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Online Electricity Cost Saving Algorithms for
Co-Location Data Centers
Linquan Zhang, Zongpeng Li, Chuan Wu, Shaolei Ren

Abstract—This work studies the online electricity cost min-
imization problem at a co-location data center, which serves
multiple tenants who rent the physical infrastructure within the
data center to run their respective cloud computing services.
The co-location operator has no direct control over power
consumption of its tenants, and an efficient mechanism is desired
for eliciting desirable consumption patterns from the tenants.
Electricity billing faced by a data center is nowadays based
on both the total volume consumed, and the peak consumption
rate. This leads to an interesting new combinatorial optimization
structure on the electricity cost optimization problem, which
also exhibits an online nature due to the definition of peak
consumption. We model and solve the problem through two
approaches: the pricing approach and the auction approach, and
design online algorithms with small competitive ratios.

I. INTRODUCTION

Co-location data centers (or co-locations) rent physical
space and infrastructure support, e.g., reliable power supply
and cooling service, to multiple tenants for hosting their
servers at a common site. They are rather different from private
(owner-operated) data centers in which operators have full
control of computing resources and site facilities. Co-locations
offer a flexible data center solution to small and medium users
who wish to run their own ‘cloud’ but are otherwise deterred
by the daunting cost of constructing and maintaining their own
data center. Even large users like Google and Akamai rely
on co-locations as a cost-effective complement to their own
data centers for achieving a global presence, particularly in
regions of relatively low demand that do not justify a dedicated
data center. The surging market of co-locations is expected to
reach $43 billion by 2018, with a compound annual growth
rate of 11% [1]. The recent paradigm of modular datacenter
design further facilitates the management and scalability of co-
locations — accommodating a new tenant could be as simple
as the plug-and-play of a few extra pods.

Electricity charges paid by a co-location is computed by an
interesting formula that includes two components: i) the peak
charge, determined by the peak demand within a billing cycle,
e.g., the maximum average power consumption measured over
each 15-minute interval; ii) the volume charge, based on
total energy consumption in the billing cycle [2], [3], [4].
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Tab. I summarizes several electricity rate plans available in
North America. The volume charge is relatively intuitive. The
rationale behind the peak charge is that peak consumption
shedding is critical to a power grid; even a small reduction in
peak demand can provide significant cost savings and reduce
greenhouse gas emission since a smaller number of peaking
power plants, which usually burn natural gas or diesel oil and
run only in peak hours with higher cost, are needed.

TABLE I
SUMMER ELECTRICITY RATES IN NORTH AMERICA

Utility Contract Peak Volume Charge
Provider Type Charge ($/kW) (¢/kWh)

PG&E [5] E20 Primary Firm 17.54 15.093
Duke Energy [6] LGS-TOU-28 16.99 4.724

BC Hydro [2] LGS 9.95 4.86
Georgia Power&Light 16.90 0.5679

Power [7] PLH-8
Mid American Rate GD, Iowa 7.07 5.433

Energy [8]

In practice, the peak charge component is seen to account
for over 30% of the total electricity bill [3], [4]. For example,
consider a co-location data center located in British Columbia,
Canada, powered by BC Hydro with 24 MW peak demand
and 15 MW average demand. The monthly peak charge is
$238,800, while the volume charge is $524,880. In this case,
the peak charge is 31% of the total monthly payment. The peak
charge represents even higher portions of the bill in Georgia,
where the monthly peak charge would be $405,600 while
the volume charge is $61,333.2, under the same consumption
pattern as in the British Columbia case. This suggests that a
well designed algorithm for shaping the power consumption
profile and controlling the peak demand has a great potential
in helping cut electricity cost at a co-location.

However, different from the case of private data centers, the
co-location operator has no direct control on which machines
are on/off, since its role is to offer basic services such
as stable power supply and cooling. The individual tenants
at a co-location manage their own servers and control the
corresponding power consumption. While the co-location has
a strong incentive to cut peak consumption and therefore save
cost, its tenants may or may not share that same interest,
depending on the contract between the two sides.

Typical electricity pricing today between a co-location and
its tenants is flat-rate based, and does not depend on the real
consumption volume or pattern [9], [10]. The tenants have lit-
tle incentive to reduce their electricity usage by shutting down
under-utilized servers, or by modulating their consumption
pattern via shifting computing jobs in the temporal domain to
reduce peak consumption rate. Such actions desired by the co-
location will not automatically happen without appropriate in-
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centives. Co-locations are sometimes so desperate to cut peak
consumption that they start their stand-by generators to cover
part of its tenants’ demand [4]. Such quick-start generation
(e.g., using diesel generators) is often not economical, nor is it
environment friendly. A simple solution is to bill each tenant
based on its peak charge and volume charge. Unfortunately
such an approach may not help reduce the peak energy cost
since many of the peaks do not coincide with the overall
peak of the entire co-location. On the contrary, auction-based
demand response mechanisms have the potential of efficiently
providing incentive for tenants to cooperate, eliciting desired
electricity consumption patterns with remuneration paid in
return. A well designed auction may represent a win-win
solution for both the co-location operator and its tenants.

The maximum power demand is dependent on the power
consumption in all time intervals during a billing cycle.
Decisions in different time slots are therefore coupled, leading
to an inherent online nature of the problem of demand shaping.
Even for the offline version of the problem (future prices and
demands are perfectly known), computing the optimal solu-
tion efficiently is still highly non-trivial, since its underlying
optimization problem is an integer program, which is NP-hard
in general. The challenge escalates when one seeks to design
an online solution for practical application, as knowledge on
the demands, unit power prices as well as tenants’ bids in the
future are completely unknown.

Tenants could reduce energy consumption in various man-
ners, e.g. shutting down under-utilized servers and shifting
delay insensitive workloads in the temporal domain. The
specific choice of a tenant’s energy reduction is not our focus.
We focus on designing mechanisms for eliciting desirable
consumption patterns from the tenants. We model and solve
the electricity cost saving problem in a co-location data center
through two approaches: the pricing approach and the auction
approach.

In the pricing approach, the co-location data center offers
a price it is willing to pay for unit energy reduction by
tenants, and the tenants decide and submit how much energy
they are willing to save at that price. Finally the co-location
data center determines which tenants’ energy reductions are
accepted. In the auction approach, the co-location data
center invites the tenants to submit energy reduction bids
including the amount of energy consumption to shed and the
amount of remuneration asked. The co-location then conducts
a reverse auction to determine winning bids along with their
corresponding payments. The pricing approach is relatively
simple and has been applied in real world demand response
solutions, implemented in electric appliances on the market
[11]. It is simple but requires the co-location to first come up
with a good estimate on a unit reduction offer. The auction
approach eliminates the need of such ad hoc guesses and
resorts to the power of the market instead for automatic
fair price revelation based on demand and supply. Yet, the
auction design is more complex than the algorithm design in
the pricing approach, and our solution to the former borrows
techniques from the latter.

In each approach, we design efficient online algorithms with
small competitive ratios. For the auction approach, we further

apply a randomized auction design framework, which decom-
poses a fractional optimal solution to the second sub-problem
into a convex combination of feasible integer solutions, to
ensure truthfulness. Trace-driven simulation studies further
verify the efficacy of the proposed algorithms, showing their
close-to-optimum performance that is better than the worst-
case bounds.

The rest of the paper is organized as follows. Sec. II reviews
related work. The system model and the problem formulation
are presented in Sec. III. We then study the pricing version and
the auction version of the cost minimization problem in Sec.
IV and Sec. V, respectively. Trace-driven simulation studies
are presented in Sec. VI. Sec. VII concludes the paper.

II. RELATED WORK

Energy efficiency in data centers attracted high attention
from both academia and industry in recent years, since a
small fraction of improvement in energy efficiency transfer
into millions of dollars of cost savings. Several algorithms
[12], [13] are proposed to ensure that power consumption is
proportional to total workload, by dynamically turning on/off
machines in data centers (dynamic capacity provisioning) or
adjusting their speed (CPU speed scaling). Different from
traditional data centers, co-location data centers are not able
to directly control the servers’ on/off status or speed.

A number of recent studies are devoted to demand response
in data centers. Wang et al. [14] advocate that data center
demand response can be an effective approach to improve
power grid stability, to reduce the energy consumption as well
as to increase the revenue of data centers. Liu et al. [15]
propose predication-based pricing for demand response in data
centers, where the data center operator has full control over
all its servers. Again, co-locations have no direct control over
the servers’ power consumption, thus these methods are not
directly applicable.

The peak-based electricity charge model is applied in the
real-world for large business users as exemplified by data
centers. Wang et al. [16] propose offline and online algorithms
to minimize the electricity cost by delaying or dropping
workloads. They prove a theoretical bound for the dropping
only case. However, they assume that the dropping cost is
proportional to the size of the workload, which ignores the
fact that different jobs of the same size may be of different
importance. Xu et al. [17] study the electricity cost minimiza-
tion problem in a data center through partial execution while
trying to satisfy the Service Level Agreement (SLA). Different
from their work, we tackle the problem by eliciting voluntary
energy reduction from the co-location tenants in an otherwise
uncoordinated power consumption environment within a co-
location data center. Bar-Noy et al. [18] advocate shaving the
peak demand by using stored energy. Their solution focuses
on optimizing the peak charge only without considering the
volume charge and energy storage cost, while our work
concentrates on the overall cost including the peak charge,
volume charge as well as tenant costs.

The primal-dual approach [19] is a general tool for design-
ing competitive online algorithms. A well designed primal-
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dual online algorithm sometimes achieves a small competi-
tive ratio against the offline optimum. However, the method
requires that the underlying problem is of a packing type
or a covering type. The peak power demand charge model
essentially makes our problem a mixed packing and covering
problem. Directly applying the primal-dual approach is hence
infeasible. Azar et al. [20] recently propose a technique to
tackle mixed packing and covering problems. Yet it assumes
that the packing constraints are given at the beginning while
the covering constraints are revealed on the fly, and the
problem only focuses on minimizing the maximum amount by
which a packing constraint is violated. So their technique still
has restrictions and is not directly applicable to our problem.

III. THE CO-LOCATION DATACENTER MODEL

We consider a co-location data center hosting a large
number (thousands) of servers for its tenants. The co-location
pays the utility company both a peak charge and a volume
charge for electricity consumed by the data center. The system
runs in a time-slotted fashion. The length of each time slot
is τ , e.g., 15 minutes [3]. The price of a unit amount of
electricity fluctuates over time. Let ft be the price at t. After
a billing cycle, the peak demand among all time slots is
identified, and used to compute the peak charge. Let fpeak
be the peak demand price, known by the co-location at the
beginning of the billing cycle. The co-location can save energy
used towards server cooling when its tenants save energy by
shutting down their servers. Let λ be the partial Power Usage
Effectiveness (pPUE), which is the ratio between (a) the total
energy consumption for IT and cooling and (b) the IT energy
consumption. The pPUE varies as the ambient temperature
varies, and a typical value ranges from 1.1 to 2.0, as shown
in Tab. II.

TABLE II
PPUE V.S. AMBIENT TEMPERATURE [21]

Outdoor Return Air Cooling Mode pPUE
Ambient (°F) DB (°F)

90 85 Compressor 1.31
70 85 Compressor 1.21
60 85 Mixed 1.17
50 85 Pump 1.10
25 85 Pump 1.05

Following empirical models from recent measurement stud-
ies [21], [22], we compute the pPUE using quadratic curve
fitting based on data in Tab. II.

λ = 3.0825× 10−5θ2 + 5.7154× 10−4θ + 1.0127 (1)

where the formula is valid on the interval θ ∈ [25, 90], and
θ is the ambient temperature. Since θ fluctuates over time, so
does the pPUE. We use λt to denote the pPUE at time t.

Let Dt be the power demand at time t without energy
reduction by tenants. At the end of slot t − 1, Dt can
be accurately predicted, and ft is known. We assume that
maxτ Dτ/Dt ≤ ξ, ∀t. Typically ξ ranges from 1.2 ∼ 2 since
idle machines still consume around 50% of energy [23].

Diesel generators can also help shed the co-location’s peak
consumption from the power grid, yet they represent a less

preferred option due to environment concerns [4] and are not
considered in this work. As shown in Fig. 1, the system has
two alternative ways to call for energy reduction from tenants
for the next time slot, i) offering a pt, determined by the co-
location, as the unit price for energy reduction from tenants;
ii) conducting a reverse auction by soliciting energy reduction
bids from tenants. We assume that pt/λt ≤ κft, i.e., the co-
location will not offer too high prices for the energy reduction.
Let Mt be the set of tenants willing to join the process in
i) at t. Each tenant i ∈ Mt submits ri,t to the co-location,
indicating how many kilowatts it is willing to save at t. Let
Nt be the set of tenants willing to participate in the power
reduction reverse auction in ii) at t. Each tenant j ∈ Nt

submits (rj,t, bj,t) to the co-location, where rj,t is its possible
energy reduction at t, and bj,t is the remuneration asked for.
We assume that bj,t/(λtrj,t) ≥ ft, pt/λt ≥ ft, i.e., the unit price
for the energy reduction from tenants is higher than price of
energy from the grid. The total energy reduction contributed
by co-location tenants is a fraction of Dt and cannot exceed
Dt, i.e., λt

∑
i ri,t ≤

1
ρ
Dt,∀t. A typical ρ ranges from 2 to 5.

Co-location Data Center

Step1: 

PA: Offer a price pt ;

AA: Solicit bids from tenants.

Step2: 

PA: tenant i submits ri,t ;

AA: tenant j submits (rj,t ,bj,t ) 

Step3: 

PA: decide accepted ri,t  ;

AA: decide winning bids 

and payments

Co-location Operator

Tenant 3

Tenant 1 Tenant 2

Tenant N

Fig. 1. An illustration of the two approaches for reducing energy consumption
in a co-location data center. PA = the Pricing Approach, AA = the Auction
Approach.

Let Ht be a continuous variable indicating the amount of
energy purchased from the grid at time t. For each ri,t given
by the tenant i ∈ Mt, a binary variable xi,t indicates whether
the co-location accepts ri,t. For each bid (rj,t, bj,t) submitted
by tenant j ∈ Nt, we have a binary variable xj,t indicating
whether this bid wins. A notation table is provided for ease
of reference.

Mt the set of tenants participating in the pricing approach at t.
Nt the set of tenants participating in the auction at t.
ri,t the energy reduction at t for tenant i.
bi,t the bidding price at t for tenant i.
pt the unit price of energy reduction at t.
ft the unit cost of power consumption at t.

fpeak the peak demand price.
Dt the original power demand without energy reduction

by tenants enabled at t.
Ht power supplied by the grid at t.
xj,t binary variable: bid (rj,t, bj,t) wins or not.
λt partial Power Usage Effectiveness (pPUE).
ξ maxt(maxτ Dτ/Dt).
κ maxt{pt/(λtft)}.
ρ mint{Dt/(λt

∑
i ri,t)}.

A. The Pricing Approach Model

In the pricing approach, we have the following con-
straint for meeting the power demand after considering en-
ergy reduction by tenants: Ht ≥ Dt − λt(

∑
i ri,txi,t), ∀t.
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We focus on the total cost of the co-location:
∑

t ftHt +
fpeak maxt Ht+

∑
t,i ptri,txi,t, where

∑
t ftHt is the volume

charge, fpeak maxt Ht is the peak charge, and
∑

t,i ptri,txi,t

is the cost of paying energy reduction from the tenants. The
cost minimization problem is then formulated as follows:

minimize
∑
t

ftHt + fpeak max
t

Ht +
∑
t,i

ptri,txi,t (2)

subject to: Ht + λt

∑
i∈Mt

ri,txi,t ≥ Dt ∀t (2a)

xi,t ∈ {0, 1},Ht ≥ 0 ∀i ∈ Mt, t (2b)

B. The Auction Approach Model

In the auction approach, the following constraint ensures
that the power demand is met after considering the energy
reduction by tenants: Ht ≥ Dt − λt(

∑
j∈Nt

rj,txj,t), ∀t. We
focus on the overall social cost of the co-location and its
tenants:

∑
t ftHt + fpeak maxt Ht +

∑
t,j bj,txj,t. Here

∑
t ftHt

is the volume charge, fpeak maxt Ht is the peak charge and∑
t,i bi,txi,t is the cost of the tenants. Payments between the co-

location and its tenants cancel themselves and are not reflected
in the social cost. The social cost minimization problem can
then be formulated as follows:

minimize
∑
t

ftHt + fpeak max
t

Ht +
∑
t,j

bj,txj,t (3)

subject to: Ht + λt

∑
j∈Nt

rj,txj,t ≥ Dt ∀t (3a)

xj,t ∈ {0, 1}, Ht ≥ 0 ∀j ∈ N , t (3b)

IV. THE PRICING APPROACH

Let Hmax be the maximum of Ht over time, i.e., Ht ≤
Hmax, ∀t. The optimization problem (2) then becomes a linear
integer program (LIP):

minimize
∑
t

ftHt + fpeakHmax +
∑
t,i

ptri,txi,t (4)

subject to: Ht + λt

∑
i∈Mt

ri,txi,t ≥ Dt ∀t (4a)

Ht ≤ Hmax, ∀t (4b)

xi,t ∈ {0, 1},Ht ≥ 0 ∀i ∈ Mt, t (4c)

LIPs are NP-hard in general. Even if complete future
information on D,f ,p, λ and r are perfectly known, solving
(4) optimally is still computationally challenging.

A. An Offline Approximation Algorithm

We first design an offline approximation algorithm, as-
suming all future information are known. We introduce a
linear programming (LP) relaxation by relaxing the integer
constraint xi,t ∈ {0, 1} to xi,t ≥ 0. The main challenge in
such offline algorithm design is to effectively modulate the

power consumption over time, for controlling the peak charge
during the billing cycle. We start analyzing such peak charge
as follows:

min
x,Hmax,H

{∑
t

ftHt + fpeakHmax +
∑
t,i

ptri,txi,t

}
= min

Hmax,H

{∑
t

(
ftHt + pt(Dt −Ht)/λt

)
+ fpeakHmax

}
=
∑
t

ptDt/λt + min
Hmax,H

{∑
t

(
ft − pt/λt

)
Ht + fpeakHmax

}
Note that Hmax is defined as the maximum Ht, ∀t. If Dt ≥
Hmax, then Ht = Hmax. If Dt < Hmax, then Ht = Dt.

min
Hmax,H

{∑
t

(
ft − pt/λt

)
Ht + fpeakHmax

}
= min

Hmax

{∑
t

(
ft − pt/λt

)
(Dt − (Dt −Hmax)1Dt≥Hmax)

+ fpeakHmax

}
=
∑
t

(ft − pt/λt

)
Dt + min

Hmax

{
fpeakHmax

+
∑
t

(
pt/λt − ft

)
(Dt −Hmax)1Dt>Hmax)

}
=
∑
t

(ft − pt/λt

)
Dt +Φ

where Φ ≜ minHmax

{
fpeakHmax +

∑
t

(
pt/λt − ft

)
(Dt −

Hmax)1Dt>Hmax)
}

, and 1Dt>Hmax = 1 if Dt ≥ Hmax, and
0 otherwise. In order to minimize the total cost, we sort all
Dts in descending order. Let Dt1 ≥ Dt2 · · · ≥ DtT . We analyze
the total cost based on different Hmax as follows.

If Hmax = Dt1 , then Φ = fpeakDt1 .
If Dt1 > Hmax ≥ Dt2 , then Φ = fpeakHmax +∑1
k=1(ptk/λtk−ftk

)
(Dtk−Hmax) =

∑1
k=1(ptk/λtk−ftk )Dtk+

(fpeak −
∑1

k=1(ptk/λtk − ftk))Hmax.
If Dtτ > Hmax ≥ Dtτ+1 , then Φ = fpeakHmax +∑τ
k=1(ptk/λtk−ftk

)
(Dtk−Hmax) =

∑τ
k=1(ptk/λtk−ftk )Dtk+

(fpeak −
∑τ

k=1(ptk/λtk − ftk))Hmax.
We illustrate the relation between Hmax and Φ in Fig. 2,

and observe that Φ reaches its minimum when ∃τ̃ , s.t. fpeak =∑τ̃
k=1(ptk/λtk − ftk ), which implies that Hmax ∈ (Dτ̃ , Dτ̃+1].

����  

 !1     !2     !3    ... !"     !"+1     !#−1     !#    

Φ 

minimum

...

Fig. 2. The relation between Hmax and Φ.

Energy reduction offered by co-location tenants may be
limited, the optimal H∗

max is

H∗
max =

{
Dτ̃ , if Dτ̃ > H̃

H̃, otherwise
(5)

where H̃ = maxt{Dt − λt

∑
i ri,t}.

Based on the analysis above, we design an approximation



5

algorithm for LIP (4). At each t, the total amount of energy
reduction by the tenants is determined once H∗

max is decided.
Let Ht be the energy purchased from the grid at time t. We
have a sub-problem for each time slot t:

minimize pt
∑
i

ri,txi,t (6)

subject to: λt

∑
i∈Mt

ri,txi,t ≥ Dt −Ht (6a)

xi,t ∈ {0, 1}, ∀i ∈ Mt (6b)

Problem (6) is a simplified version of (10), which we will
discuss in Sec. V later. Alg. 5, to be presented later in Sec. V,
is a polynomial approximation algorithm to the problem (6),
verifying an integrality gap of 2, as proven in Theorem 5 later.
By employing Alg. 5, we present our offline approximation
algorithm as shown in Alg. 1.

Theorem 1. Alg. 1 is a polynomial-time 2-approximation
algorithm to (4).

Proof: since the approximation algorithm uses the same H∗
max

and Ht as the offline optimal solution does, we have∑
t

ftHt + fpeakHmax +
∑
i,t

ptri,txi,t

≤
∑
t

ftH
∗
t + fpeakH

∗
max + 2

∑
i,t

ptri,tx
∗
i,t

=2OPTLPR ≤ 2OPTLIP

Algorithm 1 An Offline Approximation Algorithm for the Pricing
Approach

1: xi,t = 0,∀i, t; Ht = 0, ∀t;
2:
3: Sort all Dts in descending order;
4: Find the optimal H∗

max according to (5)
5: for all t ∈ [1, T ] do
6: Determine Ht,

Ht =

{
Dt, if H∗

max > Dt

H∗
max, otherwise

7: Solving the sub-problem (6) using Alg. 5 when energy
reduction target is Dt −Ht;

8: end for

B. An Online Algorithm

An online algorithm works with hitherto information, and
cannot access information that is available only in the future.
New information comes on the fly and decisions for each time
slot have to be made immediately without delay. Competitive
analysis is employed to analyze the performance of an online
algorithm compared with the offline optimum, to which full
future information is available a priori. An online algorithm
A for a minimization problem is γ-competitive if A(I) ≤
γOPT (I), ∀I , where I is an input and OPT (I) is the offline
optimum.

Drawing experiences from the offline case, we design an
online algorithm in Alg. 2. The idea of Alg. 2 is that upon
receiving a new request, it calculates and updates the optimal
H ′

max based on all information received so far. Then the

amount of energy that the co-location data center needs to
draw from the grid is determined as well.

Algorithm 2 An Online Algorithm for the Pricing Approach
1: xi,t = 0, ∀i, t; Ht = 0,∀t; Hmax = 0;
2:
3: for all t ∈ [1, T ] do
4: Sort all Dts received so far in descending order;
5: Find τ̃ , s.t. fpeak =

∑τ̃
k=1(ptk/λtk − ftk)

6: if such τ̃ does not exist then
7: Ht = max{min{Hmax, Dt}, Dt − λt

∑
i ri,t};

8: else
9: Ht = max{min{Dt,max{Hmax, Dτ̃}}, Dt −

λt

∑
i ri,t};

10: end if
11: Solving the sub-problem (6) using Alg. 5 when energy

reduction target is Dt −Ht;
12: Update Hmax;
13: end for

Theorem 2. Alg. 2 is (1 + 2(κ+ 1)/ρ+ 2)-competitive.

Proof: We analyze the competitive ratio by comparing Alg.
2 with the offline optimal algorithm for the relaxed problem.
For any time slot t, let Ht and xi,t be the decisions made
by the offline optimal algorithm, while H ′

t and x′
i,t are those

made by Alg. 2. As the requests are revealed one after another,
the maximum amount of energy drawn from the grid that is
allowed by Alg. 2 increases gradually, and finally approaches
H∗

max defined in (5). Therefore, H ′
t ≤ Ht, ∀t. Let Coff and

Con be the total cost incurred by the offline optimal algorithm
and by Alg. 2, respectively.

Coff = fpeakH
∗
max +

∑
t

ftHt +
∑
i,t

ptri,txi,t

= fpeakH
∗
max +

∑
t

ftHt +
∑
t

(pt/λt)(Dt −Ht)

Con = fpeakH
∗
max +

∑
t

ftH
′
t +

∑
i,t

ptri,tx
′
i,t

≤ fpeakH
∗
max +

∑
t

ftH
′
t + 2

∑
t

(pt/λt)(Dt −H ′
t)

where the last inequality holds because Alg. 2 uses a 2-
approximation algorithm to (6).

Con

Coff
≤

fpeakH
∗
max +

∑
t ftH

′
t + 2

∑
t pt/λt(Dt −H ′

t)

fpeakH∗
max +

∑
t ftHt +

∑
t pt/λt(Dt −Ht)

≤ 1 +

∑
t pt/λt(Dt +Ht − 2H ′

t)

fpeakH∗
max +

∑
t ftHt +

∑
t pt/λt(Dt −Ht)

Note that H∗
max = Dtτ̃ , where fpeak =

∑τ̃
k=1(ptk/λtk − ftk).

fpeakH
∗
max +

∑
t

ftHt +
∑
t

pt/λt(Dt −Ht)

=fpeakH
∗
max +

T∑
k=τ̃+1

ftkHtk +

τ̃∑
k=1

ftkHtk

+

τ̃∑
k=1

ptk/λtk (Dtk −Htk)
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=fpeakH
∗
max +

T∑
k=τ̃+1

ftkDtk +

τ̃∑
k=1

ftkH
∗
max

+

τ̃∑
k=1

ptk/λtk (Dtk −H∗
max)

=

T∑
k=τ̃+1

ftkDtk +

τ̃∑
k=1

Dtkptk/λtk

Similarly, we have∑
t

pt/λt(Dt +Ht − 2H ′
t)

=

T∑
k=τ̃+1

ptk/λtk(Dtk +Htk − 2H ′
tk)

+
τ̃∑

k=1

ptk/λtk(Dtk +Htk − 2H ′
tk )

=

T∑
k=τ̃+1

ptk/λtk(2Dtk − 2H ′
tk )

+

τ̃∑
k=1

ptk/λtk(Dtk +H∗
max − 2H ′

tk )

≤2

T∑
k=τ̃+1

(ptk/λtk)λtk

∑
i

ri,tk + 2

τ̃∑
k=1

ptk/λtk(λtk

∑
i

ri,tk +Dtk )

Therefore

Con

Coff
≤1 +

2
∑T

k=τ̃+1(ptk/λtk )λtk

∑
i ri,tk∑T

k= ˜τ+1 ftkDtk +
∑τ̃

k=1 Dtkptk/λtk

+
2
∑τ̃

k=1 ptk/λtk(λtk

∑
i ri,tk +Dtk)∑T

k= ˜τ+1 ftkDtk +
∑τ̃

k=1 Dtkptk/λtk

≤1 + 2(max
t

pt
λtft

+ 1)/ρ+ 2 ≤ (1 + 2(κ+ 1)/ρ) + 2

Values of κ and ρ are related to the system setting. In our
empirical studies in Sec. VI, κ = 3 and ρ ≈ 2.5, which
results in a competitive ratio guarantee of 6.2. We will further
present in Sec. VI that the real competitive ratio observed
ranges from 1.1 to 1.2, which is better than the theoretical
worst-case bound of 6.2.

It is interesting to observe that, if full information is known,
and then the online Alg. 2 degrades into the offline Alg. 1,
whose approximation ratio is 2. We can view the competitive
ratio (1 + 2(κ + 1)/ρ) + 2 as two separate components,
where the 1 + 2(κ + 1)/ρ term is due to challenges from
the online nature of the problem, while the term 2 results
from computational challenges associated with linear integer
optimization.

V. THE AUCTION APPROACH

In the auction approach, the co-location conducts a reverse
auction, a.k.a. a procurement auction, to solicit energy re-
duction bids from its tenants. Each tenant participating in
the auction submits a biding price as well as the amount
of potential energy reduction to the co-location. The co-
location computes the winning bids and their corresponding
payments. Different from the pricing approach, the bidding
prices are determined by tenants themselves instead of the

co-location, and are therefore heterogeneous, invalidating the
analysis technique in Sec. IV.

A. An Online Algorithm

Similar to the pricing approach, we introduce Hmax, so that
(3) becomes an LIP:

minimize
∑
t

ftHt + fpeakHmax +
∑
t,j

bj,txj,t (7)

subject to: Ht + λt

∑
j∈Nt

rj,txj,t ≥ Dt ∀t (7a)

Ht ≤ Hmax ∀t, (7b)

xj,t ∈ {0, 1},Ht ≥ 0 ∀j ∈ N , t (7c)

We first relax the above integer program into a linear
program. A straightforward relaxation may lead to an un-
bounded integrality gap. Applying the technique of redundant
LP constraints [24], [25], we introduce valid inequalities that
are satisfied by all feasible mixed integer solutions of (3), to
carefully bound the integrality gap. Such a bound is important
for our auction design later. Let St ⊆ Nt be a subset of
bids submitted at time slot t. Let δ(St) = Dt − λt

∑
j∈St

rj,t
denote the remaining amount of energy when all bids in St

are accepted to reduce the energy consumption. Let rj,t(S) =
min{λtrj,t, δ(S)} be the contribution of an additional bid
j in making up the difference. We formulate the following
enhanced LP relaxation to (7):

minimize
∑
t

ftHt + fpeakHmax +
∑
j,t

bj,txi,t (8)

subject to:

Ht +
∑

j∈Nt\S

rj,t(S)xj,t ≥ δ(S), ∀t, S ⊆ Nt : δ(S) > 0 (8a)

Ht ≤ Hmax, ∀t (8b)

Ht, Hmax, xj,t ≥ 0, ∀j, t (8c)

We proceed to derive the dual LP of (8), by introducing dual
variables α and β corresponding to primal constraints (8a)
and (8b), respectively. The dual variables admit the following
interpretation. αS is unit energy price in set S, while βt reflects
how much power the co-location wants to draw from the grid.
A higher βt implies that the co-location intends to use power
reduction from the tenants more than the grid. Usually high
βt is used when Ht is already too high and any increase in
Ht may lead to a high peak charge.

maximize
∑

t,S⊆Nt:δ(S)>0

δ(S)αS (9)

subject to:
∑

S⊆Nt:δ(S)>0

αS − βt ≤ ft, ∀t (9a)

∑
t

βt ≤ fpeak (9b)∑
S⊆Nt:j∈Nt\S,δ(S)>0

rj,t(S)αS ≤ bj,t, ∀j, t (9c)

Based on the dual problem (9), we design a primal-dual
online algorithm in Alg. 3. The high level idea behind Alg. 3
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is the following. For each time slot t, the algorithm initializes
an empty set St as a candidate tenant set, from which the co-
location purchases energy reduction to reduce its total energy
consumption. During each iteration, the dual variable αSt

increases continuously. Once any constraint from (9a) and
(9c) becomes tight, the co-location purchases energy from the
corresponding tenant and the grid, respectively. Different allo-
cation rules of βt lead to different variations of the algorithm.
We first design an algorithm using a rather straightforward
way to allocate fpeak to all βt, i.e., equally allocating over all
time slots (line 6).

Algorithm 3 A Primal-Dual Online Algorithm for the Auction
Approach

1: // Initialization
2: xj,t = 0,∀j, t; Ht = 0, ∀t; αS = 0,∀t, S;
3:
4: for all t do
5: // when time slot t starts
6: St = ∅; βt = fpeak/T ;
7: // Iterative update of primal and dual variables:
8: while δ(St) > 0 do
9: increase αSt continuously until some constraint gets

tight;
10: if

∑
S⊆Nt:j∈Nt\S,δ(S)>0 rj,t(S)αS = bj,t then

11: xj,t = 1; St = St ∪ {j};
12: end if
13: if

∑
S⊆Nt:δ(S)>0 αS − βt = ft then

14: Ht = δ(St); break;
15: end if
16: end while
17: end for

Lemma 1. Alg. 3 computes feasible solutions to both primal
LP (8) and dual LP (9).

Proof: We first check whether the returned solution is feasible
to the primal LP (7). Constraints (7b) and (7c) are always
respected because of the settings in line 11 and line 14. If
the while loop breaks due to δ(St) ≤ 0, then the demand
constraint (7a) is also satisfied. Otherwise it jumps out from
the while loop because

∑
S⊆Nt:δ(S)>0 αS −βt = ft. In this

case, Ht + λt

∑
j rj,txj,t = Dt, which implies the demand

constraint is not violated, either. Therefore the solution is
feasible to LP (7). We can verify that it is also feasible to
LP (8).

We next examine the dual constraints. Once the con-
straint (9a) becomes tight, the algorithm will break from
the while loop, and therefore the constraint will not be
violated. Constraint (9b) is always respected due to the
setting in line 6. Note that once tenant j is selected into
the candidate set St, the corresponding item in (9c), i.e.,∑

S⊆Nt:j∈Nt\S,δ(S)>0 rj,t(S)αS will not increase, and hence
(9a) will be respected as well.

We next investigate the component of the competitive ratio
that is contributed by the peak demand, in the following
lemma.

Lemma 2. Alg. 3 produces result (H,x) such that:
fpeakHmax ≤ ξ/(1 − 1

ρ ) · OPT , where OPT is the cost of
the optimal offline solution.

Proof: fpeakHmax = fpeak maxt δ(St) = fpeakδSτ̃ , where
τ̃ = argmaxt δ(St).

Note that βt = fpeak/T , and then
∑

t βt = fpeak, which
implies that:

fpeakδ(Sτ̃ ) = δ(Sτ̃ )
∑
t

(
∑

S⊆Nt:δ(S)>0

αS − ft)

≤ Dτ̃

∑
t

(
∑

S⊆Nt:δ(S)>0

αS − ft)

≤
∑
t

∑
S⊆Nt:δ(S)>0

αSDtξ

=
∑
t

∑
S⊆Nt:δ(S)>0

αSDt(1−
1

ρ
)ξ/(1− 1

ρ
)

≤ ξ/(1− 1

ρ
)
∑
t

∑
S⊆Nt:δ(S)>0

αSδ(St)

≤ ξ/(1− 1

ρ
)
∑
t

∑
S⊆Nt:δ(S)>0

αSδ(S)

The last inequality is due to S ⊆ St,∀S : δ(S) > 0 and α(S) ̸=
0 ⇒ δ(S) ≥ δ(St),∀S : δ(S) > 0 and α(S) ̸= 0. Following weak
duality,

∑
t,S⊆Nt:δ(S)>0 αSδ(S) ≤ OPT , which completes the

proof.
The next lemma examines the competitive ratio incurred by

the integrality constraint.

Lemma 3. Alg. 3 produces a solution (H,x) that:
∑

t ftHt+∑
j,t bj,txj,t ≤ 2OPT .

Proof: For any t ∈ [1, T ], we analyze the costs by examining
the following two cases.

Case 1, the while loop terminates due to δ(St) ≤ 0. We have∑
S⊆Nt:δ(S)>0 αS−βt ̸= ft before the termination. Therefore

Ht = 0.∑
j

bj,txj,t =
∑
j∈St

bj,t =
∑
j∈St

∑
S⊆Nt:j∈Nt\S,δ(S)>0

rj,t(S)αS

=
∑

S⊆Nt:δ(S)>0

∑
j∈St\S

rj,t(S)αS

≤
∑

S⊆Nt:δ(S)>0

(λt

∑
j∈St\{jω}

rj,t − λt

∑
j∈S

rj,t + rjω,t(S))αS

≤
∑

S⊆Nt:δ(S)>0

(Dt − λt

∑
j∈S

rj,t + rjω,t(S))αS

=
∑

S⊆Nt:δ(S)>0

(δ(S) + rjω,t(S))αS

≤
∑

S⊆Nt:δ(S)>0

2δ(S)αS

where jω is the last tenant added to the solution set St for
time slot t. The first inequality is due to the definition of
rj,t(S). The second inequality is because δ(St \{jω}) > 0 ⇒
Dt > λt

∑
j∈St\{jω} rj,t. The last inequality holds as a result

of δ(S) ≥ min{δ(S), λtrjω,t} = rjω,t(S).

Case 2, the while loop terminates because of the break in
line 14, i.e.,

∑
S⊆Nt:δ(S)>0 αS − βt = ft. We then have

ftHt = δ(St)(
∑

S⊆Nt:δ(S)>0

αS − βt)

≤ δ(St)
∑

S⊆Nt:δ(S)>0

αS ≤
∑

S⊆Nt:δ(S)>0

αSδ(S)
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where the last inequality is due to S ⊆ St, ∀S : δ(S) > 0
and α(S) ̸= 0 ⇒ δ(S) ≥ δ(St), ∀S : δ(S) > 0 and α(S) ̸= 0.
Similar to the analysis in Case 1, we have:

∑
j

bj,txj,t =
∑
j∈St

bj,t =
∑
j∈St

∑
S⊆Nt:j∈Nt\S,δ(S)>0

rj,t(S)αS

=
∑

S⊆Nt:δ(S)>0

∑
j∈St\S

rj,t(S)αS

≤
∑

S⊆Nt:δ(S)>0

(λt

∑
j∈St

rj,t − λt

∑
j∈S

rj,t)αS

≤
∑

S⊆Nt:δ(S)>0

(Dt − λt

∑
j∈S

rj,t)αS

=
∑

S⊆Nt:δ(S)>0

δ(S)αS

where the last inequality is because δ(St) > 0 ⇒
Dt > λt

∑
j∈St

rj,t. Therefore ftHt +
∑

j bj,txj,t ≤
2
∑

S⊆Nt:δ(S)>0 δ(S)αS for the second case. Thus, for any t,
we have ftHt +

∑
j bj,txj,t ≤ 2

∑
S⊆Nt:δ(S)>0 δ(S)αS in either

case. In summary:
∑

t ftHt +
∑

j,t bj,txj,t ≤ 2OPT .

Theorem 3. Alg. 3 is (2 + ξ/(1− 1
ρ ))-competitive.

Proof: Following Lemma 2 and Lemma 3, we have∑
t ftHt + fpeakHmax +

∑
j,t bj,txj,t ≤ (2 + ξ/(1 − 1

ρ
))OPT .

Therefore the competitive ratio is (2 + ξ/(1− 1
ρ )).

Values of ξ and ρ depend on the specific system settings. In
our trace-driven empirical studies in Sec. VI, ξ ≈ 1.2 and ρ ≈
2.5, for which the competitive ratio is 4. The real competitive
ratios observed range from 1.1 to 1.5, and are smaller than
the worst case bound of 4.

B. A More Intelligent Online Algorithm

In Alg. 3, the dual variable β is handled in a somewhat
simple way, leading to a competitive ratio of (2 + ξ/(1 −
1
ρ )). In particular, Alg. 3 does not track the current maximum
Ht, which makes it less intelligent to the fluctuating power
demand Dt as well as unknown bids (bj,t, rj,t). Our next goal
is to manipulate β in a more sophisticated way, for a better
performance guarantee. We introduce a new variable to record
the maximum demand so far, as shown in Alg. 4.

Theorem 4. Alg. 4 is (2 + c)-competitive, where c =∑
t

{ maxj bj,t
minj(λtrj,t)

− ft
}
/fpeak.

Proof: We observe that i) the offline optimum algorithm will
not accept any bids where bj,t

λtrj,t
≥ fpeak + ft, since the

energy reduction will not reduce any cost in peak charge or
volume charge. ii) Hmax is updated only when the algorithm
has to, therefore Hmax in Alg. 4 is bounded by H∗

max. Thus
fpeakHmax ≤ fpeakH

∗
max ≤ OPT .

Since bj,t
λtrj,t

≥ ft,∀j, t,
∑

t ftHt ≤
∑

t ftH
∗
t +

∑
j,t bj,tx

∗
j,t ≤

OPT . Similar to the proof of the second case in Lemma 3, we
have

∑
j,t bj,txj,t ≤

∑
S⊆Nt:δ(S)>0 δ(S)αS . However

∑
t βt

may be increased to a value larger than fpeak, which violates
constraint (9b). Applying the classic technique of dual fitting,
we estimate the upper bound of

∑
t βt, and then scale down

βt by this upper bound. The dual variable α is scaled down
correspondingly. The scaled dual variables are feasible to the

Algorithm 4 A Smart Primal-Dual Online Algorithm for the
Auction Approach

1: // Initialization
2: xj,t = 0, ∀j, t; Ht = 0,∀t; Hmax = 0; αS = 0, ∀t, S;
3:
4: for all t do
5: St = ∅;
6: Eliminate bids where bj,t

λtrj,t
≥ fpeak + ft;

7: Hmax = max{min{Dt, Hmax}, Dt − λt

∑
j rj,t};

8: // Iterative update of primal and dual variables:
9: while δ(St) > Hmax do

10: increase αSt and βt continuously until some constraint
in (9c) gets tight exactly before (9a);

11: if
∑

S⊆Nt:j∈Nt\S,δ(S)>0 rj,t(S)αS = bj,t then
12: xj,t = 1; St = St ∪ {j};
13: end if
14: end while
15: Ht = δ(St); Update Hmax;
16: end for

dual problem (9), acting as a valid lower bound of the optimal
solution.

Since αSt and βt are increased continuously until a con-
straint in (9c) becomes tight exactly before (9a), therefore for
each t:

min
j

(λtrj,t)
∑

S⊆Nt:δ(S)>0

αS

≤
∑

S⊆Nt:j∈Nt\S,δ(S)>0

rj,t(S)αS ≤ max
j

bj,t

where the first inequality holds because: i) the definition of
rj,t(S) and ii) αS = 0 before tenant j is added to St.

Consequently, we set βt =
maxj bj,t

minj(λtrj,t)
− ft so that some

constraint in (9c) becomse tight exactly before (9a). Then the
summation of all βt is:

∑
t βt =

∑
t

{ maxj bj,t
minj(λtrj,t)

− ft
}

.
Note that the constraint (9b) requires

∑
t βt ≤ fpeak, thus

the scaled down factor is: c =
∑

t

{ maxj bj,t
minj(λtrj,t)

− ft
}
/fpeak.

We then have that: (α/c,β/c) is a feasible solution to (9a).∑
j,t

bj,txj,t ≤
∑

S⊆Nt:δ(S)>0

δ(S)αS

≤ c
∑

S⊆Nt:δ(S)>0

δ(S)αS/c ≤ cOPT

Therefore the total cost is∑
t

ftHt +
∑
j,t

bj,txj,t + fpeakHmax ≤ (2 + c)OPT

The value of c depends on system configuration. In our
trace-driven empirical studies, c = 1.49, and the competitive
ratio is 3.49, which is better than the competitive ratio of Alg.
3. The observed competitive ratios of Alg. 4 range from 1.1
to 1.2 in the empirical studies in Sec. VI.

C. A Truthful Auction Mechanism

We finally design an auction mechanism based on the online
Alg. 4, to elicit truthful bids from co-location tenants for
each time slot. While the celebrated Vickery-Clarke-Groves
(VCG) mechanism is known to be truthful [26], it requires
optimally solving social cost minimization multiple times, and
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is hence computationally infeasible. Our auction is based on
the polynomial-time Alg. 4, and inherits a competitive ratio
close to that of Alg. 4.

In each time slot, Alg. 4 decides Hmax that is the maximum
amount of energy drawn from the grid. If Hmax = Dt. There
is no need to ask tenants to submit energy reduction bids.
Otherwise, the energy reduction target is Dt − Hmax. Then
the optimization problem (7) becomes:

minimize
∑

j∈Nt,t

bj,txj,t (10)

subject to: λt

∑
j∈Nt

rj,txj,t ≥ Dt −Hmax, ∀t (10a)

xj,t ∈ {0, 1}, ∀j, t (10b)

And its corresponding enhanced LP relaxation (8) becomes:
minimize

∑
j,t

bj,txj,t (11)

subject to:∑
j∈Nt\S

rj,t(S)xj,t ≥ δ′(S), ∀t, S ⊆ Nt : δ(S) > 0 (11a)

xj,t ≥ 0, ∀j, t (11b)

where δ′(S) = Dt−Hmax−λt

∑
j∈S rj,t. The corresponding

dual problem is shown as follows:

maximize
∑

t,S⊆Nt:δ(S)>0

δ(S)αS (12)

subject to: ∑
S⊆Nt:j∈Nt\S,δ(S)>0

rj,t(S)αS ≤ bj,t, ∀j, t (12a)

αS ≥ 0, ∀S ⊆ Nt (12b)

We note that (11) and (12) are simplified versions of (8)
and (9) respectively. Thus, a simplified version of Alg. 3 or
Alg. 4, shown in Alg. 5 can still work on (11) and (12).

Algorithm 5 A Primal-Dual Online Algorithm for Sub Problem
(10)

1: // Initialization
2: xj,t = 0,∀j, t; αS = 0,∀t, S;St = ∅;
3:
4: while δ(St) > 0 do
5: increase αSt continuously until some constraint gets tight;
6: if

∑
S⊆Nt:j∈Nt\S,δ(S)>0 rj,t(S)αS = bj,t then

7: xj,t = 1; St = St ∪ {j};
8: end if
9: end while

Theorem 5. Alg. 5 is a polynomial-time 2-approximation
algorithm to the linear integer program (10), and verifies an
integrality gap of 2 as well.

Proof: similar to the first case in Lemma 3.

Now we convert Alg. 5 into a truthful auction by applying a
randomized convex decomposition technique [26], [27], [28].
First we solve the LP relaxation in (11) optimally, and then
decompose the fractional solution into a convex combination

of a series of integer solutions by exploiting the underlying
covering structure of the social cost minimization problem. We
then pick an integer solution randomly with the corresponding
convex combination weights viewed as selection probabilities.
The payments to the winning tenants are calculated according
to Step three, ensuring that the sufficient and necessary condi-
tion of truthfulness is satisfied. We describe the details of the
randomized auction as follows.

Step 1), Computing the optimal fractional solution. The re-
laxed problem (11) can be solved efficiently using a standard
LP solution method, such as the simplex algorithm or the
interior-point algorithm. After solving (11), we obtain an
optimal fractional solution x∗.

Step 2), Decomposing fractional solution into integer solu-
tions. We have designed a 2-approximation algorithm veri-
fying an integral gap of 2 for the sub-problem. We use a
convex decomposition technique, which employs the approx-
imation algorithm as a plug-in module, to decompose the
fractional solution into a set of integer solutions, i.e., find
the combination weight µ where

∑
p∈J µp = 1, such that∑

p∈J µpx
p = min{2x∗,1} where J is the set of all feasible

integer solutions to (10). The exact decomposition assures
the sufficient and necessary condition of truthfulness stated
in Theorem 6 is satisfied.

To find µ, we solve the following linear program:
maximize

∑
p∈J

µp (13)

subject to:
∑
p∈J

µpx
p = min{2x∗,1} (13a)∑

p∈J

µp ≤ 1 (13b)

µp ≥ 0, ∀p ∈ J (13c)

However J has an exponential number of elements, which
make (13) have an exponential number of variables, and there-
fore directly solving (13) is difficult. We consider the dual of
(13) instead, which has an exponential number of constraints.
We derive the dual (14) by introducing dual variables ν and
η corresponding to (13a) and (13b), respectively.

minimize
∑
j∈Nt

min{2x∗
j , 1}νj + η (14)

subject to:
∑
j∈Nt

xp
jνj + η ≥ 1 ∀p ∈ J (14a)

η ≥ 0 (14b)

The ellipsoid method [28] can solve the dual efficiently
in polynomial time, even though it has exponentially many
constraints. We employ Alg. 5 as a separation oracle, which
can find violated constraints in the dual (14) and provide them
as hyperplanes to the ellipsoid method for cutting the solution
space. After receiving a polynomial number of hyperplanes,
the ellipsoid method can find the optimal solution to the dual.
During the process of the ellipsoid method, a feasible integer
solution to (10) is generated when a hyperplane is found.
Therefore, after optimally solving the dual (14), the decom-
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position (13) becomes a linear program with a polynomial
number of non-zero primal variables, which can be efficiently
solved using standard LP solution algorithms. The following
lemma ensures that the convex decomposition method can
correctly find a convex combination of integer solutions, i.e.,∑

p∈J νp = 1.

Lemma 4. [27] The decomposition technique can solve (13)
optimally in polynomial time with optimal objective value∑

p∈J µp = 1, meanwhile it finds a polynomial number
of feasible integer solutions xp to (10) as well as their
corresponding convex combination weights µp.

Briefly, if the optimal value of (14) is 1, then
∑

p∈J νp = 1
as well by the strong duality of linear program. Note that there
is a feasible solution (ν = 0, µ = 1) to (14). Thus the dual
(14) is at most 1. By exploiting the plug-in approximation
algorithm, we can find a contradiction if the dual (14) is strict
smaller than 1. During the process, violated constraints which
act as hyperplanes to the ellipsoid method are found in dual
(14).

Step 3), Winner determination and payment calculation. After
decomposing the fractional solution into a series of integer
solutions, we randomly pick an integer solution xp with its
corresponding combination weight µp as the probability. Let
Pj(bj) be the probability that tenant j with bidding price bj
wins. b−j be the all bids except (bj , rj). We compute the
payments according to the following sufficient and necessary
condition of truthfulness.

Theorem 6. [29], [30] A randomized auction with bids b
and payment f is truthful in expectation if and only if: for
any bidder j, i) Pj(bj) is monotonically non-increasing in bj;
ii)

∫∞
0

Pj(b)db < ∞; iii) E[fj ] = bjPj(bj) +
∫∞
bj

Pj(b)db.

We examine the three conditions one by one as follows:

1) Since xj is a binary variable, we have Pj(bj) = Pj(bj)×
1 + (1 − Pj(bj)) × 0 = E[xj ] = min{2x∗

j , 1}. For the
relaxed problem (11), increasing bj makes corresponding x∗

j

non-increase. Hence, min{2x∗
j , 1} is non-increasing in bj . So

Pj(bj) is monotonically non-increasing in bj ;

2) Any bid with bidding price higher than λtrj,t(fpeak+ft)
will be removed from the candidate set at the very beginning.
Therefore

∫∞
0

Pj(b)db =
∫ λtrj,t(fpeak+ft)

0
Pj(b)db < ∞.

3) For losing tenants, the payment is 0; for winning tenants,
the payment

fj = bj +

∫∞
bj

min{2x∗
j (b, b−j), 1}db

min{2x∗
j (bj , b−j), 1}db

We can verify that the payment satisfies condition iii) in
Theorem 6.

Theorem 7. The auction in Sec. V, is truthful in expectation
and achieves a (2+2c)-approximation ratio, where c is defined
in Theorem 4.

Proof: As the randomized auction satisfies the sufficient and
necessary condition in Theorem 6, it is truthful in expectation.

The expected social cost:

E[
∑
t

ftHt +
∑
j,t

bj,txj,t + fpeakHmax]

≤ 2OPT +
∑
t

E[
∑
j

bj,txj,t]

≤ 2OPT + 2OPTDt−Hmax ≤ (2 + 2c)OPT

where OPTDt−Hmax is the optimal cost of (11) when the
target is Dt − Hmax. The last inequality is due to the dual
fitting in Theorem 4.

VI. PERFORMANCE EVALUATION

Simulation Setup. We consider a practical scenario of a co-
location data center located in Vancouver, Canada, with 15
participating tenants. The maximum power demand of the co-
location data center is 21 MW. The data center is powered by
BC Hydro with a peak charge of $9.95/kW and a volume
charge of ¢4.86/kWh. We then generate a series of time
varying volume charge rate ft by adding randomness to the
volume charge of ¢4.86/kWh.

We next collect the hourly ambient temperature in Vancou-
ver from July 1, 2014 to July 31, 2014 [31]. Based on the
ambient temperature, we compute the pPUE according to the
fitting formula in (1). The time-varying curve, from July 1 to
July 7, 2014, is depicted in Fig. 3.

July 1 July 2 July 3 July 4 July 5 July 6 July 7
1.1

1.15

1.2

1.25

1.3

Time

pP
U

E

Fig. 3. pPUE values, generated based on the temperature in Vancouver from
July 1, 2014 to July 7, 2014.

The Hotmail and MSR workload traces [12] and the
Wikipedia workload trace [32], which are 24 hours long, are
used to drive the simulation. Since the trace data is limited,
we duplicate them with randomness of up to 20% to generate
the 15 tenants’ workloads for 30 days. All workloads are
normalized with respect to each tenant’s maximum service
capacity. Fig. 4 illustrates the three traces for a 48-hour period.
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Fig. 4. Normalized Workload.
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Based on the workload traces, we generate the power
demand Dt. The tenants can achieve energy reduction by
consolidating low workload machines and shutting down idle
machines. We assume that the machines in idle status consume
up to 50 % energy of their peak power, therefore the possible
energy reduction is (50%+50%×W )C−100%WC = 1−W

2 C,
where W is the normalized workload and C is the peak power
demand when W = 1.

A tenant’s cost is proportional to its total energy reduction.
We set the unit price to be ¢5 ∼ ¢8.5 /kWh at random, which
is more expensive than the volume charge.

Algorithms for the Pricing Approach. We set the price
offered by the co-location pt = κft, where by default κ = 3.
If bi,t/ri,t ≤ pt, then tenant i will participate in the energy
reduction by submitting ri,t to the co-location, where bi,t is
tenant i’s true cost.

We first compare the approximation algorithm in Alg. 1
with the offline optimum, as shown in Fig. 5. We observe that
Alg. 1 achieves almost the same Hmax as the offline optimum
does. Alg. 1 draws the same amount of energy from the grid
in most time slots, which verifies the correctness of Eqn. 5.

We next investigate the performance of the online algorithm.
Comparison between Alg. 1 and Alg. 2 is shown in Fig.
6. We have two key observations: i) Alg. 1 smooths the
demand evenly by the help of tenants; ii) Due to lack of future
information, Alg. 2 is unlikely to use high Ht; however the
peak demand Hmax finally approaches the optimal H∗

max as
the number of requests that the algorithm receives increases.
For example, Hmax reaches H∗

max at around t = 125h.
Next we compare the overall cost for one month, i.e., T =

2880, in Tab. III. The cost achieved by Alg. 1 is rather close
to the offline optimum, and is much lower than suggested by
the theoretically proven approximation of 2 in Theorem 1. We
also notice that the overall cost achieved by Alg. 2 is close
to the offline optimum as well, showing a competitive ratio of
1.09. That is also noticeably better than the theoretical bound
in Theorem 2, which is (1 + 2(κ + 1)/ρ) + 2 = 6.2, where
κ = 3, ρ = 2.5.

TABLE III
COST COMPARISON AMONG ALG. 1, ALG. 2, OFFLINE OPTIMUM AND A

SIMPLE APPROACH WITH NO SCHEME, UNDER BC HYDRO’S PRICING
SCHEME.

Volume Peak Payment Total
Charge ($) Charge ($) to tenants ($) ($)

Algorithm 1 385,000 146,737 12,365 544,102
Algorithm 2 314,811 146,694 130,026 591,531

Offline Optimum 384,697 146,757 12,560 544,014
No Scheme 412,417 185,568 0 597,985

We compare the volume charge, peak charge and the pay-
ments to tenants among Alg. 1, Alg. 2 and offline optimum,
under various pricing schemes used in Duke Energy, PG&E,
Mid American Energy and Georgia Power, respectively. The
results are illustrated in Fig. 7, Fig. 8, Fig. 9 and Fig. 10,
respectively. Both Alg. 1 and Alg. 2 achieve close-to-optimal
performance as compared with the offline optimum, under
all pricing scheme. Alg. 2 incurs higher costs than Alg. 1
due to lack of future information. We also observe that the
peak charge is the dominant cost under Georgia Power’s

pricing scheme, which is different from other three pricing
scheme. This is because the volume charge of Georgia Power
is an order of magnitude cheaper than other utility providers’.
More importantly, Alg. 2 achieves a better performance under
Georgia Power’s pricing scheme as shown in Fig. 10, closer
to the offline optimum, showing a competitive ratio nearly 1.
This is due to that Alg. 2 is sensitive to the peak demand raise,
and tries to avoid any unnecessary increase in peak demand.
Therefore Alg. 2 works better under a pricing scheme where
the peak charge is the dominant one.

We next compare the energy drawn from the grid by Alg. 1
under various κ, ranging from 1.4 to 4.4. Results are shown in
Fig. 11. When κ is small, i.e., the unit price pt offered by the
co-location is cheap, the system has to draw a large amount of
energy from the grid due to tenants not willing to offer energy
reduction. As κ increases, the amount of energy from the grid
decreases. We also compare the energy drawn from the grid
by Alg. 2 in Fig. 12, where similar trend is observed.

Algorithms for the Auction Approach. We compare the
performance of the algorithms in Sec. V with the offline
optimum.

In Fig. 13, Alg. 3 tries to save more energy than the
offline optimum does to lower the peak demand, making itself
spend more money in paying tenants’ energy reduction at most
time slots. However Alg. 3 does not memorize the maximum
demand so far, so the amount of energy drawn from the grid
is not stable over time. More importantly this makes Alg.
3 occasionally raise the peak demand to a high value, e.g.,
t = 125, but fail to utilize the raised peak demand in the
consecutive time slots. We also observe that the pattern of
the amount of energy drawn from the grid by Alg. 3 exactly
follows power demand D(t), i.e., it goes high as D(t) goes
high, and it drops as D(t) drops, which reveals that Alg. 3 is
not intelligent enough.

In Fig. 14, we compare the amount of energy drawn from
the grid by Alg. 4 and that by the offline optimum. We
observe that Hmax in Alg. 4 approaches H∗

max as t increases.
Compared with Alg. 3, Alg. 4 keeps tracking the maximum
demand so far, and resorts to the energy reduction from tenants
only when it would exceed the maximum demand so far.
Results show that Alg. 4 does act more intelligently than Alg.
3.

We run the randomized auction in Sec. 5.3 for 20 times to
obtain the average results. The amount of energy drawn from
the grid by the randomized auction is depicted in Fig. 15,
compared with Alg. 4. It follows the curve by Alg. 4 with a
bit of fluctuation, which results from the randomized selection
of integer solutions in the auction. We also observe that both
Alg. 4 and the randomized auction jump up a step at t = 125.
The reason is that the amount of energy drawn from the grid
has to jump as the energy reduction from the tenants can not
compensate the amount D(t) jumps at t = 125.

We next compare the monthly cost in each component, i.e.,
volume charge, peak charge and tenant cost, as shown in Fig.
16 and Tab. IV. Alg. 3 is the worst among them, but still
achieves 1.104 times the offline optimum, which is much better
than the theoretical worst-case competitive ratio in Theorem
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Fig. 5. Comparison between Alg. 1 and Offline
Optimum.
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Fig. 6. Energy drawn from grid, July 1-3, 2014.
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Fig. 7. Under Duke Energy’s pricing scheme.
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Fig. 8. Under PG&E’s pricing scheme.
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Fig. 9. Under Mid American Energy’s pricing
scheme.
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Fig. 10. Under Georgia Power’s pricing scheme.
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Fig. 11. Alg. 1 under various κ.
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Fig. 12. Alg. 2 under various κ.
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Fig. 13. Energy drawn from grid, under BC Hydro
pricing.
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Fig. 14. Comparison among power demand D,
Alg. 4, Offline Optimum, under BC Hydro’s pric-
ing scheme.
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Fig. 15. Comparison between Alg. 4 and the
Truthful Auction in Sec. 5.3.
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Fig. 16. Comparison between Alg. 4 and the
Truthful Auction in Sec. 5.3.

3 — 2 + ξ/(1− 1
ρ ) = 4, where ξ = 1.2, ρ = 2.5. Alg. 4 and

the Auction both have a competitive ratio of 1.01, better than
the theoretical worst-case competitive ratios in Theorem 4 and
Theorem 7, respectively. In the trace, c ≈ 1.49, then the ratios
are 3.49 and 4.98, respectively.

VII. CONCLUSION

We studied the online electricity cost minimization problem
at a co-location data center, considering that the electricity
billing model applied to a data center is nowadays based on
both the total volume consumed, and the peak consumption
rate. We consider two approaches to provide incentive for ten-
ants to shed energy consumption, for peak demand control. We

TABLE IV
COST COMPARISON AMONG ALG. 3, ALG. 4, THE TRUTHFUL AUCTION

AND OFFLINE OPTIMUM, UNDER BC HYDRO’S PRICING SCHEME.

Volume Peak Payment Total
Charge ($) Charge ($) to tenants ($) ($)

Algorithm 3 282,561 160,195 157,084 599,840
Algorithm 4 353,078 153,323 42,728 549,129

Truthful Auction 351,119 153,323 43,695 548,137
Offline Optimum 302,776 135,452 104,894 543,122

designed online algorithms based on primal-dual techniques
that exploit the salient feature of the data center electricity
charge model, and proved guarantees on their competitive
ratios. We further converted the online algorithm into an
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efficient auction mechanism that executes in an online fashion,
runs in polynomial time, and guarantees truthful bidding and
close-to-optimal social cost. Trace-driven simulation studies
further verified the efficacy of the proposed algorithms, show-
ing close-to-optimum performance in most cases that were
studied.
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