
Fair Rewarding in Colocation Data Centers: Truthful
Mechanism for Emergency Demand Response

Qihang Sun†, Chuan Wu†, Shaolei Ren‡ and Zongpeng Li§
†Department of Computer Science, The University of Hong Kong, Email: {qhsun,cwu}@cs.hku.hk

‡School of Computing and Information Sciences, Florida International University, Email: sren@fiu.edu
§Department of Computer Science, University of Calgary, Email: zongpeng@ucalgary.ca

Abstract—Reducing servers’ power usage in data centers
upon utility’s request has been emerging as a valuable demand
response resource for enhancing power grid’s efficiency and
reliability, especially during emergency events (e.g., extreme
weather) that result in electricity production shortage and put
the grid in jeopardy. Nonetheless, for demand response in multi-
tenant colocation data centers, operators may have to lever-
age expensive and environmentally-unfriendly diesel generation,
because individual tenants manage their own servers’ power
usage without coordination and are typically charged by data
center operators based on fixed power contracts that provide no
incentives for demand response. This paper focuses on emergency
demand response (EDR) and proposes an auction-based incentive
mechanism, called FairDR, that incentivizes and coordinates
tenants’ energy reduction through financial rewards for enabling
cost-effective and low-carbon EDR in colocation data center.
FairDR decides tenants’ energy reduction online without knowing
a priori the future energy reduction requirements. It is proved
that FairDR ensures tenants’ truthfulness in the auction process,
attains a bounded overall cost saving compared to the offline
optimum which knows all the demands, and guarantees fairness
(i.e., similar rewards are offered if tenants reduce the same
amount of energy) that is largely absent in the existing auction
mechanisms. Finally, trace-driven simulations are performed to
validate our analysis and demonstrate that FairDR outperforms
the existing mechanisms by improving fairness and achieving a
good cost saving that is comparable to the offline optimum.

I. INTRODUCTION

Large-scale data centers are power-hungry but highly-
automated facilities, having a huge yet flexible power de-
mand (e.g., through deferrable workload shifting/migration).
While the huge power appetite is unpleasant by itself, the
great flexibility in data center’s power consumption has been
emerging as an ideal resource for demand response, especially
for emergency demand response (EDR) where the power grid
coordinates large electricity users for energy reduction in
emergency situations (e.g., continuous snow storms as recently
in east U.S.) [1], [2].

While data center demand response has been investigated
by numerous studies as well as validated through field tests
(see [1], [3] and references therein), a vast majority of the
existing efforts focus on owner-operated data centers (e.g.,
Google data centers), where operators fully control the entire
data center (including both servers and facility). By significant
contrast, we investigate demand response in another distinct
type of data center — colocation data center (or simply
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called “colocation”) — where multiple tenants manage their
own physical servers while the operator is only responsible
for managing the facility, e.g. the cooling system and the
power supply. Colocation is much less investigated than owner-
operated data centers but very common in practice: by Febru-
ary 2015, there are more than 1,400 colocation data centers in
the U.S. [4]; furthermore, most of the large data centers are
colocations [5]. More importantly, unlike mega-scale owner-
operated data centers, many colocation data centers are located
in populated areas, such as Silicon Valley and New York
city [4], where demand response is even more important (due
to high power demand) than in rural areas, especially in case
of emergency.

Although critical for power grid’s efficiency, reliability and
sustainability, demand response faces a unique challenge in
colocation data centers, since individual tenants manage their
own servers without coordination and sign long-term contracts
with the operator based on reserved power capacities at fixed
rates [6] that provide no incentives for participating in demand
response. Thus, unlike owner-operated data centers that can
easily modulate servers’ power usage (e.g., through CPU fre-
quency control), the colocation operator may have to leverage
expensive and/or environmentally-unfriendly diesel generation
to reduce grid power usage for demand response [7].

This paper aims at enabling cost-effective and low-carbon
demand response in colocation data centers through an efficient
mechanism that incentivizes and coordinates tenants to volun-
tarily cut their servers’ power usage. In particular, we focus on
EDR, which serves as the last line of defense for protecting
the grid against cascading blackouts and, as of 2013, has taken
up 87% of all demand response capacities across the U.S. [8].
EDR is also quickly growing as extreme events (e.g., weather,
demand spikes) become increasingly frequent. For example,
in PJM, a primary regional transmission organization in the
U.S., the total capacity of EDR energy reduction increases
from 1,700MW to 10,800MW during 2006-2011 [9]. When
EDR is triggered during an emergency event, multiple random
energy reduction signals may arrive from the power grid over
time (often hourly), depending on how long the emergency
situation lasts. For example, on January 7, PJM’s power grid
issued energy reduction signals 11 times due to extremely low
temperatures; on September 10, 2013, unusually hot weather
triggered 4 energy reduction signals within PJM’s service
area [10]. Nonetheless, as shown later, unknown and random
energy reduction signals arriving online create significant tech-
nical challenges for our mechanism design.

This paper designs an auction mechanism, called FairDR,
to respond to the entire sequence of energy reduction signals
for EDR in colocation data centers. A salient feature of FairDR978-1-4673-7113-1/15/$31.00 2015 IEEE



is that the bidding information (e.g., tenants’ willingness to cut
power) is collected only once from the tenants, while tenants’
actual energy reduction is decided online upon the arrival of
each EDR signal, without knowing any future signals. Our
specific contributions are summarized as follows:

B We formulate and investigate the problem of energy reduc-
tion allocation among tenants during EDR in a colocation
data center, with the goal of maximizing social cost saving.
The innovation of the model lies in that: we consider a real-
istic EDR scenario where multiple energy reduction signals
are often triggered over a time window (e.g. eight hours),
and achieve truthfulness throughout the auction period (the
entire EDR process) in an online manner without prior
knowledge of future signals.

B We design FairDR based on an effective two-level random-
ization strategy in its tenant selection and reward pricing.
Regardless of the energy reduction requirements, FairDR
guarantees that truthful bids are always reported by tenants
and similar rewards are offered to tenants with similar
energy reduction (i.e., fairness). In addition, FairDR reduces
colocation’s cost for EDR as opposed to the diesel-only
solution in an online manner, its online decisions for
allocating energy reduction to tenants attain an expected
competitive ratio of ≈ 3.2 under realistic settings in terms
of overall social cost saving, as compared to the offline opti-
mum in the entire EDR span. To the best of our knowledge,
this represents the first efficient mechanism to handle online
EDR signal arrivals with long-term performance guarantees.

B We compare FairDR with the existing best-known algo-
rithm for colocation EDR, i.e., Truth-DR [11]. We show
that FairDR achieves almost perfect fairness in rewarding
yet incurs little cost increase compared to Truth-DR.

The rest of the paper is organized as follows. We present
the problem model in Sec. II. In Sec. III, we identify the
design challenges, develop the detailed auction mechanism,
and provide theoretical analysis of its properties. Simulation
results are presented in Sec. IV. We discuss related work and
conclude the paper in Sec. V and Sec. VI.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Problem Model

We consider a colocation data center with N tenants,
operated by a colocation operator. The tenants rent space and
power from the operator, to house their own servers. Suppose
the EDR lasts for an overall duration of T time slots (which can
also be the maximum duration that the colocation data center
has agreed to participate as stipulated by contracts). Multiple
(random) reduction signals arrive online throughout [1, . . . , T ].
Let st denote the amount of energy reduction required at
t ∈ [1, . . . , T ]. We use st = 0 to indicate that no reduction
signal is received at t. Note that the data center typically
sign contracts with grid operators and is required to fulfill the
energy reduction signal for EDR, while non-compliance incurs
heavy penalties [9].

To incentivize tenants’ server energy reduction as a (possi-
bly partial) substitute of diesel generation for EDR, the colo-
cation operator needs to offer financial rewards to participating
tenants. In our study, the colocation operator performs an
auction to allocate the energy reduction st > 0,∀t = 1, . . . , T ,

to tenants and pays monetary remuneration accordingly. Here,
the operator is the auctioneer with online arrivals of “supply”
(i.e., energy reduction requests), while the tenants are bidders.

We investigate a bidding model where the operator solicits
bids from the (voluntarily participating) tenants only once
through the whole course of the EDR, upon the start of the
EDR. In particular, a bid from tenant i ∈ N = {1, 2, . . . , N}
is a three-tuple (ei, ci, bi): ei denotes the agreed maximum
overall energy reduction by tenant i throughout the entire
course of the EDR, ci is the maximal amount of energy that
tenant i is willing to cut per time slot,2 and bi is the cost
per unit energy reduction claimed by tenant i. We use vi to
represent the true unit cost of tenant i, and as shown later, our
mechanism design will guarantee bi = vi.

Such a bidding model is reasonable as follows: (1) It is
practically more difficult for a tenant to come up with multiple
bids (if bids are solicited repeatedly upon arrival of each reduc-
tion signal), while deciding one bid for the entire EDR is more
realistic, leading to easier adoption of the auction mechanism.
(2) With a great flexibility in delay-tolerant workloads (e.g., by
rescheduling job execution or routing some workload to other
data centers), a tenant can readily modulate its energy usage
and also estimate its overall energy reduction capability based
on predicted workloads throughout the estimated duration of
the emergency event. We also allow each tenant to set an
upper bound on the energy reduction per time slot, in order to
maintain the performance and/or continuity of its services, and
such upper bound is naturally limited by the tenants’ maximum
energy usage per time slot. For example, a tenant’s peak power
usage is 200kW, its average power consumption for maintain-
ing satisfactory service performance is 80% of the peak power,
and the maximal power to cut per time slot is 45% of the peak
power, in order to maintain a satisfactory performance level;
given an 8-hour EDR event divided into 8 hourly time slots,
the tenant can set its ei = 200 ∗ (1 − 80%) ∗ 8 = 320kWh
and ci = 200 ∗ 0.45 =90kWh (per hour). (3) The true cost of
the tenant can be estimated at the tenant’s own discretion, e.g.,
based on the wear-and-tear cost for turning servers on and off
and/or the service performance degradation incurred.

Based on the collected bids, the operator decides, upon
receiving each reduction signal st > 0 from the power grid,
the tenant(s)’ energy reduction xi in the upcoming time slot,
without exceeding the tenant’s overall allowed energy reduc-
tion ei and energy reduction limit ci per time slot. The operator
also computes the reduction reward pi for each selected tenant
i per unit of energy reduction. In the case that the tenants’
aggregate energy reduction is not enough to fulfill the required
amount st, the operator resorts to its diesel generator to cover
the shortage, at the cost δ for producing a unit of energy [7],
[12].

B. Target Properties

We aim to achieve the following properties through mech-
anism design.

(i) Truthfulness, which guarantees that bidding its true cost
is the best strategy for each tenant, is a much desired property

2Reducing server energy also proportionally reduces non-IT energy (e.g.,
for cooling), which is attributed to tenants for notational convenience.



for mechanism design. Let ui = (pi − vi) × xi denote the
utility of tenant i, where pi is the offered reward and vi is the
true cost per unit energy reduction. We define truthfulness in
the following.

Definition 1. (Truthfulness) Our auction is truthful if each
tenant i ∈ N achieves the largest utility ui throughout the
EDR event by reporting its true cost for each unit of power
reduction, i.e., bi = vi, regardless of the bids of other tenants.

(ii) Fairness in rewards. Our mechanism seeks to reduce
the variance in rewards per unit energy reduction offered to
different tenants. Such fairness is desirable to avoid significant
reward differentiation among tenants. Nonetheless, fairness is
rarely ensured in existing mechanism designs, which typically
determine each winner’s reward based on other tenants’ bids
in order to guarantee truthfulness and, consequently, provide
different prices to different bidders even though they ask for
the same allocation [11], [13]. By contrast, our mechanism
addresses the less-studied reward fairness throughout the EDR
event, in addition to truthfulness and social cost that are more
common in the existing literature.

(iii) Social cost saving maximization. Let R represent
the total amount of required energy reduction throughout
the EDR event, i.e., R =

∑T
t=1 st. The overall cost of

the colocation operator can be computed as the sum of the
rewards to the tenants and the overall cost due to diesel
generation to cover the shortage in energy reduction, i.e.,∑
i∈N pixi + δ(R −

∑
i∈N xi). The net cost of a tenant i

is the cost due to energy reduction minus the reward from the
operator, bixi − pixi (assuming bi = vi, which is guaranteed
by our mechanism). Hence, the overall social cost in the
colocation is the sum of the costs of the operator and tenants,∑
i∈N bixi + δ(R−

∑
i∈N xi).

Without tenants’ participation in EDR through server en-
ergy reduction, the social cost would be the cost in using
diesel generators to completely fulfill all the required energy
reduction, which is δR. Hence, the social cost saving is
δR−(

∑
i∈N bixi+δ(R−

∑
i∈N xi)) =

∑
i∈N (δ−bi)xi. Our

mechanism design aims to maximize this social cost saving,
which facilitates the analysis and is essentially equivalent to
minimizing the social cost.

III. DEMAND RESPONSE AUCTION WITH ONLINE
REDUCTION SIGNAL ARRIVALS

We now present our auction algorithm for energy reduction
allocation and tenant rewarding, as well as theoretical analysis
on its properties.

A. Auction Algorithm

Before an EDR event is anticipated to occur, our auction
algorithm chooses some tenants as eligible tenants, i.e., those
which will receive an opportunity to reduce energy consump-
tion and get rewarded. The algorithm also decides the reward
to be offered to each selected eligible tenant. Then, as the
EDR event proceeds, whenever an energy reduction signal
arrives, the algorithm selects the actual tenant(s) among the
eligible tenants and decides the amount of energy reduction
each selected tenant should cut. The details of the algorithm
are described in the following.

TABLE I. NOTATION

N # of tenants
N the set of tenants
ei maximally agreed, overall amount of energy reduction by

tenant i
bi claimed cost per unit energy reduction at tenant i
vi true unit cost of tenant i
xi actual amount of energy reduction by tenant i
pi per-unit reward to tenant i
ui total utility of tenant i
S sorted sequence of claimed per-unit costs in nondecreasing

order
∆bmax maximal difference between two adjacent per-unit bids in S
emin minimum among overall energy reduction capacities of all

tenants
U maximal ratio of overall energy reduction capacities of any

two tenants
δ per-unit cost using diesel generators
R total amount of energy reduction from all reduction signals
m sum of all tenants’ overall energy reduction capacities
E the set of eligible tenants
A the random permutation of E
ci maximal amount of energy to cut per time slot at tenant i
st amount of energy reduction requested in signal at t
α the minimal ratio of ci to ei, ∀i ∈ N

Eligible tenant initialization

Let m denote the sum of maximum amounts of energy
reduction of all tenants through the entire course of the EDR,
i.e., m =

∑N
i=1 ei. The eligible tenant selection steps proceed

as follows:

1) Pick q among the set of numbers
{

21, 22, . . . , 2i, . . . ,m
}

uniformly at random, which represents the maximal, total
amount of energy that the operator will ask tenants to cut
through the entire course of the EDR.

2) Sort all tenants by the per-unit claimed cost in non-
decreasing order.

3) From the start of the ordered sequence, find the mini-
mal continuous sub-sequence where the sum of tenants’
energy reduction capacity (ei) is not less than q. The
tenants in this sub-sequence, denoted by E , are the eligible
tenants.

4) Obtain a random permutation of the sequence E , and
denote the permutation by A.

Intuitively, we should select tenants with low claimed costs
(per unit energy reduction) as eligible tenants, to maximize
social cost saving. In order to avoid tenants underclaiming
their costs to get selected (truthfulness guarantee), we make
the order of tenant selection independent of their claimed
costs, using a randomization step (step 4 above). We should
not randomize the entire sequence of N tenants in order to
ensure that we are still mostly allocating power reduction to
tenants with low costs (for cost saving guarantee), but only
the subset of eligible tenants (picked on non-decreasing order
of costs in steps 2 and 3), which may very likely be called
on to reduce energy consumption during the EDR event. Such
a randomization need explains why we need to pre-select the
set of eligible tenants at the very beginning. To decide the
set of eligible tenants, we need to ‘guess’ the total amount
of energy reduction from all future signals that may arrive, q.
By making a guess in this way (Step 1 above), the guessed



Fig. 1. An example on computing fj and f−i
j .

total amount of energy reduction is not less than half, nor more
than twice of the actual amount. Our algorithm does not rely on
any future information for this purpose, but only make a rough
random guess (step 1) of q between 2 and m – overall possible
energy cut from all tenants. With the proceeding of the EDR
event, q may turn out to be larger than the actual total amount
of energy reduction requests from the power grid (

∑T
t=1 st),

in which case not all the eligible tenants in the permutation
sequence A will be called on; q may also be possibly smaller
than the actual total energy reduction request, in which case
q−
∑T
t=1 st will be covered by energy produced by the diesel

generator. Nevertheless, we will be able to bound the ratio
between the social cost saving achieved by our auction and
the offline optimum, to be shown in Sec. III-B3.

Tenant rewarding

We compute the per-unit-energy-reduction reward for each
eligible tenant at the beginning of the EDR event as

pi =

∑
j∈{N\i} bjf

−i
j −

∑
j∈{N\i} bjfj

fi
(1)

where fj denotes the maximally possible amount of energy
reduction that a tenant j can be allocated, and f−ij is the max-
imally possible amount of energy reduction that a tenant j can
be allocated if tenant i does not participate in the auction, both
calculated according to q and ei without considering per-time-
slot energy reduction capacity ci of each tenant i. Intuitively,
the reward computed in (1) is a VCG price computed using
fis, the maximal possible amount of energy reduction which
can be allocated. For an ineligible tenant j, we define fj = 0.
Fig. 1 illustrates the computation of fj and f−ij , where each
sequence of blocks represents the maximally allowed energy
reduction amounts of all tenants (suppose tenants 1, 2, . . . ,
are already sorted in non-decreasing order of claimed per-
unit costs). Suppose q = 8, ei = 2, ej = 3, blocks in blue
denote potential energy reduction during the EDR event and
the corresponding tenants are eligible tenants. In the case that
tenant i participates in the auction, tenant j is not eligible, and
fi = 2, fj = 0; if tenant i is not a participant, tenant j would
be eligible and f−ij = 2.

The reward pj is set to the per-unit-energy-reduction ex-
ternality of tenant i (in the ideal case without considering
ci’s), as the overall cost difference of all tenants other than
i when tenant i does not participate in the auction and when
it participates, divided by the maximally possible amount of
tenant i’s energy reduction. Suppose the claimed unit cost of
tenant j is bj = 5 in the example in Fig. 1. Tenant i’s total
reward pifi equals the claimed cost for tenant j to reduce 2
units of energy consumption, i.e., bj ∗ 2 = 10, and hence the
per-unit reward of tenant i is 10/fi = 5.

Fig. 2. An example on power reduction allocation: c1 = 2, c2 = 3.

We will show such a rewarding strategy guarantees both
truthfulness and fairness in the auction, even if no per-time-
slot energy reduction limits of tenants are involved. This per-
unit reward for each eligible tenant is independent from the
reduction signals, and can be easily computed at the beginning
of the EDR event and immediately offered to tenants after they
have completed their energy reduction upon each signal.

Winner determination and energy reduction allocation

Whenever an energy reduction signal arrives, the coloca-
tion operator chooses top-ranked tenants in the permutation
sequence A, maximally allocates the energy reduction amount
st > 0 to the tenants according to their sequence in A, as
long as the overall energy reduction capacity ei and per-time-
slot energy reduction capacity ci of a tenant are not exceeded.
Fig. 2 illustrates the allocation process where A includes
tenant 1 and tenant 2, and two reduction signals arrive at time
slot 1 (s1 = 6) and time slot 2 (s2 = 3), respectively. We have
c1 = 2 and c2 = 3 which are fixed, and e1 = 5 and e2 = 4
initially, which will be reduced when the respective tenant
has reduced some energy consumption. Each table at the start
(end) of an arrow shows ei and xi of the two tenants before
(after) the arrival of the signal marked on the arrow. When
s1 arrives, tenant 1 is allocated two units of energy reduction
due to the limitation of c1, tenant 2 is allocated three units,
and the remaining one unit is fulfilled by the diesel generator;
when s2 arrives, tenant 1 is allocated two units and tenant 2
one unit because there is only one unit left in e2, and tenant
2 is removed from A after it has reduced energy consumption
up to the initial e2.

The complete auction algorithm, FairDR, is given in Alg. 1.

B. Theoretical analysis

1) Fairness in rewards: To show fairness of FairDR, we
show the following theorem that bounds the difference in
reward rates offered to different tenants, while our numerical
results in Section IV will demonstrate that the actual difference
is much smaller in practice.

Theorem 1. With FairDR, the winning tenants receive similar
per-unit rewards, and the difference between pi and pj of
any two winners is upper bounded by dUe+1

2 emin∆bmax,
where U = maxi∈N ei

minj∈N ej
, emin = mini∈N ei, and ∆bmax =

maxi∈[1,N−1] |bi− bi+1|, with {b1, b2, . . . , bN} being a sorted
sequence of per-unit claimed costs of tenants in non-decreasing
order.



Algorithm 1: FairDR: Demand Response Auction with
Online Reduction Signal Arrivals

input : bi, ei, ci,∀i ∈ N
output: xi, pi,∀i ∈ N

1 Select q uniformly randomly from{
21, 22, . . . , 2i, . . . ,

∑N
i=1 ei

}
;

2 Sort all tenants in N in non-decreasing order of
per-unit costs;

3 Choose tenants from the start of the ordered list to
obtain the minimum subsequence E , whose total energy
reduction capacity is no smaller than q;

4 Permutate E randomly to get A;
5 Compute pi following Eq. 1, ∀i ∈ N ;
6 Initialize xi = 0,∀i ∈ N ;
7 for arrival of each signal st do
8 if A 6= ∅ then
9 i = FirstTenant(A); %get the first tenant in A

10 while i 6= null and st > 0 do
11 dmax = min {ei, ci};
12 if (dmax ≥ st) then
13 ei = ei − st;
14 xi = xi + st;
15 st = 0;
16 else
17 ei = ei − dmax;
18 xi = xi + dmax;
19 st = st − dmax;
20 if (ei > 0) then
21 i = NextTenant(i,A); %get the next

tenant following i in A
22 else
23 tenant to remove = i;
24 i = NextTenant(i,A);
25 A = A \ tenant to remove;
26 end
27 end
28 end
29 end
30 if st > 0 then
31 Use diesel generator to fulfil remaining energy

reduction st;
32 end
33 end

Here U represents the maximal ratio of overall reduction
capacities of any two tenants, emin is the minimal energy
reduction capacity among all tenants, and ∆bmax denotes the
maximal difference of adjacent per-unit claimed costs in the
sorted sequence.

Proof: Based on Eq. 1, we can derive the total reward of
tenant i as

pifi =
∑

j∈{N\i}

bjf
−i
j −

∑
j∈{N\i}

bjfj (2)

The random number q in general divides the overall re-
duction sequence as exemplified in Fig. 1, where tenants are
ordered in non-decreasing order of their claimed per-unit costs,

into two parts, denoted by the eligible part and the ineligible
part, respectively.

Assume the claimed cost of the first unit in the ineligible
part is G. For each eligible tenant, the lower bound of its per-
unit reward is G and the upper bound of its per-unit reward
is:

pi ≤G+
1

2
·

⌈
ei
emin

⌉(
emin∆bmax +

⌈
ei
emin

⌉
emin∆bmax

)
⌈

ei
emin

⌉
=G+

1

2
emin∆bmax

(
1 +

⌈
ei
emin

⌉)
≤G+

dUe+ 1

2
emin∆bmax

(3)

Hence, the maximal difference between per-unit rewards
of any two tenants is dUe+1

2 emin∆bmax.

2) Truthfulness: Before we show the truthfulness of
FairDR, we first prove that it achieves individual rationality.

Lemma 1. FairDR achieves individual rationality, i.e., no
winning tenant’s per-unit reward is less than its per-unit cost:
pi ≥ bi or ui ≥ 0,∀i ∈ N .

Proof: If tenant i does not reduce its energy consumption,
then fi = 0, the lemma holds. Otherwise, if fi > 0, since
we sort tenants by per-unit claimed cost, based on the which
we select eligible tenants, it is easy to see

∑
i∈N bifi ≤∑

j∈{N\i} bjf
−i
j . Thus, we have∑

j∈{N\i}

bjfj + bifi ≤
∑

j∈{N\i}

bjf
−i
j

bifi ≤
∑

j∈{N\i}

bjf
−i
j −

∑
j∈{N\i}

bjfj

bi ≤ pi

(4)

We can conclude that Lemma 1 holds.

In the following, we first analyze truthfulness in the case
that the total amount of energy reduction requests in all the
reduction signals (

∑T
t=1 st) is large enough, such that all

eligible tenants would be asked to reduce energy consumption
during the EDR event. In this case, the total amount of energy
reduction by all eligible tenants except the last picked eligible
tenant is xi = fi = ei, that by the last picked eligible tenant is
xi = fi ≤ ei, and that by an ineligible tenants is xi = fi = 0.
Due to Eq. (2), the utility of tenant i is:

ui = pifi − vifi

=

 ∑
j∈{N\i}

bjf
−i
j

−
 ∑
j∈{N\i}

bjfj

− vifi (5)

where the first item on the right-hand side,
∑
j∈{N\i} bjf

−i
j , is

independent on i (computed when tenant i does not participate
in the auction). We therefore can ignore it, but use



ui ∼ −

 ∑
j∈{N\i}

bjfj

− vifi (6)

(where ∼ means that ui is only related to the right-hand
side), in our following proof of Lemmas 2, 3 and 4, which
show truthfulness of tenants in the case of large enough∑T
t=1 st. Then we will extend our discussions to the case that

not all eligible tenants would be called on to reduce energy
consumption during the EDR event, and prove the general
truthfulness.

Lemma 2. An eligible tenant i which reduces energy consump-
tion to its full capacity, i.e., xi = fi = ei, during the EDR
event cannot increase its utility by misreporting its claimed
per-unit cost.

Proof: For an eligible tenant i which reduces energy
consumption to ei, if it untruthfully claims its cost, it will
lead to three cases: (1) Tenant i is still an eligible tenant with
full energy reduction, then f ′i = fi. According to our winning
tenant allocation process, it will not affect any fj , where j
represents each tenant other than i; and thus, in Eq. (6) the first
item (−

∑
j∈{N\i} bjfj) remains the same; then, as both vi

and fi remains, we have u′i = ui. (2) Tenant i becomes an eli-
gible tenant with partial energy reduction (by claiming a higher
cost), then f ′i ≤ fi, so

∑
j∈{N\i} bjf

′
j >

∑
j∈{N\i} bjfj .

Given q, this implies some ineligible tenants would have
obtained the opportunity to reduce energy consumptions as
new eligible tenants. Obviously, each of these new eligible
tenants’ per-unit costs is larger than tenant i’s. Thus, we have∑

j∈{N\i}

bjf
′
j −

∑
j∈{N\i}

bjfj ≥ vi (fi − f ′i)∑
j∈{N\i}

bjf
′
j + vif

′
i ≥

∑
j∈{N\i}

bjfj + vifi
(7)

According to Eq. (6), we have u′i ≤ ui. (3) Tenant i becomes
an ineligible tenant, then u′i = 0. According to Lemma
1 (individual rationality), ui ≥ 0. Thus, we conclude that
u′i ≤ ui when an eligible tenant i with full energy reduction
misreports its cost.

Lemma 3. An eligible tenant whose energy reduction is less
than its full capacity, i.e., xi = fi < ei, during the EDR event
cannot increase its utility by misreporting its claimed per-unit
cost.

Proof: In our demand response mechanism, we randomly
choose q at the beginning, and the auction includes at most
one eligible tenant with partial energy reduction; it represents
which only owns part of overall energy reduction capacity
as eligible. If tenant i misreports its cost, it will lead to
three cases: (1) Tenant i remains an eligible tenant with
partial energy reduction, then f ′i = fi. It is easy to prove
u′i = ui, similarly to the proof of case 1 in Lemma 2. (2)
Tenant i becomes an eligible tenant with full energy reduction
(by claiming a lower cost), then we have f ′i > fi and∑
j∈{N\i} bjf

′
j <

∑
j∈{N\i} bjfj . The difference between∑

j∈{N\i} bjfj and
∑
j∈{N\i} bjf

′
j is the total corresponding

costs of tenants’ energy reductions which are preempted by

tenant i. Given q, the amount of preempted energy reductions
equals the amount of the tenant i’s energy reductions in
addition. Obviously, each preempted tenant’s per-unit cost is
lower than tenant i’s. Thus, we have∑

j∈{N\i}

bjfj −
∑

j∈{N\i}

bjf
′
j ≤ vi (f ′i − fi)∑

j∈{N\i}

bjfj + vifi ≤
∑

j∈{N\i}

bjf
′
j + vif

′
i

(8)

According to Eq. (6), we have u′i ≤ ui. (3) Tenant i becomes
an ineligible tenant, then u′i = 0. According to Lemma 1,
ui ≥ 0. Thus, we conclude that u′i ≤ ui when an eligible
tenant i with partial energy reduction misreports its cost.

Lemma 4. An ineligible tenant cannot increase its utility by
misreporting its claimed per-unit cost.

Proof: An ineligible tenant i does not reduce any energy
consumption fi = 0; and its utility is zero ui = 0. If
an ineligible tenant untruthfully claims its cost (by claiming
a lower cost) to join the eligible tenant set, some eligible
tenants must reduce less energy consumption, and even become
ineligible tenants. Obviously, the average per-unit cost of these
losing tenants’ energy reductions is less than or equal to
the per-unit true cost of tenant i’s (otherwise, they may be
ineligible when tenant i claims its true cost). Thus, we have∑

j∈{N\i} bjfj −
∑
j∈{N\i} bjf

′
j

f ′i
≤ vi (9)

Based on Eq. (6), the difference between u′i and ui is as follows

u′i − ui =−

 ∑
j∈{N\i}

bjf
′
j

− vif ′i
−

−
 ∑
j∈{N\i}

bjfj

− vifi
 (10)

as fi = 0 and ui = 0, we have

u′i = −

 ∑
j∈{N\i}

bjf
′
j

− vif ′i +

 ∑
j∈{N\i}

bjfj

 (11)

Based on Eq. (9), we have u′i ≤ 0. Thus, we conclude that
u′i ≤ ui when an ineligible tenant i misreports its cost.

We next analyze the case that the total amount of energy
reduction requests in all the reduction signals (

∑T
t=1 st) is

insufficient, such that not all eligible tenants would be called
upon for energy reduction throughout the EDR event.

Lemma 5. In the case that not all eligible tenants are called
on for reducing energy consumption during the EDR event, a
tenant cannot manipulate its claimed per-unit cost to increase
its utility.

Proof: In this case, due to the uncertainty of reduction
signals to arrive, each eligible tenant wishes to get allocated
and rewarded at the earlier stage of the EDR event. In our
mechanism, we allocate energy reduction in a random permu-
tation of eligible tenants. As we disrupt the order of allocation
among them, the allocation order is independent of the claimed



costs. Hence, an eligible tenant cannot get allocated earlier by
manipulating its claimed cost, which means that an untruthful
claimed cost cannot help improve utility; moreover, when it
claims a higher cost, it may become an ineligible tenant and
its utility decrease to zero.

In some cases, an eligible tenant cannot fully reduce its
energy consumption due to its one time slot energy capacity,
which represents the maximal amount of energy reduction in
one time slot. As the capacity ci is also independent of the
claimed cost of eligible tenants i, each tenant cannot reduce
more than ci by manipulating its claimed cost.

In Lemma 4, even if the reduction signals are sufficient for
eligible tenants, an ineligible tenant cannot increase its utility
by claiming untruthful cost. Thus, we omit the discussion with
respect to ineligible tenants here.

Finally, we show the truthfulness by FairDR in general.

Theorem 2. FairDR is a truthful mechanism.

Proof: Combining Lemmas 2, 3, 4, and 5, it can be
easily seen that each tenant has no motivation to manipulate
its claimed per-unit cost to improve its utility. According to
Definition 1, FairDR is truthful.

3) Social cost saving maximization: Without loss of gen-
erality, we assume that v1, v2, . . . , vn are sorted in non-
decreasing order in our following proofs.

Lemma 6. In the ideal case that ci ≥ ei, ∀i ∈ N , i.e., per-
time-slot energy reduction of each tenant is only limited by
its full capacity, the expected competitive ratio of FairDR is
dlog2me
( 1
2+

1
U+4 )

in social cost saving, where m =
∑N
i=1 ei represent-

ing the overall energy reduction capacity of all tenants, and
U = maxi∈N ei

minj∈N ej
denoting the maximal ratio of overall energy

reduction capacities of any two tenants.

Proof: We first consider the optimal energy reduction in
the ideal case that achieves the maximal social cost saving.
In the ideal case, let OPTk denote the optimal social cost
saving; and OPTk =

∑K−1
i=1 (δ − vi) ei + (δ − vK)β, subject

to k =
∑K−1
i=1 ei + β and 0 < β ≤ eK when k units energy

reductions to K winning tenants, and β represents the amount
of the last eligible tenant’s eligible overall energy reduction
capacity. (δ − vK)β represents the social cost saving by last
winning tenant’s reduction, and

∑K−1
i=1 (δ − vi) ei represents

the first K − 1 winning tenants’ social cost saving. Note that
the last winning tenant could be an eligible tenant with full
or partial energy reduction. Recall R =

∑T
t=1 st. Let OPTR

denote the optimal cost saving of these tenants with lowest
per-unit costs for R units of energy reduction. In the step
of eligible tenant initialization, we randomly choose q from{

21, 22, . . . , 2i, . . . ,m
}

to divide all tenants into eligible and
ineligible sets. The probability of choosing each possible value
of q is (1/ dlog2me). Corresponding to this q, Q denotes
the number of eligible tenants; and in the energy reduction
allocation process, we make a random permutation among the
Q eligible tenants. In the following, it is sufficient to analyze
these two specific cases to derive the expected social cost
saving.

• Case 1: 1
2R < q ≤ R. In this case, R is sufficient

for eligible tenants, and all eligible tenants are called
upon; and thus the cost saving equals OPTq . As the
sequence v1, v2, . . . , vn is non-decreasing, the sequence
(δ − v1) , (δ − v2) , . . . , (δ − vn) is non-increasing. Ac-
cording to the non-increasing condition and 1

2R < q ≤ R,
the social cost saving is greater than 1

2OPTR.
• Case 2: R < q ≤ 2R. In this case, we select winning

tenants from Q eligible tenants. As the last winning tenant
might be partially-reduced, we at least select b R

emax
c

winning tenants with full energy reduction. Due to the
random selection of eligible tenants, the expectation of
social cost saving is greater than

(
b R
emax
c/Q

)
OPTq . As

R < q ≤ 2R and we assume that the R units of energy
reduction could satisfy at least one tenant (Q ≥ 1), it is
easy to see that⌊

R
emax

⌋
Q

≥

⌊
R

emax

⌋
⌊

R
emax

⌋
+
⌊

R
emin

⌋
+ 2

≥

⌊
R

emax

⌋
⌊

R
emax

⌋
+ U

⌊
R

emax

⌋
+ 3

≥ 1

U + 4

(12)

Thereby the social cost saving is greater than 1
U+4OPTq .

We denote the social cost saving of Case 1 and Case 2 by
SA1 and SA2. In Case 1, we have SA1 ≥ 1

2OPTR; in Case
2, because q > R and SA2 >

1
U+4OPTq , we have OPTq >

OPTR and SA2 > 1
U+4OPTq > 1

U+4OPTR. Hence, the
proposed mechanism’s social cost saving in expectation has
an guarantee as follows:

E[SA] = (1/ dlog2me) ·

dlog2me∑
k=1

SAk


≥ (1/ dlog2me) · (SA1 + SA2)

≥ (1/ dlog2me) ·
(

1

2
OPTR +

1

U + 4
OPTR

)
= (1/ dlog2me) ·

(
1

2
+

1

U + 4

)
OPTR

(13)

Next, we analyze the expected competitive ratio of FairDR
in the general case, where there could exist ci < ei, for
some tenant(s) i. In the general case, the full power reduction
capacity of an eligible tenant may not be reached, even if some
units of power reduction request in a time slot may have to be
fulfilled by the diesel generator. Hence, the cost saving in the
general case is no larger than that in the ideal case.

Lemma 7. In each time slot, the ratio of the cost saving in the
general case to that in the ideal case is greater than α, where
α = mini∈N

{
ci
ei

}
represents the minimal ratio of per-time-

slot energy reduction capacity to the overall energy reduction
capacity among all tenants.



Proof: To clarify the analysis process, we use ei,t to
denote the remaining overall energy reduction capacity of
tenant i in time slot t, and xi,t to denote the energy reduction
allocated to tenant i in time slot t, such that the cost saving
in one time slot is

∑
i∈E (δ − bi)xi,t. In time slot t, in that

random sequence, for the first tenant i, only if ci < st < ei,t,
tenant i will could have a gap of allocation result between
two cases (general case and ideal case); for the entire set of
tenants, only if the

∑
i∈Amin {ci, ei,t} < st <

∑
i∈A ei,t, we

could leverage diesel generators to fulfil the energy reduction.

For the first tenant i in A, in each time slot t, when the
loss happens, the loss is less than

(
1− ci

ei,t

)
ei,t. Hence in the

entire auction, it is easy to see that the loss of tenant i is less
than

(
1− ci

ei

)
ei; then, for all tenants, in the entire auction, it

is easy to see that the total loss amount of energy reduction
is less than (1− α) times of total amount of energy reduction
in the ideal case; correspondingly, the total social cost saving
in general case is larger than α times of it in ideal case.

Theorem 3. FairDR achieves an expected competitive ratio of
dlog2me

α( 1
2+

1
U+4 )

in social cost saving, where m =
∑N
i=1 ei, U =

maxi∈N ei
minj∈N ej

, and α = mini∈N

{
ci
ei

}
.

Proof: In general, due to ci, the one-time-slot energy
reduction capacity, we might need to leverage generators to
fulfil some of energy reductions; and when we leverage them,
the total social cost saving will decrease; therefore, it is
easy to see that the social cost saving of optimal solution
is less than that in the ideal case. As the ratio of social
cost saving in the general case to the optimum in the ideal
case is α

dlog2me

(
1
2 + 1

U+4

)
, the ratio of social cost saving

in the general case to the offline optimum, computed based
on full knowledge of reduction signals, is no smaller than

α
dlog2me

(
1
2 + 1

U+4

)
. Correspondingly, the expected compet-

itive ratio is no larger than dlog2me
α( 1

2+
1

U+4 )
.

IV. PERFORMANCE EVALUATION

A. Data Sets and Simulation Setup

We simulate a colocation data center located in Ashburn,
VA, which is a major data center market served by PJM
(a primary transmission organization in the U.S. [14]). In
our default setting, the colocation data center includes 5
participating tenants, housing 600, 650, 700, 750, and 800
homogeneous servers, respectively. Each server has a peak
power of 250W when busy and a static power of 150W when
idle. Hence, the tenants’ peak server power ranges between
150kW and 200kW. The diesel generator cost δ is 150$/MWh
based on typical power generation efficiency and the current
oil price as of 2015 [15].

1) Energy Reduction Target: Our simulation is based on the
PJM’s EDR report [14] on January 7, 2014 (due to the severity
of the weather condition on that day). The data shows the
energy reduction over the entire PJM service area during EDR,
rather than for a data center. Therefore, for our evaluation, we
scale it down and show in Fig. 3(a) the hourly energy reduction
requests for our considered data center throughout an 8-hour
EDR event on January 7, 2014 (5am-12pm).
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Fig. 3. Trace data. (a) Total EDR energy reduction by PJM on January 7,
2014. (b) Normalized Workload.

2) Workload: Fig. 3(b) illustrates the workload trace (mea-
suring hourly server utilization) collected from [16], [17]. We
assign workload to tenants following these traces. Based on the
server power model [16], tenants’ total energy consumption
is within 1200kWh-1600kWh during the hours spanned by
the EDR event, varying according to the workload. In our
default setting, the overall energy reduction capacity (ei) and
the maximum energy reduction during each hour (ci) are 15%
of the overall energy consumption during the EDR event at the
peak power rate of the respective tenant, and 50% of the per-
hour peak power consumption of the respective tenant, while
we will vary them later.

3) Tenants’ bids: We set the claimed cost of each ten-
ants between 1 ∼ 2 cents/server (equivalently, 0.067 ∼
0.133$/kWh), which is comparable to the energy cost saving
that could be achieved had the tenants housed servers in their
own data centers [16].

Additionally, for computation efficiency of FairDR, we
set a minimal energy reduction unit as 10kWh (the typical
energy usage of one server rack in one hour), i.e., tenants
will migrate the workloads and turn off servers rack-by-rack
(subject to performance requirements) when reducing energy
consumption. Hence, during each hour, the energy reduction
by each tenant is an integral multiple of 10kWh.

B. Results

We compare our mechanism with the optimal mechanism
and Truth-DR [11]. The optimal mechanism, denoted by OPT,
achieves the maximal social cost saving by deciding the global
optimal allocation with information of all reduction signals.
Depending on different rewarding schemes, we introduce two
variants of OPT: one is OPT with Simple Rewards, which sets
the tenants’ per-unit rewards equal to their claimed per-unit
costs, ignoring the rewarding fairness; another one is OPT
with VCG, which computes the per-unit rewards by using the
VCG pricing scheme [18], [19], [20] in each time slot for
ensuring truthfulness in each time slot. Truth-DR is an auction
mechanism for colocation EDR developed by Zhang et al. [11],
which focuses on a one-time auction with a static reduction
signal and ensures truthfulness without accounting for fairness.
Our evaluation results are shown below.

1) Fairness in Rewarding: We compare in Fig. 4 the
Coefficients of Variation (CVs) of rewards to winning tenants
among OPT, Truth-DR and FairDR, when the EDR event
lasts for different numbers of time slots. A data point at a
specific T represents the CV computed when the respective
mechanism runs for T time slots to allocate energy reduction
upon arrivals of the first T reduction signals as shown in
Fig. 3(a). Coefficient of variation is a statistical measure of
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Fig. 4. Comparison of coefficient of variation among different mechanisms.

the dispersion of data points in a data series around the mean,
and it is defined as the ratio of the standard deviation σ to the
mean µ, i.e., CV = σ

µ . As can be seen, despite of the increase
of total number of time slots that the EDR event lasts, our
mechanism always achieves a CV close to 0, implying that
in comparison to OPT and Truth-DR, our mechanism indeed
provides the most fair rewarding to tenants.

2) Social Cost and Social Cost Saving: We further com-
pare the social cost and social cost saving achieved by our
mechanism and other mechanisms. For our mechanism with
randomization steps, we obtain the expected social cost and
social cost saving achieved using all possible values of q.
Fig. 5 and Fig. 6 show that our mechanism experiences a
small increase of social cost and a small loss of social cost
saving, as compared to other mechanisms (note that both OPT
with VCG and OPT with Simple Rewards achieve the same
cost/cost saving, and hence simply represented by OPT in the
figures), a tradeoff for our mechanism to provide truthfulness
and fairness guarantee in the long-term auction, which the
other mechanisms does not provide.

3) Competitive Ratio in Social Cost Saving: Figs. 7-10
show the competitive ratio achieved by FairDR in social cost
saving by varying different parameters. Especially, in Fig. 10,
capacity ratio represents the ratio of ci of a tenant to the
peak energy consumption of the tenant in one time slot (we
set this ratio to be the same for all tenants), where the peak
energy consumption is computed assuming all servers of the
tenant are running at peak power usage. In Fig. 10, energy
ratio represents the ratio of ei of a tenant to peak energy
consumption of the tenant throughout the EDR (we also set
this ratio to be the same for all tenants). We observe that with
the increase of the total duration of the EDR event, T , the
competitive ratio increases but becomes stable starting from
T = 5. Fig. 7 shows that the competitive ratio only increases
slightly with the increase of the cost of the diesel generator.
Fig.s 8-10 reveal that the ratio does not change much with
different number of participating tenants, and different values
of ci and ei.

V. RELATED WORK

Data centers’ huge yet flexible energy consumption has
been increasingly recognized as a valuable demand response
resource. In [3], Ghatikar et al. verify the feasibility of
data center demand response through field tests. In [7], [21],
Aikema et al. and Ghamkhari et al. provide ancillary services,
such as voluntary load reduction, for data centers to optimize
resource usage, reduce energy cost, even earning additional
revenue. Research in [22] optimizes aggregate cost of utilities

and data centers via dynamic pricing; and research in [23]
also focuses on pricing by investigating data center demand
response with prediction-based pricing. All these studies, how-
ever, have been focused on owner-operated data centers. A
more recent study [24] proposes a simple incentive mechanism,
called iCODE, for colocation demand response, based on
tenants’ best-effort reduction for economic demand response
without satisfying the mandatory energy reduction as often
required by EDR. Further, iCODE cannot ensure truthfulness,
and strategic tenants can manipulate their costs to gain extra
benefits.

Prior studies [11], [25], [26] have also investigated (data
center) demand response based on auction theory. Zhang et
al. [11] propose a one-time auction mechanism for EDR,
Truth-DR, which is computationally efficient, truthful in ex-
pectation, and achieves 2-approximation. Zhou et al. [25]
propose an online procurement auction mechanism in storage-
assisted smart grids, which is truthful, computationally effi-
cient, and achieves a constant competitive ratio in practical
scenarios. Zhou et al. [26] propose an auction mechanism
design for demand response in geo-distributed clouds, which is
both truthful and computationally efficient. Nonetheless, these
studies, except for [11], are not suitable for colocation EDR
for which both strategic tenants and operator-controlled diesel
generation may commit energy reduction. Moreover, fairness,
an important measure in multi-tenant colocations, has been
ignored in the prior research.

Previous studies [27], [28], [29] focus on online scenarios
where supplies (e.g. auction items, perishable goods, idle
spectrum channels, power reduction signals) arrive in an online
manner, without knowledge of the total supply. Babaioff et
al. [27] design a mechanism achieving constant approximation
when the supply follows a monotone hazard-rate distribution.
Goel et al. [28] propose an individually-rational, incentive-
compatible and Pareto-optimal auction under global budget
constraints. Sun et al. [29] propose a truthful mechanism
achieving channel reusability and fair pricing for spectrum
allocation. Our design does not rely on any assumption about
the supply.

VI. CONCLUDING REMARKS

This paper studies incentive mechanisms for motivating
tenants’ voluntarily energy consumption reduction in coloca-
tion data centers, in the events of emergency demand response.
An efficient, truthful auction mechanism, FairDR, is proposed
for distributing dynamically arriving energy reduction targets
among the tenants and rewarding the tenants for the respective
energy cut on the fly. We prove that FairDR provides different
tenants similar levels of rewards for the same energy reduction,
and guarantees a bounded performance in social cost saving,
as compared to the offline optimum. Our simulations based
on real-world datasets further validate our analysis and show
that FairDR performs consistently well under various settings,
compared to other alternative mechanisms. To the best of
our knowledge, our work represents the first effort to design
online, truthful mechanisms with performance guarantees for
colocation demand response, without relying on any a priori
knowledge of future EDR energy reduction targets. In our
future work, we seek to extend our model to other possible
scenarios, e.g., one that allows repeated bidding.
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