with differential privacy to optimize
the VAE-based model and protect user metadata. We next present
an optimal clipping bound for DPSGD with user-level differential
privacy. We conduct experiments on various benchmark datasets.
The results verify that our proposed solutions can achieve high
recommendation performance while maintaining an appropriate
privacy level. As future work, we plan to explore differential
privacy in emerging neural network methods, e. g. , in GNN-based
RS [53–55,59,60], aiming to provide higher privacy protection and
better recommendation precision.
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