Optimizing Distributed Deployment of Mixture-of-Experts
Model Inference in Serverless Computing

Mengfan Liu*, Wei Wang', and Chuan Wu*
*Department of Computer Science, The University of Hong Kong
TDepartment of Computer Science and Engineering, The Hong Kong University of Science and Technology
Email: ml621 @connect.hku.hk, weiwa@cse.ust.hk, cwu@cs.hku.hk

Abstract—With the advancement of serverless computing, run-
ning machine learning (ML) inference services over a serverless
platform has been advocated, given its labor-free scalability
and cost effectiveness. Mixture-of-Experts (MoE) models have
been a dominant type of model architectures to enable large
models nowadays, with parallel expert networks. Serving large
MoE models on serverless computing is potentially benefi-
cial, but has been underexplored due to substantial challenges
in handling the skewed expert popularity and scatter-gather
communication bottleneck in MoE model execution, for cost-
efficient serverless MoE deployment and performance guarantee.
We study optimized MoE model deployment and distributed
inference serving on a serverless platform, that effectively predict
expert selection, pipeline communication with model execution,
and minimize the overall billed cost of serving MoE models.
Especially, we propose a Bayesian optimization framework with
multi-dimensional ¢-greedy search to learn expert selection and
optimal MoE deployment achieving optimal billed cost, including:
1) a Bayesian decision-making method for predicting expert
popularity; 2) flexibly pipelined scatter-gather communication;
and 3) an optimal model deployment algorithm for distributed
MOoE serving. Extensive experiments on AWS Lambda show
that our designs reduce the billed cost of all MoE layers by
at least 75.67% compared to CPU clusters while maintaining
satisfactory inference throughput. As compared to LambdaML
in serverless computing , our design achieves 43.41% lower cost
with a throughput decrease of no more than 18.76%.

I. INTRODUCTION

Serverless computing is a cloud computing paradigm that
the cloud providers elastically manage the provisioning of re-
sources (servers, containers, etc.) to deploy services according
to their user demand [1]. Serverless computing has been used
for serving data analytic applications such as web services
[1] [2]. In recent years, there has been an increasing trend
in adopting serverless computing for machine learning (ML)
services, particularly for model inference. For example, Gillis
[3] studies model partitioning and scheduling for large deep
neural network (DNN) inference on AWS Lambda [4].

Deploying ML inference services on a serverless platform
is more appealing than using traditional GPU/CPU clusters
for several reasons. First, it frees ML developers from man-
aging hardware resources and virtual machine/container en-
vironments, simplifying service deployment and maintenance
[5]. Second, its pay-as-you-go pricing model ensures cost
efficiency by charging only for resources actively used in
fine granularity, avoiding unnecessary costs for idle resources
[6]. Third, serverless functions have been provided to sup-

port parallelisms needed for large-scale ML model inference
like AWS Lambda Functions [4]. State-of-the-art commercial
serverless platforms largely support CPU services [4], [7]-[9].
Though GPU-based model inference has been preferred for
high serving performance, using CPUs for inference serving
has been a viable alternative, given that high-caliber GPUs are
often in shortage, and CPUs are more available and provide
substantial cost savings, while being able to meet application
service level objectives (SLOs) [10].

The Mixture-of-Experts (MoE) models have been a dom-
inant type of model architectures to enable large models
nowadays [11], achieving high model capacity without in-
creasing computation [12] [13]. To build a large model using
the MoE architecture, layers in a representative DNN model
(e.g., Transformer) are replaced by MoE layers. Each MoE
layer includes a gating network and multiple parallel expert
networks. During model inference, each input token to an MoE
layer is first evaluated by the gating network, which determines
the most relevant expert(s) to handle the token [11]. Then the
token is routed to the selected expert(s) for computation, and
the processing results are aggregated to produce the MoE layer
output. MoE models have been widely used to serve various
tasks, e.g., SwitchTransformer [11] for text generation.

Serving a large MoE model is resource intensive as it
requires substantial memory to deploy the parallel experts.
After deployment, devices incur costs even when idle, making
GPUs/CPUs more costly than using a serverless platform.
We advocate serving MoE models in a CPU-based serverless
platform, for labor and cost-efficient management of inference
serving, which has been underexplored. The main target for
MoE model deployment in a serverless platform is to minimize
the billed cost of all MoE layers in serving, for memory
usage and execution time of serverless functions that run the
MoE layers [4], [7]-[9]. Two major challenges arise for cost-
minimal distributed deployment of MoE model inference in a
serverless platform.

First, serverless functions are typically deployed with mem-
ory size configured before the service runs, and the skewed,
unknown-beforehand expert selection of input tokens com-
plicates proactive memory configuration of the functions. In
MoE serving, some experts (each run as a serverless func-
tion) receive many tokens for processing, while others do
not. Intuitively, popular experts should be run on serverless
functions with larger memory while non-popular ones use

less memory. Existing MoE serving solutions [14] [15] in
GPU/CPU clusters decide resource assignment for experts dur-
ing MoE inference, which is infeasible in serverless platforms.
Deploying a serverless function takes several minutes. The
first time after a serverless function is deployed, it takes a
long time for the function to start execution, due to resource
initialization (i.e., the cold start issue) [2]. This would cause
long delays in MoE serving if its serverless functions are
deployed according to the current demand, degrading the
efficiency inference serving. Therefore, the key challenge is
to efficiently and accurately estimate expert popularity before
the MoE inference service starts in a serverless platform.
This enables optimizing memory configurations for serverless
functions, thereby decreasing the billed cost of MoE serving.

Second, the scatter-gather communication for token-to-
expert routing and expert processing result aggregation at MoE
layers is time-consuming, that may block subsequent opera-
tions as non-MoE layers must wait for all experts to complete
their computation and communication [13]. Existing propos-
als on redesigning MoE scatter-gather communication with
pipelining [16] [17] in CPU/GPU clusters are inadequate in
serverless platforms. Direct inter-function transfers in a server-
less platform are constrained by platform-specified maximum
data transfer size (i.e., payload size), while indirect transfers
via external storage (e.g., S3 bucket for AWS Lambda [4])
take longer as the data must be saved to external storage and
then retrieved. Pipelining data transfer with model execution
is infeasible with direct transfers: a serverless function retains
no data between invocations (i.e., stateless property) and direct
data transfers from other functions require re-invocation of
the function each time; model parameters that a serverless
function uses are not retained during direct transfers and
hence need to be reloaded for each re-invocation, resulting in
significant time and memory waste. Indirect transfers between
serverless functions rely on external storage, incurring longer
communication time and higher cost, adding complexity to
pipelining design. This calls for novel communication designs
tailored to MoE inference in serverless platforms.

Tackling these challenges, we design a serverless MoE
inference solution that effectively predicts expert popularity,
pipelines MoE communication with model execution, and
optimally deploys MoE model for distributed inference, that
minimizes the billed cost of all MoE layers in MoE model
serving. We propose a Bayesian optimization (BO) framework
with multiple e-greedy search (GS) to learn expert popularity
and optimize MoE deployment for billed cost minimization.
Our main contributions are summarized as follows:

> We design a novel Bayesian decision-making approach
for expert selection prediction, including a comprehensive
token feature design, a novel posterior calculation approach,
and an adjustable key-value dataset table. We analyze the
MOoE inference process to extract relevant token features. The
posterior calculation incorporates real request distributions
to refine the posterior using profiled data. The key-value
dataset table is adjusted with new key-value pairs according
to feedback from model inference, which is used to update the

profiled data probabilities and improve prediction accuracy.

> We propose several scatter-gather communication de-
signs for a serverless platform: indirect transfers with flexible
pipeline operations via external storage, simple indirect trans-
missions without pipelining, and simple direct invocation of
serverless functions without pipelining. As different designs
perform the best in terms of execution time under different
scenarios, selecting a proper scatter-gather communication
design affects billed cost saving in serverless MoE inference.

> We formulate optimal deployment of distributed MoE in-
ference on a serverless platform into a mixed-integer quadrat-
ically constrained programming (MIQCP) problem, which
chooses one of the proposed scatter-gather communication
designs, sets memory configurations of expert serverless func-
tions, and determines the number of function replicas. We
design an optimal deployment selection (ODS) algorithm,
achieving a billed cost of all MoE layers upper bounded by a
constant ratio of the optimal solutions.

> We propose a BO framework with multiple -GS to opti-
mize expert selection predictions and distributed deployment
of the MoE model. The BO framework iteratively adjusts
the key-value dataset table for expert selection prediction
using feedback billed cost of all MoE layers in serving.
The expert predictions then serve as input for optimal MoE
model deployment, which further provides cost feedback for
dataset table update. The multiple e-GS balances exploration
of different key-value pairs in the dataset table and exploitation
of high-performing key-value pairs, in dataset table update.

> We implement our designs on AWS Lambda using Pytorch
and Optuna packages. Extensive experiments show that our
designs reduce the billed cost of all MoE layers by at least
75.67% compared to inference over CPU clusters, while
maintaining a satisfactory inference throughput by at least
43.41% compared to LambdaML [18] in serverless computing,
with a throughput decrease of at most 18.76%.

II. BACKGROUND AND MOTIVATION
A. Serverless Computing

Serverless functions are stateless, that they retain no data
from their previous execution. Serverless functions obtain
data inputs mainly in two ways: a function can directly
transfer output to another function as input when invoking
the latter, and a payload size limits the maximal data transfer
size between functions. When the data exceeds the payload
size, external storage is used for relaying data between two
functions [1] [3]. External storage can also store other data
needed by serverless functions, such as model parameters.

Serverless functions, along with external storage, Docker
image manager (e.g., ECR [19] for Amazon Lambda [4]), and
serverless function deployment manager (e.g., step function
[20] for Amazon Lambda [4]) can be used for ML inference.
As shown in Fig. 1, deployment of an MoE model for
inference serving on a serverless platform involves several
steps. First, the MoE model is partitioned. Next, each model
partition is built as a Docker image, which is then pushed to
the Docker image manager, with its model parameters stored

[@: model parameters : input/output data

@ : Docker image B: serverless function || @ & Sesrverlelss CFO mpgtmg
: expert : final MoE layer~° b ‘l: 10 o C\l/cr ess tuMncnon
: anon-MoE layer and a gate & & ocker Image eployment Manager
=P Manager

= £
o> j Split Models a % % E.
T Lﬁ‘ Save inference request External
Return output L_Storage |
Fig Overview of MoE model deployment on a serverless platform.

\ Cost 500

—s— Throughput

Cost(GBs) —
w
o
o
o

Throughput
(token/s)

o

0

CPU cluster AWS Lambda

Fig. 2. Billed cost of all MoE layers and inference throughput of a GPT-2-
based MoE model.

in external storage. Finally, each Docker image is assigned
to a serverless function and these functions are deployed into
the serverless platform by a serverless function manager. After
deployment, inference requests from service users are stored in
external storage and retrieved by the deployed MoE model for
inference serving. During inference, each serverless function
loads its model parameters and intermediate computation re-
sults from external storage, and saves intermediate results back
to external storage. Current commercial serverless computing
platforms [4], [7]-[9] are CPU-based. Therefore, we focus on
CPU-based serverless platforms in this paper.

Commercial serverless computing providers [4], [7]-[9]
generally charge users on the used memory during running
time of a serverless function at the unit of GB-second (i.e.,
GBs). We focus on the billed cost of serverless functions as it
represents the primary cost for MoE model inference, given a
fixed model size and inference request workload.

B. MoE Inference

Distributed MoE inference. Data and expert parallelisms
in distributed MoE serving necessitate communication across
multiple devices for input distribution and output aggregation.
FasterMoE [21] applies tensor slicing and pipelining design
to overlap all-to-all communication and computation in MoE
layers. PipeMoE [16] and MpipeMoE [17] study the pipeline
degree for tensor slicing to adaptively pipeline communication
and computation. The designs rely on the hardware architec-
ture of GPU/CPU clusters such as the memory layout , and
thus cannot be adopted on serverless platforms.

ML services in serverless platforms. Extensive research
focuses on optimizing ML model serving in serverless plat-
forms. Amps-inf [22] studies model partitioning to minimize
inference costs. Ali et al. [23] design a request batch queue
to reduce costs. Gillis [3] adopts model partitioning and
scheduling to accelerate DNN model inference, while Server-
lessLLM [24] focuses on fast multi-tier checkpoint loading and
optimized startup-time scheduling. DNN serving on serverless
platforms has been proven effective in meeting serving SLOs
and handling varying workloads. However, there is a lack of
designs for efficient MoE inference on a serverless platform.

C. Opportunities and challenges

Opportunity: MoE model inference in a serverless plat-
form can bring substantial cost reduction and satisfac-

Expert 1

Expert 0

0o 2 4 6 8 10 12 14 16 18
Number

Fig. 3. Number of tokens with token ID 10424 (from the Enwiki8 dataset)
routed to different experts at the 2nd MoE layer in Bert-based MoE model.

tory inference performance, compared to CPU cluster-based
inference serving. On a serverless platform, experts can be
individually assigned to serverless functions with different
memory size configurations, so that more resources are rented
for workload-heavy experts and less for workload-light ex-
perts. Serverless functions are only billed on assigned memory
when executing. However, the cost of a CPU cluster typically
depends on the amount of resources over a fixed coarse-
grained period (e.g., per month or per hour), so that costs
may still be incurred for idle resources. Fig. 2 shows the
billed cost of all MoE layers and inference throughput, when
a GPT-2-based MoE model serves 10,240 tokens from the
Enwiki8 [25] dataset. The CPU cluster uses two 64-core AMD
EPYC CPUs with 512GB of DRAM for the entire MoE model.
Each serverless function for MoE inference on AWS Lambda
is allocated 3008 MB of memory. The billed cost on AWS
Lambda is significantly lower than on the CPU cluster. The
throughput of MoE inference on the serverless platform is 22.9
tokens per second, substantially exceeding the human reading
speed of 3.3 tokens per second [26]. Hence, serverless-based
MoE inference presents a viable solution. Two challenges exist
on enabling efficient deployment and serving of an MoE model
on a serverless platform.

Challenge 1: Skewed, unknown-beforehand expert popu-
larity prevents proactive, accurate memory configuration
of serverless functions. The gating network routes tokens to
experts based on token features, e.g., position in the inference
request sequence, meaning of a word token, its roles in the
sequence (subject, object, verb, etc.) [27]. Expert selection
is unknown before actual token processing by the gating
network. Dynamic resource allocation, which decides compu-
tational resources for each expert based on real-time expert
popularity during inference, has been advocated for MoE
serving in GPU/CPU clusters [14] [21]. Serverless functions
require a long time to deploy (e.g., 1 minute or longer) and to
start execution (e.g., 5 seconds or longer) after deployment
[2]; on-demand dynamic function redeployment is largely
infeasible, which would substantially slow down inference
serving. This necessitates proper configuration of memory
sizes when deploying serverless functions before service starts,
requiring prior knowledge of expert popularity. Improper
memory configuration may either fail to meet the memory
demand during inference, or incur higher billed costs due to
unnecessary memory usage. FlexMoE [28] and Prophet [29]
use average historical expert popularity to adjust resources
among experts, but achieve low prediction accuracy as the
token-to-expert relationship is not explored. Cong et al. [30]
propose an LSTM-based algorithm trained on historical token-
to-expert mapping for expert selection prediction, but are
memory-intensive and require a long training time. Lina [27]

[y
o
o

Latency(s)

i
o
o

u

o

N
o
o

Latency(s)

/

—— Latency

|

—— Latency 130

Cost(GBs)
Cost(GBs)

Cost Cost

40

0 1

o

- |
Direct Indirect Direct Indirect

(a) 256 tokens (b) 2560 tokens
Fig. 4. Billed cost of all MoE layers and end-to-end inference time of a Bert-
based MoE model on AWS Lambda (tokens from Enwiki8 dataset; payload
size 6MB).

predicts expert popularity using the maximum a posteriori
probability based on historical token-to-expert mapping and
token ID information. Token ID is insufficient to fully identify
a token in token-to-expert mappings, as tokens with the same
token ID may be routed to different experts at an MoE layer,
as illustrated in Fig. 3.

Challenge 2: MoE scatter-gather communication renders
performance bottlenecks in serverless MoE inference. In
each MoE layer, scatter-gather communication often renders a
bottleneck as the non-MoE layer must wait for all experts to
complete their computation and communication. The direct
and indirect inter-function communication on a serverless
platform results in different billed costs and inference time. In
Fig. 4, MoE scatter-gather communication via indirect trans-
fers incurs higher cost and longer inference time than direct
transfers when serving a 256-token batch, due to the additional
function running time required for storing data in external
storage and retrieving data as input. Direct transfers cannot
be adopted when serving a 2560-token batch as the payload
size is exceeded; the serving cost under indirect transfers is
very high. While pipelining communication with computation
can typically alleviates this bottleneck in GPU/CPU clusters,
pipelining in a serverless platform needs to take its direct or
indirect data transfer modes into consideration, and be care-
fully designed to improve efficiency in a serverless platform.

III. DESIGN

A. System overview

We consider distributing an MoE model in a serveless
platform for inference. We adopt expert parallelism [13], [27]
by assigning each expert to a serverless function. Model
parallelism is adopted for non-MoE parts of the model with
each non-MoE layer assigned to a serverless function. We
mainly focus on the MoE layers since the non-MoE layers
are traditional DNNs extensively studied [3], [31].

We propose a Bayesian Optimization (BO) framework to
learn expert selection and optimal deployment of the MoE
model for inference serving. The goal is to minimize overall
billed cost of all MoE layers in serving. The BO framework
consists of a Feedback Processor to adjust expert selection
prediction, an Expert Selection Predictor, and a Policy Maker.
An illustration is given in Fig. 5. The expert selection predictor
provides expert predictions of inference tokens from a real-
world dataset on an inference task. This prediction is based
on the posterior distribution calculated from these tokens
and profiled data. The profiled data records the number of
times each token-to-expert mapping occurs across at least 100

Serverless Computing i Expert I N
-

(Data) Non-MoE Gat 7 T Expert 1= — Non-MoE Gat
Layer 1 SN P -7| Layer2 <

-
™ Expert 2~

External
Storage

C?st Deployment Policy

A Expert Selection
Feedback Processor — -vatue- > Expert Selection Predictor pert Seectio Policy Maker
dataset Prediction Results

Fig. 5. System Overview.

samples from the same real-world dataset, organized in a key-
value table. With the predictions, the policy maker decides
how to deploy the MoE model, configures the memory size
of each expert serverless function and adopts our scatter-
gather communication design. The feedback processor adjusts
the key-value pairs in the profiled table for improving expert
selection prediction, using feedback of the billed cost of all
MoE layers in serving. In each BO iteration, expert predictor
is adjusted, the policy maker decides optimal deployment of
the MoE model, and the billed cost is collected for feedback
processor’s key-value table adjustment.

When the BO algorithm converges, the MoE model is de-
ployed according to the learned expert popularity and optimal
deployment policy, and serves real-world inference requests.

B. Expert selection prediction

We carefully design token features by investigating more
token information during MoE inference. As Transformer
models are typically the backbone of MoE models [11], we
focus on Transformer-based MoE models.

For Transformer-based MoE models, token processing
mainly occurs in the embedding, encoder and decoder layers.
In the embedding layers and feed-forward networks in the
encoder and decoder layers, each token is embedded with
its own information and its position (e.g., word embedding
and position embedding). Thus, the token ID and position ID
can be extracted as token features. Each multi-head attention
layer in the encoder and decoder layers contains multiple self-
attentions. Each self-attention calculates the Query, Key, and
Value of the tokens to capture dependencies between tokens
in the token sequence. The dependencies are quantified by
the softmax attention scores, which indicate the relevance
of each token to the others. For each token, we extract
these dependencies as a token feature. The dependencies for
each token are simplified as the token ID of the token with
the highest sum of softmax attention scores across all self-
attentions at a multi-head attention layer, referred to as the
attention ID. The attention ID may vary before different MoE
layers, aligning with the diverse expert popularities at different
MoE layers. Therefore, the token features include the token
ID, the position ID, and the attention ID.

Our expert prediction through the BO framework is learned
on profiled data, which records the token-to-expert mappings
on at least 100 samples from a real-word dataset of inference
task. The profiled data are organized in a key-value table where
the keys are token-to-expert mappings and the values denote
their occurrence counts. Especially, we design a new posterior
calculation method and use the maximum posterior approach
to predict expert selection for new tokens, where the posterior
represents the probability of an expert given a token [27].

Assume f is the token feature vector of a token, in which
f; is the token ID, f; is the position ID and f3 is the attention
ID. The posterior given the token is P(N,,|f) with e € E,
where N, ; is the i-th expert in the expert set N, at MoE layer
e and E is the set of MoE layers in the MoE model. For a
new token that has not undergone MoE inference, its feature
f] is known but f} is unknown. The probability of f; at any
position is uniform, and the probability of f5 at any value can
be approximated by the probability of f; at that value, as the
attention ID f3 is the token ID with the highest attention scores.
We can obtain all probabilities related to f; from the profiled
data, the uniform probability P’ (f2) of f> at any value and the
probability P’(f3) of f3 at any value from tokens in the same
real-world dataset, that have not undergone MoE inference.

To leverage all token features for identifying a token ef-
fectively, we use Bayes’ theorem to design a new poste-
rior calculation method. The Bayes’ theorem P(N.;|f) =
P(f|Ne,;)P(Ne;)/P(f) describes how the posterior of an
expert selection given a token P(N,,|f) is updated with the
prior of the expert P(N, ;), the prior of the token P(f), and
the likelihood of the token given the expert P(f|N. ;). We
can involve P’(f2) and P’(f3) into the likelihood P(f]|N ;),
through the joint probability P(f], N, ;). For simplicity, we
multiply P’(f;) and P’(f5) with P(f],N, ;) as involvement.
Hence, the designed posterior calculation method is given by:

P (f{7 f2, f3)7)l(f3)

Ne;|f]) = *(Ne; |f1, f2, £ df:
PNeslf) / | elf o)y b
P (f1, £2)P'(f2) .

P () dfs,Ve € E,Vi € N, N

where P*(+) represents the probability calculated from profiled
data in the key-value dataset.

Therefore, we use the maximum a posterior method to
predict the expert selection for a token with f]:

fe = argmax, .y P(Ne,|fi), Ve € E, 2)

where i, is the predicted expert at MoE layer e. Eq. (2) can
be readily extended to top-k expert selection prediction.

C. Scatter-gather communication design

We design pipelined scatter-gather communication at the
MoE layer in a serverless platform for better cost reduction.

For a batch of tokens to serve, we set a pipeline degree (3
to split the batch for each expert into minibatches, where 3
is the maximal minibatch size. At each MoE layer, the gating
network routes the splitted minibatches to each expert and the
next non-MoE layer gathers processed minibatches from each
expert. If the minibatch size exceeds the payload limit, indirect
transfer is used; otherwise, direct transfer is adopted.

Pipelining is only achievable with indirect transfer via ex-
ternal storage on a serverless platform as serverless functions
are stateless. We use one block time to represent the maximal
overlap time of the indirect upload of a minibatch and the
download and calculation of the next minibatch. The block
time is determined by the pipeline degree 3: a larger § results
in fewer minibatches and longer block time. The benefits of

Expertl

[token routed to expert 2

2: token routed to expert 1
Gating Network 1 Non-MoE Laf er?2

(A} 77/ HINN L
Step2 Step4 Step3
External Storage

(a) With pipeline operation.

Expertl

[: token routed to expert 1

Gating Network 1

[J: token routed to expert 2

Non-MoE La%er 2

" Expert2
I
[z NS] (I 0 R
‘ Stepl Step2 Step3 Step4 ‘

External Storage
(b) Without pipeline operation.
Fig. 6. Scatter-gather communication with indirect transfers through external
storage: (a) with pipelining; (b) without pipelining. Pipeline degree 3 is 2.

[: token routed to expert 1 [: token routed to expert 2

Non-MoE Layer 2

Expertl

Gating Network 1

Expert2

Fig. 7. Scatter-gather communication with direct function invocation.

:Download model time from external storage
i:Upload data time to external storage
:Calculation time

:Start time of serverless function
B:Access delay to external storage
:Download data time from external storage

Stagel | Stage2 | Stage3 Stagel Stage2 Stage3
Gating Network | __ [Gating Newwork 1 [l
Expert 1 - Expert 1 L]
Expert 2 PP Expert 2 1
Non-MoE 2] TER Non-MoE 2

(a) With pipeline operation. (b) Without pipeline operation.

Fig. 8. Scatter-gather communication time with indirect transfers through
external storage: (a) with pipelining; (b) without pipelining.

pipelining can be reduced by the access delay to external
storage. We design three scatter-gather communication meth-
ods tailored for MoE inference on a serverless platform. Let
a. € A = {1,2,3} denote three communication methods at
MOoE layer e. We allow all experts at an MoE layer to use the
same method to simplify implementation. Three options exist.

e In the first option (a, = 1), the gating network splits
each expert’s input into minibatches and sends them to external
storage; at each expert, downloading a minibatch from external
storage and calculating this minibatch are overlapped with up-
loading the previous processed minibatch to external storage.
As shown in Fig. 6(a), after splitting input data into mini-
batches of one token each, two minibatches for two experts
are stored in external storage (step 1); these two minibatches
are downloaded from external storage and calculated by two
expert serverless functions, while the next two minibatches or
processed minibatches are stored in external storage (steps 2-
3); all processed minibatches are stored in external storage
(step 4) and then the next non-MoE layer downloads all
minibatches from external storage (step 5).

e In the second and the third options, data is indirectly
(ae = 2) or directly (a., = 3) transferred without pipeline
operations between the gating network and parallel experts, as
well as the parallel experts and the next non-MoE layer, as
shown in Fig. 6(b) and Fig. 7.

The total MoE layer time varies with different communica-
tion designs. Fig. 8 and Fig. 9 illustrate the execution time.
We will carefully make the choices in our distributed MoE
deployment problem.

:Start time of serverless function
B :Access delay to external storage
:Download model time from external storage

:Calculation time, |
:Direct transmission time

Gating Network 1

Expert 1]
Expert 2 §
Non-MoE 2 8

Fig. 9. Scatter-gather communication time with direct function invocation.

D. MoE model deployment

The policy maker decides optimal MoE model deployment
by making the following decisions:

e Memory size configuration for each serverless function.
Let M be the set of memory size options for each serverless
function (e.g., from 128MB to 3008MB on AWS Lambda)
Zesi; € {0,1} denotes if the j-th option in set M is selected
for expert ¢ in MoE layer e (1) or not (0). The processing time

of one token at expert ¢ in MoE layer e, is given by:
[M]

t8 =51 wei;U;, Ve € E,Vi € N, 3)
j=1
where s, ; € {0, 1} denotes if the expert is selected (1) or not
(0) for the token (given based on expert selection prediction),
and U is the time to process one token in an expert using the
j-th memory size option with the serverless function.

e Expert replication. As the maximal memory size of each
serverless function is limited, it is possible that it still takes a
long time for a popular expert to process tokens routed to it.
Given that an end-to-end inference time target should be met
in inference serving, we further consider replicating serverless
functions of experts and allow expert replicas to run in parallel
for toke processing. Let y. ;4 € {0,1} denote if expert i in
MOoE layer e has g serverless function replicas (1) or not (0),
where g = 1,...,G with G as the maximal possible replica
number. The number of tokens routed to one replica is 7, ; =
Zle Ye,i,gde,i/g, Where d.; denotes the number of tokens
routed to all replicas of the expert. Let D™ be the size of one
token and DP be the maximal payload size in the serverless
platform. When re,iDi“ > DP, direct transfer is not feasible
at MoE layer e (i.e, a. should be 1 or 2).

e Scatter-gather communication method and parameter (/3).
We seek to minimize the total billed cost of all MoE layers.
The billed cost of the gating network can be ignored here, as
it affects the cost of all MoE layers little: the memory size of
serverless functions for gating networks does not depend on
expert popularity, and the impact of communication methods
on the gating network’s execution time is also reflected in
expert execution time. Hence, we focus on experts for the
total billed cost of all MoE layers. The billed cost of MoE
layer e is then given by ¢, = (a. — 2)(ae — 3)cre + (ae —
1)(ae —3)ca.e + (ae —1)(ae — 2)cs,., where the billed cost of
MoE layer e under the com}\r/r{mnication method a. is:

Cace = D Seritacei D TeiyM;, Ve €E,Vac €A, (4)
i€ENe Jj=1
where M; represents the j-th memory size option in the set M,

and t,, ., is the execution time of all replicas of the expert:
G

tag.ei = Zygyi,ggtfje’i,ve €E,Vi e N.,Va. €A, (5

g=1

where tffp ¢.i 1s the execution time of one replica of the expert,

related to the selected scatter- gather communication method.
We give formulas of three cases in obtaining ¢, .

For pipelined indirect transfer, #y% , = TM + ¢k 4
ok Ve € E, Vi € N, where T!" = P LT consists
of the warm start time TStr the access delay to external storage
T and the model download time —++T with bandwidth B*
between the external storage and the function as well as the
parameter size P, ; of the expert. tf°% = T 4 [Tc 1](D0m)
includes the time to upload the last minibatch to external
storage and D" is the size of the processed result of one
token by an expert. 2% ; = T9 4 Bmax{D + e, DT}
denotes one worst-case block time. The other two cases (i.e.,
tyy.; and 15" ;) are derived based on Fig. 8(b) and Fig. 9.
Detalls can be found in our technical report [32] and omitted
due to space limit.

The latency, from the earlist time point when expert server-
less functions start or the gating network starts to transfer
each expert’s input, to the latest time when the next non-
MOoE layer finishes downloading the processed results of all
experts from external storage or model parameters with direct
transfer, is referred to as MoE-E2E latency tlat We have
i, = max{t}'?, T} + ¢33, Ve € E, where Tel"ad includes
the time to start the serverless function of the non-MoE layer
and download the model parameters, and #3'2 and ¢> are
derived based on Fig. 8(a) with superscript S as the Stage.
The other two cases (i.e., tlffe and tl‘“) are derived based on
Fig. 8(b) and Fig. 9. Details can be found in our technical
report [32] and omitted due to space limit.

The MoE-E2E latency at MoE layer e is given by tit =
(ae—2)(ae —3)tlat +(ae—1)(a —3)25lelt +(ae—1)(ae.— 2)t§ffe.
Optimal MoE deployment problem: We formulate optimal
deployment of MoE model inference in a serverless platform
to minimize the billed cost of all MoE layers (i.e., Y ce),
by jointly deciding the communication method (i.e., a.), mem-
ory size configurations (i.e. z. ;), expert replication (i.e. ye ;),
and parameter (3 for pipelined scatter-gather communication.

min » e (62)
eckE
subject to 3 — 5, (6b)
Pei+ MYT 4 rei(D™ 4+ D™)
||
<> @euiMj, Ve €E,Vi €N, (6¢)
j=1
Thead + Ttail + Z(t];t + T:IE) S Tlimit’ (6d)
ecE
< < p
LIS e)
(ae —3)(re,s D DP) <0,Ve € E,Vi € N.,Va. € A, (6f)
M G
> @iy =1,) Yeig=1Ve€E,VieN,, (6g)
j=1 g=1
Teyi; € {0,1},Ve € E,Vi € N, Vj € M, (6h)
Yeirg € {0,1},Ve € E,Vi € N, Vg € {1,...,G}, (6i)

BEZ, (6))

Here M, é"r{“ is the memory size of intermediate results during
an expert’s inference. 7™ is the time limit of end-to-end MoE
model inference (i.e., serving SLO). 7" is the execution
time of the first non-MoE layer. 7! is the execution time
of the last non-MoE layer, excluding the data transmission
time. TNE is the processing time of non-MoE layer e with the
subsequent gating network. (6¢) specifies the memory limit of
each serverless function, (6d) gives the end-to-end inference
time target of the MoE model, (6e) limits the maximal number
of tokens in each block in calculating the worst-case total
time, and (6f) prohibits direct tranfers when the payload size
is below transferred data size between the gating network and
experts, and between experts and the next non-MoE layer.

IV. THE BO FRAMEWORK

We now present our BO algorithm using the BO framework
to learn expert selection predictions and optimize MoE model
deployment, together with an efficient ODS algorithm to derive
optimal MoE model deployment by the policy maker.

A. Optimal MoE Deployment Algorithm

Given expert selection results, the optimal MoE deployment
problem in (6) is NP-hard [33] due to non-linearity and
discretized variables. We linearize max functions in (6a), (6d)
and (6e) by adding auxilliary variables (e.g., maxpeg{h} can
be linearized as ¢ > h, Vh € H). Then we solve each
MIQCP by a solver [34], respectively, and obtain costs c¢q e,
¢2,c and c3 ¢, Ve € E, from the three solutions. Based on these
solutions, we design an Optimal Deployment Selection (ODS)
algorithm to decide a. for each MoE layer, as follows.

For each MoE layer e, we select the communication method
a. with the lowest cost, and calculate the MoE-E2E latency
f{;‘: .- If the new MoE-E2E latency satisfies the end-to-end
inference time constraint, the optimal deployment policy for
the MoE model is obtained; otherwise, we identify the MoE
layer € with the highest latency, set the cost of the cor-
responding scatter-gather communication ag to infinity, and
then iteratively decide a. for each MoE layer. At most 2|E|
iterations are needed, as 3|E| solutions of d., Ve € E, are
provided, and selecting |E| solutions excludes up to 2|E|
other solutions. If all costs ¢, . become infinity, it implies
that mixing different communication methods across different
MoE layers do not work. In this case, we return the optimal
deployment policy with the lowest cost with all MoE layers
using the same scatter-gather communication method.

B. BO algorithm

BO is a statistical approach for global optimization of
a black-box function, including an objective, variables, a
surrogate function to simulate the objective, and an acquisition
method to update the variables. Our BO algorithm adjusts
the key-value table, recomputes expert selection predictions
and distributes MoE model deployment. The objective of our
BO is to minimize the billed cost of all MoE layers in the
serverless platform. The variables are @) key-value pairs in the

key-value table §2(-). The surrogate function uses a Gaussian
process to simulate the cost of all MoE layers deployed by
the policy maker based on expert selection prediction. For the
acquisition method, we design a decaying multi-dimensional
e-greedy search (GS) to set the variables for the next BO
iteration. Traditional single-dimension e-GS, as an acquisition
function, decays with each iteration and balances exploration
and exploitation of variables by selecting the best variable with
probability 1 —e and exploring new variable with probability e
[35]. However, as multiple key-value pairs in key-value table
are adjusted together in a single BO iteration, these pairs can
be viewed as multi-dimensional variables in our BO, which
makes a single-dimension ¢ insufficient to balance exploration
and exploitation in all dimensions. We extend e to a multi-
dimensional vector € € R%.

In BO learning, we obtain the objective on several batches
of inference data from an open-source real-world dataset [25],
[36], [37] (different datasets can be used for different MoE
inference tasks). When inaccurate expert selection prediction
occurs compared to the ground truth in the profiled data, we
set a limited range of key-value pairs to update as I, where L
includes all positive integers for values and all token-to-expert
mappings with token IDs limited to those present in these
batches for keys. We set a ratio u, and slow down the decay
of the split €;., of vector e from the first dimension to the
(#@-th dimension by multiplying €;.,o with a factor greater
than 1. The Ist to p@-th key-value pairs are then updated
using €1.,¢ by adjusting the values of keys in L, allowing for
more exploration on current low-performing key-value pairs.
Meanwhile, the u@ + 1-th through the last key-value pairs in
the variables are updated by either adjusting the values of keys
in P or by creating new key-value pairs in P using €,041.Q,
which enriches the key-value table. Here PP is similar to IL but
extensively includes all token IDs assigned by the tokenizer.

The BO algorithm with multi-dimensional e-GS is given as
follows. In the 7-th BO iteration, € decays by being divided by
1+ p7 with p > 0. The dataset table (2, is updated with key-
value pairs {z,_14,Vr_1,4}vge{1,...,0}» Where z = {f, e, i}.
Then expert selection is predicted. The policy maker produces
the optimal deployment policy using the ODS algorithm. For
the j-th batch in BO learning, at expert ¢ in MoE layer e,
if the difference between predicted count r®* and real count
Rrgﬁl of tokens assigned to one replica of this expert exceeds
a constant o > 0, token IDs fJ’»,0 of the j-th batch are
recorded for IL to adjust and three cases are discussed: (i) if the
minimal memory M™¥ for real expert popularity exceeds the
memory configuration of serverless functions, p; < p is used
to decrease the decay rate €, 1.,0, and ny5" is calculated to

€,
replicate expert ¢ for g%’ times to satisfy the minimal memory
Mreal; (ii) if the size of transferred tokens exceeds the payload
size under direct transfer, po < p; is used to decrease the
decay rate €;1.,¢, and n‘;e)’“ is calculated to replicate expert
i for ng%y times to ensure that the data size transferred to
each replica does not exceed the payload size DP ; (iii) if all
constraints in (6) are satisfied, p3 < ps is used to decrease

the decay rate €;1.,0, and we do not replicate expert 7 to

avoid increasing cost . The billed cost of all MoE layers c ;
is computed on the j-th batch data on the derived MoE model
deployment MoFE . Next, the historical set B in BO to record
variables and objectives is updated, and the key-value pairs to
adjust is updated by e-GS over B and the range of variables
P and L. BO iterations repeat until the change of the minimal
billed cost of all MoE layers within A consecutive iterations
is below the threshold (.

C. Theoretical Analysis

Theorem 1. ODS Alg. produces feasible MoE deployment in
O(|E|) time, which achieves a billed cost of all MoE layers
upper bounded by a constant ratio of the cost of optimal
solutions of (6).

Theorem 2. BO Alg. converges when the BO iteration index

satisfies T > plj_lf)l (1- g) with an abitrary

IIlane{l ‘‘‘‘‘ Q} E(qu
small positive constant § < MaXge (1, Qleo.q-

Theorem 1 indicates that the time complexity of ODS Alg.
scales linearly with the number of MoE layers. Theorem 2
shows that the BO algorithm converges to a constant bound.
The proof can be found in our technical report [32] and omitted

here due to space limit.

V. EVALUATION
A. Experimental Setup

Testbed. We run the experiments on AWS Lambda [4]. To
build MoE layer images, we use a Dockerfile to define the
environment with Python 3.8 and include packages such as
torch and transformers. We implement the BO algorithm with
package optuna [38] and MIQCP solvers with package gurobi
[34]. We use two S3 buckets of size 512MB each for external
storage. We adopt 14 discrete memory size configurations for
each serverless function: [128, 768, 960, 1152, 1344, 1536,
1728, 1920, 2112, 2304, 2496, 2688, 2880, 3008] MB. We
set the maximal possible number of expert replicas as 8.

MoE Models. Three common transformer-based dense lan-
guage models are converted to MoE models with all MLP
layers after attention layers converted to MoE layers and a
gating network of a linear layer: (1) Bert [39]: a 12-layer
encoder model with 110 million parameters, converted to 12
MoE layers, with each MoE layer having 4, 8, or 16 experts;
(2) GPT2 [40]: a 12-layer decoder model with 1.5 billion
parameters, converted to 12 MoE layers, with each MoE layer
having 4 experts; (3) Bert2Bert [41]: a 12-layer encoder-
decoder model with 247 million parameters, converted to 24
MOoE layers, with each MoE layer having 4 experts. We run the
fill-mask task [42] on Enwik8 [25] and CCnews [43] datasets,
and the translation task [44] on the Wmt19 [37] dataset for
the BERT model. We conduct the text generation task on the
Enwik8 and Lambda [36] datasets for the GPT-2 model and
on the Enwik8 dataset for Bert2Bert model.

B. Expert selection prediction

We first evaluate accuracy of expert selection prediction
learned by our BO framework, by calculating the average
absolute difference per expert between the real and predicted

1000{ == Ours

Difference

Bert 16 Basic GPT2 GPT2 Basic

Basic Bert Bert Bert Bert 8
Bert MOE Top-2 ccnews wmtl9 experts experts GPT2 MoE Top-2
translation

Fig. 10. Average difference per expert between real and predicted expert
selection numbers under different MoE models, datasets and tasks.

lambda Bert2Bert
MOE

[
o
o
o

2000

1000

Cost(GBs)
Cost(GBs)

0- 0
n=256 n=25600 n=256

n=2560
Num of tokens

n=2560
Num of tokens

n=10240

(a) Bert cost. (b) GPT2 cost.
Fig. 11. Billed cost of MoE layers with different scatter-gather communication
methods on AWS Lambda.

= = T
o 10257 — NoBO + TPE ©1.0000 — NoBO + TPE
©1.000 Ours * Single £-GS T Ours “ Single -GS
o - o
@® random 0.9975 @ Random
0.975 =

20 40 60 80 100 0 10 20 30 40 50 60 70
Batch index Batch index

(a) Bert cost. (b) GPT2 cost.
Fig. 12. Ratio of billed cost optimized by BO with different acquisition
functions over no BO.

- 1750.06 171212 =
2 Cost 2E
21000 { o 632.57 736.08 r2ose
g atency : 433.69 g%
o —— y y y T T ==
Serverless Serverless Serverless LambdaML CPU CPU
w real dist w predicted w predicted better
dist wo BO dist w BO Transformer
Categories
(a) Bert.
g — 7585.64 L2 E-E
1 ost ££
930007 o Latency 2690.22 | 9%
8 524.1 537.21 529.1 954.49 1,23
ge
Serverless Serverless Serverless LambdaML CPU CPU

better
Transformer

w real dist w predictedw predicted
dist wo BO dist w BO
Categories

(b) GPT2.
Fig. 13. Billed cost of all MoE layers and inverse of throughput under
different expert selection distributions on AWS Lambda and CPU clusters.

counts of tokens assigned to each expert. Fig. 10 shows the
difference across different MoE models, datasets, and tasks.
For a task on a dataset, we use 95% of this training set for
profiling and evaluate the difference on 10,240 tokens in the
testing set. Basic Bert MoE represents the Bert MoE model
with 4 experts per MoE layer and top-1 routing for the fill-
mask task on Enwiki8. Basic GPT2 MoE and Basic Bert2Bert
MoE cases are similar. Other cases are variations based on
these basic setups, e.g., GPT2 Lambda denotes the GPT2
basic setup but changes the dataset to Lambda [36]. Across
all cases, our method outperforms expert prediction in Lina
[27], as Lina only uses token ID as token feature while our
method incorporates token ID, position ID, and attention ID
to capture additional information for more accurate profiled
probabilities. Compared to top-1 routing, the results of top-2
routing show that increasing the value of k in top-k gating
significantly improves the prediction accuracy, as routing to
more experts allows prediction mistakes in one expert to be
corrected by the other. When the number of experts increases,
the average prediction difference decreases.

C. Scatter-gather communication

We next evaluate performance of our different scatter-gather
communication designs. We allocate 3008MB of memory to
each serverless function and use no expert replicas. Fig. 11
shows the billed cost of MoE layers under different commu-
nication methods. The results verify that the optimal scatter-
gather communication method varies depending on the number
of tokens. For 256 tokens, the direct transfer performs best
for both Bert MoE and GPT2 MoE. As the number of tokens
increases, either pipelined or non-pipelined indirect transfers
may perform better, while direct transfer becomes impractical
due to payload size limitations.

D. ODS algorithm

We deploy MoE model for inference using 10,240 tokens
on AWS Lambda. We check the billed cost of all MoE
layers using our ODS algorithm, an MIQCP method and a
random selection method, under different inference throughput
targets. The MIQCP method uses one MIQCP solver to
directly solve (6), and the random method randomly selects
the communication method at each MoE layer. We set the
target throughput by dividing 10240 tokens by the end-to-end
latency limit specified in (6). The time limit for searching the
optimal solution using the MIQCP approach is set to 180s;
for the ODS algorithm with three MIQCP solvers, the search
time limit is set to 60s. Our ODS algorithm outperforms other
methods. At higher target throughputs, the MIQCP method
fails to derive an optimal solution within 180s.

E. BO algorithm

For BO learning, we use 10,240 tokens from the Enwiki8
dataset to simulate the inference requests, and set () = 1000
key-value pairs to update in each BO iteration. After BO
learning, we test on 100 batches of inference requests from
the testing dataset with batch size of 10240 tokens. Due to the
long deployment time on AWS Lambda, we use simulation for
this set of evaluations. Fig. 12 shows the ratio of the billed
cost optimized by BO with different acquisition functions, to
that of no BO, respectively. No BO means that we do not use
the BO algorithm to adjust our expert predictor, and the expert
selection is predicted by the unadjusted predictor. The random
method randomly adjusts key-value pairs, the single e-greedy
sampler uses the same ¢ for all dimensions of the variables, and
the TPE [45] method samples on promising regions of variable
range based on probabilistic modeling. Our multi-dimension
€-GS performs best in terms of the billed cost for both Bert
MoE and GPT2 MoE models.

F. Algorithm overhead

We dissect the execution time of the expert selection pre-
dictor, the ODS algorithm and the BO algorithm. For expert
selection predictor, the time of profiling 100 batches of data is
around 28.89 seconds, and the prediction time on 10 batches
is around 20.31 seconds. The execution time of the ODS
algorithm with three MIQCP solvers is around 2.27s. Our BO
algorithm requires around 62.15s per iteration and converges
in around 1257.89s.

G. Overall performance

We then deploy MoE models on AWS Lambda and a CPU
cluster for inference serving of 10,240 tokens. The CPU cluster
consists of two 64-core AMD EPYC CPUs with 512GB of
DRAM. Fig. 13 shows comparisons under different expert se-
lection distributions (regarding the count of tokens assigned to
each expert) among: (1) Serverless with predicted distribution
optimized by BO: the optimal MoE deployement produced by
our BO framework; (2) Serverless with real expert selection
distribution: the optimal MoE deployment produced based on
ground truth of expert selections in the MoE inference; (3)
Serverless with predicted distribution without BO: the optimal
MoE deployment produced using predicted expert selection
that is not adjusted by the BO algorithm; (4) LamdaML
[18], which uses the maximum memory allocation for each
serverless function on AWS Lambda (3008MB) for inference
serving, requires no expert prediction, and uses no replicas
for each expert; (5) CPU: the MoE model is deployed in the
CPU cluster, with all experts at each MoE layer executing
concurrently, requiring no expert prediction; (6) CPU better-
Transformer: MoE deployment in the CPU cluster accelerated
by the CPU inference optimization betterTransformer [46],
through sparsity and fused kernels as Flash Attention.

For both Bert MoE and GPT2 MOoE, our serverless MoE
inference design consistently results in lower billed costs, as
compared to MoE inference on the CPU cluster. Specifically,
serverless MoE inference with predicted expert selection re-
duces the billed cost by at least 75.67% compared to CPU
cluster-based serving. The throughput in serverless-based MoE
serving remains significantly above human reading levels of
3.3 tokens per second [26]. The lower throughput in serverless
MoE serving compared to CPU cluster-based serving is mainly
because non-MoE layer computation is limited to the 3008MB
memory size of each serverless function, which is far less
than the 512GB available in a common CPU cluster. Among
serverless options, the predicted expert selection distribution
optimized by BO outperforms both non-BO methods and
over-provisioning with LambdaML. The BO-optimized expert
distribution not only reduces the billed cost by at least 43.41%
compared to LambdaML with at most an 18.76% decrease in
throughput, but also closely aligns with the cost of deployment
using the real expert distribution.

VI. CONCLUSION

We study optimized MoE model deployment on a serverless
platform to minimize the overall billed cost of serving MoE
models. We propose a BO framework with multi-dimensional
e-GS to learn expert selections. We design a novel approach
for expert selection prediction, propose scatter-gather commu-
nication designs, and design an ODS algorithm.

ACKNOWLEDGMENT

This work was supported in part by grants from Hong
Kong RGC under the contracts C7004-22G (CRF), C6015-
23G (CRF), 17204423 (GRF), 16210822 (GRF) and T43-
513/23-N (TRS).

[1

—

[2]

[3]

[4
[5]

[6]

[7

—

[8]
[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]

[21]

[22]

[23]

[24]

REFERENCES

C. Jin, Z. Zhang, X. Xiang, S. Zou, G. Huang, X. Liu, and X. Jin, “Ditto:
Efficient serverless analytics with elastic parallelism,” in Proceedings of
the ACM SIGCOMM 2023 Conference, 2023, pp. 406—419.

H. Zhang, Y. Tang, A. Khandelwal, J. Chen, and I. Stoica,
“Caerus:{NIMBLE} task scheduling for serverless analytics,” in /8th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 21), 2021, pp. 653-669.

M. Yu, Z. Jiang, H. C. Ng, W. Wang, R. Chen, and B. Li, “Gillis:
Serving large neural networks in serverless functions with automatic
model partitioning,” in 202/ IEEE 4l1st International Conference on
Distributed Computing Systems (ICDCS). 1EEE, 2021, pp. 138-148.
Aws lambda. [Online]. Available: https://aws.amazon.com/lambda/

A. Mampage, S. Karunasekera, and R. Buyya, “A holistic view on
resource management in serverless computing environments: Taxonomy
and future directions,” ACM Computing Surveys (CSUR), vol. 54, no.
11s, pp. 1-36, 2022.

S. Kounev, N. Herbst, C. L. Abad, A. Iosup, 1. Foster, P. Shenoy,
O. Rana, and A. A. Chien, “Serverless computing: What it is, and what
it is not?” Communications of the ACM, vol. 66, no. 9, pp. 80-92, 2023.
Google cloud functions. [Online]. Available: https://cloud.google.com/
functions/

Microsoft azure. [Online]. Available: https://learn.microsoft.com/azure/
Alibaba cloud. [Online]. Available: https://www.alibabacloud.com/

P. He, S. Zhou, C. Li, W. Huang, W. Yu, D. Wang, C. Meng, and S. Gui,
“Distributed inference performance optimization for 1lms on cpus,” arXiv
preprint arXiv:2407.00029, 2024.

W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling to
trillion parameter models with simple and efficient sparsity,” Journal of
Machine Learning Research, vol. 23, no. 120, pp. 1-39, 2022.

N. Du, Y. Huang, A. M. Dai, S. Tong, D. Lepikhin, Y. Xu, M. Krikun,
Y. Zhou, A. W. Yu, O. Firat et al, “Glam: Efficient scaling of
language models with mixture-of-experts,” in International Conference
on Machine Learning. PMLR, 2022, pp. 5547-5569.

S. Rajbhandari, C. Li, Z. Yao, M. Zhang, R. Y. Aminabadi, A. A.
Awan, J. Rasley, and Y. He, “Deepspeed-moe: Advancing mixture-of-
experts inference and training to power next-generation ai scale,” in
International Conference on Machine Learning. PMLR, 2022, pp.
18332-18 346.

J. He, J. Qiu, A. Zeng, Z. Yang, J. Zhai, and J. Tang, “Fastmoe: A fast
mixture-of-expert training system,” arXiv preprint arXiv:2103.13262,
2021.

M. Zhai, J. He, Z. Ma, Z. Zong, R. Zhang, and J. Zhai, “{SmartMoE}:
Efficiently training {Sparsely-Activated} models through combining
offline and online parallelization,” in 2023 USENIX Annual Technical
Conference (USENIX ATC 23), 2023, pp. 961-975.

S. Shi, X. Pan, X. Chu, and B. Li, “Pipemoe: Accelerating mixture-
of-experts through adaptive pipelining,” in JEEE INFOCOM 2023-1EEE
Conference on Computer Communications. 1EEE, 2023, pp. 1-10.

Z. Zhang, D. Yang, Y. Xia, L. Ding, D. Tao, X. Zhou, and D. Cheng,
“Mpipemoe: Memory efficient moe for pre-trained models with adaptive
pipeline parallelism,” in 2023 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS). 1EEE, 2023, pp. 167-177.
Lambdaml. [Online]. Available: https://github.com/DS3Lab/LambdaML
Ecr. [Online]. Available: https://aws.amazon.com/ect/

Step function. [Online]. Available: https://aws.amazon.com/
step-functions/

J. He, J. Zhai, T. Antunes, H. Wang, F. Luo, S. Shi, and Q. Li, “Faster-
moe: modeling and optimizing training of large-scale dynamic pre-
trained models,” in Proceedings of the 27th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, 2022, pp. 120-134.
J. Jarachanthan, L. Chen, F. Xu, and B. Li, “Amps-inf: Automatic model
partitioning for serverless inference with cost efficiency,” in Proceedings
of the 50th International Conference on Parallel Processing, 2021, pp.
1-12.

A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “Batch: machine learning
inference serving on serverless platforms with adaptive batching,” in
SC20: International Conference for High Performance Computing, Net-
working, Storage and Analysis. 1EEE, 2020, pp. 1-15.

Y. Fu, L. Xue, Y. Huang, A.-O. Brabete, D. Ustiugov, Y. Patel,
and L. Mai, “{ServerlessLLM }:{Low-Latency} serverless inference for
large language models,” in I8th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 24), 2024, pp. 135-153.

[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]

[41]

[42]

[43]
[44]

[45]

[46]

Enwik8. [Online]. Available: http:/prize.hutter].net/

K. Kotani, T. Yoshimi, and H. Isahara, “A machine learning approach to
measurement of text readability for efl learners using various linguistic
features.” Online Submission, 2011.

J. Li, Y. Jiang, Y. Zhu, C. Wang, and H. Xu, “Accelerating distributed
{MOE} training and inference with lina,” in 2023 USENIX Annual
Technical Conference (USENIX ATC 23), 2023, pp. 945-959.

X. Nie, X. Miao, Z. Wang, Z. Yang, J. Xue, L. Ma, G. Cao, and B. Cui,
“Flexmoe: Scaling large-scale sparse pre-trained model training via
dynamic device placement,” Proceedings of the ACM on Management
of Data, vol. 1, no. 1, pp. 1-19, 2023.

W. Wang, Z. Lai, S. Li, W. Liu, K. Ge, Y. Liu, A. Shen, and D. Li,
“Prophet: Fine-grained load balancing for parallel training of large-
scale moe models,” in 2023 IEEE International Conference on Cluster
Computing (CLUSTER). 1EEE, 2023, pp. 82-94.

P. Cong, A. Yuan, S. Chen, Y. Tian, B. Ye, and T. Yang, “Prediction is all
moe needs: Expert load distribution goes from fluctuating to stabilizing,”
arXiv preprint arXiv:2404.16914, 2024.

F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis, “{INFaaS}:
Automated model-less inference serving,” in 2021 USENIX Annual
Technical Conference (USENIX ATC 21), 2021, pp. 397-411.

Our technique report. [Online]. Available: https://arxiv.org/abs/2501.
05313

S. Elloumi and A. Lambert, “Global solution of non-convex quadrati-
cally constrained quadratic programs,” Optimization methods and soft-
ware, vol. 34, no. 1, pp. 98-114, 2019.

Gurobi optimization. [Online]. Available: https://www.gurobi.com/

G. De Ath, R. M. Everson, J. E. Fieldsend, and A. A. Rahat, “e-shotgun:
e-greedy batch bayesian optimisation,” arXiv preprint arXiv:2002.01873,
2020.

Lambda. [Online]. Available: https://huggingface.co/datasets/cimec/
lambada
Wmtl9. [Online]. Available: https://huggingface.co/facebook/

wmtl19-en-de

Optuna. [Online]. Available: https://optuna.org/

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAl blog,
vol. 1, no. 8, p. 9, 2019.

C. Chen, Y. Yin, L. Shang, X. Jiang, Y. Qin, F. Wang, Z. Wang, X. Chen,
Z. Liu, and Q. Liu, “bert2bert: Towards reusable pretrained language
models,” arXiv preprint arXiv:2110.07143, 2021.

Fill-mask task. [Online]. Available: https://huggingface.co/tasks/
fill-mask

Ccnews. [Online]. Available: https://huggingface.co/datasets/cc_news
Translation task. [Online]. Available: https://huggingface.co/docs/
transformers/tasks/translation

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-
parameter optimization,” Advances in neural information processing
systems, vol. 24, 2011.

better transformer. [Online]. Available: https:/pytorch.org/blog/
a-better-transformer-for- fast-transformer-encoder-inference/

	Introduction
	Background and Motivation
	Serverless Computing
	MoE Inference
	Opportunities and challenges

	Design
	System overview
	Expert selection prediction
	Scatter-gather communication design
	MoE model deployment

	The BO Framework
	Optimal MoE Deployment Algorithm
	BO algorithm
	Theoretical Analysis

	Evaluation
	Experimental Setup
	Expert selection prediction
	Scatter-gather communication
	ODS algorithm
	BO algorithm
	Algorithm overhead
	Overall performance

	Conclusion
	References

