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ABSTRACT

Distributed machine learning (ML) has played a key role in today’s

proliferation of AI services. A typical model of distributed ML is to

partition training datasets over multiple worker nodes to update

model parameters in parallel, adopting a parameter server archi-

tecture. ML training jobs are typically resource elastic, completed

using various time lengths with different resource configurations. A

fundamental problem in a distributed ML cluster is how to explore

the demand elasticity of ML jobs and schedule them with differ-

ent resource configurations, such that the utilization of resources

is maximized and average job completion time is minimized. To

address it, we propose an online scheduling algorithm to decide

the execution time window, the number and the type of concurrent

workers and parameter servers for each job upon its arrival, with

a goal of minimizing the weighted average completion time. Our

online algorithm consists of (i) an online scheduling framework

that groups unprocessed ML training jobs into a batch iteratively,

and (ii) a batch scheduling algorithm that configures each ML job to

maximize the total weight of scheduled jobs in the current iteration.

Our online algorithm guarantees a good parameterized competitive

ratio with polynomial time complexity. Extensive evaluations using

real-world data demonstrate that it outperforms state-of-the-art

schedulers in today’s AI cloud systems.
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1 INTRODUCTION

Nowadays, most leading IT companies operate distributed machine

learning (ML) clusters of GPU servers, to run ML jobs that train

models over large datasets for providing AI-driven services. To

train a large model, hundreds of concurrent workers (typically

implemented on virtual machines or containers) are deployed in

parallel. Either the training dataset or the ML model is partitioned

among workers, realizing data parallelism or model parallelism
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[11][12][23]. In model parallelism, each worker updates part of the

parameters using the entire input dataset [8]. In data parallelism,

each worker has an entire copy of the ML model and computes

parameter update (gradients) using a portion of input data; in each

training iteration, workers exchange locally-computed gradients

to obtain the global ML model update. As training data is usually

enormous, data parallelism is the dominant form of parallel training

in practice [11][23].

A typical approach for exchanging parameter updates among

workers is through the parameter server (PS) framework [12][23].

In the PS framework, one or multiple PSs maintain model parame-

ters as a global key-value store, and each worker uploads computed

gradients to the PSs. The PSs update the corresponding parameters

based on received gradients and then send updated parameters to

the workers. The workers and PSs may be placed on different phys-

ical servers, when they cannot be completely accommodated on the

same server, or to fully utilize expensive and fragment resources

on servers [8].

ML training jobs are resource-intensive and time-consuming.

Existing distributed ML systems [16][18][27] require job owners to

estimate the amount of resources, including the number of workers

and the resource configuration of each worker, as well as the time

needed, to train the ML model using a large dataset. For example,

Google uses Borg [28] and Microsoft, Tencent, and Baidu use cus-

tomized versions of YARN schedulers [27] to aggressively provision

each job as much resource as possible according to user demand

and job priority, using strategies such as FIFO and max-min fair

allocations.

However, the job owner is often uncertain of the amount of

resources and time it may take to complete a job. There is elas-

ticity in ML jobs’ resource demand: It takes different amounts of

time to train a certain model with workers of different resource

configurations, especially of different numbers of GPUs. Further,

the processing time of a mini-batch is typically not inversely pro-

portional to the worker’s resource allocation, which is mainly due

to overhead in parallel training [14]. Next, assigning training jobs

less resources than what they require in the ideal case (i.e., that

leads to most expedited single-job training [14] [32] [25]) may re-

duce average training completion time in the entire system. For

example, when training CIFAR-10 CNN for 100K steps until the

model achieves 87% accuracy, the single-step training time (time to

train a mini-batch) can be 15 milliseconds with a single GPU and

10 milliseconds with two GPUs (suppose it is the ideal case) [14].

Thus, if there are two training jobs of this type submitted at the

same time and only three GPUs are available, with adequate other

resources, allocating one GPU to one job and two GPUs for the

other is the best strategy for minimizing the average job completion

time, which results in (10 + 15)/2 = 12.5 milliseconds, in contrast
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to allocating two GPUs to each job sequentially, which results in

(10 + 20)/2 = 15 milliseconds.

Considering demand elasticity, a fundamental problem for a ML

cluster operator is: Given limited resources, how to decide the num-

ber/type of workers and PSs and running time of each job, such that

resources are maximally utilized and average weighted completion

time is minimized? Here, the weight of each job may characterize

its processing priority.

To address the above problem, we first formulate the average

weighted completion timeminimization problem into a time-indexed

mathematical program. The program formulates features of ML jobs

(demand for large-volume data analysis capacity and high inter-

node connection bandwidth). Different from traditional makespan

minimization problems, it contains both conventional (packing-

type) constraints and non-conventional (set-type and natural lan-

guage described) constraints, which cannot be handled by existing

approaches [24] [17]. Decision variables include the number/type

of workers and PSs, and the execution window of each job. To

compute schedules on the go with the shortest completion time,

we divide our design into two steps:

First, we propose an online framework to convert the online

optimization problem into a series of batch scheduling problems by

partitioning the overall timespan into intervals with geometrically

increasing length. Our online scheduling framework employs a dual

approximation algorithm as a subroutine for performance guarantee.

The dual approximation algorithm finds an infeasible solution that

is super-optimal, where the performance of the algorithm is mea-

sured by the degree of infeasibility allowed. The infeasible solution

will finally become feasible as job execution can span multiple in-

tervals. The super-optimal objective value contributes to bound the

average weighted completion time. This dual algorithm is realized

through a batch scheduling algorithm that solves the maximum

weighted schedule problem to schedule as many unscheduled jobs

as possible before a certain time point.

Second, we observe that the maximum weighted schedule prob-

lem includes several non-conventional constraints for character-

izing the configuration/placement of workers and PSs. To handle

these set-type and natural language described constraints, we encode

each valid schedule in a variable and reformulate the original pro-

gram into an integer linear program (ILP), where only conventional

packing constraints are included, at the price of introducing an

exponential number of variables. Instead of solving the ILP directly,

which is infeasible in practice due to time complexity, we design

an approximation algorithm by applying a tailored primal-dual

framework to the ILP’s LP relaxation and its dual LP. We interpret

dual variables as unit resource prices, and compute the best sched-

ule for each job based on resource consumption cost and its ML

framework. The algorithm schedules a job if its weight is higher

than its estimated serving cost.

We carry out rigorous theoretical analysis to prove that our

online algorithm runs in polynomial time, and achieves a bounded

competitive ratio. We evaluate practical effectiveness of our online

algorithm through trace-driven simulation studies. We implement

four representative job scheduling strategies used in existing cloud

platforms, and compare themwith our algorithm. Simulation results

confirm that our algorithm outperforms existing methods by up to

200% in average weighted completion time, especially in systems

with resource shortage.

2 RELATED WORK

Resource Allocation in Distributed ML Systems. Borg [28] is a

large-scale cluster manager from Google that runs jobs in a priority-

based approach with preemption. Ghodsi et al. [16] propose a fair

allocation policy of multiple resource types, similar to Mesos [18]

and YARN [27]. In these systems, job owner prescribes the number

and resource configuration of workers. In comparison, we design

an online algorithm to guide worker deployment and resource

allocation, exploiting the demand elasticity of ML jobs. Gao et al.

[14] solve a training time minimization problem to find the best

device placement of a deep neural network, using a reinforcement

learning algorithm. Bao et al. [7] propose a deep learning-based job

placement algorithm to minimize interference among co-located

ML jobs. Resource allocation among multiple jobs is not considered

by these work. Chen et al. [9] identify the demand elasticity of data

analytics jobs and propose a performance-aware fair scheduler,

which is designed for the offline instead of the online scenario.

Amiri et al. [5] propose a centralized scheduling strategy that

assigns tasks to workers to minimize the average completion time

with the help of one master. Zou et al. [37] develop a procedure

to help users better choose the mini-batch size and the number

of PSs. Similarly, Yan et al. [30] develop performance models that

quantify the impact of data partitioning and system provisioning on

system performance and scalability. Above papers don’t consider

online job scheduling and resource sharing problems. Bao et al. [8]

design an online algorithm to guide resource allocation over time

in a distributed machine learning system. Although we consider a

similar problem, this work is significantly different from [8]. First,

our work is the first that explores the demand elasticity. A job’s

scheduling and configuration are needed to be determined, while

[8] focuses on adjusting the number of customized workers in

each time slot, but does not address choices of different types of

workers/PSs for a job, nor colocation ofworkers and PSs on the same

physical server(s). Second, considering the demand elasticity of ML

jobs, the goal of our work is to minimize the weighted completion

time, while [8] aims to maximize the overall utility. Third, with the

different optimization objective, our algorithmic idea to solve the

weighted completion time minimization problem is also different

from [8], as shown in Fig. 1.

Job Scheduling and Resource Allocation in Cloud Systems. Shi

et al. [26] propose the first online combinatorial auction for cloud

resource allocation and pricing. Chowdhury et al. [13] design an

allocation algorithm to achieve multi-resource fairness for elastic

and correlated demands. Zhang et al. [34] study online resource

allocation in a cloud computing platform through posted-price

mechanisms. Zhang et al. [33] design mechanisms for online cloud

resource bundling and provisioning to maximize social welfare with

server costs. Jiao et al. [21, 22] devise online prediction-free and

prediction-aware algorithms to provision resources across clouds

and edges for serving dynamic demands. These studies satisfy each

job’s demand within a fixed window, and do not consider the de-

mand elasticity and scheduling dimensions in the solution space.

For job scheduling, Azar et al. [6] study online cloud job schedul-

ing problems for deadline-sensitive jobs, assuming that one server
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can only execute one job in each time slot. Zheng et al. [35] inves-

tigate cloud brokerage service and study economic issues based

on a stochastic job scheduling problem. Zhou et al. [36] design a

mechanism for online cloud job scheduling and resource allocation,

where jobs have alternative deadlines corresponding to different

job valuations. Wang et al. [29] schedule jobs online via creating

and running multiple replicas of each task in order to mitigate the

straggler issue. The resource demand of each job is specified by the

job owner in advance in the above literatures.

3 SYSTEM MODEL

3.1 System Overview

We consider a machine learning cluster where multiple ML training

jobs run using potentially different ML frameworks (e.g., Tensor-

Flow [4], MXNet [11], CNTK [2]).

Table 1: List of Notations

J # of jobs R # of resource types

T system timespan [X ] interger set {1, 2, . . . ,X }

aj arrival time of j D j # of data chunks in j

w j weight of job j dj running duration of j

M # of worker types P # of PS types

Ej # of training epochs for job j

Kj # of mini-batches in one data chunk of job j

H # of servers to deploy workers and PSs

Cr
h

capacity of type-r resource on server h

erm (zrp ) type-r resource of worker m (PS p)

bm (Bp ) bandwidth of worker m (PS p)

vjm time to train a mini-batch of job j in worker m

πj size of gradients generated by each worker after

processing one mini-batch when serve job j

U
p
j time to update parameters at a type-p PS

in each iteration of j

ρ
p
jm processing capacity of each worker when j

employs worker m and PS p

qj whether j’s all workers (and PSs) are running in

one server or not

x jt whether or not training job j with starting time t

sjhp # of type-p PSs serving job j in server h

yjhm # of type-m workers serving job j in server h

Especially, a set of J training jobs arrive with large input datasets

during a large time span [T ] = 1, 2, ...,T , to train different ML mod-

els using synchronous training, i.e., synchronous stochastic gradient

descent (S-SGD) method. Synchronous training can typically en-

sure model convergence and achieve higher model accuracy than

asynchronous training [30][19], and is hence widely adopted over

the latter in AI clouds of leading IT companies [1]. The large input

dataset of job j (j ∈ [J ]) is divided into D j equal-sized data chunks.

Each data chunk is divided into Kj equal-sized mini-batches. We

consider the PS framework in this work.

Let H denote the number of physical servers for the deployment

of workers and PSs. Each server h ∈ [H ] offers Cr
h
units of type-r

resource. R represents the number of resource types, including GPU,

CPU, memory and bandwidth. Workers and PSs are implemented

as virtual machines (VMs) or containers in physical servers. We

refer to workers and PSs with different resource allocations as

different types. Let M and P denote the number of worker and

PS types, respectively. Each type-m (m ∈ [M]) worker (type-p

(p ∈ [P]) PS) consumes erm (zrp ) units of type-r (r ∈ [R]) resource.

Let bm (Bp ) be the bandwidth occupied by each worker m (PS p),

i.e., bm = ebandwidth
m (Bp = z

bandwidth
p ).

Upon the arrival of an ML job j at time aj , the following decisions

are made: (i) when to start the job, denoted by binary variable x jt :

x jt = 1 if job j is executed with starting time t; (ii) the number of

allocated type-m workers serving job j deployed on physical server

h at and after aj , indicated by integer variableyjhm ; (iii) the number

of allocated type-p PSs serving job j deployed on physical server h

at and after aj , indicated by integer variable sjhp ; (iv) the amount

of consecutive time slots allocated to job j, which is related to the

number and processing capacity of workers serving job j, specified

by dj . We do not consider preemption in this work, because when

a job is suspended, the entire image of the job needs to be stored

temporarily, which increases the overhead. Table 1 summarizes

important notations for easy reference.

3.2 Training Process with PS framework

The set of global parameters of each ML job is partitioned into

several partitions, each maintained by one PS [23]. Each worker

of job j has a complete replica of the training model. Each worker

processes allocated mini-batches one by one, sends computed gra-

dients to and receives updated parameters from all job j’s PSs after

processing one mini-batch (one iteration). The training process at

all workers is synchronized: in each iteration, each PS updates its

parameters after it has aggregated gradients from all workers, and

then sends updated parameters to all workers. When the entire

input dataset is trained for one round, an epoch is completed. For

an ML job, the input dataset is trained for multiple epochs. Let Ej
be the required training epochs of job j.

Let vjm denote the time for a type-m worker to train a mini-

batch of job j. Assume the computation time at a type-p PS for

updating a partition of global parameters using gradients from all

workers in each iteration of job j is a constant, indicated by U
p
j .

The time for a type-m worker of job j, deployed on a server with no

PS, to transfer gradients to all PSs in other servers is
πj
bm

, and vice

versa, assuming the upload and download bandwidth are the same.

When a worker is placed together with some PS(s) in one server,

exchanging parameters/gradients with PS(s) in the same server

needs no inter-server bandwidth and takes less time. With syn-

chronous training, the time for exchanging gradients/parameters

in one iteration of a job depends on the worker that spends the

longest time, which is bound by
πj
bm

, i.e., the time if any worker is

not co-located with any PS.

We ignore fetching time of the input data as it can be largely

hidden behind training using pipelining. Let qj indicate whether all

workers and PSs of job j are deployed in the same physical server (1)

or not (0). Let ρ
p
jm denote the processing capacity of each worker,

i.e., the number of mini-batches that can be trained by each worker

in one time slot, when job j employs type-m worker(s) and type-p

PS(s). Thus, we have:

ρ
p
jm =





1/(vjm +U
p
j ), if qj = 1

1/(vjm +U
p
j +

2πj

bm
), if qj = 0

(1)
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Note that when not all workers and PSs of job j are on the same

server (qj = 0), ρ
p
jm represents the upper-bound of time for ex-

changing gradients/parameters in one training iteration, for model

simplification.

3.3 Problem Formulation

We exploit the demand elasticity of ML jobs to minimize the sum of

all jobs’ weighted completion times [24], that is
∑
j ∈J w jc j , where

c j denotes the completion time of job j and c j =
∑
t ∈[T ] x jt (t + dj ),

andw j can be interpreted as the priority of job j [28]. The objective

is equivalent to minimizing average weighted job completion time,

given the fixed total number of jobs, J . In practice, a cluster manager

can set job weights according to job arrival times, deadlines and

workloads. Jobs, which have larger workload and smaller time

interval between arrival time and deadline, can be assigned larger

weights. The larger a job’s weight is, the sooner it is scheduled. If

all weights are the same, the system prefers to schedule small jobs

earlier, as the total completion time is shorter. This discriminates

large jobs. Assigning a larger weight to large jobs can mitigate this

problem.

The offline minimization problem can be formulated as the fol-

lowing time-indexed program:

minimize
∑

j∈[J ]

w j

∑

t∈[T ]

x jt (t + dj ) (2)

subject to: ∑

t∈[T ]

x jt = 1, ∀j,
(2a)

| {m ∈ [M ] |
∑

h∈[H ]

yjhm > 0} | = 1, ∀j
(2b)

| {p ∈ [P ] |
∑

h∈[H ]

sjhp > 0} | = 1, ∀j
(2c)

qj = 1 if and only if h = h′, ∀h, h′ : yjhm > 0, sjh′p > 0, ∀j, (2d)
∑

h∈[H ]

∑

p∈[P ]

sjhp ≥ 1, ∀j,
(2e)

dj

∑

h∈[H ]

∑

m∈[M ]

yjhmρ
p
jm ≥ EjD jKj , ∀j, ∀p :

∑

h∈[H ]

sjhp > 0
(2f)

∑

h∈[H ]

∑

m∈[M ]

yjhm ≤ D j , ∀j, (2g)

∑

j :t ′∈(t−dj ,t ]

x jt ′ (
∑

m∈[M ]

ermyjhm +
∑

p∈[P ]

zrpsjhp ) ≤ Cr
h
, ∀t, ∀r, ∀h,

(2h)
∑

h′∈[H−h ]

∑

m∈[M ]

yjh′mbm ≤
∑

p∈[P ]

sjhpBp, ∀j, ∀h :
∑

p∈[P ]

sjhp > 0,
(2i)

x jt = 0, ∀j, ∀t < aj , (2j)

yjhm ∈ {0, 1, ... }, ∀j, ∀h, ∀m, (2k)

sjhp ∈ {0, 1, ... }, ∀j, ∀h, ∀p, (2l)

dj ∈ {0, 1, ... }, ∀j, (2m)

x jt ∈ {0, 1}, ∀j, ∀t . (2n)

qj ∈ {0, 1}, ∀j . (2o)

where ∀j, t, r, h,m, p represents ∀j ∈ [J ], t ∈ [T ], r ∈ [R], h ∈

[H ],m ∈ [M ], p ∈ [P ]. Constraint (2a) requires job j to be scheduled

once. Constraint (2b) ensures that each job selects and employs one

type of workers, as it is common to use the same type of workers to

Figure 1: Main idea of our online algorithm Aonline .

process evenly allocated input data batches for synchronous train-

ing. Though there have been recent studies that assign different

workers different batch sizes [10], the relevant study is still in its in-

fancy and not widely used in practice. If different types of workers

are used in a job, the time for the workers to process equal-sized

data batches varies; hence, workers requiring less training time

need to wait for slower workers in each iteration, leading to lower

resource efficiency. Constraint (2c) requires that each job uses one

type of PSs due to the same reason.

Constraint (2d) shows the relationship among qj , yjhm and sjhp ,

which is hard and awkward to describe by linear constraint. Con-

straint (2e) assures that there is at least one PS allocated to each

ML job for maintaining its global parameters. Constraint (2f) guar-

antees that for job j, a sufficient number of workers and time slots

are allocated to accomplish training of the dataset for Ej epochs.

EjD jKj is the total count of mini-batches trained in job j. Constraint

(2g) upper-bounds the number of workers by the number of data

chunks D j , to ensure that one data chunk is trained by at most one

worker for Ej epochs. The resource capacity of physical servers for

running workers and PSs is formulated by constraint (2h). Here,

x jt ′ = 1, t ′ ∈ (t − dj , t ] denotes that job j is still running in time slot

t. Since each of job j’s workers needs to push gradients to and pull

computed parameters from all its PSs, the bandwidth reservation

for PSs of job j in server h should cover the total bandwidth of job

j’s workers placed on other servers, which can be formulated as the

linear constraint (2i). Here, H−h represents the set of all the servers

except h. Constraint (2j) indicates that it is impossible to start job j

before its arrival.

Without the non-linear constraints (2b)(2d), the weighted com-

pletion time minimization problem in (2) is still a mixed integer

linear program (MILP). Even in the offline setting, with information

of all jobs given, solving such MILPs is non-trivial and typically

NP-hard [15].

3.4 Algorithmic Idea

In order to solve the weighted completion time minimization prob-

lem, we design an efficient online algorithm with bounded compet-

itive ratio (i.e., the maximum ratio of the total weighted completion

time incurred by our online algorithm over that incurred by the

offline optimal approach which knows all the inputs in advance) in

two steps, as shown in Fig. 1.

i. In Sec. 4, we first group unprocessed ML jobs until a certain

time point into a batch, to convert the online optimization

problem into a series of batch scheduling problems. Then, we

invoke a dual approximation algorithm Adual to schedule
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jobs in a batch. According to Lemma 1 [17], the schedule pro-

duced byAdual is required to satisfy two properties. It is hard

to yield such a schedule directly. Rather than solving the the

batch scheduling problem directly, we focus on a more solv-

able problem instead, i.e., the total weight maximization prob-

lem. Leveraging an approximation algorithm Amaxweiдht

for the total weight maximization problem,Adual constructs

a required schedule.

ii. In Sec. 5, we introduce an approximation algorithmAmaxweiдht

for batch processing, which solves the the total weight maxi-

mization problem.Amaxweiдht applies the primal-dual frame-

work and employs two subroutines (Amincost1 andAmincost2)

to choose the schedule with smallest cost for each job.

Here,Adual is a subroutine ofAonline and a dual approximation

algorithm to solve the maximum weighted schedule problem in

Definition 1. Adual invokes Amaxweiдht and Amaxweiдht invokes

Amincost1 andAmincost2.Amincost1 andAmincost2 solve the cost

minimization problem in Sec. 5.2. Performance guarantees of vari-

ous proposed algorithms are shown at the end of the yellow arrows

in Fig.1.

4 ONLINE SCHEDULING FRAMEWORK

In Sec. 4.1, we introduce an online scheduling framework Aonline
that partitions the timespan to group ML jobs. It requires a dual ap-

proximation algorithmAdual for job scheduling, which is presented

in Sec. 4.2.

4.1 Online Scheduling Algorithm

Our online algorithm is partly inspired by Leslie et al. [17]. The

basic idea is to partition the timespan of potential completion times

at geometrically increasing points, and iteratively schedule unpro-

cessed ML jobs until a certain time point. More specifically, let

τ0 = 1, τi = 2i−1. In rounds i = 1, 2, . . . , we wait until time τi . Let

Ji represent the set of jobs that have arrived by time τi , but still not

scheduled. Next, we require a dual approximation algorithm Adual
for Ji , which produces a schedule of length at most ατi (α > 1,

which is a number to indicate the infeasibility of the schedule pro-

duced by Adual ) and whose total weight is at least the optimal

weight of the maximum weighted schedule problem in Sec. 5. The

schedule generated by Adual is then assigned to run from time

ατi to time ατi+1. Because ατi+1 − ατi ≥ ατi , it is flexible to run

job with length at most ατi in interval [ατi ,ατi+1], and hence our

online algorithm produces feasible schedules.

Definition 1. TheMaximumWeighted Schedule Problem:

In an ML cluster, given a deadline τi , a set of jobs Ji at the beginning,

and a weight for each job, we aim to construct a feasible schedule that

maximizes the total weight of jobs completed by time τi .

In Aonline (Algorithm 1), J si denotes the set of jobs scheduled

during round i. Note that τ0 = 1 implies the assumption that no job

can complete within the first time slot. Lines 3-5 group unsched-

uled jobs into set Ji . We invoke the dual approximation algorithm

Algorithm Adual for Ji in line 6. Next, we run j ∈ [J si ] from time

ατi to time ατi+1 according to the schedule produced by Adual in

line 8-9. In line 11, we add job(s) in Ji which is (are) not scheduled

in round i to set Ji+1, to process in next round i + 1.

Algorithm 1 An Online Algorithm Aonline

Input: T , Cr
h
, ∀h ∈ [H ], r ∈ [R];

Output: x jt , yjhm, sjhp, dj , ∀j ∈ [J ], t ∈ [T ],m ∈ [M ], p ∈ [P ], h ∈

[H ];

1: Initialize x jt = 0, yjhm = 0,sjhp = 0, dj = 0, ∀j ∈ [J ], t ∈ [T ],m ∈

[M ], p ∈ [P ], h ∈ [H ], Ji = �;
2: while i = 1, 2, ... do

3: while t < τi do

4: Ji = Ji ∪ {j };

5: end while

6: {{x jt }, dj , {yjhm }, {sjhp }}j∈Ji ,t∈[ατi ] = Adual (Ji , τi , {C
r
h
});

7: for all j ∈ [J si ] do

8: Run job j from time ατi to time ατi+1 according to

({x jt }, dj , {yjhm }, {sjhp });

9: end for

10: Ji+1 = Ji+1 ∪ (Ji \ J
s
i );

11: end while

Lemma 1. Given a dual approximation algorithm for Ji , i ∈ 1, 2, ...,

which produces a schedule satisfying two properties: (i) the length

of the schedule is at most ατi ; (ii) total weight of the schedule is at

least the optimal weight of the corresponding maximum weighted

schedule problem, Aonline is an online 4α-approximation algorithm

to minimize the total weighted completion time.

All missing proofs are in our technical report [3].

4.2 A Dual Approximation Algorithm

The dual approximation algorithm Adual (Algorithm 2) produces

desired schedules based on a γ -approximation algorithm for the

Maximum Weighted Schedule Problem, that schedules as many un-

scheduled jobs as possible before a deadline (to be detailed in Sec. 5).

Lines 2-4 invoke the γ -approximation algorithm Amaxweiдht for

α rounds. Specifically, in the ιth (ι ∈ [α]) round, we schedule jobs

in Ji \ J
s
i , i.e., jobs in Ji but not served in before rounds, from time

(ι − 1)τi + 1 to time ιτi .

Lemma 2. Given a γ -approximation algorithm for the maximum

weighted schedule problem which schedules as many jobs as possible

before deadline τi , Adual constructs a schedule of length at most ατi
and total weight at least the optimal objective value of the correspond-

ing maximum weighted schedule problem.

Proof: Let J∗i ι and J siι be the set of jobs served optimally and

completed byAdual in the ιth round, respectively. Thus, the optimal

objective value of the total weight maximization problem for Ji is

w(J∗i1). And let J s
′

i ι = J siι ∩ J∗i1. In the ιth round, the input of the

γ -approximation algorithm is Ji − ∪ι−1
ι′=1 J

s
iι′
. When ι = 1, we have

w(J si1) ≥
1

γ
w(J∗i1) (3)

For ι ≥ 2, consider jobs which can be scheduled by the optimal

solution but are not served by Adual in the first ι − 1 rounds, i.e.,

J∗i1−∪
ι−1
ι′=1w(J s

′

i ι′
). In ιth round, since each j ∈ [J∗i1−∪

ι−1
ι′=1w(J s

′

i ι′
)] can

be completed by the optimal solution,w(J∗i ι ) ≥ w(J∗i1−∪
ι−1
ι′=1w(J s

′

i ι′
)).

Then we have

w(J siι ) ≥
1

γ
(w(J∗i1) −

ι−1∑

ι′=1

w(J s
′

i ι′)) ≥
1

γ
(w(J∗i1) −

ι−1∑

ι′=1

w(J siι′)) (4)
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For ι ∈ [α], the following inequality holds:

ι∑

ι′=1

w(J siι ) ≥ [1 − (1 −
1

γ
)ι ]w(J∗i1) (5)

We prove (5) by induction. (5) must hold for ι = 1, since (3) holds.

Suppose (5) holds for ι, according to (4), we have
∑ι+1
ι′=1w(J siι ) ≥

1
γ w(J∗i1) + (1 − 1

γ )
∑ι
ι′=1w(J siι ) ≥ [1 − (1 − 1

γ )
ι+1]w(J∗i1). Thus

we prove (5). Suppose for the specific ι∗,
∑ι∗

ι′=1w(J s
iι′
) ≥ w(J∗i1)

and
∑ι∗−1
ι′=1 w(J s

iι′
) < w(J∗i1). Note that J

∗
i1 − ∪ι

∗−1
ι′=1w(J s

iι′
) , �, then

w(J s
iι∗

) ≥ minj ∈[J ∗i1]
w j ≥ wmin , here wmin = minj ∈[J ]w j . And

since (5),w(J s
iι∗

) ≥ (1− 1
γ )

ι∗−1w(J∗i1). So (1−
1
γ )

ι∗−1w(J∗i1) ≥ wmin ,

then ι∗ ≤
logw (J ∗i1)−logwmin

logγ−log(γ−1)
+1.We can setα = ⌊

logw (J )−logwmin

logγ−log(γ−1)
⌋+

1, which satisfies

α ≥ ⌊
logw(J∗i1) − logwmin

logγ − log(γ − 1)
⌋ + 1 ≥ ι∗,∀i (6)

such that
∑α
ι′=1w(J s

iι′
) ≥ w(J∗i1),∀i . □

Algorithm 2 A Dual Approximation Algorithm Adual

Input: Ji , τi , C
r
h
, ∀h ∈ [H ], r ∈ [R];

Output: x jt , yjhm, sjhp, dj , J
s
i , ∀j ∈ [Ji ], t ∈ [τi ],m ∈ [M ], p ∈

[P ], h ∈ [H ];

1: Initialize x jt = 0, dj = 0, yjhm = 0, sjhp = 0, β r
h
(t ) = 0, J si =

�, δ r
h
(t ) = ∆

r
h
(0), ∀j ∈ [Ji ], t ∈ [τi ],m ∈ [M ], h ∈ [H ], p ∈

[P ], r ∈ [R];

2: for ι = 1 to α do

3: {{x jt }, dj , {yjhm }, {sjhp }}j∈(Ji \J si ),t∈[(ι−1)τi+1, ιτi ]
=

Amaxweiдht (Ji \ J
s
i , τi , {C

r
h
});

4: end for

5 APPROXIMATION ALGORITHM FOR

TOTALWEIGHT MAXIMIZATION

We next present an approximation algorithmAmaxweiдht for batch

processing, employing a primal-dual algorithm in Sec. 5.1. As sub-

routines of Amaxweiдht , we design two algorithms in Sec. 5.2 to

compute the best schedule for each job. Theoretical analysis is

presented in Sec. 5.3.

5.1 The MaximumWeighted Schedule Problem

We formulate a maximum weighted schedule problem for each

round i in our online scheduling framework, that maximizes the

total weight of jobs in Ji completed by time τi .

maximize
∑

j∈[Ji ]

∑

t∈[τi ]

w jx jt (7)

subject to:
∑

t∈[τi ]

x jt ≤ 1, ∀j ∈ [Ji ], (7a)

∑

t∈[τi ]

x jt (t + dj ) ≤ τi , ∀j ∈ [Ji ], (7b)

(2b) − (2i), (2k ) − (2o), where ∀t ∈ [τi ].

Thismaximization problem involves integer variables, non-linear

constraint (2b) (2c) and constraints concerning multiplication of

variables (2f)(2h)(7b). To address these challenges, we first apply

the compact-exponential techniques [36] to reformulate problem

(7) into an equivalent conventional integer linear program (ILP)

with packing structure:

maximize
∑

j∈[Ji ]

∑

l∈Γj

w jx jl (8)

subject to:∑

j∈[Ji ]

∑

l :t∈T (l ),h∈l

x jl f
r
jh
(l ) ≤ Cr

h
, ∀t ∈ [τi ], r ∈ [R], h ∈ [H ],

(8a)

∑

l∈Γj

x jl ≤ 1, ∀j ∈ [Ji ], (8b)

x jl ∈ {0, 1}, ∀j ∈ [Ji ], l ∈ Γj . (8c)

In the above ILP, Γj is the set of feasible schedules for job j, each

corresponding to the set of decisions (x jt , dj , yjhm, sjhp, qj , ∀m ∈

[M ], p ∈ [P ], h ∈ [H ], t ∈ [τi ]) satisfying constraints (7b)(2b)(2c)(2f)

(2i)(2k)(2n). Binary variable x jl indicates whether job j is scheduled

according to schedule l ∈ Γj or not, ∀j ∈ [J ], l ∈ Γj . T (l) records

the allocated time slots of job j in schedule l ∈ Γj . We use h ∈ l to

indicate that schedule l uses server h to deploy workers and PSs for

job j. f r
jh
(l) denotes the total type-r resource occupation of job j’s

schedule l on server h, i.e., f r
jh
(l ) =

∑
m∈l,p∈l (e

r
myl

jhm
+zrps

l
jhp

), ∀h ∈

l, r ∈ [R], wherem ∈ l, p ∈ l specify that schedule l trains the model

using type-m workers and type-p PSs, and yl
jhm

(sl
jhp

) represents

the given number of workers m (PSs p) on server h in l.

Constraint (8a) is equivalent to (2h). Constraint (8b) ensures

that each job is executed according to at most one schedule. A

feasible solution to ILP (8) has a corresponding feasible solution in

problem (7), and vice versa, with the same objective value. Note

that we introduce an exponential number of variables in ILP (8),

each corresponding to a possible schedule of job j. To solve ILP

(8), we formulate the dual LP of ILP (8) by relaxing x jl ∈ {0, 1} to

x jl ≥ 0 and introducing dual variables δ r
h
(t) and uj to constraints

(8a) and (8b):

minimize
∑

j∈[Ji ]

uj +
∑

t∈[τi ]

∑

h∈[H ]

∑

r ∈[R]

δ r
h
(t )Cr

h
(9)

subject to:

uj ≥ w j −
∑

t∈T (l )

∑

h∈l

∑

r ∈[R]

δ r
h
(t )f r

jh
(l ), ∀j ∈ [Ji ], l ∈ Γj , (9a)

δ r
h
(t ), uj ≥ 0, ∀j ∈ [Ji ], t ∈ [τi ], h ∈ [H ], r ∈ [R]. (9b)

If we interpret dual variable δ r
h
(t ) as the unit cost of type-r

resource on server h in time t, then
∑
t∈T (l )

∑
h∈l

∑
r ∈[R] δ

r
h
(t )f r

jh
(l )

is the total resource cost of all workers and PSs serving job j by

schedule l. The RHS of (9a), i.e., job weight minus overall resource

cost of job j with schedule l, is the job utility. To minimize the dual

objective, we assign dual variables uj to be the maximum between

0 and the RHS of (9a) according to the best schedule lj :

uj = max{0, max
l∈Γj

RHS of (9a)}. (10)

If uj > 0, we construct schedule of job j according to lj (x jlj = 1);

or otherwise, we do not schedule it (x jl = 0, ∀l ∈ Γj ). The rationale

is that, given limited resources, we wish to schedule jobs with larger

utility.
Amaxweiдht in Algorithm 3 is our offline algorithm for the max-

imum weighted schedule problem with the input job set ϕ. Line
1 initializes primal and dual variables. For each job j in ϕ, lines 3
and 4 invoke Amincost2 and Amincost1 to find a schedule with the
lowest cost in the two cases, i.e., qj = 1 and qj = 0, respectively.
Comparing the resulting solutions, we obtain the best schedule
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with the highest utility uj for job j in lines 5-7. If uj > 0, we set
all primal variables according to lj in lines 10-11 and update the
dual variables using the following carefully designed price func-
tions δ r

h
(·) in line 14. Line 12 updates J si , i.e., the set of jobs which

have been scheduled in the ith round. In line 13, βr
h
(t) records the

amount of allocated type-r resource on server h for time t.

δ r
h
(β r
h
(t )) = λ

βr
h
(t )

Cr
h − 1, ∀h ∈ [H ], r ∈ [R], t ∈ [τi ],

where λ = 2(THRF ) + 1

(11)

Algorithm 3 Total Weight Maximization Amaxweiдht

Input: ϕ, τi , C
r
h
, ∀h ∈ [H ], r ∈ [R];

Output: x jt , yjhm, sjhp, dj , qj , J
s
i , ∀j ∈ [Ji ], t ∈ [τi ],m ∈ [M ], p ∈

[P ], h ∈ [H ];

1: Initialize x jt = 0, dj = 0, yjhm = 0, sjhp = 0, β r
h
(t ) = 0, δ r

h
(t ) =

∆
r
h
(0), ∀j ∈ [ϕ], t ∈ [τi ],m ∈ [M ], h ∈ [H ], p ∈ [P ], r ∈ [R];

2: for each job j ∈ [ϕ] do

3: (costj , lj ) = Amincost2(τi , {β
r
h
(t )}, {δ r

h
(t )}, {Cr

h
});

4: (cost, l ) = Amincost1(τi , {β
r
h
(t )}, {δ r

h
(t )}, {Cr

h
});

5: if cost < costj then

6: costj = cost, lj ⇐ l ;

7: end if

8: uj = w j − costj ;

9: if uj > 0 then

10: x jt− = 1, dj = Lj ;

11: Set qj , yjhm, sjhp according to lj , ∀h ∈ lj ,m ∈ lj , p ∈ lj ;

12: J si = J si ∪ {j };

13: β r
h
(t ) = β r

h
(t ) + f r

jh
(lj ), ∀t ∈ T (lj ), h ∈ [H ], r ∈ [R];

14: Update δ r
h
(t ), ∀t ∈ T (lj ), h ∈ [H ], r ∈ [R] with (11);

15: end if

16: end for

We make two assumptions. First, the per unit resource per time

slot weight is bounded: 1 ≤
wj∑

t∈T (l )
∑
h∈l

∑
r ∈[R] f

r
jh

(l )
≤ F , ∀j, l, h, r .

Second,
f r
jh

(l )

Cr
h

≤ 1
log λ

, which implies that the one type resource

demand of each job on one server is small as compared to the re-

source capacity of each server. The price function starts at zero and

increases exponentially with the increase of resource consumption.

When there is little usage of type-r resource on server h, βr
h
(t) is

close to zero, which allows jobs to consume resource freely. When

type-r resource on server h is exhausted, βr
h
(t) is close to the re-

source capacity Cr
h
, and δ r

h
(t) grows fast to a carefully designed

large value λ, so that type-r resource on server h will be barely

allocated to a job, unless its weight is sufficiently large.

5.2 Cost Minimization Problem

Sincew j is a constant, the utility maximization problem of job j is

equivalent to the following cost minimization problem:

min
∑

t∈[t ′,t ′+dj )

∑

h∈[H ]

∑

r ∈[R]

x jt ′δ
r
h
(t )(

∑

m∈[M ]

ermyjhm +
∑

p∈[P ]

zrpsjhp )

(12)

subject to:

∑

t∈[τi ]

x jt = 1,
(12a)

(7b), (2b) − (2д), (2i), (2k ) − (2o), ∀t ∈ [τi ], for the specific j .

We next show the schedule that minimizes job j’s cost can be

found efficiently and optimally using Algorithm 5 and Algorithm

4. When we fix the worker typem and the PS type p serving job j,

the number of acquired time slots is at most ⌈
EjDjKj

ρ
p
jm

⌉. For a fixed

allocated time slot dj , the number of workers needed is at least

⌈
EjDjKj

dj ρ
p
jm

⌉. If we further know the starting time of job j, problem

(12) is simplified as the following ILP, wherem =m′, p = p′, t ′ = t−,

t+ = t− + dj :

min
y,s

cost(m′
, p′, t−, t+)

=

∑

t∈[t−,t+)

∑

h∈[H ]

∑

r ∈[R]

δ r
h
(t )(erm′yjhm′ + zrp′sjhp′ ) (13)

subject to:

qj = 1 if and only if h = h′, ∀h, h′ : yjhm′ > 0, sjh′p′ > 0, (13a)
∑

h∈[H ]

yjhm′ ≤ D j , (13b)

∑

h∈[H ]

yjhm′ ≥ ⌈
EjD jKj

dj ρ
p′

jm′

⌉, (13c)

sjhp′Bp′ ≥
∑

h′∈[H−h ]

yjh′m′bm′, ∀h : sjhp′ > 0,
(13d)

∑

h∈[H ]

sjhp′ ≥ 1,
(13e)

yjhm′, sjhp′ ∈ {0, 1, ... }, ∀h ∈ [H ], ∀p ∈ [P ], (13f)

qj ∈ {0, 1}. (13g)

That is, we need to find the best placement scheme for job j to

minimize the overall resource cost satisfying constraints (13a)-(13g).

Particularly, consider the situation where we deploy all j’s workers

and PSs on one server, i.e., qj = 1. Note that constraint (13d) is

satisfied naturally, since the RHS of (13d) is zero. We come up with

algorithms to find the best schedule with the smallest cost for job

j as Amincost2 and Amincost1. Amincost2 handles the case where

all workers and PSs of job j are running on one server, i.e., qj = 1,

ρ
p
jm = 1/(vjm + U

p
j ), and Amincost1 solves the other, i.e., qj = 0,

ρ
p
jm = 1/(vjm +U

p
j +

2πj
bm

).

In Amincost1, we record the amount of available type-r resource

on server h at time slot t using ωr
h
(t) in line 2. Next, we enumer-

ate the worker and PS types serving job j in line 3 and 4. Then,

we traverse possible execution time and compute the number of

workers needed in lines 5-6. Given starting time t− in line 7, we

sort servers for worker m′ deployment in non-decreasing order

of total resource cost
∑
t∈[t−,t+)

∑
r ∈[R] δ

r
h
(t )er

m′ recorded by Ωh in

line 8. Then lines 9-33 maximally deploy workers starting from

the cheapest server, respecting capacity constraint (2h), the re-

quired number of workers Nj in (13c) and bandwidth reservation

constraints (13d). Specifically, we decide the number of workers

and PSs in given server n in lines 14-22 in a greedy manner, i.e.,

the maximum number of workers and PSs are placed satisfying

(13d). If there are not enough workers or PSs, completing job j

is infeasible (lines 25 and 26); otherwise, we compute the overall

cost
∑
t∈[t−,t+)

∑
h∈[H ]

∑
r ∈[R] δ

r
h
(t )(er

m′yjhm′ +zr
p′
sjhp′ ) (line 28). We

identify the schedule with smallest cost in lines 30-32. Finally, we
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Algorithm 4 Subroutine for Job j Amincost1

Input: τi , β
r
h
(t ), δ r

h
(t ), Cr

h
, ∀h ∈ [H ], , r ∈ [R], t ∈ [τi ];

Output: lj , cost_m;

1: Initialize uj = 0, lj = �, cost_m = +∞;

2: qj = 0, ωr
h
(t ) = Cr

h
− β r

h
(t ), ∀h, r, t ;

3: for m′
= 1 to M do

4: for p′ = 1 to P do

5: for Lj = ⌈
EjKj

ρ
p′

jm′

⌉ to ⌈
EjDjKj

ρ
p′

jm′

⌉ do

6: Nj = ⌈
EjDjKj

Lj ρ
p′

jm′

⌉, N̂ = Nj ;

7: for t− = 1 to τi − Lj do

8: List h ∈ [H ] in nondecreasing order of Ωh , t
+
= t− + Lj ;

9: for n = 1, ..., H do

10: yjhm = 0, sjhp = 0, ∀m, p, h;

11: for k = 1, ..., H do

12: ŷ = min{minr ∈[R],t∈[t−,t+) ⌊
ωr
k
(t )

er
m′

⌋, N̂ };

13: yjkm′ = ŷ;

14: if k = n then

15: for д = 0 to ŷ do

16: ŝ = minr ∈[R],t∈[t−,t+) ⌊
ωr
n (t )−дe

r
m′

zr
p′

⌋;

17: if ŝBp′ ≥ (Nj − д)bm′ then

18: yjnm′ = д;

19: sjnp′ = min{ŝ, ⌈
(Nj−д)bm′

Bp′
⌉ };

20: end if

21: end for

22: end if

23: N̂ = N̂ − yjkm′ ;

24: end for

25: if N̂ > 0 or sjnp′ < 1 then

26: cost = +∞;

27: else

28: Compute cost;

29: end if

30: if cost < cost_m then

31: cost_m = cost, lj ⇐ {t−, Lj , y, s, qj };

32: end if

33: end for

34: end for

35: end for

36: end for

37: end for

38: return lj , cost_m

return the resulting schedule lj and the corresponding cost cost_m

in line 38.

Compared toAmincost1,Amincost2 counts the range of acquired

time slots and number of workers needed with different processing

capacities. We enumerate the server to run all workers and PSs on

it.

5.3 Theoretical Analysis

Theorem 1. Algorithm 5 and Algorithm 4 yield an optimal solu-

tion of problem (13) in two scenarios, respectively.

Algorithm 5 Subroutine for Job j Amincost2

Input: τi , β
r
h
(t ), δ r

h
(t ), Cr

h
, ∀h ∈ [H ], , r ∈ [R], t ∈ [τi ];

Output: lj , cost_m;

1: Initialize uj = 0, lj = �, cost_m = +∞;

2: qj = 1, ωr
h
(t ) = Cr

h
− β r

h
(t ), ∀h, r, t ;

3: while traverse the value space of variablesm′ p′ Lj t
− in order do

4: for h = 1, ..., H do

5: yjhm = 0, sjhp = 0, ∀m, p, h;

6: Compute yjhm′ and sjhp′ respecting (2h) and (13a)

7: Set cost according to the feasibility of yjhm′ and sjhp′

8: if cost < cost_m then

9: cost_m = cost, lj ⇐ {t−, Lj , y, s, qj };

10: end if

11: end for

12: end while

13: return lj , cost_m

Theorem 2. Amaxweiдht in Algorithm 3, with Amincost2 and

Amincost1, computes a feasible solution to problems (7)(8)(9).

Theorem 3. Aonline in Algorithm 1 is 4α -competitive, where α =

⌊
logw (J )−logwmin

1+log log λ−log(2 log λ−1)
⌋+1, where λ are defined in (11),w (J ) =

∑
j∈J w j

and wmin = minj∈[J ]w j .

Proof:According to Lemma 1 [17] and Lemma 2, we know that the

competitive ratio ofAonline is 4α , whereα = ⌊
logw (J )−logwmin

logγ−log(γ−1))
⌋+1

and γ is the approximation ratio of Amaxweiдht in Algorithm 3.

Then, combining Theorem 4 we finish the proof. □

We observe that the typical value of α is close to 4 in simulation

studies. As shown by the proof of Lemma 2, the value of α in each

round i should satisfy inequality (6). According to the definition

of J∗i1, we can set α to be ⌊
logw (Ji )−logwmin

logγ−log(γ−1)
⌋ + 1 in simulations.

Further, if J si = Ji for the specific ι, we can terminate the ith round

iteration of Adual and turn to the next round.

Theorem 4. The approximation ratio of Amaxweiдht in Algo-

rithm 3 is 2 log λ.

Theorem 5. Aonline in Algorithm 1 runs in polynomial time, with

time complexity O ((logw (J ))JMPT 2 logT (H logH + H 2)).

6 PERFORMANCE EVALUATION

Settings. We simulate an ML cluster running for T ∈ [100, 300]

time slots (default value: 150). Each time slot is one hour long. The

default number of servers is 150. The overall resource capacities,

C, are set to be approximately [0.2, 0.5] fraction of the respective

overall job resource demand, which is computed by adding the ideal

resource demand of all jobs. Resources configuration of each server

is set according to Amazon EC2 GPU instances P3, P2 and G3. The

numbers of worker and PS types are set to be 8 and 10, respectively.

Following similar settings in [23][8][12], we set resource configu-

ration for each type worker as follows: 1 to 4 GPUs, 1 to 10 vCPUs

and bandwidth of 100Mbps to 5Gbps. Resource configuration for

each type PS is: 1 to 10 vCPU and bandwidth of 5Gbps to 20 Gbps.

For each job, w j is in [200, 5000], Ej is set within [50, 100], D j is

in [5, 50], Kj is in [10, 50],U
p
j is in [10, 100] milliseconds, vjm is in

[0.001, 0.05] time slots, and πj is within [30, 575]MB [19][8].



Online Scheduling of Heterogeneous Distributed Machine Learning Jobs Mobihoc ’20, October 11–14, 2020, Boston, MA, USA

100 150 200 250 300

Number of Jobs

0.5

1

1.5

2

2.5

3

3.5

4

T
o

ta
l 
W

e
ig

h
te

d
 C

o
m

p
le

ti
o

n
 T

im
e

108

A
online

DRF

OASiS

FIFO

Figure 2: Total weighted completion

time.
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Figure 3: Total weighted completion

time.
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Figure 4: Total scheduled job weight of

Amaxweiдht and Jain et al.’s algorithm

[20].
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Figure 5: Total weighted completion

time of Aonline under different F .
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Figure 6: Total weight of Amaxweiдht

under different F .
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Figure 7: Total weight of Amaxweiдht

under different H .

Algorithms for comparison. We compare Aonline with three

job scheduling policies: (i) OASiS: given unit resource prices, jobs

with larger utility, which maps to uj in Sec. 5.1, are served first

and each job selects the best placement scheme that minimizes its

placement cost [8]. (ii) FIFO: default scheduler in Hadoop and Spark

[31]; jobs run by order of arrival, with fixed numbers and resource

configuration of workers (and PSs). The number of workers is

fixed to a number within [1, 30] for FIFO. (iii) Dominant Resource

Fairness Scheduling (DRF): default scheduler in YARN [27] and

Mesos [18]; the numbers of workers (and PSs) are computed to

achieve max-min fairness in dominant resources [16]. In (i)-(iii), the

resource configuration of workers (and PSs) is the same as that in

the ideal case, which is derived according to recent literature [14]

[32] [25] in our simulation studies. We compare Amaxweiдht with

an algorithm from recent literature [20] which proposes a greedy

strategy to schedule jobs with deadlines in the offline scenario.

6.1 Performance of Aonline

Fig. 2 compares the total weighted completion time produced by dif-

ferent algorithms under different numbers of jobs, where T = 300.

Aonline performs up to 200% better than the other algorithms in

both cases. The objective value may grow with the increase of num-

ber of servers according to Fig. 3. Note that λ in price function (11)

increases in line with the number of servers H . Aonline prefers

to schedule jobs of larger weight with larger λ when available re-

sources are insufficient. Thus, when the overall resource capacities

nearly remain the same, the total amount of fragment resources

increases and effective resource capacity of the servers decreases

with larger H . The objective values in Fig. 2 (Fig. 3) are the average

of multiple trials.

Fig. 5 calculates the objective value obtained by Aonline under

different F , i.e., the upper bound of the weight per unit resource

per time slot. Recall that parameter λ in the price function and the

theoretical competitive ratio are related to F . We can see that for

larger values of F , the objective value is larger. Larger F represents

larger weights of served jobs, i.e., jobs withweight which is not large

enough will be executed later. We apply the tic and toc functions in

MATLAB to measure the execution time of our online algorithm.

We run 10 tests on a desktop computer (Intel Core i3-6100/8GB

RAM) and present the average result in Fig. 8. We can observe that,

the running time of Aonline increases with the number of jobs, but

still remains at a low level (< 2 minutes). We can observe that the

numbers of worker and PS allocated to jobs are in [4, 25] and [1, 4].

6.2 Performance of Amaxweiдht

Fig. 4 compares the total weight achieved by Amaxweiдht with

related algorithm from recent literature [20]. Our offline algorithm

Amaxweiдht performs much better than the other. Fig. 7 shows the

total weight of Amaxweiдht under different H , i.e., the number of

servers to deploy workers and PSs. It reflects that the total weight is

smaller for larger values of H because the total amount of fragment

resources increases with the increase of the number of servers.

In Fig. 7, there is an upward trend in the total weight with the

increment of the number of jobs. Fig. 6 represents the total weight

ofAmaxweiдht under different F , which is related to price function

in line 14 of Amaxweiдht . We can see that for smaller values of F ,
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Figure 8: Running time of Aonline .

the total weight is larger. Smaller F represents more jobs can be

served with the same total number of jobs, particularly, jobs with

smaller weight.

7 CONCLUSION

We proposed an online algorithm for scheduling synchronous train-

ing jobs in ML clusters. The online algorithm targets total weighted

completion time minimization, consisting of (i) an online greedy-

interval algorithm that converts the online scheduling problem into

a series of batch processing problems; (ii) a primal-dual algorithm

running for each batch, which computes the best execution win-

dow of each job, with proper number and type of workers (and

parameter servers). Both theoretical analysis and trace-driven simu-

lation studies validate our online algorithm’s good performance, as

compared to both offline optimum and commonly used scheduling

algorithms in read-world cloud systems.
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