1046

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 5, MAY 2019

An Efficient Online Placement Scheme for
Cloud Container Clusters

Ruiting Zhou, Zongpeng Li, and Chuan Wu

Abstract— Containers represent an agile alternative to virtual
machines (VMs), for providing cloud computing services. Con-
tainers are more flexible and lightweight, and can be easily
instrumented. Enterprise users often create clusters of inter-
connected containers to provision complex services. Compared
to traditional cloud services, key challenges in container clus-
ter (CC) provisioning lie in the optimal placement of containers
while considering inter-container traffic in a CC. The challenge
further escalates, when CCs are provisioned in an online fashion.
We propose an online algorithm to address the above challenges,
aiming to maximize the aggregate value of all served clusters.
We first study a one-shot CC placement problem. Leveraging
techniques of exhaustive sampling and ST rounding, we design an
efficient one-shot algorithm to determine the placement scheme
of a given CC. We then propose a primal-dual online placement
scheme that employs the one-shot algorithm as a building block
to make decisions upon the arrival of each CC request. Through
both theoretical analysis and trace-driven simulations, we verify
that the online placement algorithm is computationally efficient
and achieves a good competitive ratio.

Index Terms—Cloud container clusters, online algorithms,
compact exponential optimization.

I. INTRODUCTION

LOUD computing has become a new computing para-

digm that provides computing services with on-demand
access to resources such as CPU/GPU, RAM and disk storage.
Cloud resources used to be packed into different types of
virtual machines (VMs) to serve cloud users. More recently,
cloud containers offer a light-weight alternative to VMs.
Unlike VMs, containers do not require a full, dedicated
operating system to be installed within them. They are able
to operate with the minimum amount of resources and start

Manuscript received April 19, 2018; revised March 10, 2019; accepted
March 13, 2019. Date of current version April 16, 2019. This work was
supported in part by NSFC under Grant 61502504, Grant 61628209, and Grant
61502347, in part by the Nature Science Foundation of Hubei Province under
Grant 2016CFA030, in part by the Technological Innovation Major Projects
of Hubei Province under Grant 2017AAA125, in part by the Science and
Technology Program of Wuhan City under Grant 2018010401011288, in part
by RGC, Hong Kong, under Contract HKU 17204715, Contract 17225516,
and Contract C7036-15G (CRF), and in part by Huawei HIRP under Grant
HO2016050002BE. (Corresponding author: Zongpeng Li.)

R. Zhou is with the Key Laboratory of Aerospace Information Secu-
rity and Trusted Computing, School of Cyber Science and Engineering,
Ministry of Education, Wuhan University, Wuhan 430000, China (e-mail:
ruitingzhou@whu.edu.cn).

Z. Li is with the School of Computer Science, Wuhan University, Wuhan
430000, China (e-mail: zongpeng@whu.edu.cn).

C. Wu is with the Department of Computer Science, The University of
Hong Kong, Hong Kong (e-mail: cwu@cs.hku.hk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2019.2906745

, Senior Member, IEEE

in microseconds [1], providing a streamlined, easy-to-deploy
method of cloud resource provisioning. Example cloud con-
tainer services toady include Google Container Engine [2],
Amazon EC2 Container service (ECS) [3], Aliyun Container
Service [4], and Azure Container Service [5].

Besides purchasing individual containers, cloud users often
require a collection of containers and the network in between,
to create a container cluster (CC) for building a reliable and
scalable distributed system. Typical examples include geo-
distributed machine learning (ML) systems, and service chains
in a Network Function Virtualization (NFV) environment.
Geo-distributed machine learning derives useful information
from large geo-dispersed data collections without moving
them to a central location. A common use case of geo-
distributed ML is to train data continuously produced at dif-
ferent locations. For example, e-commerce sites, e.g., Amazon
and Taobao, recommend items that are of particular interest
to users by learning user behavior from continuously col-
lected click-through data all over the world [6], using ML
techniques such as logistic regression. In a geo-distributed
ML job, many concurrent workers (typically implemented on
containers) reside in different geographic locations to train
data sets in proximity [7]. In each training iteration, workers
exchange locally computed parameter updates to obtain the
global ML model. A service chain refers to the structure
of a network service where a sequences of virtual network
functions (VNFs) are linked [8]. Many chains are deployed
over the WAN with VNFs located in different locations,
to process network flows between geo-dispersed sources and
destinations. For example, an enterprise may request a CC to
deploy an access control service chain “Firewall-IDS—Load
Balancer”, where instances of firewall, IDS and Load Balancer
are encapsulated into containers. Web service flows can tra-
verse this service chain, sending packets from a source to a
destination. Container clusters are emerging as the new norm
of virtual clusters. Compared to traditional virtual clusters,
container clusters, e.g., Google Container Cluster [9], Amazon
ECS Cluster [10] and Azure Container Service Cluster [11],
provide better performance for applications and enhance the
elasticity by fast deployment of additional work nodes.

This work targets a more realistic and general setup in the
deployment of CCs. We investigate the online CC placement
problem that dynamically assembles CC as per user request.
We take the perspective of a cloud service provider, who hosts
cloud computing resources in multiple zones, where a zone
may correspond to one or multiple servers, or a data center.
The computing resources in a region owned by Amazon, for

0733-8716 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0002-3144-4398

ZHOU et al.: EFFICIENT ONLINE PLACEMENT SCHEME FOR CLOUD CCs

instance, are divided to Availability Zones [12]. The cloud
service provider deploys containers and assembles CC upon
requests on the fly. Each CC request can come and go at any
time, and its placement is determined on the spot. The deploy-
ment of a CC involves not only the placement of containers,
i.e., assigning each container to a zone with free capacity,
but also routing inter-container traffic, i.e., identifying zones
with available bandwidth in between to send traffic between
neighbour containers. Even in the offline setting with full
information, such a deployment problem translates into an
NP-hard combinational optimization problem. The challenge
further escalates when we target a practical online placement
scheme that makes on-spot decisions upon the arrival of each
CC request.

We extend the existing literature on virtual cluster provision-
ing, and propose an efficient online placement scheme such
that: i) CCs with different values arrive stochastically; each CC
specifies its required containers and the traffic demand between
neighbor containers; ii) the algorithm is computationally effi-
cient and executes in polynomial time; iii) the aggregate value
of deployed CCs is approximately maximized. Our detailed
contributions are summarized below.

First, we formulate the offline optimization problem as
an integer program (IP) with quadratic constraints that cap-
ture inter-container traffic flow. While polynomial in size,
the quadratic IP is non-linear and admits no direct applica-
tion of the classic primal-dual schema for algorithm design.
We leverage the recent compact-exponential optimization
framework [13] to encode each valid placement scheme in
a variable, and reformulate the original IP into a compact-
exponential Integer Linear Program (ILP), which contains
only conventional packing-type constraints, but at the cost
of involving an exponential number of variables. Solving the
compact exponential ILP directly is still infeasible in practice,
when complete knowledge over the entire system lifespan
is not available. We instead first relax the resource capacity
constraints that impose inter-CC coupling, and focus on a
one-shot problem to determine the optimal placement of the
current CC. We then design an online algorithm framework
that simultaneously works on the compact-exponential ILP and
its dual LP, invoking the one-shot algorithm as a subroutine,
towards computing efficient placement based on values of dual
variables.

Second, we reformulate the one-shot CC placement problem
into an integer quadratic program (IQP), to minimize the
placement cost for a given CC. We first consider a simplified
scenario of a single type of computational resource. The IQP
has an objective function of degree 2, and is proven NP-hard
to solve. We apply an exhaustive sampling technique [14]
based on a random-sampling process to reduce its degree
from 2 to 1, at the cost of losing some accuracy. The degree-
reduced problem becomes a general assignment problem with
extra constraints. We solve this problem to optimality, and
apply the ST rounding technique [15] to round the fractional
solution to an integral solution. More specifically, we con-
struct a bipartite graph based on the fractional solution, and
output the minimum-cost integer matching in this graph.
Theoretical analysis shows that our algorithm achieves a small

1047

approximation ratio. We then further consider the general
scenario, and propose a heuristic algorithm to provide good
solutions with low computational complexity.

Third, we proceed to consider resource capacity constraints,
and design an online algorithm framework that utilizes the
one-shot algorithm to determine each CC’s placement upon
its arrival, without relying on future information. We apply
the primal-dual technique to the compact-exponential ILP
and its dual LP, and interpret dual variables as unit resource
prices at different times. Upon receiving a CC request, given
current resource prices, the one-shot algorithm computes an
a-approximate placement scheme with an estimated cost.
We divide the estimated cost by « to obtain a lower bound of
the optimal cost, and compare the CC’s value with it. If the
value is higher, the CC is deployed and dual variables are
updated; otherwise the CC request is discarded. We conduct
theoretical analysis on the competitive ratio and prove its upper
bound. The effectiveness of our one-shot and online algorithms
are evaluated through trace-driven simulation studies.

In the rest of the paper, we review related work in Sec. II
and describe the system model in Sec. III. We study the
one-shot CC placement problem in Sec. IV and propose an
online placement algorithm on Sec. V. Simulation studies are
presented in Sec. VI. Sec. VII concludes the paper.

II. RELATED WORK

Early studies of cloud computing have focused on VM pro-
visioning, in both offline and online settings. Zhang et al. [16]
propose a randomized algorithm based on a decomposition
technique for dynamic cloud resource provisioning, achieving
a small approximation ratio. Shi et al. [17] present the
first online combinatorial auction in the cloud computing
paradigm. Zheng and Shroff [18] design online multi-resource
allocation algorithms to schedule cloud jobs with deadlines.
Tan et al. [19] propose a elastic cloud resource provisioning
algorithm under premise of guaranteeing performance. Bitton
et al. [20] design a batch dispatching algorithm to process
cloud jobs. The above literature focuses on the deployment of
separate VMs, without considering inter-VM traffic in a virtual
cluster.

Kubernetes [21] is an open source platform for individual
user to deploy and manage container clusters on public clouds.
Its default resource-provisioning mechanism adjusts the num-
ber of containers running for the application only based on
CPU utilization. Chang et al. [22] further propose a generic
platform to facilitate dynamic resource provisioning based on
Kubernetes, taking consideration of multi-types of resources.
Along the direction of global container resource allocation,
Tao et al. [23] propose two approaches for mapping user
preferences to concrete container configuration parameters.
They also design a node selection algorithm for container
placement. They study a simple offline scenario, without
considering the inter-container traffic. Waibel et al. [24]
provide a fine-granular resource scheduling algorithm for
elastic processes based on containers, without considering
inter-container traffic. One related problem is the VNF place-
ment problem which usually targets different optimization



1048

objectives. Agarwal et al. [25] present a latency minimization
strategy to make joint VNF placement and CPU assignment
decisions. Tang et al. [26] forecast the traffic amount while
placing VNF instances to minimize the inter-rack traffic.
Jia et al. [27] investigate dynamic placement of VNF service
chains, for operational cost minimization.

Cloud container cluster provisioning belongs to the category
of virtual cluster (VC) provisioning (a.k.a. virtual network
embedding/mapping). Along this direction, Chowdhury et al.

[28] propose virtual network embedding algorithms that effi-
ciently map virtual nodes and virtual links onto the substrate
network resources. Li et al. [29] address the VM placement
problem, by considering both the traffic cost and the physical
machine utilization cost. Yu et al. [30] study the survivable
VC embedding problem, which jointly optimizes primary and
backup embeddings of VCs, with the goal of minimizing
VM consumption. Dai e al. [31] design algorithms for the
minimum energy virtual cluster embedding problem. They
provide no proven guarantee on the approximation ratio.
Different from the above literature, our one-shot CC placement
problem has a different optimization objective. We target total
cost minimization with a natural IQP formulation, requiring
different solution techniques. We rigorously prove that our
proposed algorithm can achieve a small approximation ratio.
In addition, the above literature considers only one-time/offline
scenario, while we further propose an efficient online CC
placement scheme to handle dynamically arriving requests for
CCs.

Towards online VC deployment, Evan and Medina [32]
study the online multi-commodity flow routing problem. They
focus on link capacity constraints but ignore node capacity
constraints. Grandl ef al. [33] propose a multi-resource cluster
scheduler that assigns tasks to machines. The communication
demand between different tasks is not modelled by them.
Shi et al. [34] investigate online mechanism design to place
inter-connected VMs in a geo-distributed IaaS cloud, taking
both computational resources and communication resources
into consideration. Their subproblem for each job’s placement
is trivial, since they specify several VM placement schemes
for each job, while our subproblem is an NP-hard problem
that computes the best placement for each CC. Our work is
also the first to design an online primal-dual algorithm for CC
placement, with proven performance guarantee.

The compact-exponential optimization framework was first
applied by Zhou et al. [13]. They consider the scheduling
of computing jobs that require separate VMs, while this
work focuses on the placement of correlated containers in
the form of container clusters. This work further advances
the compact-exponential framework to handle nonlinear con-
straints and NP-hard subproblems. Our subproblem, namely
the one-shot CC placement problem, is a special case of the
quadratic assignment problem (see [35] for a detailed survey).
We design a rounding algorithm that combines exhaustive
sampling [14] and ST rounding [15] techniques for effective
solutions. The online primal-dual method is a known powerful
algorithmic technique for many NP-hard problems, such as
the knapsack problem and the general packing problem [36].
However, our online optimization problem does not fall into

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 5, MAY 2019

such known categories. We propose a primal-dual online
framework to solve our problem, and provide a new price
function to update dual variables, which is the key towards
achieving a good competitive ratio.

III. SYSTEM MODEL

We consider a cloud service provider who owns a pool of
resources residing in S zones, where a zone may correspond to
one or a cluster of servers, or a data center. Let [X] denote the
integer set {1,2,...,X}. There are K types of computation
computation resources, as exemplified by CPU, RAM and
disk. Each zone s € [S] has Cjs units of type-k resource.
Zones are interconnected by broadband links. Active optical
cables (AOC) and unshielded twisted pair (UTP) cables are
often used for short links that connect zones in the same data
center, while multi-mode or single-mode fibers are used to
connect zones which correspond to different data centers [37].
Let E be the set of links, and let Dy, s, denote the bandwidth
capacity of link (s1,s2) € E that connects zones s; and ss.

Over a large time span 1,2,...,7, I CC requests arrive
stochastically to the system. Multiple requests can arrive
simultaneously, and would be ordered randomly. Request
arrives at time t;, requiring a CC from ¢; to t:r. Each CC
consists of a set of tailor-made containers. Let V; and Vj
denote the set of containers and the number of containers
in request ¢’s CC, respectively. A container v € V; con-

sumes a’, amount of type-k resource, Vk € [K]. Let
A}, v, denote the bandwidth consumption for flow transfer

from vy to ve in request i’s CC, when v; and wve reside
distinct zones. A value b; is obtained if request i’s CC is
deployed. In summary, request ¢ can be expressed as: ¢; =
{60, Vi, Vi {ayy boev, ke k), {A%, s torvevi }-

Upon each request’s arrival, the service provider immedi-
ately determines whether to serve it, and if so, how to place its
CC. Decision variables for request ¢ include: i) z; € {0,1},
indicating whether request ¢ is accepted (1) or not (0). ii)
yls, Vv € V;,Vs € [S], encoding the placement scheme of
request i’s CC, where y! = 1 if zone s is selected to host
container v and 0 otherwise. The service provider in practice
wishes to reserve resources for different CC requests, and
limits a single CC to occupy at most Bjys units of type-k
resource in zone s. Such resource consumption bound is also
customary in the cloud resource allocation literature [38] [18].
Fig. 1 shows a placement scheme for request 1. Our objective
is to maximize the total valuation obtained from all CCs, sub-
ject to resource capacity constraints. The optimization problem
can be formulated into the following integer program (IP):

maximize Z bixi (1)
€[]
subject to : z; = Z yi., Yiel[l], Yoe, (1)
se(S]
Z Z af}k’y'zi)s < Cis, Vke [K],
i€[I]: veV;
t;<t<t}
Vs € [S], vt € [T], (1b)



ZHOU et al.: EFFICIENT ONLINE PLACEMENT SCHEME FOR CLOUD CCs

Container 2
Request 1: \ O

Container 1

Container 1

Contalner 2

/Container 4

Fig. 1. Container cluster placement: an example.

Z yi. <1, Viel[l], YveV, (Ic)
s€[S]
3" abyyie < Bis, Vi€ ], Vk € K],
vEV;

Vs € [9], Vt € [t;,t]] (1d)
Z Z UlaUval S1 yv2 S2 é D51782a
i€[I]: vi1,v2€V;

t; <t<t}
V(Sl, 32) € Ea vVt € [T], (le)

zi,yl, €{0,1}, Vi€ [l], Yo €V, Vse[9).
(1f)

Constraint (1a) ensures that request ¢’s CC is deployed only
when it is accepted, since request 7’s container v is placed to
a zone s only when x; = 1. Constraint (1b) guarantees that
at any time, allocated resources at a zone do not exceed its
capacity. Constraint (I1c) indicates that a container in a CC
request resides in at most one zone. Constraint (1d) enforces
the upper-bound of each CC’s resource occupation at a zone s.
Link capacity constraints are modelled by (le).

Even in the offline setting, with complete knowledge given,
the polynomial-sized IP (1) is NP-hard to solve. To verify,
consider a special case of IP (1) where each CC consists of
one container, 1" = 1 and Bys = Dy, s, = +00. Then the
classic multidimensional knapsack problem, which is known
to be NP-hard, is equivalent to the special case of IP (1).
The challenge further escalates when we consider quadratic
constraints (le). To address these challenges, we resort to the
compact-exponential technique [13], which can reformulate
IP (1) into an equivalent ILP with packing structure, at the
price of involving an exponential number of variables:

maximize Z Z b (2)

iell) lec;
subject to : Z Z fm it < Cy,
ie(I]: led;
t; <t<t}

Ym e M, vt € [T], (2a)

1049
dwa <1, Viell, (2b)
leg;
xyq €{0,1}, Vie[l], VIl €¢. (2¢)

In the above compact-exponential ILP, (; is the set of
feasible placement schemes for request i. A feasible scheme
is a vector [ = {y’.} that satisfies (1c) and (1d). Variable
x4 € {0, 1} indicates whether request i’s scheme [ is accepted
(1) or not (0). We regard each computation resource at each
zone and the bandwidth at each link as different resources.
Consequently, the total number of resource types is XS +|E|.
Let M be the set of resource types and C,,, be the capacity
of type-m resource, Vm € M. fi, denotes the total type-
m resource consumption of request ¢’s scheme [ at time t.
For example, if m corresponds to type-k resource at zone
s, [l = ey, ahUbs, Yt € [t tF]. Constraint (2a) is
equivalent to (1b) and (le). Constraint (2ab) ensures that each
CC is placed according to at most one scheme.

We relax z; € {0,1} to z;; > 0, and introduce dual
variables p,,; and u; to constraints (2a) and (2b). The dual
of the relaxation of program (2) is:

minimize Z Z Crpmt + Z Uu; (3)

te[T] meM i€[I]

subject to: u; > b;; — Z Z mtpm,t,
meMielt; tf]
Vi € [I], VI € ¢, (3a)
Pt ui > 0, Vie[I], Yme M, Vvt e [T].
(3b)

IP (1) and ILP (2) have the same optimal objective value.
To solve ILP (2), complete knowledge over the entire system
lifespan is required. However, our algorithm needs to work in
an online fashion, making on-spot decisions without relying on
knowledge of future request arrivals. To this end, we leverage
the primal-dual technique that determines the primal solution
based on dual variables. We interpret dual variable p,,
as the unit price of type-m resource at time t. Upon the
arrival of a request, we compute its CC’s placement scheme
based on current resource prices. We first focus on a one-
shot CC placement problem, which relaxes resource capacity
constraints (2a) that impose temporal correlation in online
decision making; we design an efficient algorithm to determine
a CC’s placement scheme with the goal of cost minimization.
We then propose an online algorithm framework that employs
the one-shot optimization as a building block to make on-spot
decisions upon CC request arrivals.

We make two assumptions in this work. First, we assume
that a CC’s valuation is proportional to its resource consump-
tion in each time slot t (where t >0); 1< - <

U,Vi,l,m,t, where U is a constant. Second, we assume that
the ratio between a scheme’s resource consumption at each
il

time slot and the resource capacity is bounded: fc—n‘ <
Tog )\,‘v’z,l,m t, where A = 2(aU + 1) and « represents the
approx1mat10n ratio of the one-shot CC placement algorithm.
This assumption implies that the resource demand of each

container is small compared to the capacity of each zone.



1050

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 5, MAY 2019

TABLE I
SUMMARY OF NOTATION

| 1| # of CC requests | [X] | integer set {1,...,X} [ S | # of zones | E | set of links |
b; the value of request > CC | K # of types of computational resource
T # of time slots Chs capacity of type-k resource at zone s
t; () | start (end) time of request i | D, ,, | bandwidth capacity of link (sq, s9)
V;(V;) | set(number) of containers in request i’s CC
al, amount of type-k resource consumed by v € V;
AL, | traffic from vy to vy in request ¢’s CC
Bis upper bound of type-k resource consumption

x; request ¢ is accepted (1) or not (0)

le

Yl container v is assigned to zone s or not in ¢’s CC
il request ¢’s scheme [ is accepted (1) or not (0)

gl demand of type-m resource at ¢ by i’s scheme [
Pt cost of unit type-m resource at ¢

A 2(aU + 1), where 1 < < U,Vi,l,m,t

Here A (related to U) is an important parameter and will be
used in our online algorithm design. Notations are summarized
in Table 1 for ease of reference.

IV. APPROXIMATION ALGORITHM DESIGN FOR
CONTAINER CLUSTER PLACEMENT

In this section, we first formulate the one-shot CC placement
problem in Sec. IV-A. A rounding algorithm and a heuristic
algorithm are then designed and analyzed in Sec. IV-B and
Sec. IV-C, respectively.

A. Cost Minimization Problem

We include the same constraints (1c) and (1d) related to
the current CC request ¢ from IP (1), and exclude resource
capacity constraints (1b) and (le). Given current resource
prices (to be decided in Sec. V), we compute the computation
cost PM, i.e., the cost of placing container v in zone s, and the
communication cost P;l va.51,59> 1€, the cost of sending traffic
from vy to vy through link (s1,$2). The cost minimization
problem has the following natural IQP formulation:

minimize E E AT E

’Ul,’l)z,sl Szy’()l Sly’()g S2

vEV; s€(S] 1)1,1)26%,
(s1,s2)€E
(4)
subject to: Z aliyl, < Brs, Vk€[K], Vs€[S], (4a)
vEV;
Syl =1, Yoev, (4b)
s€[S]
yi. € 0,1}, YweV,;, Vse[S]. (4c)

If we set a’ 'w = Brs = 1,Vv, k, s, IQP (4a) degrades to
the minimum quadratlc assignment problem [35], which has
been proven NP-hard, and does not have any known constant-
factor approximation algorithm in polynomial time (assuming
P # NP). When the number of zones is small (S < 5),

we can compute the optimal solution by enumerating all
options. However, S can be a large number in practice. For
example, the Amazon cloud infrastructure is currently com-
prised of 42 availability zones [12]. It is essential to compute
a good solution efficiently, in a short time. To solve the
IQP, we first simplify the model by considering a single type
of computation resource, and present a rounding algorithm
that approximately solves the problem with worst-case perfor-
mance guarantee. We later propose a heuristic algorithm that
can solve the general version, without theoretical performance
guarantee.

B. A Rounding Algorithm With Performance Guarantee

Given a sole type of computation resource, let a! and
By represent a', and Byg, respectively. The degree of an
integer program is d if its objective function is a degree-
d polynomial function. IQP (4) is a degree-2 integer pro-
gram. We first apply exhaustive sampling [14] to reduce its
degree from 2 to 1. We convert IQP (4) to an ILP, with
some loss of accuracy. The ILP is a generalized assign-
ment problem with side constraints. We solve its LP relax-
ation exactly, and then round the fractional solution to an
approximate integral solution through another technique of
ST rounding [15].

More specifically, let y;,s* be the optimal solution
o 1IQP (4a), and let F .~ = Y, > g
Pl s, Szyvzysz*, we can reformulate IQP (4a) to the fol-
lowing ILP:

minimize Z Z (P, + F' .Yl (5)

vEV; s€[S]

subject to : Constraints(4a — 4¢)

Z Z Plfl,l)fg,shsfgyfu,sfg = F"sl,sl*v
v2EV; s2€[5]
Yu, € Vi, Vs € [S] (5d)



ZHOU et al.: EFFICIENT ONLINE PLACEMENT SCHEME FOR CLOUD CCs

However, it is difficult to obtain the exact value of Fv’1 s -
We strive to compute reasonable guesses by exhaustively

listing all placement schemes of a random sample. For ease

of presentation, we normalize P} ,, . . and P}, so that
max {ma’xvl;U2751752{P11;1702781782}’ ma’x’lhs{ Us}} = 1. The
sampling procedure is as follows:

i) We first pick a random sample W of n = O(logV;/€?)

containers from V;. Let W = {v;,,...,v;, }. Exhaustively
go through each of the S™ ways of placing containers in W.
For each placement that satisfies constraints (4a) and (4b),

. i .
we compute an estimate Fy . of F " by setting
; ;
Fv1781 - § : § : 'Uly'U2151752y'U2752’
v2EW s2€[S]

where yf}w? = 1 if container vy is allocated to zone ss.
Note that we try all possible placements of containers in
W. Therefore the “correct” placement in which y7,

Yby s " Yuy € W,sy € [S] is ensured to be tried. We call
the estimate correspondmg to this assignment the special esti-
mate, denoted as Fgl o - We will show that F} 515 satisfies

°| < €Vj in Lemma 2.
of F!

| V1,81
*
V1,81

ii) Next, for each estimate F
the following LP:

minimize Z Z Pl + Fl )yl (6)

vEV; s€[9]
subject to: Constraints (4a — 4b)

§ : § : %
7)1;7)2751152yv2152 — Fvl,Sl ‘/;7

v2€V; s2€(S]

’U1 S1
we consider

Vvl (S Vi, VSl (S [S],

> F!
U1,v2781,82yv2,82 — T V1,81

v2€V; s2€(S]

(6¢)
- 6‘/;7)

Yui € Vi, Vs, € [S],
Y, >0, YveV, Vsels]

(6d)
(6e)

Let yTvS and 77 be the optimal solution and the optimal
objective value of LP (6), respectively. We round the fractlonal
solution ¥, to an approximate integral solution yvg using an
algorithm A,.,,,q. The approximate integral solution satisfies
constraint (4b) and slightly violates (4a) by allowing each CC
to occupy at most twice its resource usage bound at each
zone.

iii) Because there are at most S™ estimates, we solve LP (6)
as above for each Fgl s,- Among the solutions, we output the
one whose corresponding placement minimizes the objective
of IQP (4). We summarize our algorithm in Ag,p;.

We next describe the details of A,,yunq, Which applies ST
rounding [15] to round the fractional solution to an integral
solution. In preparation, we first construct a weighted bipartite
graph B = (V', S’ E’) based on yi, as follows:

i) One side of the bipartite graph consists of container nodes:
V' ={v, : v=1,...,V;}, and the other side includes zone
nodes: S" = {ssy9 : s =1,...,5,0 = 1,...,0,}, where
Os = [ ey, Yis |- We assign O nodes for zone s.

ii) For zone s, sort the containers placed to it by non-
increasing resource demand a!. For notation simplicity,
we assume that a® > ab ..., > a%,i.

1051

Algorithm 1 An Approximation Algorithm Ag,p1

Inpl‘It: (I)lﬂ{ vs} { vl,vz,sl,sz} {a%},&
1: Define n = O(log V;/€%);
2: Pick a random subset )V of n containers from V;; Let
W= {vj17"'7vj7L};
for e doach placement of containers in VW do

Update the corresponding y! ;

i Vi

Define F’Ul s1 T n ZUQGW ZSQE[S]

Vv, € V;, 81 € [S];

AN

1A 7
PU17U2781782yU27827

6: SOlVe LP (5) exactly. Let y_ be the optimal solution;
7 {yvs } = Tound({ym} {Pz + Fz })
8 Zuev ZGE[S syvs + Zq}l va €V Z(gl s2)€E

51,v2781,82yv1,81 yvz,sz ’
9: end for
10: cost; = min; Aj; Save the placement {y},} which leads
to the minimum A; to [*;

11: Return cost;, [*.

Algorithm 2 A Rounding Algorithm A,,ynq

1: Build a bipartite graph B = (V',S’, E’) based on ¢! ;

2: Find the minimum-cost integer matching that exactly
matches all container nodes in B;

3: Update yfjsl = 1 if node v is mapped to node s;

4: Return {y’.'}.

iii) For zone s, consider nodes s49,0 = 1,..., O as bins of
capacity 1, and consider y!,,v € V; as pieces of containers
placed into these bins. With respect to the non-increasing order
of a’, we pack pieces into node s5; one by one, until placing
piece v results in bin overflow (exceeding 1). We then place a
fraction of v to saturate the capacity of node s, and place the
remaining fraction of v to node ss2. We carry on this process
until all pieces are placed into bins.

iv) If there is a positive fraction of container v packed into
node sgp, edge (v, Ssp) is added to E’. We define a vector
Y (vy, ssp) on edge (v, Ss9), which equals the fraction of v
packed into ssp. The cost of this edge, w(v,, ssp), is set to
Pi, + Fj,.

Vector 3’ is a fractional matching in bipartite graph B
that exactly matches all container nodes. The cost of the
fractional matching is 77. By matching theory [39], there exists
an integral matching with cost at most 77 that exactly matches
all container nodes. We continue to compute such an integral
matching.

1) Theoretical Analysis:

a) Feasibility and Running Time:

Theorem 1: The integral solution yfjs returned by Agup1
satisfies constraint (4b) and slightly violates constraint (4a)
by allowing >° .\, aly,, < 2B, Vs € [S].

Proof: A,ounq generates an integral matching that
exactly matches all container nodes. As a result, constraint (4b)
is satisfied. We next examine constraint (4a) For each zone
node s, let ajy™™ denote the maximum of a;, corresponding



1052

to edges (vy, Ss0), Vv,, and let a”3™ denote the corresponding

minimum. We have a%" > a?’gil,e =1,...,0, — 1.

Then the total resource consumption of containers a551gned to

zone s by any integral matching in B is at most Za 1 @y

Clearly, a;3** < Bs.
0,—1
Zamax < Z am1n< Z Z
0=1 v:(vy,s59)EE"
SIS

_ E i
)_ avyfzs S Bsa
0=1v:(vy,s50)EE" veEV;

aﬁ;y/(vv; 559)

i,/
a,Yy (UUa S50

which proves the theorem. O]

Theorem 2: Agyup1 is a polynomial time algorithm, with
time complexity O(S™" 1V21og V;).

Proof: Lines 1-2 take O(n) steps to initialize set
W. The for loop in lines 3-9 iterates at most S™ times.
In each iteration, lines 4-5 can be accomplished in O(SV;)
steps. The complexity of the ST rounding algorithm in lines
6-7 is O(SV?logV;) [15]. Line 8 computes the objective
value in O(SV;) steps. Thus, the complexity of the for
loop is O(S™*1V2logV;). Lines 10-11 return the output
in O(S™) time. In summary, the time complexity of Agy,p2
is O(S"*'V?2logV;), which is polynomial to the input
size. O

b) Approximation Ratio: The approximation ratio is the
upper-bound ratio of the objective value achieved by Agyup1 to
the optimal objective value of IQP (4a).

Lemma 1: (Chernoff bound, Lemma 24 in [40]) Let
Xi1,..., X} be 1ndependent random variables such that 0 <
X; <1 Let X = Zz 1 X and p = E(X), Pr{| X —p|] >

] < 2~ 202 /k

Lemma 2: Assume n = qlogV/e2 the special estimate

Fjl s ls, with probablhty at least 1 — zq , is in the range of
[F$1 81»< €V F’U1 S1 + 6‘/;]’

Proof: We define n random variables Y7,...,Y,, and let
; *
Y; = 2326[5] Py vy,s1,8:Y0,,6, - V0j € WW. Note that 0 <

i s

Y, <1l,j=1 eooa T Then YV = E?ZIYJ' = M and
ElY] =2 F$1 s, - By Lemma 1, we have
H V1,81 Ul 91 | :> 6‘/]
[ | V1,81 ’U1,81 | > €n]
= Pr[|Y —E[Y]|>en] <2 e 2"
= 2 67262 qlog‘/i/EQ = %
i
Thus, Pr(|F} <Vl 21— 0

U1 S1 V

Lemma 3: Upon termination, Agyup1 outputs an integral
solution y¢ that satisfies A(yl,) < A* + (1 + €)V;?, where
0 < e < 1, A(yl,) is the objective value of IQP (4)
produced by v, and A* is the optimal objective value of
IQP (4).

Proof: Recall that yf)s* is the optimal solution to IQP (4).
Lemma 2 implies that with high probability, y’," is a
feasible solution to LP (6) when we input the special

estimate Fvl1 518. Because yi, is the optimal solution to

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 5, MAY 2019

LP (6), the integral solution yvs , which is rounded from yvs,
satisfies:

oY (PLAEL

veV; s€[S]

=2 D P+ R <D D (P + B
veEV; s€[S] vEV; SE[S

<SPy + >, > (Fl Vil
veEV; s€[S] v1E€V; s1€[S]

= A"+ eVi( Z Zyvs = A* 4 V2.

veEV; s€[S]
Because 0 < P < 1, we can obtain

V1,2,51,52

ZU26V7 ZSQE[S] V1,V2,81, ‘3sz2 s2 Fz ’ + Vi. As a result
A(y:,"). the objective value of IQP (4) achieved by 3., is at
most Zvevi Zse [S] (P'us + Féss)yvs + V2

Among different rounded integral solutions, the output y;,
minimizes the objective value of IQP (4), thus,

7 i 8 I
Ais) < Awe) < 0 S (P + FL il + V2
veEV; s€[S]

<A+ VAL VE=A+ (1 +e)VA O

Theorem 3: The approximation ratio of Agy,p1 is «, where
a=1+(1+e)cV; and ¢ =maxy, v,s.50 { P o /Pl s}

V1,51 V2,52

Proof: The optimal objective value of IQP @) is A" >

Dvev; 2sels] Piyi, > Yosince Pl > 1 Wu,s. Accord-
ing to Lemma 3, we have

Ayl 1+¢)V?
%su%qﬂue)cw 0

C. A Heuristic Algorithm

We next introduce a heuristic algorithm that starts with
an empty solution, and iteratively selects a container for
greedy assignment to an available zone. At the v-th iteration,
we simply choose the v-th container from set V;. Let A(y!.)
denote the increment of the objective value of IQP (4) due to
the assignment of ! = 1. To select a zone for container v,
we first compute a candidate set S that includes all available
zones. If the amount of allocated type-k resource in zone s has
exceeded the bound By, s is removed from S. We continue
to compute the value of A(y’,), for s € S, and choose s*
so that A(y! . ) = minseset Ayl ). We assign container v to
zone s*. The time complexity of this algorithm is O(V'S) since
we execute V; iterations and evaluate S zones during each
iteration. We summarize this algorithm in A,,;2. While we do
not prove a performance guarantee, trace-driven simulations in
Sec. VI show that A2 can produce a 2-approximate solution
in all cases tested.

V. ONLINE ALGORITHM DESIGN

Leveraging the cost minimization algorithms from Sec. IV
as a building block, we next present our online algorithm
in Sec. V-A. Upon the arrival of each request, the algorithm
determines immediately whether to accept it, and if so, how
to place its CC. Theoretical analysis is conducted in Sec. V-B.



ZHOU et al.: EFFICIENT ONLINE PLACEMENT SCHEME FOR CLOUD CCs

1053

Algorithm 3 A Greedy Algorithm Ag,po

Algorithm 4 A Primal-Dual Online Framework A,;,jine

Input: Input: @;, {P;,}, {P}, 1,5, 5, {als}
1: for all v € V; do
2: S = [S],

for all s € S do
Compute the increase A(y!.) of the objective func-
tion value of IQP (4a) due the assignment of yf)s =1,
10:  end for
11: s* = argminges{A(y:,)};
122 Yl = Lizge = 21, +al,,Vk € [K];
13: end for
14: QOSt'L = Evevi ZSE[S] P’Z),sy"f)s_‘_ Zvl,vzevi Z(sl,sz)eﬂi
Pgl,vz,sl,szyfxl,sl yfzz,sz; Save {y:f)s} to Z*;
15: Return cost;, [*.

3. for all s € [S] do

4 if z{,+al, > By, Vk € [K] then
S: S = S\S;

6: end if

7. end for

8:

9:

A. Online Algorithm Framework

Our main idea for the online algorithm design is as follows.
We resort to the help of the classic primal-dual technique,
and apply it to the compact-exponential ILP (2) and its
dual (3). If request ¢’s placement scheme [ is accepted, then
let x; = 1, and update the corresponding variables x; and
yl, in IP (1) according to . Upon arrival of a request i,
a set of primal variables x;;,Vl € (; and the associated
dual constraints (bii — >, Zte[t;,tj] S Dm.e, VL€ G)
appear. Complementary slackness requires that x;; remains
zero unless constraint (3a) is tight for scheme [. Next, let’s
examine the right hand side (RHS) of constraint (3a). If we
interpret dual variable p,,, as the price per unit of type-m
resource at time ¢, then >° ¢ v e 4 S Dm,¢e is the
placement cost of request i’s CC according to scheme [. The
RHS of (3a) can be viewed as request ¢’s utility with scheme /.
If we interpret dual variable u; as request ¢’s utility, u; can be
assigned to the maximum of 0 and the RHS of (3a), i.e.,

U; = max {07 rl%agx{bzl - Z Z f%,tpm,t}}- (7)

meMuelt; ]

Accordingly, if u; > 0, we accept request i; otherwise,
we reject request <. The challenge lies in finding scheme [ that
maximizes the RHS of (3a), which is equivalent to finding
the scheme that minimizes the placement cost of request
©’s CC. Given py, ., it is easy to compute the computation
cost P}, and communication cost P} . . Then the
problem becomes the one-shot CC placement problem we
studied in Sec. IV, and can be formulated into an IQP (4).
Assume that A, is an «-approximation algorithm for IQP
(4). Tt returns a scheme [* with cost cost;. Then, we have
%‘;ti < EmEM Zte[tf,t?] f:}ll}tpm,hVZ € (. Let w; =
max {0,b; — €24} satisfying constraints (3a) for any [ € ;.
If u; > 0, request ¢ is accepted and its CC is placed according
to scheme [*; if u; < 0, request 7 is rejected.

Input: {®;},{Cp.},{al,}, U,
1: Initialize A = 2(aU + 1);
: Upon the arrival of the ith CC request
: Compute {P} } and {P] ., ., .} based on {pp.};
: (COSti’ Z*) = ASUb ((b“ {P$S}7 {Pgl,vz,sl,sz}’ {azjk})7
if b — <2 > 0 then
w; = by — L2 py = Loy =1
Update y?_ and f*", according to option [*.
Accept request ¢ and allocate its CC according to y’;
for t e [t;.t]] do
Zm,t = Zm,t + fﬁ:ta Vm € M7
Dt = AT — 1,Ym € M;
end for
. else
Reject request 7.
: end if

R A ol o

_ e e e e
BN ST

We next discuss the update of dual variable p,, ;. Recall
that p,,; represents the unit price of type-m resource at t.
We define a new variable z,,; as the amount of type-m
resource consumed at ¢, and let p,, ; be a function of z, ¢,
as follows:

Zm,t

Pm,t(Zme) = ATm —1,¥m € M, Vt € [T, (8)

where A = 2(aU + 1). pp+ starts at zero and increases
exponentially with the increase of resource consumption. p,,
is close to zero when resources are abundant, allowing CCs
to consume resources freely. It grows quickly to a carefully
designed large value A when z,, ; is close to the capacity Cy,,
so that the service provider will barely allocate any type-m
resource to a CC, unless its valuation is sufficiently high.

Aoniine in Algorithm 4 is our online algorithm, which calls
Agyup for each CC request to determine its placement scheme.
Note that A,p,ine can call either of the algorithms designed
in the previous section (Agyup1 and Agypo), or any alternative
that solves IQP (4), as its sub-routine. By default, all variables
are set to zero. Line 1 initializes the value of ), to prepare
for the update of the dual variable p,, ;. Upon the arrival of
a request ¢, we first compute the computation and communi-
cation costs when assigning containers to different zones in
line 3. A, is executed for each request to compute a place-
ment scheme [* and the corresponding cost cost;. If request
7 can obtain a positive utility in some scheme, it is accepted,
and the corresponding primal and dual variables are updated
(lines 6-8). We then increase the usage of resources and raise
resource prices accordingly (lines 9-12).

B. Theoretical Analysis

Next we analyze properties of Agpiine, based on the
assumption that Ag,; can compute an c-approximate solution
to IQP (4) in polynomial time.

1) Feasibility and Running Time:

Lemma 4: Aypniine computes a feasible solution to IP (2)
and one for ILP (2a), respectively.



1054

Proof: We first examine ILP (2). Constraint (2b) is satisfied
because line 6 in A,,;;ne guarantees that only one option can
be accepted. Next, we prove that the capacity constraint (2a)
is never violated. Otherwise, let request ¢ be the first accepted
request that violates the capacity constraint of type-m resource
at time ¢ with option [*. The amount of allocated type-m
resource before request 7 arrives is: 2y, ¢ > Cy, Zf” Under

il*

fmt
" < logA’

the assumption that
at ¢ for request ¢ is:

I*

the price of type-m resource

A

P > AT T — 1> A 1w-1>5—1—aU

Thus, by U > we can obtain

b;
[EROR
cost; >pmtf,, > aU v

m

Z Otbi.

< 0, which contradicts the
co(iti > 0

We further have b; —
assumption that request ¢ is accepted with b; —
Thus, constraint (2a) holds.

We next investigate IP (1). Constraints (1c), (1d) and (1f) are
satisfied by algorithm Ag,;. In addition, the correspondance
relation between IP (1) and ILP (2) guarantees constraints (1a),
(1b), and (le) hold. O

Lemma 5: Ayniine outputs a feasible solution to LP (3).

Proof: Let OPT; be the optimal objective value
of the subproblem in (4) for request i. OPT; equals
mitye¢, { D et Drers 1+ frniPmt ). Because Agyp is an
a-approximation algorlthm that generates an objective value
cost;, we have % < OPT;. If by — €24 > 0, Agpiine
updates dual variable u; in line 6, we obtain

>bi—OPTy > bi— > > [ pm,

meM teft; t+]

cost;
«

cost;

Uz:bz —

Vi € G.

Otherwise, u; = 0 > b; — OPT;. Therefore, constraint (3a)
holds for each request ¢ and the lemma follows. O

Theorem 4: A,pniine generates feasible solutions for IP (1),
ILP (2) and LP (3) in polynomial time.

Proof: Line 1 takes one step to compute the value of A.
Upon the arrival of request i, line 3 takes O((SV;)?) steps to
initialize the cost vector. A, in line 4 runs in polynomial
time to compute placement cost. Within the body of the if
statement, lines 6-8 update primal variables in O(V; S + (¢ —
t; + 1)|M]) steps. The complexity of the for loop in lines
9-12is O((t; —t; + 1)|M|). Therefore, the running time of
Aoniine 18 polynomial. Combining Lemma 4 and Lemma 5,
we finish the proof. O

2) Competitive Ratio: We next analyze the competitive ratio
of Aoniine. The competitive ratio is the upper-bound ratio of
optimal objective of IP (1) to the objective value achieved by
Aonline. We first prove the primal-dual analysis framework in
Lemma 6, which guides the analysis of the competitive ratio.
We next define the Resource-Price Relationship for Aopniine
and the differential version of it, respectively. We prove that if
the Resource-Price Relationship holds for a given 3, Aoniine
satisfies the inequality in Lemma 6. We then present the value
of # in Lemma 8 and prove that A,;,j;ne 1S a3-competitive in
Theorem 5.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 5, MAY 2019

Let OPT; and OPT; be the optimal objective values of IP
(1) and ILP (2), respectively. We have OPT; = OPT5. Let P;
and D; denote the objective value of primal ILP (2) and that
of dual LP (3) returned by A,,iine after processing request i.
Let Py and Dy be the initial values. A,yine guarantees Py =
Dy = 0. Let P; and Dy be the final primal and dual objective
values achieved by A,niine.

Lemma 6: If there exist two constants o > 1 and 5 > 1
such that P, — P;_; > C%B(Dz — D;_1),Vi € [I], then the
competitive ratio of Agypiine 1S af.

Proof: Summing up the inequalities for each request 1,
we have

P =N (P—Py)> a—lﬂ >0~ Diny) = a—lﬂDI.
According to weak duality [36], D; > OPT5, hence, P; >
aiﬂOPTQ = a—lﬁOPTl. The competitive ratio of Agpnjine
is af. O
We next define a Resource-Price Relationship and prove that
if it holds for a given [, then the primal and dual objective
values achieved by A,pine satisfy the inequality in Lemma 6.
Let pﬁmt denote the price of type-m resource at time ¢ after
handling request i. 2! , represents the amount of consumed
type-m resource at time ¢ after processing request i.
Definition 1: The Resource Price Relatlonshlp for Aoniine

with 5 > 1 is: pmt( - Z’L 1) C (pmt pmt)

m t m,t

Vi € [I],Ym € M, Vt € [t;,t]].

107
Lemma 7: 1If the Resource-Price Relationship holds for a

i

given > 1, then A,,jine guarantees that P, — P,y >
ozLﬁ(Dl — Difl),Vi S [I]
Proof: If request ¢ is rejected, then P, — P,y = D; —

D;_1 = 0. Otherwise, we assume that request 7 is accepted
and placed according to option /. The increment of the primal
objective value is: P; — P;_1 = b;. Note that A,,j;ne assigns

u; to b; — é Y mem Zfe 4] fm +DPm.+ when request ¢ with
option [ is accepted. Therefore

L D~ )

meM teft; t+]

The increase of the dual objective value is:

Di=Div=ui+ Y. > Cou(phs—Dinit)-

meMielt; t]]

By summing up the Resource-Price Relationship over all m €
M and t € [t; ,t}], we can obtain:

AR

1
P =P 1 >u + a_B(Di = Di—1 — uy).

Since u; > 0 and a8 > 1, we have P, — P;_1 > C%B(Dz -
Di—l)- ]

In order to compute the value of 3, we make the following
mild assumption and define the differential version of the
Resource-Price Relationship based on it.

Assumption 1: The job demand is much smaller than the
resource’s capacity, i.e., ff,lm < Chy.

In the real world, a job’s demand is usually smaller than a
type of resource’s capacity in a large data center. We make this



ZHOU et al.: EFFICIENT ONLINE PLACEMENT SCHEME FOR CLOUD CCs

assumption mainly to facilitate our theoretical analysis, such
that techniques from calculus (differentiation) can be used.
We don’t consider extreme cases which are rare in practice.
For example, if a high-valued bid demanding almost all the
resource is rejected, because a small fraction of the resource
is used by other users, then the worst-case competitive ratio
can be infinitely large. It is also worth noting that, similar
assumptions are made in relevant literature of online resource
allocation [43]-[45]. We also relax this assumption completely
in our simulation studies.

Under Assumption 1, zant —zi,; tl can be expressed as dz, ;.
The derivative of the Resource-Price Relationship under the
above assumption is:

Definition 2: The Differential Resource-Price Relationship
for Aonline with ﬂ Z 1 is: pmﬂfdzm,t Z Cé” dpmﬂfavm €
MVt e [t7, tf].

Lemma 8: 3 = In \ and the price function defined in (8)
satisfy the Differential Resource-Price Relationship.

Proof: The derivative of the price function is: dp,,; =

)\zcnif 1(1; A dzp . The Differential Resource-Price Relationship
is:
Zmt Ch 2t 1
AN Cm —1)dzm, > Fm)\ Cm - In Az, ¢
AT
ATm —1
Therefore this lemma holds for § = In . U

Theorem 5: The online auction A,,jine in Alg. 4 is af-
competitive, where 5 = In A and « is the approximate ratio
of Asub-

Proof: Under Assumption 1, dz,,; = 2% , — zi; ;s
much smaller than the capacity of type-m resource (Cly,),
we have dpm = pldzmi = Py — pf;i. As a result,
we can conclude that the Resource-Price Relationship holds
for § = InA. Then, combining Lemma 6 and Lemma 7,

we finish the proof. O

VI. PERFORMANCE EVALUATION

We evaluate the performance of our one-shot algorithms
Agubt, Asupe and online algorithm A,y through trace-
driven simulation studies. We first introduce the simulation
setup for evaluation of the two one-shot algorithms. The
default number of zones is set to 9 according to the number
of Google data centers in the United States [41]. We exploit
Google Cluster Data version 1 [42], and configure each CC
according to each job’s information in the trace. We assume
that each CC contains 2-8 containers and consumes two
types of computational resource, since the trace data only
includes resource demands for CPU and RAM. The resource
consumption a’, is set according to the resource demand of
each subtask in the trace [42]. The traffic volume between
containers Af)wz is randomly generated within a range of
[0, 10]. The cost P}, and P, . . ., are randomly drawn from
[0,1]. The default value of By, is 10. For the online setup,
we assume each time slot is 5 minutes and the system spans
100 slots by default. Each request’s start and end times are
set based on each job’s timestamp in the trace. The resource

1055

[ Joptimal

3r I:IAsubVe:O'7

|| A1 c=09
-Asub2

HC__INscD

Cost

3 4 5 6 7
Number of Containers (Vi)

Fig. 2. Cost of Agyp1, Agupe and NSCD [23] under different values of V;.
25F T -
Re) M
T 27
[hq
15t
G
g 1+t -Asub1’€=0'6
% -Asum'E:O'9
o 057 I:IAsubZ
NSCD
0 L L L
3 5 7 9 11 13
Number of Zones (S)
Fig. 3. Performance ratio of Ay p1, Asype and NSCD [23] under different
values of S.

25

Performance Ratio

il

Number of Containers (Vi)

Fig. 4. Performance ratio of Ag,p1, Asypz and NSCD [23] under different
values of V; and K.

capacities, Cjs and Dy, , are randomly generated within
[50,100]. The request value b; is randomly chosen from an
interval determined by U, whose default value is 50. We repeat
each set of simulations 20 times, and use the average result to
plot the corresponding figure.

A. Performance of Asup1 and Agyups

1) Cost and Performance Ratio: Fig. 2 compares the total
cost produced by Ag,p1 and Agype with the optimal cost under
different numbers of containers. We can observe that the gap
between the cost of A1 and the optimal cost becomes larger
when the number of containers increases, and gets smaller
when the value of e decreases, which is in line with the
analysis in Lemma 3. In addition, A,,;1 achieves a lower cost
than Ag,p2 when we input a smaller e.



1056
2
B —A—A
g sub2 k
1.5 = 1
é —Q—Asub1,e-0.9
Py —#— Optimal
E
=4
.E 0_5 b
c
&
04 A
2 4 6 8 10
Number of Containers (Vi)
Fig. 5. The average running time of Ag,p1 and Agypo with different V.

We next examine the performance ratio, measured by the
ratio of the objective value of IQP (4) generated by our
algorithms to the optimal objective value of IQP (4). We fix the
number of containers to 5, and plot the performance ratios of
Agup1 and Agypo in Fig. 3. It can be observed that both Agyp;
and Ag,upe perform well with a low performance ratio (< 2).
The value of S has little impact on the performance of Agyp1
while the value of € is related to the ratio, echoing Theorem 3.
Agup1 outperforms Ag,pe when e is relatively small (0.6).
We further modify the number of containers and plot the ratios
in Fig. 4. The ratio increases with the growth of the number
of containers, validating the analysis in Theorem 3 that the
value of V; determines the approximate ratio. Moreover, when
there is more than one type of computational resource, Agypo
also works well and the ratio is smaller than 2. We implement
Tao et al.’s one-time algorithm, NSCD [23], which deploys
the container cluster to the cheapest zone, for comparison with
our one-shot Algorithms Ag,p; and Agype. In Fig. 2, Fig. 3
and Fig. 4, we can observe that our one-shot algorithms have
a better performance than NSCD.

2) Time Complexity: We apply the tic and toc functions
in MATLAB to measure the execution time of the main
program of Ag,p1 and Agype without counting the initialization
stage. We run 20 tests on a laptop computer (Intel Core i7-
6700HQ/16GB RAM) and present the average result in Fig. 5.
We implement the optimal one-shot algorithm by listing all
possible placement schemes. We can observe that both A1
and Agype run much faster than the optimal algorithm. The
running time grows with an increasing V;, and the observed
values are below 0.5 seconds.

B. Performance of Aonjine

1) Performance Ratio and Objective Value: We first exam-
ine the performance ratio of Ag,iine, When we call the sub-
algorithm that exactly solves IQP (4) (labeled by Aoniine)s
Asubl (labeled by Aonline + Asubl) and AsubQ (labeled by
Aonline +Asub2)» in A(mline- The Pe'fO”mance ratio of A(mline
is the ratio of the optimal objective value of IP (1) to the
objective value of IP (1) generated by A,;,iine. Based on the
observation from the above subsection, we set o« = 2 for both
Agupr and Agupo. We fix the number of containers in each
CC to 3 and the number of CC requests to 100, but vary the
number of zones. The results are plotted in the right of Fig. 6.
We observe that the ratio drops sharply with the increase
of S, but remains steady when S > 5. This is because more

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 5, MAY 2019

3.5 37
FA— SWMOA

Aonline+Asub2

A

Aonline+ sub1

Fig. 6.  Performance ratio of A,pjine, Ar and SWMOA in [34] under
different V" and S.

3.5

; B
il
T 25 .SWMOA
o
8 2
o
% |:| Aonline +AsubZ
E15
o
E 1 |:| Aonline +Asub1
o
[
online
0
10 20 30 40
U
Fig. 7. Performance ratio of A,piine, Ar and SWMOA in [34] with
different U.

zones bring more placement options. As a result, each CC
request has a high probability of being accepted by Aoniines
leading to a better performance. When S is large enough,
the ratio is dominated by other parameters, e.g., V; and U.
The left of Fig. 6 illustrates that a lower ratio comes with a
smaller number of CCs. Comparing Fig. 3 and Fig. 4 with
Fig. 6, we can conclude that our online algorithm framework
incurs only a small loss in performance ratio. In Fig. 7 and
Fig. 8, we examine the impact of two parameters: U and I.
Again, A,niine With the optimal sub-algorithm has the best
performance. The observed ratios are better than the theoretical
worst-case bound and remain at a low level. Fig. 7 shows
that the performance ratio is larger for a larger value of U.
The theoretical competitive ratio proven in Theorem 5 implies
this result. The ratio fluctuates with the number of requests
in Fig. 8, which indicates that the value of I does not have a
major influence on the ratio.

We further compare our online algorithm with two related
algorithms: i) Shi er al.’s online algorithm [34], SWMOA,
which also makes decisions based on the current resource
prices. Their price function depends on the number of
resources and the number of time slots; ii) an online algorithm,
A,, which only considers current available resources, i.e.,
accepts the CC request if there exists one possible placement
option (under capacity limit). We have implemented their
algorithms and evaluated them using the same trace data.
In Fig. 6, we can observe that our online algorithm can
achieves a much lower performance ratio than SWMO and
A, under different values of V; and S. In Fig. 7 and Fig. 8,
we vary the value of another two parameters, U and I, and still



ZHOU et al.: EFFICIENT ON