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Fair Online Power Capping for Emergency
Handling in Multi-Tenant Cloud Data Centers
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Abstract—In view of the high capital expense for scaling up power capacity to meet the escalating demand, maximizing the utilization
of built capacity has become a top priority for multi-tenant data center operators, where many cloud providers house their physical
servers. The traditional power provisioning guarantees a high availability, but is very costly and results in a significant capacity
under-utilization. On the other hand, power oversubscription (i.e., deploying more servers than what the capacity allows) improves
utilization but offers no availability guarantees due to the necessity of power reduction to handle the resulting power emergencies.
Given these limitations, we propose a novel hybrid power provisioning approach, called HyPP, which provides a combination of two
different power availabilities to tenants: capacity with a very high availability (100% or nearly 100%), plus additional capacity with a
medium availability that may be unavailable for up to a certain amount during each billing period. For HyPP, we design an online
algorithm for the operator to coordinate tenants’ power reduction at runtime when the tenants’ aggregate power demand exceeds the
power capacities. Our algorithm aims at achieving long-term fairness in tenants’ power reduction (defined as the ratio of total actual
power reduction by a tenant to its contracted reduction budget over a billing period). We analyze the theoretical performance of our
online algorithm and derive a good competitive ratio in terms of fairness compared to the offline optimum. We also validate our
algorithm through simulations under realistic settings.

Index Terms—Power management, online fairness, hybrid power provisioning, multi-tenant cloud data centers.
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1 INTRODUCTION

W ITH the emergence of a plethora of IT services, In-
ternet of Things, and cloud computing, multi-tenant

data center (also sometimes called “colocation”) has been
in an unprecedented high demand worldwide. Being a
shared facility where multiple tenants house and manage
their own physical servers, multi-tenant data centers pro-
vide a cost-effective and scalable data center solution to
almost all industry sectors. In particular, cloud providers
have the strongest demand for multi-tenant data centers
to deploy their physical servers and quickly expand global
cloud services, wherever it is impractical and uneconomical
to build their own data centers (i.e., setting up all data
center infrastructures, including facility, cooling and power
systems). For example, major cloud providers, including
Amazon, Google, and Microsoft, have recently leased large
capacities in multi-tenant data centers for service expansion
[1], whereas Apple houses approximately 25% of its servers
in multi-tenant data centers [2]. In addition, government
agencies have also been consolidating different units (each
viewed as a “tenant”) into shared multi-tenant data centers
for cost efficiency, as attested to by the recent U.S. Federal
Data Center Consolidation Initiative [3].
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While the demand is escalating, scaling up the multi-
tenant data center power capacity (often measured in pro-
tected power delivered to servers) has become increasingly
more challenging. The capital expense for building data
center power infrastructure is very high and even exceeds
1.5 times of the total energy cost over a 15-year lifespan [4].
Additionally, local grid capacity and long time-to-market
cycle (often several months or even years) are also limiting
data center construction and/or expansion to meet the de-
mand. For these reasons, maximizing utilization of the built
power capacity has become a top priority for data centers
[5], especially for multi-tenant data centers that already
consume nearly as five times energy as Google-type data
centers combined altogether [6].

Traditionally, multi-tenant data centers provide service
level agreement (SLA) to tenants by leasing power capacity
with a very high availability guarantee (99.9999% or even
100%) [7]. The actual provisioned data center infrastructure
is sized to support the maximum total leased power capac-
ity. While this achieves a high availability, it results in a
significantly low utilization of data center power capacity
(only 60% or even lower [4], [8]) at most times, failing to
fully capitalize on the expensive infrastructure. The reason
is that power consumption by different tenants rarely peaks
simultaneously [4], [5].

More recently, multi-tenant data centers have been com-
monly oversubscribing the infrastructure by selling the power
capacity to more tenants than what is allowed. This is
equivalent to under-provisioning the infrastructure below
the total leased power capacity, thus cutting the high
capital expense. Nonetheless, a dangerous consequence is
the occasional power emergency when tenants’ aggregate
power demand exceeds the provisioned capacity. Though
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TABLE 1
Pros & Cons of Different Power Provisioning

Approach Capacity Availability Emergency Handling
Utilization SLA Capability

Traditional Low 3 N/A
Oversubscription Medium 7 7
HyPP High 3 3

rare, power emergency drastically compromises data center
availability and, if not properly handled, can even result in
costly outage incidents (an average of $901,560 per incident
[9]), damaging the operator’s reputation and causing a high
churn rate.

Recent research has proposed incentive mechanisms to
coordinate tenants’ load shedding during an emergency [5],
[10]. They are purely best-effort designs to handle emer-
gencies by relying on tenants’ voluntary power reduction,
thus providing no assurance to the operator that enough
power will be cut [5], [10]. Even assuming that tenants
will contribute, no (worst-case) SLA is guaranteed: tenants
may be asked to cut power very frequently and/or by
a large amount, causing an unacceptable degradation in
their workload performance. Consequently, these severely
limit the oversubscription level for improving utilization
and raise concerns with the applicability of the proposed
solutions in practice [5], [10].

In view of the limitations (summarized in Table 1), we
propose a novel contract-based hybrid power provisioning,
called HyPP, which oversubscribes the infrastructure to
improve utilization and contracts enough power reduction
to handle power emergencies. HyPP focuses on the operator
side for improving the infrastructure utilization, orthogo-
nal to tenants’ performance, differing from Amazon spot
instance model which focuses on the tenant’s side and
concerns tenant’s utility. Specifically, HyPP provisions two
types of power capacities to tenants: high-availability ca-
pacity (100% or nearly 100% availability [7]), plus medium-
availability capacity that has a lower SLA and may be
unavailable for up to a certain amount during each billing
period. As HyPP still operates the power under the de-
signed capacity, some indices shown in traditional data
centers, e.g., SLA, and reliability, are not compromised.

Many power management algorithms and interfaces
(e.g., CPU frequency scaling [4], [11] and Intel Rack Scale
Design [12]) are readily available to scale down tenants’
power consumption when medium-availability power ca-
pacity is cut. Thus, by leasing medium-availability capacity
on top of the guaranteed capacity, tenants can lower their
power subscription costs yet have an SLA assurance. In fact,
hybrid SLA has also been quickly emerging in other contexts
to meet the diverse needs of users (e.g., Google Cloud offers
both low-latency online storage for “hot” data and medium-
latency nearline storage for “cold” data [13]). Nonetheless,
HyPP focuses on multi-tenant data centers and provides a
novel hybrid SLA to tenants in terms of power provisioning,
which has remained under-explored in the literature.

While HyPP is appealing, turning it into practice cre-
ates multifaceted challenges. In particular, when tenants’
aggregate power occasionally exceeds the capacity (i.e.,
emergency), which tenants’ power provisioning should be
capped and by how much? Additionally, power capping can
degrade tenants’ performance, and hence another central

question is how to achieve fairness in power capping for
different tenants? Last but not least, power capping deci-
sions must be made online without knowing future power
emergencies, subject to the power provisioning SLA which
requires that the total amount of unavailable power for a
tenant be below a certain threshold over a billing period.

To address the above challenges, we propose an online
fair power capping algorithm that judiciously makes power
reduction decisions whenever a power oversubscription
emergency occurs, maximizing the fairness of power reduc-
tion among the tenants over a billing period and satisfying
the power provisioning SLA (with a bounded violation even
in the worst case). We novelly design the online algorithm
based on a primal-dual framework and dual fitting tech-
nique. We rigorously analyze the competitive ratio of the
algorithm, as compared with the offline optimum (i.e., the
best solution when knowing all future information). We also
run trace-based simulations under realistic system settings
to validate our algorithm. We show that under realistic
settings, our algorithm is always able to handle power
emergencies subject to SLA, outperforms baselines, and is
near the optimum in terms of fairness.

2 PRELIMINARIES AND PROBLEM FORMULATION

2.1 Power Architecture in Data Centers

Multi-tenant cloud data centers typically employ a tree-type
power hierarchy. As illustrated in Fig. 1, high-voltage grid
power first enters the data center through an automatic
transfer switch (ATS), which will switch to backup gener-
ators during grid failures. Then, power passes the unin-
terrupted power supply (UPS) system. The UPS-protected
power, also called IT critical power, is fed to multiple power
distribution units (PDUs), which each have a capacity of
200-300kW and output power at suitable levels to support
server racks. Finally, the rack-level power strip (also called
rack-level PDU) directly supplies power to the servers.

There are power capacity constraints throughout the hi-
erarchy: UPS, PDU, and rack levels. The UPS and PDUs are
very expensive and hence often aggressively oversubscribed
to cut the capital expense [14], [15]. While an emergency
may not instantly lead to an outage due to system redun-
dancy [11], ignoring it can significantly increase downtime
risks. Thus, the data center operator must keep the tenants’
aggregate power consumption below the PDU and UPS
capacities at all times [4], [14].1

In a multi-tenant data center, each tenant typically man-
ages multiple colocated server racks. These racks, however,
may be physically connected through underfloor cabling
to different PDUs shared with other tenants to exploit
multiplexing effects (i.e., the power consumption of dif-
ferent tenants rarely peaks simultaneously). In fact, some
emerging design has even enabled dynamically connecting
servers/racks to PDUs to improve capacity utilization [14].

1. A tenant may also oversubscribe its own contracted rack-level
capacity, but all the induced “emergencies” (exceeding the contracted
capacity) must be taken care of by itself to avoid additional charges by
the operator.
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Fig. 1. Power Architecture in a Multi-tenant Data Center

2.2 Model Basics

Consider a multi-tenant data center with one (centralized)
UPS that supports M PDUs. We use index 0 to refer to the
UPS and indices 1, 2, . . . ,M to denote the PDUs. The UPS
capacity is denoted by C0, while the j-th PDU capacity is Cj
for j = 1, · · · ,M . There are N tenants in the multi-tenant
data center. We consider a time-slotted model, where each
time slot can be 5 minutes (duration of a typical power
emergency event [5], [15]) and T time slots constitute a
billing cycle (e.g., one month). For notational convenience,
we use [X] to denote the set of [1, 2, . . . , X], where X can be
different for different sets (e.g., [N ] for the set of N tenants).

2.3 Hybrid Power Provisioning

In HyPP, tenants can subscribe two types of capacities
through a purchasing contract: high-availability capacity
(high cost but guaranteed with a 100%, or nearly 100%,
availability, as traditionally provided [7]), and medium-
availability capacity (lower cost but may be cut subject to
a SLA defined later). More formally, HyPP specifies for
each tenant i ∈ [N ] the following three values: (1) Cgi ,
the amount of guaranteed high-availability capacity which
cannot be compromised at any time (otherwise, the operator
is entailed to financially compensate affected tenants [7]);
(2) Cfi , the amount of flexible medium-availability capacity
which may be cut subject to an SLA; (3) Bi, the SLA
parameter defined as the maximum amount of accumulated
power reduction (also referred to as power reduction budget)
that can be imposed on tenant i throughout a billing period.
For example, if a tenant’s medium-availability capacity can
be cut by at most 30% on average during all events, then
the monthly budget of a tenant subscribing 20kW medium-
availability capacity can be set as 20(kW) × 24(hours) ×
30(days) × 3% × 30% = 129.6(kWh/month), supposing
power emergency events occur in about 3% of all the time
slots. Note that the power capacities of both Cgi and Cfi
represent tenant i’s total subscription and are evenly split
across tenant i’s server racks due to the rack-level capacity
constraint in the data center power hierarchy [4], [11]. For
example, if tenant i owns k racks in total in the data
center, its per-rack high-availability capacity and medium-

availability capacity are Cgi
k and Cfi

k , respectively. The av-
erage capacity split is practical, deploying the racks with
same power densities together, for the ease of heating man-
agement. Although additional constraints (e.g., accumulated
power reduction per rack) can be incorporated; we leave

them out of our investigation to allow more flexibilities to
both tenants and the operator.

HyPP is a “win-win” solution. On the one hand, the data
center operator can safely oversubscribe the power capacity
by contracting enough reduction of medium-availability
power to handle emergencies. On the other hand, medium-
availability power capacity is a type of transient power
supply (but with SLA), and tenants can use numerous
techniques to dynamically modulate power consumption to
follow transient power supplies [16], [17]. Thus, by partici-
pating in HyPP, a tenant has a low-cost option for power
subscription yet enjoys an SLA guarantee in terms of the
maximum accumulated power unavailability specified by
Bi per billing period. During runtime, for each tenant, only
the power of the medium-availability capacity might be
reduced, and the power of the high-availability capacity
always be guaranteed. During the power reduction, if ten-
ants are slow to the reduction request in mild violation, the
system redundancy can handle. If the tenants are completely
unresponsive to the requests, the operator can also cut their
power directly for preventing outage of the entire system.

The data center operator sizes its PDU/UPS to ensure
that the total high-availability power sold to tenants does
not exceed the UPS capacity (i.e.,

∑
i∈[N ] C

g
i ≤ C0) and that

the total high-availability power provisioned to the racks
connected to each PDU is also below the respective PDU
capacity. Thus, the data center operator can sell guaranteed
capacity to tenants as usual (e.g., at a market price of
US$150-200/kW per month [18]).

Meanwhile, the operator sells medium-availability
power capacity using oversubscription. The specifications of
Cfi and Bi as well as pricing are determined through a busi-
ness process to ensure that the resulting power emergencies,
if any, can be handled via contracted power reduction by
tenants subject to SLA. This process depends on several
factors, such as PDU-/UPS-level power usage statistics, how
aggressively the operator oversubscribes the infrastructure,
and tenant i’s energy agility (measuring how well servers’
power consumption follows the transient power supplies,
e.g., by workload shifting [16]). In general, with a more
aggressive oversubscription, the operator would sell more
medium-availability power capacity to tenants. The SLA
parameterBi specifies the total power reduction budget and
can be related to the frequency of emergencies according
to PDU-/UPS-level power usage statistics. Given a fixed
medium-availability power subscription Cfi , a larger Bi
means a worse SLA and possibly a cheaper price. It warrants
a separate economic analysis to optimally specify Cgi , Cfi
and Bi. In this paper, we view these values as orthogonal
and focus on the data center operation at runtime: how to
fairly decide tenants’ power reduction online to handle emergen-
cies?

2.4 Problem Formulation

We consider a general two-level oversubscription: both
shared PDUs and UPS are oversubscribed (i.e., the total
power consumption by the racks may exceed the shared
PDU capacity, while the total capacity of all PDUs may
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exceed the UPS capacity) [5], [15]. In case of an emergency,2

the operator caps power by asking tenants to cut medium-
availability power consumption of their racks connected to
the affected PDU(s) and/or UPS.

We use Rtj to denote the amount of total power overload
in t at the UPS (j = 0) from all the tenants, or at the j-th PDU
(j = 1, . . . ,M ) from the tenants which have racks connected
to the PDU. In case of no power emergency at a certain
PDU/UPS in t, we have Rtj = 0 for the corresponding j in-
dex. Let etij denote the actual usage of medium-availability
power by tenant i’s racks served by PDU j in t, which can
be tracked by meters on racks. We have etij = 0 if the actual
usage is zero, or tenant i has no racks served by PDU j.
In practice, the data center operator continuously monitors
tenants’ rack-level power usage [4], [5]. Thus, Rtj can be
easily obtained by the operator by deducting the physical
capacity of the UPS/PDU from the actual aggregate power
usage drawn from the respective UPS/PDU. Meanwhile,
etij can be calculated as the difference between the total
power usage of tenant i’s racks served by PDU j and the
total contracted high-availability power capacity allocated
to these racks. We use xtij to denote the percentage of etij
that tenant i is asked to reduce from its racks served by
PDU j at time t, ∀i ∈ [N ], j = 1, 2, · · · ,M , which represent
the decisions that the operator should judiciously make in
time slot t when a power emergency occurs.

Fairness. Cutting medium-availability power capacity at
runtime can affect tenants’ workload performance and must
be fairly exercised subject to SLA. Hence, we define a min-
max fairness objective as follows, which aims at minimizing
the maximum ratio of the actual overall power reduction
to the contracted power reduction budget per billing period
among all the tenants.

minimize max
i∈[N ]
{
∑
t∈[T ]

∑
j∈[1,M ] e

t
ijx

t
ij

Bi
} (1)

s.t. xtij ∈ [0, 1],∀i ∈ [N ],∀j ∈ [1,M ],∀t ∈ [T ] (2)

This fairness index takes inspiration from and also ex-
tends the widely-applied max-min fairness [19], [20] (usu-
ally used for dividing scarce resources in communication
network). Minimizing the fair index is equivalent to not
only prevent the operator from reducing most of the power
from few specific tenants but also to ensure the tenant who
reduces most has its remaining budget as much as possible.
Rather than fairness in a single time slot, however, our
index emphasizes long-term fairness of power reduction
(e.g., over an entire billing period in our study), since
tenants typically stay in a multi-tenant data center for a
long time and a billing period is at least one month. In
fact, maximizing fairness for a single time slot may not lead
to the maximum long-term fairness, as will be shown in
Section 4.

In our fairness definition, a smaller value means “fairer”.
Consider an example of three emergency events in Table 2,
where we show the total power overload that needs to be
cut at one shared PDU (i.e., total reduction targets), three

2. Readers are referred to [4], [5] for how to detect power emergen-
cies.

TABLE 2
An Example of Three Power Emergency Events

Slot#1 Slot#2 Slot#3 Budget
Overall Power Overload 3 6 3 /
Tenant#1 1 (↓ 1) 3 (↓ 3) 6 (↓ 3) 40
Tenant#2 1 (↓ 1) 9 (↓ 3) 0 40
Tenant#3 10 (↓ 1) 0 0 40

involved tenants’ medium-availability power usage, and
amounts of power reduction (i.e., the numbers following the
sign “ ↓′′) along with their overall power reduction budgets.
All the values have the same unit of kW for illustration. Con-
sider a heuristic approach which always reduces a tenant’s
medium-availability power usage proportional to its total
budget, to meet reduction targets during each emergency. In
this way, the three tenants reduce power by (1, 1, 1) in the
first time slot (emergency event), by (3, 3, 0) in the second
time slot, and by (3, 0, 0) in the third time slot, respectively.
Consequently, the fairness index of power reduction defined
in (1) is 7

40 = 0.175. Nonetheless, the fairest power reduction
strategy is that during the three emergencies, the three
tenants reduce power by (0, 0, 3), (1.5, 4.5, 0), and (3, 0, 0),
respectively, yielding a fairness index of 4.5

40 = 0.1125.
While achieving fairness, the following constraints

should be met at all times.
PDU/UPS Power Capacity Limitation. The total power

reduction by the involved tenants (i.e., etij) should meet the
overall power reduction demand at each affected PDU/UPS
(i.e., Rtj and Rt0) at each time t.

∑
i∈[N ]

etijx
t
ij ≥ Rtj ,∀j ∈ [1,M ],∀t ∈ [T ] (3)

∑
j∈[1,M ]

∑
i∈[N ]

etijx
t
ij ≥ Rt0,∀t ∈ [T ] (4)

Power Provisioning SLA Guarantee. The SLA requires
that the total accumulated reduction of medium-availability
power usage by a tenant be below the threshold (Bi) over a
billing period:

∑
t∈[T ]

∑
j∈[1,M ]

etijx
t
ij ≤ Bi,∀i ∈ [N ] (5)

Separating our study from the previous research [5], [15],
the power provisioning SLA specifies that only medium-
availability power usage (i.e., etij) may be reduced and
meanwhile eases tenants’ concerns of being asked to cut
power by too much during emergencies.

Optimization Problem. The fair power capping problem
can be formulated by optimizing the fairness objective in
(1), subject to constraints in (2), (3), (4) and (5). Let λ =

maxi∈[N ]{
∑
t∈[T ]

∑
j∈[1,M] e

t
ijx

t
ij

Bi
}. An equivalent formulation

of the optimization problem can be expressed as follows:

minimize λ (6)
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subject to:∑
i∈[N ]

etij
Rtj

xtij ≥ 1,∀j ∈ [1,M ],∀t ∈ [T ] : Rtj > 0 (6a)

∑
j∈[1,M ]

∑
i∈[N ]

etij
Rt0

xtij ≥ 1,∀t ∈ [T ] : Rt0 > 0 (6b)

∑
t∈[T ]

∑
j∈[1,M ]

etij
Bi
xtij ≤ λ,∀i ∈ [N ] (6c)

xtij ≤ 1,∀i ∈ [N ],∀j ∈ [1,M ],∀t ∈ [T ] (6d)

xtij ≥ 0,∀i ∈ [N ],∀j ∈ [1,M ],∀t ∈ [T ] (6e)
λ ≤ 1, (6f)
λ ≥ 0, (6g)

where (6), (6c), (6f) and (6g) together express (1) and (5)
equivalently. (6a) and (6b) correspond to (3) and (4) by
removing those trivial constraints where Rtj = 0 or Rt0 = 0
and normalizing the LHS and RHS (left-/right-hand side)
by the respective power reduction demand in constraints
where Rtj > 0 or Rt0 > 0. In (6), when all xtij are decided,
the minimum of variable λ represents the maximum fair
index among all tenants. In the final solution, if λ = 1, it
means at least one tenant uses up its reduction budget.

The fair power capping problem in (6) is formulated as-
suming complete knowledge of power usage over the whole
billing period T . We refer to this problem as offline optimiza-
tion when presenting our online algorithm design. In prac-
tice, the offline optimization problem is not feasible to solve,
because some input variables and constraints only emerge
gradually as time progresses. For example, upon the arrival
of time slot t, the values of etij , R

t
j , ∀i ∈ [N ], j ∈ [1,M ], and

Rt0 for this t are obtained by the data center operator (as
discussed in the second paragraph of this subsection); there
is a set of new variables xtij ,∀i ∈ [N ], j ∈ [1,M ], subject
to constraints (6a)(6b)(6d)(6e) for this t. The operator must
decide immediately the amount of power reduction by each
involved tenant for time t without future knowledge, while
respecting the (long-term) SLA and fairness both defined for
the entire billing period.

In the following, we design an online algorithm based
on the primal-dual framework (The transformation from
the primal to the dual is shown in [21]). To begin with, we
formulate the dual problem of (6) as follows, where ytj , y

t
0,

zi, φtij and ξ are dual variables corresponding to constraints
(6a) - (6d) and (6f), respectively:

maximize
∑
t∈[T ]

yt0 +
∑
t∈[T ]

∑
j∈[1,M ]

ytj−
∑
t∈[T ]

∑
j∈[1,M ]

∑
i∈[N ]

φtij−ξ

(7)
subject to:

etij
Rtj

ytj +
etij
Rt0

yt0 ≤
etij
Bi
zi + φtij ,

∀i ∈ [N ],∀j ∈ [1,M ],∀t ∈ [T ] (7a)∑
i∈[N ]

zi−ξ ≤ 1 (7b)

yt0, y
t
j , zi, φ

t
ij , ξ ≥ 0,∀i ∈ [N ],∀j ∈ [1,M ],∀t ∈ [T ] (7c)

TABLE 3
Notation Table

Var Definition
Rtj amount of total power overload in t at the UPS (j = 0)

or at the j-th PDU (j = 1, . . . ,M )
etij actual usage of medium-availability power by tenant i’s

racks served by PDU j in t.
xtij percentage of etij that tenant i is asked to reduce from its

racks served by PDU j at time t
Bi overall power reduction budget of tenant i

λ λ = maxi∈[N ]{
∑
t∈[T ]

∑
j∈[1,M] e

t
ijx

t
ij

Bi
}

Ni total number of emergencies that involve tenant i in the
entire data center in [T ]

UOPT an estimated upper bound of optimal λ

3 ONLINE ALGORITHM FOR FAIR POWER CAP-
PING

We next present an online algorithm for the data center
operator to make tenants’ power reduction decisions upon
power emergency events at the UPS and/or PDUs. We then
analyze its performance in terms of the competitive ratio
achieved, computed as the worst-case ratio of the fairness
index in (6) derived by our online algorithm, by the offline
optimal fairness index, computed with full knowledge of
the system over the entire billing period.

3.1 Online Algorithm
Basic Idea. Our algorithm design is based on the primal-
dual optimization framework [22] and the dual fitting tech-
nique in approximation algorithm design [23], as shown in
Alg. 1. To meet the power reduction demand in a PDU
where power emergency occurs, the algorithm iteratively
selects the current best candidate (a tenant) from all ten-
ants which have racks in the PDU and use their medium-
availability power in the PDU at the time, and asks this
candidate to reduce medium-availability power usage. The
current best candidate is one with the smallest ratio of
cumulative power reduction so far (since time slot 1 in
all PDUs) over its overall power reduction budget, among
the remaining candidates whose power reduction has not
been decided in a round. After addressing power reduction
demands at all PDUs where emergencies occur, if the UPS
power capacity is still exceeded, the algorithm repeats a
similar procedure: the current best candidate, a (tenant,
PDU) pair, is picked among all tenants which are still using
their medium-availability power in some PDU(s), and asked
to further reduce medium-availability power consumption,
until the UPS power capacity is respected. The current best
(tenant, PDU) pair is decided by selecting the tenant with
the smallest ratio of cumulative power reduction so far
over its overall power reduction budget, and the PDU is
randomly picked among all PDUs where the tenant is still
using medium-availability power.

The amount of medium-availability power that the op-
erator asks a selected tenant to reduce, i.e., primal variable
x, is updated by multiplying a well-designed factor in each
round, and dual variables y are updated along (dual fitting),
to retain primal and dual feasibility (of all/most constraints)
at all times, while minimizing primal objective (the fair
index in (6)). Further, a good bound between primal and



6

Algorithm 1 Fair Online Power Capping Algorithm in t
1: x = 0; y = 0;
2: /*First, handle all PDU emergencies if any*/
3: for all PDU j ∈ [1,M ], Rtj > 0 (power emergency) do
4: κ = maxi∈[N ]{Ni}, where Ni represents total # of

emergencies involving tenant i in entire data center in
[T ]

5: ρ =
maxi∈[N],j∈[1,M],t∈[T ]{etij/Bi}

mini∈[N],j∈[1,M],t∈[T ]:et
ij
>0{e

t
ij/Bi}

6: δ = mint∈[T ],j∈[1,M ]:Rtj>0{maxi∈[N ]
etij
Rtj
nj}, where

nj represents no. of tenants in PDU j in t
7: σ = e

ln(2) ln(2κρδ)
8: Γ = 2σUOPT, where UOPT is an estimated upper

bound of optimal λ
9: β = 1+2σ ln(N)

1
α+2σ ln(N)

10: µ = 1 + 1
(1+2β) ln(eN)

11: xtij = 1
κρδ ,∀i ∈ [N ] : etij > 0

12: while
∑
i∈[N ] e

t
ijx

t
ij < Rtj do

13: A = getCandidateSet(j, t)
14: Compute ratetij(x) using (10), ∀i ∈ [N ] : etij > 0

15: εtj(x) = (µ− 1) mini∈[N ]:etij>0{
Rtj ratetij(x)

etij
}

16: while (A 6= ∅) and (
∑
i∈[N ] e

t
ijx

t
ij < Rtj) do

17: (i∗, j∗) = nextCandidate(A,x, t)
18: xti∗j∗ = min{1, xti∗j∗(1 + εtj(x)

eti∗j∗

Rt
j∗ ratet

i∗j∗ (x)
)}

19: A = A \ (i, j)
20: end while
21: ytj = ytj + eεtj(x)
22: end while
23: end for
24: /*Next, handle UPS emergency if any*/
25: if Rt0 > 0 then
26: xtij = 1

κρδ ,∀i ∈ [N ],∀j ∈ [1,M ] : etij > 0, xtij = 0

27: while
∑
j∈[1,M ]

∑
i∈[N ] e

t
ijx

t
ij < Rt0 do

28: A = getCandidateSet(0, t)
29: Compute ratetij(x) using (10), ∀i, j : etij > 0

30: εt0(x) = (µ−1) mini∈[N ],j∈[1,M ]:etij>0{
Rt0ratetij(x)

etij
}

31: while (A 6= ∅) and (
∑
j∈[1,M ]

∑
i∈[N ] e

t
ijx

t
ij <

Rt0) do
32: (i∗, j∗) = nextCandidate(A,x, t)
33: xti∗j∗ = min{1, xti∗j∗(1 + εt0(x)

eti∗j∗

Rt0ratet
i∗j∗ (x)

)}
34: A = A \ (i, j)
35: end while
36: yt0 = yt0 + eεt0(x)
37: end while
38: end if

dual objective values can be guaranteed (according to weak
duality [22]), which leads to a bounded competitive ratio of
the online algorithm.
Algorithm Steps. In Alg. 1, PDU power emergencies are
handled first (lines 3-23). Lines 4-11 define parameters for
initializing and updating primal/dual variables, which are
well designed to ensure primal/dual feasibility and the
competitive ratio. The While loop in lines 12-22 handles
medium-availability power usage reduction among tenants
using PDU j. A candidate set is constructed (line 13), which

includes all tenants that use medium-availability power in
PDU j. We repeatedly identify the current best candidate
(line 17) among the remaining tenants in the set and reduce
its power usage in the PDU by a multiplicative factor > 1
(line 18).

The multiplicative factor is designed based on the fol-
lowing rationale: the factor is smaller (the tenant is to
reduce less power usage) if a unit increase of the respective
power reduction amount leads to a larger increase of the
fairness index in (6). We evaluate the marginal increase of
the fairness index, i.e.

λ(x) = max
i∈[N ]
{
∑
t∈[T ]

∑
j∈[1,M ] e

t
ijx

t
ij

Bi
} (8)

using partial derivative in the respective xtij . However, since
λ(x) is not differentiable, we use the following function
which approximates λ(x):

est(x) = Γ ln(
∑
i∈[N ]

exp(
∑
t∈[T ]

∑
j∈[1,M ]

etij
BiΓ

xtij)) (9)

The reason is that for any series of non-negative
real numbers a1, a2, . . . , an, we have maxi=1,...,n ai ≤
ln(

∑n
i=1 exp(ai)) ≤ maxi=1,...,n ai + ln(n). Here Γ is de-

fined in line 8 of Alg. 1, according to an estimated upper
bound UOPT of the offline optimal fair index. UOPT is es-
timated such that the optimal fair index falls in the range
of [ 1

αUOPT,UOPT], where α ≥ 1 (we will show how this
estimation influences competitive ratio in Sec. 3.2). Γ is
related to β defined in line 9 and then µ in line 10. µ appears
in the multiplicative factors for updating primal and dual
variables (lines 15, 18 and 21). β appears in µ and will be
part of our competitive ratio (to be shown in Theorem 1).
The partial derivative of est(·) in xtij is

ratetij(x) =
∂est(x)

∂xtij
=

etij
Bi

exp(
∑
t̄∈[T ]

∑
j̄∈[1,M ]

et̄ij̄
BiΓ

xt̄
ij̄

)∑
ī∈[N ] exp(

∑
t̄∈[T ]

∑
j̄∈[1,M ]

et̄
īj̄

BīΓ
xt̄
īj̄

)
(10)

Then the update to x in line 18 is (where εtj(x) is defined in
line 15 of Alg. 1):

xtij = xtij(1 + εtj(x)
etij

Rtjratetij(x)
)

= xtij(1 + (µ− 1)
minī∈[N ]:et

īj
>0{ratet

īj
(x)/et

īj
}

ratetij(x)/etij
)

Therefore, if ratetij/e
t
ij = minī∈[N ]:et

īj
>0{ratet

īj
(x)/et

īj
}, the

multiplicative factor is µ; otherwise, the multiplicative factor
is smaller (< µ).

The inner While loop in lines 16-20 goes through each
candidate tenant once. If the overall medium-availability
power reduction has still not met the reduction demand
(Rtj), the algorithm goes through another round of the outer
While loop (line 12) to reduce medium-availability power
usage at tenants in PDU j again, until the reduction demand
is fulfilled. Then the algorithm checks if the UPS-level power
capacity has been respected due to power reduction in the
PDUs (line 27). If the overall medium-availability power
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Algorithm 2 getCandidateSet(·)
1: function getCandidateSet(j, t)
2: S = ∅
3: if j = 0 then . handle UPS power emergency
4: for all (i, j), i ∈ [N ], j ∈ [M ], etij > 0 do
5: S = S ∪ (i, j)
6: end for
7: else . handle PDU power emergency
8: for all i ∈ [N ], etij > 0 do
9: S = S ∪ (i, j)

10: end for
11: end if
12: return S
13: end function

usage in the data center is still positive, similar procedures,
as in handling a PDU power emergency, are carried out to
further cut medium-availability power consumption at all
relevant tenants in the data center (lines 27-37).

The algorithm (lines 36, 21) also updates dual vari-
ables yt0 and ytj by the output of algorithms—i.e., ytj is
updated by εtj which is decided by the algorithm, which
are constructed for helping analyzing performance bound
but do not influence the online decisions of x directly.

We note that Alg. 1 requires Ni, the total number of
emergencies that involve tenant i in the entire data center
over [T ], and UOPT, an estimated upper bound of the opti-
mal fair index, in the computation of κ in line 4 and Γ in
line 8, respectively. The exact value of Ni (and hence κ) is
not known before all time slots have passed. Instead, we
adopt an estimated κ in our online algorithm, e.g., based
on past experience. The estimation of UOPT influences the
theoretical competitive ratio, which will be shown in our
analysis in the following section. Further, we will evaluate
the impact of inaccurate estimation of these quantities on the
performance of our online algorithm in practical settings in
the simulation.

Algorithm 3 nextCandidate(·)
1: function nextCandidate(A,x, t)
2: ratiomin =∞
3: for all (i, j) ∈ A do
4: ratioi ← (

∑
τ∈[1,t]

∑
j∈[1,M ] e

τ
ijx

τ
ij)/Bi

5: if ratioi < ratiomin then
6: imin = i
7: jmin = j
8: ratiomin = ratioi
9: end if

10: end for
11: return (imin, jmin)
12: end function

3.2 Theoretical Analysis

We now analyze the competitive ratio achieved by our
online algorithm in Alg. 1. We first present a few lemmas
giving bounds on primal/dual objective values, which lead
to the competitive ratio. The detailed proofs of lemmas and
theorems can be found in the appendices.

We use OPT to denote the offline optimal fair index in
(6), computed by solving the fair power capping problem
exactly based on full knowledge of the entire billing period.

Lemma 1. λ(xinitial) ≤ OPT and est(xinitial) ≤ OPT +
Γ ln(N), where λ(·) and est(·) are defined in (8) and (9),
respectively, xinitial denotes the initial values of xtij ,∀i ∈ [N ], j ∈
[1,M ], t ∈ [T ], that we set in line 11 and 26 of Alg. 1, and Γ is
defined in line 8 of Alg. 1.

Lemma 1 shows that the initial fair index set by Alg. 1
and the initial value of the est(·) function we use to approx-
imate λ(·), present lower bounds of OPT .

Lemma 2. The increase in
∑
t∈[T ] y

t
0 +

∑
t∈[T ]

∑
j∈[1,M ] y

t
j

(part of the dual objective function in (7)) upper bounds the
increase in est(x) after every round of the While loop in lines 12-
22 of Alg. 1, or every round of the While loop in lines 31-35 of
Alg. 1.

In Alg. 1, we update primal variables xtij , and also in-
crease dual variables ytj and yt0 using εtj and εt0 in line 21 and
line 36, in the respective While loop. Lemma 2 shows that the
increase of the dual objective value bounds the increase of
the (approximated) primal objective value. The following
lemma presents how the

∑
t∈[T ] y

t
0 +

∑
t∈[T ]

∑
j∈[1,M ] y

t
j

part of the dual objective value bounds the (approximated)
primal objective value, after the online algorithm has fin-
ished running in all time slots t ∈ [T ].

Lemma 3.
∑
t∈[T ] y

t
0 +

∑
t∈[T ]

∑
j∈[1,M ] y

t
j ≥ est(x) −

β(OPT + Γ ln(N)) where β is defined in line 9 of Alg. 1.

Lemma 3 shows the value of
∑
t∈[T ] y

t
0 +∑

t∈[T ]

∑
j∈[1,M ] y

t
j (part of the dual objective function

in (7)) always upper bounds the value of est(x) minus a
constant number.

Lemma 4.
∑
i∈[N ] zi − ξ ≤ 1, if the values of dual variables zi

and ξ are set as
zi =

wmax

ln(eN) + λmax

Γ

, ξ = 0, ∀i ∈ [N ] (11)

where λmax is the largest fair index λ(x) that ever appears
throughout the update of x in Alg. 1 over [T ], and wmax

denotes the largest value of
exp(

∑
t̄∈[T ]

∑
j̄∈[1,M]

et̄
ij̄

BiΓ
xt̄ij̄)∑

ī∈[N] exp(
∑
t̄∈[T ]

∑
j̄∈[1,M]

et̄
īj̄

BīΓ
xt̄
īj̄

)

throughout the update of x in Alg. 1 over [T ].

Lemma 4 shows that zi’s and ξ given in (11) satisfy dual
constraint (7b).

Lemma 5. (
etij
Rtj
ytj+

etij
Rt0
yt0) ≤ (

etij
Bi
zi+φ

t
ij)·σ(ln(eN)+ λmax

Γ ),
if the value of dual variable φtij is set as

φtij = 0, ∀i ∈ [N ], j ∈ [1,M ], t ∈ [T ] : Rtj > 0, Rt0 > 0 (12)

where σ is defined in line 7 of Alg. 1.

Comparing the inequality in Lemma 5 with dual con-
straint (7a), we know that if we scale y obtained by running
Alg. 1 over [T ] by a factor σ(ln(eN) + λmax

Γ ), the scaled
y together with z, ξ in (11) and ~φ in (12) give a set of
feasible dual solutions. These dual feasible solutions are
useful in deriving the competitive ratio given in the fol-
lowing theorem, using weak duality (i.e., the optimal primal
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objective value is lower bounded by the dual objective value
computed using any dual feasible solutions).

Theorem 1. Alg. 1 is 2σ (1 + β + αβ) ln(eN)-competitive,
where σ = e

ln(2) ln(2κρδ) (defined in lines 4-6 in Alg. 1),

β = 1+2σ ln(N)
1
α+2σ ln(N)

, and α satisfies 1
αUOPT ≤ OPT ≤ UOPT.

The competitive ratio means λ(x)
OPT ≤

2σ (1 + β + αβ) ln(eN), where λ(x) is the final fairness
index derived by running Alg. 1 over [T ]. The competitive
ratio is relevant to UOPT, an estimated upper bound of the
offline optimal fair index OPT , used as input to the online
algorithm. If UOPT is much larger than OPT , we need a
large α to ensure that OPT falls in [ 1

αUOPT,UOPT]. If UOPT
is close to OPT , α is smaller. In our model, α and κ are
the estimated parameters. According to the definition of α,
the estimation of UOPT is more accurate; the ratio is smaller.
Another variable κ is implicitly shown in the parameter β;
however, according to the definition of σ and β, when
estimation is more inaccurate, needs to be set larger, and
the σ will be smaller, and the ratio is smaller. However,
κ decides the initial value of xtij (line 11 and line 26 in
Alg. 1). Correspondingly, the execution time of algorithms
will increase according to line 18 and line 33 in Alg. 1.

Finally, we note that based on settings of the data center
system, it is possible that OPT · 2σ (1 + β + αβ) ln(eN)
is larger than 1, such that λ(x) may potentially be larger
than 1, implying that Alg. 1 might violate the power re-
duction budget constraint for some tenant(s). This is in
fact common for online algorithms solving problems with
mixed packing and covering constraints (like (6)) [24], due
to the hardness of fulfilling covering constraints without
exceeding upper limits set by packing constraints, in case
that no future information is known. In our scenario, it
is even harder because coefficients in the LHS of packing
constraints (i.e., (5)) are also unknown in advance. Nonethe-
less, OPT ·2σ (1 + β + αβ) ln(eN) can bound the degree of
violation of the budget constraints, even in the worst case.
For example, if OPT · 2σ (1 + β + αβ) ln(eN) = 1.2, we
have λ(x) ≤ 1.2, which means that Bi for some tenant i
might be exceeded by at most 20%. In practice, if the opera-
tor observes the need of exceeding a tenant’s budget when
running Alg. 1, the operator can provide compensation as
if the operator fails to provide the contracted guaranteed
capacity to the tenant (e.g., US$3/kW for each hour of un-
availability [7]). Further, we will show through simulations
under practical settings that, Alg. 1 always obtains feasible
solutions with realistic power reduction budget settings.

Theorem 2. When each emergency happens, the time com-
plexity of Alg. 1 is O(NM log(κρδ)

log(1+ 1
(1+2α) ln(eN) )

) where σ =
e

ln(2) ln(2κρδ) (defined in lines 4-6 in Alg. 1) and α satisfies
1
αUOPT ≤ OPT ≤ UOPT.

4 PERFORMANCE EVALUATION

We now evaluate our online algorithm in Alg. 1 via sim-
ulations, and highlight that it can fairly handle power
emergencies within reduction budgets.

4.1 Simulation Setup

Power capacities. By default, we consider a standard
medium-size multi-tenant cloud data center with 1 UPS, 4
PDUs, and 10 tenants. Each PDU serves 5-10 tenants, while
each tenant deploys server racks across 2-4 PDUs. Later,
we will also change the settings for sensitivity studies. Each
PDU has a power capacity of 300kW (i.e., hosting around
one thousand servers) and the UPS has a power capacity
of 1091kW (set to allow 110% oversubscription at the UPS
by PDUs, following the recent literature [5], [15]). We as-
sume for simplicity that the tenants equally share the UPS
capacity as their guaranteed high-availability capacities (i.e.,
Cgi = 1091

10 kW), and each tenant buys medium-availability
capacity (Cfi ) equal to 10%-20% of its guaranteed high-
availability capacity. Cgi and Cfi are evenly divided among
PDUs where tenant i has server racks. We simulate a one-
month billing period (T ). Each time slot is 5 minutes long.

Tenant power usage. We simulate tenants’ power usage
based on workload trace from Google clusters [25], which
has been widely cited in the studies about data center work-
loads. Moreover, besides deploying servers in their own
data centers, deploys servers in multi-tenant data centers
at hundreds of locations. The trace contains resource usage
(CPU, RAM, and Disk) and the execution time slots of
each job. We select representative jobs in the trace, assign
them to tenants’ server racks in different PDUs, and then
scale the CPU usage trace to get tenants’ power usage in
all PDUs, such that power emergencies (at PDU(s) and/or
the UPS) occur in about 3% of all the time slots. Fig. 2
illustrates the number of produced power emergencies at
the PDUs and the UPS. This setting is consistent with real-
world measurements and also used in the prior research [4],
[5], [15].

Power reduction budget. We set the power reduction
budget such that on average a tenant would reduce at most
30% of its overall medium-availability capacity during all
emergencies.

Comparisons. We compare our online algorithm with
the following schemes based on reasonable and best-known
studies. (1) OPT: the offline optimum computed by solv-
ing (6) exactly using Gurobi [26] and assuming full knowl-
edge of power usage during the entire billing period.
(2) PropR1: when an emergency happens, the operator
reduces the power from involved tenants that are using
their medium-availability power in proportion to their bud-
gets Bi. (3) PropR2: the operator reduces involved tenants’
medium-availability power in proportion to their medium-
availability power usage at the current slot. (4) RandR:
the operator repeatedly randomly picks one tenant that is
using its medium-availability power, and cuts its medium-
availability power usage as much as possible, until dimin-
ishing the emergency.

We run our algorithms on an Intel Core i7-6820HQ
processor. For each emergency, under the typical setup, the
running time is less than one second. Moreover, in real-
world environment, using Intel RAPL [27], the device power
can be reduced in a few milliseconds.
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Fig. 2. Cumulative number of emergencies.
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Fig. 3. Fair index: different schemes.
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accuracies of UOPT and different κ (in legend).

4.2 Evaluation Results
Fairness index. In Fig. 3, we compare the fairness index
(defined in (6)) achieved over time among the different
schemes. At the end of the one-month period, our algorithm
obtains a fair index of 0.14, and the optimum is 0.116—i.e.,
a ratio of around 1.2. We can see that our mechanism is
“fairer” than the baseline schemes (except for the offline
optimum, which is not attainable in practice).

Impact of medium-availability capacity levels. In Fig. 4,
we evaluate the impact of different medium-availability
capacity levels at tenants, by multiplying a factor to scale
the default value. Correspondingly, we also scale tenants’
power usage, while keeping their high-availability capaci-
ties unchanged. We can see our algorithm is close to the
offline optimum and better than other baselines in terms of
fairness. When the operator sells more medium-availability
capacities, emergencies occur more frequently, leading to
more power reduction at tenants (i.e., fairness index in-
creases for all the schemes, but the relative comparison
remains the same).

Impact of high-availability capacity levels. In Fig. 5, we
decrease tenants’ high-availability capacities by multiplying
a scale factor. We keep the tenants’ power usage and total
power capacities the same (increasing medium-availability
capacities). In this way, when an emergency occurs, the
operator has more freedom to decide power reduction from
tenants. Nonetheless, as the tenants’ power usage remains
same which results in the same emergencies, the offline
optimum does not change. As shown in Fig. 5, our algo-
rithm and PropR1 are not affected by high-availability ca-
pacity levels. However, PropR2 and RandR become worse,
because during certain time slots they might “mistakenly”
reduce relatively more power from one tenant according to
their reduction policies.

Impact of power reduction budget. In Fig. 6, we scale
down tenants’ power reduction budgets from our default
setting. We can see that even if the budget reduces to
40% of the default setting (i.e., 12% of tenant’s overall
medium-availability capacity during all emergencies), the

worst RandR scheme still only uses at most 80% of a
tenant’s budget. This implies that budget feasibility can be
easily guaranteed under realistic settings.

Impact of estimations of UOPT andNi. Our previous ex-
periments are conducted by setting UOPT to OPT and Ni’s
to the actual values. We next evaluate the impact of different
estimation accuracies of their values. Ni’s decide κ in line 4
of Alg. 1. In Fig. 7, we vary UOPT to different percentages of
OPT , while changing κ among different percentages of its
actual value. We observe that the ratio of fair index obtained
by Alg. 1 to OPT only varies slightly around that obtained
by setting UOPT to OPT and κ to the actual value (caused
by the changes of updating steps shown in line 18 in Alg. 1,
related to ratetij , Γ, σ), showing that our online algorithm is
insensitive to inaccurate estimation.

Impact of emergency probabilities. In Fig. 8, a higher
emergency probability means that there are power emergen-
cies in more time slots (our default is 3%). When emergency
ratio increases, fair indices of all benchmarks increase. More-
over, the difference between algorithms and the optimum
increases too because the algorithms make more “mistakes”
(compared with the optimum) without future information
with more emergencies.
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Fig. 8. Fair index: different emergency probabilities.

Impact of tenant number. In Fig. 9, we evaluate the
impact of the number of tenants, by multiplying the tenant
numbers by a factor (up to 4 times greater than the default
setting). Correspondingly, we proportionally scale down
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tenants’ capacities, power usage, and budgets according to
UPS/PDU capacities. We can see that the fairness indices of
OPT, HyPP, PropR1, and PropR2 are only slightly affected,
showing that our algorithm is not sensitive to the number
of tenants; meanwhile, the index of RandR becomes much
better since the random selection becomes more “average”
with more tenants.
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Fig. 9. Fair index: different numbers of tenants.

Utilization of power capacity of the entire data center.
In Fig. 10, we show the power utilization of the entire
data center with/without HyPP with one-day trace. In our
setting, for selling 20% of the guaranteed capacity as the
medium-availability capacity, there is improvement of the
utilization because HyPP utilizes the remanent of power
capacity when different tenants do not arrive their peaks
simultaneously.
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Fig. 10. Power Utilization: HyPP and the traditional.

5 RELATED WORK

Energy efficiency has remained a focal point of research,
and many solutions have been proposed, including dynamic
server provisioning [28], geographic load balancing [29],
incorporating renewables to reduce brown energy usage
[17], power provisioning over distributed data centers in
grids [30], [31], among others. These studies focus on min-
imizing the operating expense, and are complementary to
maximizing the data center capacity utilization for cutting
the capital expense.

Power oversubscription has been commonly applied to
improve utilization of expensive power infrastructure [4],
[11], [15]. To handle the resulting emergencies, [11] proposes
coordinated rack-level power capping, [8] studies statistic-
based power profiling, and [4] implements a priority-based
power capping in large systems. These solutions focus on an
owner-operated data center (or single tenant). In addition,
they study power capping only for a single time slot with-
out considering (long-term) fairness or power provisioning
SLA. Discharging energy storage devices (ESD) [15] has
also been proposed to handle emergencies. Our solution is

complementary and, when combined with ESD discharging,
can improve power provisioning SLA with less frequent
power capping.

For multi-tenant data centers, various incentive mech-
anisms have been proposed to coordinate tenants’ power
usage for energy cost saving [18], [32], demand response
[10] and power capping [5], etc. While [5] handles emer-
gencies, it relies on tenants’ voluntary power reduction on
a best-effort basis, neglects fairness and provides no power
provisioning SLA. Our solution addresses these limitations
and is provably fair, even compared to the offline optimum.

Fairness is a key consideration for resource allocation.
Several fairness indices have been studied, including max-
min fairness [19] (considering the one-slot fairness for net-
works), long-term fairness [33] (fairly charging users accord-
ing to their resource usage), and recently dominant resource
fairness [20] (considering the one-slot fairness in terms of
the dominant resource among different types of resources).
These studies do not apply to our problem, because the ten-
ants’ medium-availability power usage is constrained by the
interdependent multi-level PDU/UPS power capacity con-
straints, and the goal is to achieve bounded online fairness
with the long-term (i.e., temporal coupling) power reduction
budget constraints. The long-term budgets have never been
considered in the existing work. Our work is remotely
related to the growing literature about spot instances, but
our work also has several fundamental differences, e.g.,
the long-time guarantee and the segregation of resources.
For applying our approach to a production environment,
some existing interfaces and accounting mechanisms can be
used for tracking the budget usage as important pieces; and
the algorithms can also be regulated according to specific
situations for speeding up. Furthermore, to our knowledge,
hybrid power provisioning and online power capping in
multi-tenant data centers have not been considered in the
prior literature.

6 CONCLUDING REMARKS

This paper proposes HyPP, a novel hybrid power provision-
ing approach that provides two different power availabil-
ities in a multi-tenant cloud data center: high-availability
capacity and medium-availability capacity subject to SLA.
We also design an online algorithm for the operator to
coordinate tenants’ power reduction in cases of power
emergencies, targeting long-term fairness among tenants.
We prove the competitive ratio of the online algorithm and
run simulations to validate the analysis, showing that our
algorithm achieves a good fairness, as compared to different
alternative schemes.
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APPENDIX A
PROOF OF LEMMA 1
Proof. When a new covering constraint arrives (i.e., a new
power emergency, Rtj , happens in one PDU), the sys-
tem must satisfy it, i.e.,

∑
i∈[N ] e

t
ijx

t
ij ≥ Rtj . Hence, in

the optimal solution x∗, for any j, t (i.e., any power
emergency signal in PDUs), we have maxi{etij}

∑
i x

t∗
ij ≥∑

i∈[N ] e
t
ijx

t∗
ij ≥ Rtj , and then there must exist variable

x∗base ≥ maxj∈[1,M ],t∈[T ]:Rtj>0{ 1
maxi∈[N]{etij/Rtj}·nj

}. There-
fore,

OPT = max
i∈[N ]
{
∑

j∈[1,M ]

∑
t∈[T ]

etij
Bi

(x∗)tij}

≥ min
i∈[N ],j∈[1,M ],t∈[T ]:etij>0

{etij/Bi}x∗base

≥ min
i∈[N ],j∈[1,M ],t∈[T ]:etij>0

{etij/Bi}

· max
j∈[1,M ],t∈[T ]:Rtj>0

{ 1

maxi∈[N ]{etij/Rtj} · nj
}.

Using ρ =
maxi∈[N],j∈[1,M],t∈[T ]{etij/Bi}

mini∈[N],j∈[1,M],t∈[T ]:et
ij
>0{e

t
ij/Bi}

and δ =

mint∈[T ],j∈[1,M ]:Rtj>0{maxi∈[N ]
etij
Rtj
nj}

OPT ≥ max
i∈[N ],j∈[1,M ],t∈[T ]:etij>0,Rtj>0

{
etij
Bi
} 1

ρδ
. (13)

When a tenant needs to reduce power in PDU j at time slot t
at its first time, (xinitial)

t
ij = 1

κρδ , and thus

λ(xinitial) ≤ max
i∈[N ]
{Ni · max

j∈[1,M ],t∈[T ]:Rtj>0
{
etij
Bi
} · (xtij)initial}

≤ max
i∈[N ]
{Ni} · max

i∈[N ],j∈[1,M ],t∈[T ]:Rtj>0
{
etij
Bi
} · (xtij)initial

≤ max
i∈[N ]
{Ni} · max

i∈[N ],j∈[1,M ],t∈[T ]:Rtj>0
{
etij
Bi
} · 1

κρδ

≤ OPT.

where the last inequality is due to (13). Thus, based on
the property of est(x)—i.e., est(x) ≤ λ + Γ ln(N), we have
est(xinitial) ≤ OPT + Γ ln(N).

APPENDIX B
PROOF OF LEMMA 2
Proof. When new emergencies (i.e., Rtj or Rt0) appear at
time t, PDU j or UPS must reduce tenants’ medium-
availability power usage. Let Pj denote the set of ten-
ants that PDU j includes, and let P0 denote the set of
all tenants. We also divide the power reduction over the
whole bill period by multiple rounds indexed by l—the
updates of variables within line 13-21 or line 28-36 belong
to the same round. x(l) and x(l+1) represents the vector
of x before and after round l, and (x(l))tij represents the
value of xtij in x(l). Thus, if round l corresponds to a
PDU emergency Rtj , {i ∈ Pj : (x(l+1))tij > (x(l))tij} denotes
the tenants that reduce their power for PDU j; other-
wise (i.e., if round l corresponds to a UPS emergency Rt0,

{(i, j) ∈ P0 : (x(l+1))tij > (x(l))tij} denotes the tenants that
reduce their power for UPS.

Next, we analyze the incremental of est(x) by line 18
and 33 in Alg. 1. Let estl and estl+1 denote the value of
est(x) before and after round l. We formulate one function
gtij(u) = (xl)tij + ((xl+1)tij − (xl)tij)u subject to u ∈ [0, 1]
where gtij(0) = (xl)tij and gtij(1) = (xl+1)tij , and let g(u)
denote the vector of gtij(u). For simplicity, we let est(u) =

est(g(u)) = ln(
∑
i∈[N ] exp(

∑
t∈[T ]

∑
j∈[M ]

etij
BiΓ

gtij(u))) and
ratetij(u) = ratetij(g(u)), and we have

ratetij(u) = ratetij(g(u)) =
∂est(u)

∂gtij(u)
. (14)

Then, we have

dest(u)

du
=
∑
i∈[N ]

∑
j∈[M ]

∂est(u)

∂gtij(u)

dgtij(u)

du
=
∑
i∈[N ]

∑
j∈[M ]

ratetij(u)
dgtij(u)

du

by the chain rule and (14). As each round l only belongs to
one specific time slot t, we only sum up i ∈ [N ] and j ∈ [M ]
with the specific t. Specifically, for one PDU emergency, e.g.,
Rtj , we only need to sum up i ∈ Pj with specific j; and for
one UPS emergency, e.g., Rt0, we need to sum up ∀(i, j) ∈
P0. The analyses are similar, and we first analyze the PDU
emergency. We have

estl+1 − estl =

∫ 1

u=0

dest(u)

du
du

=
∑

i∈Pj :(x(l+1))tij>(x(l))tij

∫ 1

u=0

ratetij(u)
dgtij(u)

du
du.

By Lemma 7 (in Appendix H), for any 0 ≤ u ≤ 1,
ratetij(u) ≤ e · ratetij(0). Hence,

estl+1 − estl

≤ e ·
∑

i∈Pj :(x(l+1))tij>(x(l))tij

ratetij(x
(l))

∫ 1

u=0

dgtij(u)

du
du

= e ·
∑

i∈Pj :(x(l+1))tij>(x(l))tij

(ratetij(x
(l)) · ((x(l+1))tij − (x(l))tij)).

As in each round l each variable xtij ,∀i ∈ Pj with positive
coefficient etij is updated by line 18 in Alg. 1, we have

estl+1 − estl

≤ e ·
∑

i∈Pj :(x(l+1))tij>(x(l))tij

(ratetij(x
(l))(εtj(x

(l))
etij

Rtjratetij
)(x(l))tij)

≤ e · εtj
∑

i∈Pj :(x(l+1))tij>(x(l))tij

(
etij
Rtj

(x(l))tij)

≤ e · εtj ,

where the last inequality is due to not meeting the power
reduction demand in the power emergency before updating
x(l) (i.e., there is a power emergency—an unsatisfied cov-

ering constraint—
∑
i∈Pj :(x(l+1))tij>(x(l))tij

(
etij
Rtj

(x(l))tij) < 1).
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Hence, according to line 21, the increase of ytj bounds the
increase of est(x) in the round corresponding to a PDU
emergency.

Following a similar approach, we analyze the increase
of yt0 in the round corresponding to an UPS emergency. We
have

estl+1 − estl

=
∑

(i,j)∈P0:(x(l+1))tij>(x(l))tij

∫ 1

u=0

ratetij(u)
dgtij(u)

du
du

≤ e ·
∑

(i,j)∈P0:(x(l+1))tij>(x(l))tij

(ratetij(x
(l))((x(l+1))tij − (x(l))tij))

≤ e · εt0
∑

(i,j)∈P0:(x(l+1))tij>(x(l))tij

(
etij
Rt0

(x(l))tij)

≤ e · εt0
∑
i∈[N ]

∑
j∈[M ]

(
etij
Rt0

(x(l))tij)

≤ e · εt0,

and thus according to line 36 in Alg. 1, the increase of yt0
bounds the increase of est(x) in the round for UPS power
emergency.

Therefore, the increase of
∑
t∈[T ] y

t
0 +

∑
t∈[T ]

∑
j∈[M ] y

t
j

is an upper bound of the increase of est(x).

APPENDIX C
PROOF OF LEMMA 3
Proof. By Lemma 2, the increase of (

∑
t∈[T ] y

t
0 +∑

t∈[T ]

∑
j∈[M ] y

t
j) bounds the increase of est(x) during the

updating process of xtij multiplied by a factor (Line 18
and 33 in Alg. 1). By Lemma 1 and Lemma 6 (in Ap-
pendix G), we know that β(OPT/Γ + ln(N)) bounds the
increase of est(x) by online initialization of xtij (line 11
in Alg. 1). Hence, summing up these two parts of the
increase of est(x), we have

∑
t∈[T ] y

t
0 +

∑
t∈[T ]

∑
j∈[M ] y

t
j +

β(OPT/Γ + ln(N)) ≥ est(x).

APPENDIX D
PROOF OF LEMMA 4
Proof. Each packing constraint corresponds to one tenant’s
reduction budget, and according to (11) let φ(i) denote the
index of updating round that decides zi, and let L denote
the set including all round indices l. Therefore,

φ(i) = arg max
l∈L

exp(
∑
t̄∈[T ]

∑
j̄∈[M ]

et̄
ij̄

BiΓ
(x(l))t̄ij̄)∑

ī∈[N ] exp(
∑
t̄∈[T ]

∑
j̄∈[1,M ]

et̄
īj̄

BīΓ
xt̄
īj̄

)

.

Then, we reorder the tenants in order to ensure
φ(1) ≤ φ(2) ≤ · · · ≤ φ(N), and we know
that for any r, k ∈ [N ] with r ≤ k we have

φ(r) ≤ φ(k) and exp(
∑
t̄∈[T ]

∑
j̄∈[1,M ]

et̄rj̄
BrΓx

t̄
rj̄

) ≤

exp(
∑
t̄∈[T ]

∑
j̄∈[1,M ]

et̄rj̄
BrΓx

t̄
rj̄

)—i.e., the values of the terms
in later rounds are always no less than that in the early
rounds. Thus, we have

∑
r∈[N ]

exp(
∑
t̄∈[T ]

∑
j̄∈[1,M ]

et̄rj̄
BrΓ

xt̄rj̄)

≥
∑
r≤k

exp(
∑
t̄∈[T ]

∑
j̄∈[1,M ]

et̄rj̄
BrΓ

xt̄rj̄)

≥
∑
r≤k

exp(
∑
t̄∈[T ]

∑
j̄∈[1,M ]

et̄rj̄
BrΓ

xt̄rj̄).

(15)

According to (11) and (15), we have

(ln(eN) +
λmax

Γ
)zk =

exp(
∑
t̄∈[T ]

∑
j̄∈[1,M ]

et̄
kj̄

BkΓ
xt̄kj̄)∑

r∈[N ] exp(
∑
t̄∈[T ]

∑
j̄∈[1,M ]

et̄
rj̄

BrΓ
xt̄
rj̄

)

≤
exp(

∑
t̄∈[T ]

∑
j̄∈[1,M ]

et̄
kj̄

BkΓ
xt̄kj̄)∑

r≤k exp(
∑
t̄∈[T ]

∑
j̄∈[1,M ]

et̄
rj̄

BrΓ
xt̄
rj̄

)

.

To simplify the analysis, let ai denote

exp(
∑
t̄∈[T ]

∑
j̄∈[1,M ]

et̄ij̄
BiΓ

xt̄
ij̄

), and then we utilize Lemma 8
(in Appendix I). We have

(ln(eN)+
λmax

Γ
)
∑
i∈[N ]

zi

≤ 1 + ln(

∑
i∈[N ] exp(

∑
t̄∈[T ]

∑
j̄∈[1,M ]

et̄
ij̄

BiΓ
xt̄ij̄)

exp(
∑
t̄∈[T ]

∑
j̄∈[1,M ]

et̄
1j̄

B1Γ
xt̄

1j̄
)

)

≤ ln(eN) + max
l
λ̃(x(l))

where the last inequality holds due to ln(eN) ≥
1, exp(

∑
t̄∈[T ]

∑
j̄∈[1,M ]

et̄1j̄
B1Γx

t̄
1j̄

) ≥ 1, and

ln(exp(
∑
t̄∈[T ]

∑
j̄∈[1,M ]

et̄ij̄
BiΓ

xt̄
ij̄

)) ≤ maxl∈L
1
Γλ(x(l)).

Hence, we have
∑
i∈[N ] zi − ξ ≤ 1 where ξ is set as

ξ = 0.

APPENDIX E
PROOF OF LEMMA 5
Proof. Consider a round l executed upon arrival of a power
emergency signal (i.e., a covering constraint). In this round,
ytj is incremented by (eεtj). Let Ltj and Lt0 denote the set of
rounds during PDU emergency Rtj and UPS emergency Rt0,
and the increment occurs in every round in Ltj . Hence,

etij
Rtj

ytj +
etij
Rt0

yt0 = e(
etij
Rtj

∑
l∈Ltj

εtj(x
(l)) +

etij
Rt0

∑
l∈Lt0

εt0(x(l))),

where εtj(x
(l)) is the value of εtj computed in line 15 in Alg. 1

based on x(l). As the initial value of xtij is 1
κρδ , and xtij

is updated by (1 + εtj(x
(l))

etij
Rtj ratetij

) in each round; for any
i ∈ [N ], j ∈ [M ], t ∈ [T ],
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µ ≥ µxtij

≥ 1

κρδ
(
∏
l∈Lt0

(1 + εt0(x(l))
etij

Rt0ratetij
))(
∏
l∈Ltj

(1 + εtj(x
(l))

etij
Rtjratetij

))

≥ 1

κρδ
(
∏
l∈Lt0

(1 + εt0(x(l))
etij

Rt0ratetij
))(
∏
l∈Ltj

exp(ln(2)εtj(x
(l))

etij
Rtjratetij

))

≥ 1

κρδ

∏
l∈Lt0

exp(ln(2)εt0(x(l))
etij

Rt0ratetij
)
∏
l∈Ltj

exp(ln(2)εtj(x
(l))

etij
Rtjratetij

),

where in the last two inequalities we replace

(1 + εt0(x(l))
etij

Rt0ratetij
) and (1 + εtj(x

(l))
etij

Rtj ratetij
) with

exp(ln(2)εt0(x(l))
etij

Rt0ratetij
) and exp(ln(2)εtj(x

(l))
etij

Rtj ratetij
)

respectively. According to line 10 and line 15 in Alg. 1, we

have εtj(x
(l))

etij
Rtj ratetij

≤ 1
(1+2β) ln(eN) ≤ 1. Moreover, for any

0 ≤ % ≤ A, we have e
ln(1+A)

A % ≤ 1 + % where A = 1 and
% = εtj(x

(l))
etij

Rtj ratetij
.

Next, we multiply both sides by (κρδ) and take the
natural logarithm, and then we have

ln(µκρδ) ≥ ln(2)(
∑
l∈Lt0

(εt0(x(l))
etij

Rt0ratetij
) +

∑
l∈Ltj

(εtj(x
(l))

etij
Rtjratetij

)).

After rearranging some terms and multiplying
maxl∈{Lt0∪Ltj}{ratetij(x

(l))} on both sides, we have

1

ln(2)
ln(µκρδ) · max

l∈{Lt0∪L
t
j}
{ratetij(x

(l))}

≥
etij
Rt0

∑
l∈Lt0

εt0(x(l)) +
etij
Rtj

∑
l∈Ltj

εtj(x
(l)).

Thus, we have

etij
Rtj

ytj +
etij
Rt0

yt0 ≤
e

ln(2)
ln(µκρδ) · max

l∈{Lt0∪L
t
j}
{ratetij(x

(l))}

≤ e

ln(2)
ln(µκρδ) ·

etij
Bi
zi · (ln(eN) +

λmax

Γ
)

≤ (
etij
Bi
zi + φtij) · σ(ln(eN) +

λmax

Γ
)

where the first inequality follows by line 21 and 36 in Alg. 1,
the second inequality follows by (11), and last inequality
follows by φtij ≥ 0 and 1 < µ < 2.

APPENDIX F
PROOF OF THEOREM 1
Proof. Let x∗ and (y∗, z∗,φ∗, ξ∗) denote the optimal primal
and dual solution, and let xf and (yf , zf ,φf , ξf ) denote
the primal and dual solution obtained by our algorithm. We
have

OPT = λ(x∗)

=
∑
t∈[T ]

(y∗)t0 +
∑
t∈[T ]

∑
j∈[M ]

(y∗)tj −
∑
t∈[T ]

∑
j∈[M ]

∑
i∈[N ]

(φ∗)tij − ξ∗

by the LP strong duality. In our solution, the dual vari-
ables (yf , zf ,φf , ξf ) might not be feasible. Then, according
to Lemma 4 and 5, (yf/(σΩ), zf ,0, 0) is a feasible dual
solution—yf/(σΩ) represents that each element of y is
divided by (σΩ)—where Ω = ln(eN) + λmax

Γ = ln(eN) +

λ̃(xf ) and λ̃(x) = λmax

Γ . Due to weak duality, the optimal
primal objective value is always no less than dual objective
values of feasible dual solutions. Hence, we have

OPT ≥ 1

σΩ
(
∑
t∈[T ]

yt0 +
∑
t∈[T ]

∑
j∈[M ]

ytj)

≥ Γ

σΩ
(

est(x)

Γ
− βOPT/Γ− β ln(N)).

After rearranging terms, we have

σΩ

Γ
OPT +

β

Γ
OPT + β ln(N) ≥ est(x)

Γ
,

and we substitute Ω and have

σ

Γ
OPT (ln(eN) + λ̃(xf )) +

β

Γ
OPT + β ln(N) ≥ λ̃(xf ). (16)

As Γ = 2σUOPT and UOPT ≥ OPT ≥ 1
αUOPT, we have

2σαOPT ≥ Γ ≥ 2σOPT. (17)

Then, for Eq. (16), we replace Γ with its lower bound (i.e.,
2σOPT ) and as σ > 1 we have

1

2
(ln(eN) + λ̃(xf )) +

β

2
+ β ln(N) ≥ λ̃(xf )

ln(eN) + β + 2β ln(N) ≥ λ̃(xf )

(1 + 2β) ln(eN) ≥ λ̃(xf ),

which shows that λ̃(xf ) is always no more than
(1 + 2β) ln(eN) which is consistent with Lemma 7 during
the proof of competitive ratio.

According to λ̃(xf ) ≤ (1 + 2β) ln(eN) and the upper
bound of Γ (i.e., 2σαOPT ), for (16), we have

σOPT (ln(eN) + λ̃(xf )) + βOPT + Γβ ln(N) ≥ Γλ̃(xf ) = λ(x)

(σ ln(eN) + σ(1 + 2β) ln(eN) + β + 2σαβ ln(N))OPT ≥ λ(x).

According to 2σα > 1, we replace that β term with 2σαβ
and have

((2σ + 2σβ) ln(eN) + 2σαβ ln(eN))OPT ≥ λ(x)

2σ (1 + β + αβ) ln(eN)OPT ≥ λ(x)
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APPENDIX G
PROOF OF LEMMA 6
Lemma 6. β(OPT/Γ + ln(N)) bounds the increase of est(x)
by online initialization of xtij .

Proof. For simplification, we divide the value of the es-
timation function est(x) into two parts: one part is
the λ, which is the objective value of (6) (i.e., λ =

maxi∈[N ]{
∑
t∈[T ]

∑
j∈[1,M] e

t
ijx

t
ij

Bi
}); another part is equal to

est(x)− λ, which represents the estimation error. According
to (9), the increase of est(x) caused by initialization is equal
to the increase of λ plus the increase of the estimation error.
Accumulating the whole initialization processes, according
to (13), the total increase of λ caused by initialization is up
to UOPT (i.e., the upper bound ofOPT ); and according to (9),
the estimation error is up to Γ ln(N). Therefore, the increase
of est(x) during initialization is less than UOPT + Γ ln(N) ≤
β(OPT + Γ ln(N)) where β = 1+2σ ln(N)

1
α+2σ ln(N)

= UOPT+Γ ln(N)
1
αUOPT+Γ ln(N)

(Note that UOPT and 1
αUOPT represent the upper bound of

OPT and lower bound of OPT respectively).

APPENDIX H
PROOF OF LEMMA 7
Lemma 7. Given xtij and xtij

′ and 0 ≤ xtij ≤ xtij
′ ≤ 1, we have

ratetij(x
′) ≤ e · ratetij(x).

Proof. By definition of ratetij in (10), and as xtij ≤ xtij
′ ≤

µxtij , we have

ratetij(x
′) =

etij
Bi

exp
(∑

t̄∈[T ]

∑
j̄∈[M ]

et̄
ij̄

BiΓ
xt̄ij̄
′)

∑
ī∈[N ] exp

(∑
t̄∈[T ]

∑
j̄∈[M ]

et̄
īj̄

BīΓ
xt̄
īj̄

′
)

≤
etij
Bi

exp
(∑

t̄∈[T ]

∑
j̄∈[M ]

et̄
ij̄

BiΓ
xt̄ij̄
′)

∑
ī∈[N ] exp

(∑
t̄∈[T ]

∑
j̄∈[M ]

et̄
īj̄

BīΓ
xt̄
īj̄

)
≤

etij
Bi

exp
(∑

t̄∈[T ]

∑
j̄∈[M ] µ

et̄
ij̄

BiΓ
xt̄ij̄

)
∑
ī∈[N ] exp

(∑
t̄∈[T ]

∑
j̄∈[M ]

et̄
īj̄

BīΓ
xt̄
īj̄

) ,
As for any i ∈ [N ], λ̃(x) ≤ (1 + 2β) ln(eN) ⇒
(
∑
t̄∈[T ]

∑
j̄∈[M ]

et̄ij̄
BiΓ

xt̄
ij̄

) ≤ (1 + 2β) ln(eN)
and the definition of µ, we have

(
∑
t̄∈[T ]

∑
j̄∈[M ] µ

et̄ij̄
BiΓ

xt̄
ij̄

) ≤ (
∑
t̄∈[T ]

∑
j̄∈[M ]

et̄ij̄
BiΓ

xt̄
ij̄

) +

(
∑
t̄∈[T ]

∑
j̄∈[M ]

et̄ij̄
BiΓ

xt̄
ij̄

)/((1 + 2β) ln(eN)) ≤

(
∑
t̄∈[T ]

∑
j̄∈[M ]

et̄ij̄
BiΓ

xt̄
ij̄

) + 1, then we have

ratetij(x
′) ≤

etij
Bi

exp
(

1 +
∑
t̄∈[T ]

∑
j̄∈[M ]

et̄
ij̄

BiΓ
xt̄ij̄

)
∑
ī∈[N ] exp

(∑
t̄∈[T ]

∑
j̄∈[M ]

et̄
īj̄

BīΓ
xt̄
īj̄

)
≤ e ·

etij
Bi

exp
(∑

t̄∈[T ]

∑
j̄∈[M ]

et̄
ij̄

BiΓ
xt̄ij̄

)
∑
ī∈[N ] exp

(∑
t̄∈[T ]

∑
j̄∈[M ]

et̄
īj̄

BīΓ
xt̄
īj̄

)
≤ e · ratetij(x),

proving the lemma.

APPENDIX I
PROOF OF LEMMA 8
Lemma 8. For a1, a2, . . . , aN ∈ R+ with N > 0, we have∑
i∈[N ]

ai∑
j≤i aj

≤ 1 + ln(
∑
i∈[N] ai

a1
)

Proof. It is trivially true when N = 1. For N > 1, for
simplifying, we define bi =

∑
j≤i aj and so ai = bi − bi−1,

thus we have∑
i∈[N ]

ai∑
j≤i aj

= 1 +
∑

i∈[2,N ]

(1− bi−1

bi
) (18)

For simplification, and we denote ri = bi
bi+1

. We next
analyze the second term of (18), and we define χ =∑
i∈[1,N−1](1− ri) = (N − 1)−

∑
i∈[1,N−1] ri. Since ri ≤ 1

and
∏
i∈[1,N−1] ri = b1

bN
(in the production, the denominator

of one term cancels the numerator of the next term), the
term

∑
i∈[1,N−1] ri is minimized when ri = b1

bN

1
N−1 and the

minimum value (of term
∑
i∈[1,N−1] ri) is (N − 1)( b1bN )

1
N−1 .

Therefore, we have

χ ≤ (N − 1)− (N − 1)(
b1
bN

)
1

N−1 . (19)

For obtaining the upper bound of χ (i.e., the RHS of (19)),
we denote Θ = (N − 1) − (N − 1)ϑ

1
N−1 where ϑ = b1

bN
.

Differentiating Θ with respect to ϑ, we have

∂Θ

∂ϑ
= ϑ

1
N−1

ln(ϑ)

N − 1
− ϑ

1
N−1 + 1

∂2Θ

∂ϑ2
= −ϑ

1
N−1 ln2(ϑ)

(N − 1)3
< 0

As the second partial derivative of Θ with respect to ϑ (i.e.,
∂2Θ
∂ϑ2 ) is always less than zero, Θ is maximized when ∂Θ

∂ϑ = 0

that is ϑ
1

N−1 ln(ϑ) − (N − 1)ϑ
1

N−1 + (N − 1) = 0 ⇒ (N −
1)−(N−1)ϑ

1
N−1 = ln( 1

ϑ ), which is consistent with the RHS
of (19). As ϑ = b1

bN
≤ 1, we have

χ ≤ ln(
1

ϑ
) = ln(

bN
b1

) = ln(

∑
i∈[N ] ai

a1
). (20)

According to (18), (19), and (20), we have∑
i∈[N ]

ai∑
j≤i aj

≤ 1 + ln(

∑
i∈[N ] ai

a1
)

APPENDIX J
PROOF OF THEOREM 2
Proof. Algorithm 1 is an iterate program; and our algorithm
iteratively updates xtij at line 18 and line 33. And the initial
value of xtij is 1

κρδ . According to the definitions of εtj , µ,
and β, and β ≤ α, the maximum updating times of one
variable xtij are up to log(κρδ)

log(1+ 1
(1+2α) ln(eN) )

. Moreover, for these

two sub-functions shown in Algorithm 2 and Algorithm 3, is
bothO(NM), looking up the best candidate from all tenants
over all PDUs. Therefore, the time-complexity of algorithm
is O(NM log(κρδ)

log(1+ 1
(1+2α) ln(eN) )

)


