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An Efficient Online Placement Scheme for
Cloud Container Clusters
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Abstract— Containers represent an agile alternative to virtual
machines (VMs), for providing cloud computing services. Con-
tainers are more flexible and lightweight, and can be easily
instrumented. Enterprise users often create clusters of inter-
connected containers to provision complex services. Compared
to traditional cloud services, key challenges in container clus-
ter (CC) provisioning lie in the optimal placement of containers
while considering inter-container traffic in a CC. The challenge
further escalates, when CCs are provisioned in an online fashion.
We propose an online algorithm to address the above challenges,
aiming to maximize the aggregate value of all served clusters.
We first study a one-shot CC placement problem. Leveraging
techniques of exhaustive sampling and ST rounding, we design an
efficient one-shot algorithm to determine the placement scheme
of a given CC. We then propose a primal-dual online placement
scheme that employs the one-shot algorithm as a building block
to make decisions upon the arrival of each CC request. Through
both theoretical analysis and trace-driven simulations, we verify
that the online placement algorithm is computationally efficient
and achieves a good competitive ratio.

Index Terms— Cloud container clusters, online algorithms,
compact exponential optimization.

I. INTRODUCTION

CLOUD computing has become a new computing para-
digm that provides computing services with on-demand

access to resources such as CPU/GPU, RAM and disk storage.
Cloud resources used to be packed into different types of
virtual machines (VMs) to serve cloud users. More recently,
cloud containers offer a light-weight alternative to VMs.
Unlike VMs, containers do not require a full, dedicated
operating system to be installed within them. They are able
to operate with the minimum amount of resources and start
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in microseconds [1], providing a streamlined, easy-to-deploy
method of cloud resource provisioning. Example cloud con-
tainer services toady include Google Container Engine [2],
Amazon EC2 Container service (ECS) [3], Aliyun Container
Service [4], and Azure Container Service [5].

Besides purchasing individual containers, cloud users often
require a collection of containers and the network in between,
to create a container cluster (CC) for building a reliable and
scalable distributed system. Typical examples include geo-
distributed machine learning (ML) systems, and service chains
in a Network Function Virtualization (NFV) environment.
Geo-distributed machine learning derives useful information
from large geo-dispersed data collections without moving
them to a central location. A common use case of geo-
distributed ML is to train data continuously produced at dif-
ferent locations. For example, e-commerce sites, e.g., Amazon
and Taobao, recommend items that are of particular interest
to users by learning user behavior from continuously col-
lected click-through data all over the world [6], using ML
techniques such as logistic regression. In a geo-distributed
ML job, many concurrent workers (typically implemented on
containers) reside in different geographic locations to train
data sets in proximity [7]. In each training iteration, workers
exchange locally computed parameter updates to obtain the
global ML model. A service chain refers to the structure
of a network service where a sequences of virtual network
functions (VNFs) are linked [8]. Many chains are deployed
over the WAN with VNFs located in different locations,
to process network flows between geo-dispersed sources and
destinations. For example, an enterprise may request a CC to
deploy an access control service chain “Firewall→IDS→Load
Balancer”, where instances of firewall, IDS and Load Balancer
are encapsulated into containers. Web service flows can tra-
verse this service chain, sending packets from a source to a
destination. Container clusters are emerging as the new norm
of virtual clusters. Compared to traditional virtual clusters,
container clusters, e.g., Google Container Cluster [9], Amazon
ECS Cluster [10] and Azure Container Service Cluster [11],
provide better performance for applications and enhance the
elasticity by fast deployment of additional work nodes.

This work targets a more realistic and general setup in the
deployment of CCs. We investigate the online CC placement
problem that dynamically assembles CC as per user request.
We take the perspective of a cloud service provider, who hosts
cloud computing resources in multiple zones, where a zone
may correspond to one or multiple servers, or a data center.
The computing resources in a region owned by Amazon, for
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instance, are divided to Availability Zones [12]. The cloud
service provider deploys containers and assembles CC upon
requests on the fly. Each CC request can come and go at any
time, and its placement is determined on the spot. The deploy-
ment of a CC involves not only the placement of containers,
i.e., assigning each container to a zone with free capacity,
but also routing inter-container traffic, i.e., identifying zones
with available bandwidth in between to send traffic between
neighbour containers. Even in the offline setting with full
information, such a deployment problem translates into an
NP-hard combinational optimization problem. The challenge
further escalates when we target a practical online placement
scheme that makes on-spot decisions upon the arrival of each
CC request.

We extend the existing literature on virtual cluster provision-
ing, and propose an efficient online placement scheme such
that: i) CCs with different values arrive stochastically; each CC
specifies its required containers and the traffic demand between
neighbor containers; ii) the algorithm is computationally effi-
cient and executes in polynomial time; iii) the aggregate value
of deployed CCs is approximately maximized. Our detailed
contributions are summarized below.

First, we formulate the offline optimization problem as
an integer program (IP) with quadratic constraints that cap-
ture inter-container traffic flow. While polynomial in size,
the quadratic IP is non-linear and admits no direct applica-
tion of the classic primal-dual schema for algorithm design.
We leverage the recent compact-exponential optimization
framework [13] to encode each valid placement scheme in
a variable, and reformulate the original IP into a compact-
exponential Integer Linear Program (ILP), which contains
only conventional packing-type constraints, but at the cost
of involving an exponential number of variables. Solving the
compact exponential ILP directly is still infeasible in practice,
when complete knowledge over the entire system lifespan
is not available. We instead first relax the resource capacity
constraints that impose inter-CC coupling, and focus on a
one-shot problem to determine the optimal placement of the
current CC. We then design an online algorithm framework
that simultaneously works on the compact-exponential ILP and
its dual LP, invoking the one-shot algorithm as a subroutine,
towards computing efficient placement based on values of dual
variables.

Second, we reformulate the one-shot CC placement problem
into an integer quadratic program (IQP), to minimize the
placement cost for a given CC. We first consider a simplified
scenario of a single type of computational resource. The IQP
has an objective function of degree 2, and is proven NP-hard
to solve. We apply an exhaustive sampling technique [14]
based on a random-sampling process to reduce its degree
from 2 to 1, at the cost of losing some accuracy. The degree-
reduced problem becomes a general assignment problem with
extra constraints. We solve this problem to optimality, and
apply the ST rounding technique [15] to round the fractional
solution to an integral solution. More specifically, we con-
struct a bipartite graph based on the fractional solution, and
output the minimum-cost integer matching in this graph.
Theoretical analysis shows that our algorithm achieves a small

approximation ratio. We then further consider the general
scenario, and propose a heuristic algorithm to provide good
solutions with low computational complexity.

Third, we proceed to consider resource capacity constraints,
and design an online algorithm framework that utilizes the
one-shot algorithm to determine each CC’s placement upon
its arrival, without relying on future information. We apply
the primal-dual technique to the compact-exponential ILP
and its dual LP, and interpret dual variables as unit resource
prices at different times. Upon receiving a CC request, given
current resource prices, the one-shot algorithm computes an
α-approximate placement scheme with an estimated cost.
We divide the estimated cost by α to obtain a lower bound of
the optimal cost, and compare the CC’s value with it. If the
value is higher, the CC is deployed and dual variables are
updated; otherwise the CC request is discarded. We conduct
theoretical analysis on the competitive ratio and prove its upper
bound. The effectiveness of our one-shot and online algorithms
are evaluated through trace-driven simulation studies.

In the rest of the paper, we review related work in Sec. II
and describe the system model in Sec. III. We study the
one-shot CC placement problem in Sec. IV and propose an
online placement algorithm on Sec. V. Simulation studies are
presented in Sec. VI. Sec. VII concludes the paper.

II. RELATED WORK

Early studies of cloud computing have focused on VM pro-
visioning, in both offline and online settings. Zhang et al. [16]
propose a randomized algorithm based on a decomposition
technique for dynamic cloud resource provisioning, achieving
a small approximation ratio. Shi et al. [17] present the
first online combinatorial auction in the cloud computing
paradigm. Zheng and Shroff [18] design online multi-resource
allocation algorithms to schedule cloud jobs with deadlines.
Tan et al. [19] propose a elastic cloud resource provisioning
algorithm under premise of guaranteeing performance. Bitton
et al. [20] design a batch dispatching algorithm to process
cloud jobs. The above literature focuses on the deployment of
separate VMs, without considering inter-VM traffic in a virtual
cluster.

Kubernetes [21] is an open source platform for individual
user to deploy and manage container clusters on public clouds.
Its default resource-provisioning mechanism adjusts the num-
ber of containers running for the application only based on
CPU utilization. Chang et al. [22] further propose a generic
platform to facilitate dynamic resource provisioning based on
Kubernetes, taking consideration of multi-types of resources.
Along the direction of global container resource allocation,
Tao et al. [23] propose two approaches for mapping user
preferences to concrete container configuration parameters.
They also design a node selection algorithm for container
placement. They study a simple offline scenario, without
considering the inter-container traffic. Waibel et al. [24]
provide a fine-granular resource scheduling algorithm for
elastic processes based on containers, without considering
inter-container traffic. One related problem is the VNF place-
ment problem which usually targets different optimization
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objectives. Agarwal et al. [25] present a latency minimization
strategy to make joint VNF placement and CPU assignment
decisions. Tang et al. [26] forecast the traffic amount while
placing VNF instances to minimize the inter-rack traffic.
Jia et al. [27] investigate dynamic placement of VNF service
chains, for operational cost minimization.

Cloud container cluster provisioning belongs to the category
of virtual cluster (VC) provisioning (a.k.a. virtual network
embedding/mapping). Along this direction, Chowdhury et al.
[28] propose virtual network embedding algorithms that effi-

ciently map virtual nodes and virtual links onto the substrate
network resources. Li et al. [29] address the VM placement
problem, by considering both the traffic cost and the physical
machine utilization cost. Yu et al. [30] study the survivable
VC embedding problem, which jointly optimizes primary and
backup embeddings of VCs, with the goal of minimizing
VM consumption. Dai et al. [31] design algorithms for the
minimum energy virtual cluster embedding problem. They
provide no proven guarantee on the approximation ratio.
Different from the above literature, our one-shot CC placement
problem has a different optimization objective. We target total
cost minimization with a natural IQP formulation, requiring
different solution techniques. We rigorously prove that our
proposed algorithm can achieve a small approximation ratio.
In addition, the above literature considers only one-time/offline
scenario, while we further propose an efficient online CC
placement scheme to handle dynamically arriving requests for
CCs.

Towards online VC deployment, Evan and Medina [32]
study the online multi-commodity flow routing problem. They
focus on link capacity constraints but ignore node capacity
constraints. Grandl et al. [33] propose a multi-resource cluster
scheduler that assigns tasks to machines. The communication
demand between different tasks is not modelled by them.
Shi et al. [34] investigate online mechanism design to place
inter-connected VMs in a geo-distributed IaaS cloud, taking
both computational resources and communication resources
into consideration. Their subproblem for each job’s placement
is trivial, since they specify several VM placement schemes
for each job, while our subproblem is an NP-hard problem
that computes the best placement for each CC. Our work is
also the first to design an online primal-dual algorithm for CC
placement, with proven performance guarantee.

The compact-exponential optimization framework was first
applied by Zhou et al. [13]. They consider the scheduling
of computing jobs that require separate VMs, while this
work focuses on the placement of correlated containers in
the form of container clusters. This work further advances
the compact-exponential framework to handle nonlinear con-
straints and NP-hard subproblems. Our subproblem, namely
the one-shot CC placement problem, is a special case of the
quadratic assignment problem (see [35] for a detailed survey).
We design a rounding algorithm that combines exhaustive
sampling [14] and ST rounding [15] techniques for effective
solutions. The online primal-dual method is a known powerful
algorithmic technique for many NP-hard problems, such as
the knapsack problem and the general packing problem [36].
However, our online optimization problem does not fall into

such known categories. We propose a primal-dual online
framework to solve our problem, and provide a new price
function to update dual variables, which is the key towards
achieving a good competitive ratio.

III. SYSTEM MODEL

We consider a cloud service provider who owns a pool of
resources residing in S zones, where a zone may correspond to
one or a cluster of servers, or a data center. Let [X ] denote the
integer set {1, 2, . . . , X}. There are K types of computation
computation resources, as exemplified by CPU, RAM and
disk. Each zone s ∈ [S] has Cks units of type-k resource.
Zones are interconnected by broadband links. Active optical
cables (AOC) and unshielded twisted pair (UTP) cables are
often used for short links that connect zones in the same data
center, while multi-mode or single-mode fibers are used to
connect zones which correspond to different data centers [37].
Let E be the set of links, and let Ds1,s2 denote the bandwidth
capacity of link (s1, s2) ∈ E that connects zones s1 and s2.

Over a large time span 1, 2, . . . , T , I CC requests arrive
stochastically to the system. Multiple requests can arrive
simultaneously, and would be ordered randomly. Request i
arrives at time ti, requiring a CC from t−i to t+i . Each CC
consists of a set of tailor-made containers. Let Vi and Vi

denote the set of containers and the number of containers
in request i’s CC, respectively. A container v ∈ Vi con-
sumes ai

vk amount of type-k resource, ∀k ∈ [K]. Let
Δi

v1,v2
denote the bandwidth consumption for flow transfer

from v1 to v2 in request i’s CC, when v1 and v2 reside
distinct zones. A value bi is obtained if request i’s CC is
deployed. In summary, request i can be expressed as: Φi =
{bi, Vi,Vi, {ai

vk}v∈Vi,k∈[K], {Δi
v1,v2

}v1,v2∈Vi}.
Upon each request’s arrival, the service provider immedi-

ately determines whether to serve it, and if so, how to place its
CC. Decision variables for request i include: i) xi ∈ {0, 1},
indicating whether request i is accepted (1) or not (0). ii)
yi

vs, ∀v ∈ Vi, ∀s ∈ [S], encoding the placement scheme of
request i’s CC, where yi

vs = 1 if zone s is selected to host
container v and 0 otherwise. The service provider in practice
wishes to reserve resources for different CC requests, and
limits a single CC to occupy at most Bks units of type-k
resource in zone s. Such resource consumption bound is also
customary in the cloud resource allocation literature [38] [18].
Fig. 1 shows a placement scheme for request 1. Our objective
is to maximize the total valuation obtained from all CCs, sub-
ject to resource capacity constraints. The optimization problem
can be formulated into the following integer program (IP):

maximize
∑

i∈[I]

bixi (1)

subject to : xi =
∑

s∈[S]

yi
vs, ∀i ∈ [I], ∀v ∈ Vi, (1a)

∑

i∈[I]:

t−i ≤t≤t+i

∑

v∈Vi

ai
vkyi

vs ≤ Cks, ∀k ∈ [K],

∀s ∈ [S], ∀t ∈ [T ], (1b)
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Fig. 1. Container cluster placement: an example.

∑

s∈[S]

yi
vs ≤ 1, ∀i ∈ [I], ∀v ∈ Vi, (1c)

∑

v∈Vi

ai
vkyi

vs ≤ Bks, ∀i ∈ [I], ∀k ∈ [K],

∀s ∈ [S], ∀t ∈ [t−i , t+i ] (1d)∑

i∈[I]:

t−i ≤t≤t+i

∑

v1,v2∈Vi

Δi
v1,v2

yi
v1,s1

yi
v2,s2

≤ Ds1,s2 ,

∀(s1, s2) ∈ E, ∀t ∈ [T ], (1e)

xi, y
i
vs ∈ {0, 1}, ∀i ∈ [I], ∀v ∈ Vi, ∀s ∈ [S].

(1f)

Constraint (1a) ensures that request i’s CC is deployed only
when it is accepted, since request i’s container v is placed to
a zone s only when xi = 1. Constraint (1b) guarantees that
at any time, allocated resources at a zone do not exceed its
capacity. Constraint (1c) indicates that a container in a CC
request resides in at most one zone. Constraint (1d) enforces
the upper-bound of each CC’s resource occupation at a zone s.
Link capacity constraints are modelled by (1e).

Even in the offline setting, with complete knowledge given,
the polynomial-sized IP (1) is NP-hard to solve. To verify,
consider a special case of IP (1) where each CC consists of
one container, T = 1 and Bks = Ds1,s2 = +∞. Then the
classic multidimensional knapsack problem, which is known
to be NP-hard, is equivalent to the special case of IP (1).
The challenge further escalates when we consider quadratic
constraints (1e). To address these challenges, we resort to the
compact-exponential technique [13], which can reformulate
IP (1) into an equivalent ILP with packing structure, at the
price of involving an exponential number of variables:

maximize
∑

i∈[I]

∑

l∈ζi

bilxil (2)

subject to :
∑

i∈[I]:

t−i ≤t≤t+i

∑

l∈ζi

f il
m,txil ≤ Cm,

∀m ∈ M, ∀t ∈ [T ], (2a)

∑

l∈ζi

xil ≤ 1, ∀i ∈ [I], (2b)

xil ∈ {0, 1}, ∀i ∈ [I], ∀l ∈ ζi. (2c)

In the above compact-exponential ILP, ζi is the set of
feasible placement schemes for request i. A feasible scheme
is a vector l = {yi

vs} that satisfies (1c) and (1d). Variable
xil ∈ {0, 1} indicates whether request i’s scheme l is accepted
(1) or not (0). We regard each computation resource at each
zone and the bandwidth at each link as different resources.
Consequently, the total number of resource types is KS + |E|.
Let M be the set of resource types and Cm be the capacity
of type-m resource, ∀m ∈ M. f il

m,t denotes the total type-
m resource consumption of request i’s scheme l at time t.
For example, if m corresponds to type-k resource at zone
s, f il

m,t =
∑

v∈Vi
ai

vkyi
vs, ∀t ∈ [t−i , t+i ]. Constraint (2a) is

equivalent to (1b) and (1e). Constraint (2ab) ensures that each
CC is placed according to at most one scheme.

We relax xil ∈ {0, 1} to xil ≥ 0, and introduce dual
variables pm,t and ui to constraints (2a) and (2b). The dual
of the relaxation of program (2) is:

minimize
∑

t∈[T ]

∑

m∈M
Cmpm,t +

∑

i∈[I]

ui (3)

subject to: ui ≥ bil −
∑

m∈M

∑

t∈[t−i ,t+i ]

f il
m,tpm,t,

∀i ∈ [I], ∀l ∈ ζi, (3a)

pm,t, ui ≥ 0, ∀i ∈ [I], ∀m ∈ M, ∀t ∈ [T ].
(3b)

IP (1) and ILP (2) have the same optimal objective value.
To solve ILP (2), complete knowledge over the entire system
lifespan is required. However, our algorithm needs to work in
an online fashion, making on-spot decisions without relying on
knowledge of future request arrivals. To this end, we leverage
the primal-dual technique that determines the primal solution
based on dual variables. We interpret dual variable pm,t

as the unit price of type-m resource at time t. Upon the
arrival of a request, we compute its CC’s placement scheme
based on current resource prices. We first focus on a one-
shot CC placement problem, which relaxes resource capacity
constraints (2a) that impose temporal correlation in online
decision making; we design an efficient algorithm to determine
a CC’s placement scheme with the goal of cost minimization.
We then propose an online algorithm framework that employs
the one-shot optimization as a building block to make on-spot
decisions upon CC request arrivals.

We make two assumptions in this work. First, we assume
that a CC’s valuation is proportional to its resource consump-
tion in each time slot f il

m,t (where f il
m,t > 0): 1 ≤ bi

fil
m,t

≤
U, ∀i, l, m, t, where U is a constant. Second, we assume that
the ratio between a scheme’s resource consumption at each

time slot and the resource capacity is bounded:
fil

m,t

Cm
≤

1
log λ , ∀i, l, m, t, where λ = 2(αU + 1) and α represents the
approximation ratio of the one-shot CC placement algorithm.
This assumption implies that the resource demand of each
container is small compared to the capacity of each zone.
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TABLE I

SUMMARY OF NOTATION

Here λ (related to U ) is an important parameter and will be
used in our online algorithm design. Notations are summarized
in Table 1 for ease of reference.

IV. APPROXIMATION ALGORITHM DESIGN FOR

CONTAINER CLUSTER PLACEMENT

In this section, we first formulate the one-shot CC placement
problem in Sec. IV-A. A rounding algorithm and a heuristic
algorithm are then designed and analyzed in Sec. IV-B and
Sec. IV-C, respectively.

A. Cost Minimization Problem

We include the same constraints (1c) and (1d) related to
the current CC request i from IP (1), and exclude resource
capacity constraints (1b) and (1e). Given current resource
prices (to be decided in Sec. V), we compute the computation
cost P i

vs, i.e., the cost of placing container v in zone s, and the
communication cost P i

v1,v2,s1,s2
, i.e., the cost of sending traffic

from v1 to v2 through link (s1, s2). The cost minimization
problem has the following natural IQP formulation:

minimize
∑

v∈Vi

∑

s∈[S]

P i
vsy

i
vs +

∑

v1,v2∈Vi,
(s1,s2)∈E

P i
v1,v2,s1,s2

yi
v1,s1

yi
v2,s2

(4)

subject to:
∑

v∈Vi

ai
vkyi

vs ≤ Bks, ∀k ∈ [K], ∀s ∈ [S], (4a)

∑

s∈[S]

yi
vs = 1, ∀v ∈ Vi, (4b)

yi
vs ∈ {0, 1}, ∀v ∈ Vi, ∀s ∈ [S]. (4c)

If we set ai
vk = Bks = 1, ∀v, k, s, IQP (4a) degrades to

the minimum quadratic assignment problem [35], which has
been proven NP-hard, and does not have any known constant-
factor approximation algorithm in polynomial time (assuming
P �= NP). When the number of zones is small (S < 5),

we can compute the optimal solution by enumerating all
options. However, S can be a large number in practice. For
example, the Amazon cloud infrastructure is currently com-
prised of 42 availability zones [12]. It is essential to compute
a good solution efficiently, in a short time. To solve the
IQP, we first simplify the model by considering a single type
of computation resource, and present a rounding algorithm
that approximately solves the problem with worst-case perfor-
mance guarantee. We later propose a heuristic algorithm that
can solve the general version, without theoretical performance
guarantee.

B. A Rounding Algorithm With Performance Guarantee

Given a sole type of computation resource, let ai
v and

Bs represent ai
vk and Bks, respectively. The degree of an

integer program is d if its objective function is a degree-
d polynomial function. IQP (4) is a degree-2 integer pro-
gram. We first apply exhaustive sampling [14] to reduce its
degree from 2 to 1. We convert IQP (4) to an ILP, with
some loss of accuracy. The ILP is a generalized assign-
ment problem with side constraints. We solve its LP relax-
ation exactly, and then round the fractional solution to an
approximate integral solution through another technique of
ST rounding [15].

More specifically, let yi
vs

∗
be the optimal solution

to IQP (4a), and let F i
v1,s1

∗ =
∑

v2∈Vi

∑
s2∈[S]

P i
v1,v2,s1,s2

yi
v2,s2

∗
, we can reformulate IQP (4a) to the fol-

lowing ILP:

minimize
∑

v∈Vi

∑

s∈[S]

(P i
vs + F i

vs

∗
)yi

vs (5)

subject to : Constraints(4a − 4c)∑

v2∈Vi

∑

s2∈[S]

P i
v1,v2,s1,s2

yi
v2,s2

= F i
v1,s1

∗
,

∀v1 ∈ Vi, ∀s1 ∈ [S]. (5d)
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However, it is difficult to obtain the exact value of F i
v1,s1

∗
.

We strive to compute reasonable guesses by exhaustively
listing all placement schemes of a random sample. For ease
of presentation, we normalize P i

v1,v2,s1,s2
and P i

vs, so that
max

{
maxv1,v2,s1,s2{P i

v1,v2,s1,s2
}, maxv,s{P i

vs}
}

= 1. The
sampling procedure is as follows:

i) We first pick a random sample W of n = O(log Vi/ε2)
containers from Vi. Let W = {vj1 , . . . , vjn}. Exhaustively
go through each of the Sn ways of placing containers in W .
For each placement that satisfies constraints (4a) and (4b),
we compute an estimate F i

v1,s1
of F i

v1,s1

∗
by setting

F i
v1,s1

=
Vi

n

∑

v2∈W

∑

s2∈[S]

P i
v1,v2,s1,s2

yi
v2,s2

,

where yi
v2,s2

= 1 if container v2 is allocated to zone s2.
Note that we try all possible placements of containers in
W . Therefore, the “correct” placement in which yi

v2,s2
=

yi
v2,s2

∗
, ∀v2 ∈ W , s2 ∈ [S] is ensured to be tried. We call

the estimate corresponding to this assignment the special esti-
mate, denoted as F i

v1,s1

s
. We will show that F i

v1,s1

s
satisfies

|F i
v1,s1

∗ − F i
v1,s1

s| ≤ εVi in Lemma 2.
ii) Next, for each estimate F i

v1,s1
of F i

v1,s1

∗
, we consider

the following LP:

minimize
∑

v∈Vi

∑

s∈[S]

(P i
vs + F i

vs)y
i
vs (6)

subject to: Constraints (4a − 4b)∑

v2∈Vi

∑

s2∈[S]

P i
v1,v2,s1,s2

yi
v2,s2

≤ F i
v1,s1

+ εVi,

∀v1 ∈ Vi, ∀s1 ∈ [S], (6c)∑

v2∈Vi

∑

s2∈[S]

P i
v1,v2,s1,s2

yi
v2,s2

≥ F i
v1,s1

− εVi, )

∀v1 ∈ Vi, ∀s1 ∈ [S], (6d)
yi

vs ≥ 0, ∀v ∈ Vi, ∀s ∈ [S]. (6e)

Let yi
vs and η be the optimal solution and the optimal

objective value of LP (6), respectively. We round the fractional
solution yi

vs to an approximate integral solution yi
vs

′
using an

algorithm Around. The approximate integral solution satisfies
constraint (4b) and slightly violates (4a) by allowing each CC
to occupy at most twice its resource usage bound at each
zone.

iii) Because there are at most Sn estimates, we solve LP (6)
as above for each F i

v1,s1
. Among the solutions, we output the

one whose corresponding placement minimizes the objective
of IQP (4). We summarize our algorithm in Asub1.

We next describe the details of Around, which applies ST
rounding [15] to round the fractional solution to an integral
solution. In preparation, we first construct a weighted bipartite
graph B = (V ′, S′, E′) based on yi

vs, as follows:
i) One side of the bipartite graph consists of container nodes:

V ′ = {vv : v = 1, . . . , Vi}, and the other side includes zone
nodes: S′ = {ssθ : s = 1, . . . , S, θ = 1, . . . , Θs}, where
Θs = 	∑v∈Vi

yi
vs
. We assign Θs nodes for zone s.

ii) For zone s, sort the containers placed to it by non-
increasing resource demand ai

v. For notation simplicity,
we assume that ai

1 ≥ ai
2 . . . ,≥ ai

Vi
.

Algorithm 1 An Approximation Algorithm Asub1

Input: Φi, {P i
vs}, {P i

v1,v2,s1,s2
}, {ai

v}, ε
1: Define n = O(log Vi/ε2);
2: Pick a random subset W of n containers from Vi; Let

W = {vj1 , . . . , vjn};
3: for e doach placement of containers in W do
4: Update the corresponding yi

vs;
5: Define F i

v1,s1
= Vi

n

∑
v2∈W

∑
s2∈[S] P

i
v1,v2,s1,s2

yi
v2,s2

,
∀v1 ∈ Vi, s1 ∈ [S];

6: Solve LP (5) exactly. Let yi
vs be the optimal solution;

7: {yi
vs

′} = Around({yi
vs}, {P i

vs + F i
vs});

8: Λj =
∑

v∈Vi

∑
s∈[S] P

i
vsy

i
vs

′ +
∑

v1,v2∈Vi

∑
(s1,s2)∈E

P i
v1,v2,s1,s2

yi
v1,s1

′
yi

v2,s2

′
;

9: end for
10: costi = minj Λj ; Save the placement {yi

vs} which leads
to the minimum Λj to l∗;

11: Return costi, l
∗.

Algorithm 2 A Rounding Algorithm Around

Input: {yi
vs}, {P i

vs + F i
vs};

1: Build a bipartite graph B = (V ′, S′, E′) based on yi
vs;

2: Find the minimum-cost integer matching that exactly
matches all container nodes in B;

3: Update yi
vs

′ = 1 if node v is mapped to node s;
4: Return {yi

vs
′}.

iii) For zone s, consider nodes ssθ, θ = 1, . . . , Θs as bins of
capacity 1, and consider yi

vs, v ∈ Vi as pieces of containers
placed into these bins. With respect to the non-increasing order
of ai

v, we pack pieces into node ss1 one by one, until placing
piece v results in bin overflow (exceeding 1). We then place a
fraction of v to saturate the capacity of node ss1, and place the
remaining fraction of v to node ss2. We carry on this process
until all pieces are placed into bins.

iv) If there is a positive fraction of container v packed into
node ssθ , edge (vv, ssθ) is added to E′. We define a vector
y′(vv, ssθ) on edge (vv, ssθ), which equals the fraction of v
packed into ssθ. The cost of this edge, w(vv, ssθ), is set to
P i

vs + F i
vs.

Vector y′ is a fractional matching in bipartite graph B
that exactly matches all container nodes. The cost of the
fractional matching is η. By matching theory [39], there exists
an integral matching with cost at most η that exactly matches
all container nodes. We continue to compute such an integral
matching.

1) Theoretical Analysis:
a) Feasibility and Running Time:

Theorem 1: The integral solution yi
vs returned by Asub1

satisfies constraint (4b) and slightly violates constraint (4a)
by allowing

∑
v∈Vi

ai
vyi

vs ≤ 2Bs, ∀s ∈ [S].
Proof: Around generates an integral matching that

exactly matches all container nodes. As a result, constraint (4b)
is satisfied. We next examine constraint (4a). For each zone
node ssθ , let amax

sθ denote the maximum of ai
v corresponding



1052 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 5, MAY 2019

to edges (vv, ssθ), ∀vv , and let amin
sθ denote the corresponding

minimum. We have amin
sθ ≥ amax

s,θ+1, θ = 1, . . . , Θs − 1.
Then the total resource consumption of containers assigned to
zone s by any integral matching in B is at most

∑Θs

θ=1 amax
sθ .

Clearly, amax
s1 ≤ Bs.

Θs∑

θ=2

amax
sθ ≤

Θs−1∑

θ=1

amin
sθ ≤

Θs−1∑

θ=1

∑

v:(vv ,ssθ)∈E′
ai

vy
′(vv, ssθ)

≤
Θs∑

θ=1

∑

v:(vv ,ssθ)∈E′
ai

vy′(vv, ssθ)=
∑

v∈Vi

ai
vy

i
vs ≤ Bs,

which proves the theorem.
Theorem 2: Asub1 is a polynomial time algorithm, with

time complexity O(Sn+1V 2
i log Vi).

Proof: Lines 1–2 take O(n) steps to initialize set
W . The for loop in lines 3–9 iterates at most Sn times.
In each iteration, lines 4–5 can be accomplished in O(SVi)
steps. The complexity of the ST rounding algorithm in lines
6–7 is O(SV 2

i log Vi) [15]. Line 8 computes the objective
value in O(SVi) steps. Thus, the complexity of the for
loop is O(Sn+1V 2

i log Vi). Lines 10–11 return the output
in O(Sn) time. In summary, the time complexity of Asub2

is O(Sn+1V 2
i log Vi), which is polynomial to the input

size.
b) Approximation Ratio: The approximation ratio is the

upper-bound ratio of the objective value achieved by Asub1 to
the optimal objective value of IQP (4a).

Lemma 1: (Chernoff bound, Lemma 24 in [40]) Let
X1, . . . , Xk be independent random variables such that 0 ≤
Xi ≤ 1. Let X =

∑k
i=1 Xi and μ = E(X), Pr[|X − μ|] ≥

σ] ≤ 2e−2σ2/k.
Lemma 2: Assume n = q log Vi/ε2, the special estimate

F i
v1,s1

s
, with probability at least 1 − 2

V 2q
i

, is in the range of

[F i
v1,s1

∗ − εVi, F
i
v1,s1

∗ + εVi].
Proof: We define n random variables Y1, . . . , Yn and let

Yj =
∑

s2∈[S] Pv1,v2,s1,s2y
i
vj ,s2

∗
, ∀vj ∈ W . Note that 0 ≤

Yj ≤ 1, j = 1, . . . , n. Then Y =
∑n

j=1 Yj =
F i

v1,s1
s
n

Vi
and

E[Y ] = n
Vi

F i
v1,s1

∗
. By Lemma 1, we have

Pr[|F i
v1,s1

s − F i
v1,s1

∗| ≥ εVi]

= Pr[
n

Vi
|F i

v1,s1

s − F i
v1,s1

∗| ≥ εn]

= Pr[|Y − E[Y ]| ≥ εn] ≤ 2 e−2ε2n

= 2 e−2ε2 q log Vi/ε2 =
2

V 2q
i

.

Thus, Pr[|F i
v1,s1

s − F i
v1,s1

∗| ≤ εVi] ≥ 1 − 2
V 2q

i

.
Lemma 3: Upon termination, Asub1 outputs an integral

solution yi
vs that satisfies Λ(yi

vs) ≤ Λ∗ + (1 + ε)V 2
i , where

0 ≤ ε ≤ 1, Λ(yi
vs) is the objective value of IQP (4)

produced by yi
is and Λ∗ is the optimal objective value of

IQP (4).
Proof: Recall that yi

vs
∗

is the optimal solution to IQP (4).
Lemma 2 implies that with high probability, yi

vs
∗

is a
feasible solution to LP (6) when we input the special
estimate F i

v1,s1

s
. Because yi

vs is the optimal solution to

LP (6), the integral solution yi
vs

′
, which is rounded from yi

vs,
satisfies:
∑

v∈Vi

∑

s∈[S]

(P i
vs + F i

vs

s
)yi

vs

′

=
∑

v∈Vi

∑

s∈[S]

(P i
vs + F i

vs

s
)yi

vs ≤
∑

v∈Vi

∑

s∈[S]

(P i
vs + F i

vs

s
)yi

vs

∗

≤
∑

v∈Vi

∑

s∈[S]

P i
vsy

i
vs

∗
+

∑

v1∈Vi

∑

s1∈[S]

(F i
v1,s1

∗
+ εVi)yi

v1,s1

∗

= Λ∗ + εVi(
∑

v∈Vi

∑

s∈[S]

yi
vs

∗
) = Λ∗ + εV 2

i .

Because 0 ≤ P i
v1,v2,s1,s2

≤ 1, we can obtain∑
v2∈Vi

∑
s2∈[S] P

i
v1,v2,s1,s2

yi
v2,s2

′ ≤ F i
vs

s + Vi. As a result,

Λ(yi
vs

′), the objective value of IQP (4) achieved by yi
vs

′
, is at

most
∑

v∈Vi

∑
s∈[S](P

i
vs + F i

vs
s)yi

vs
′ + V 2

i .
Among different rounded integral solutions, the output yi

is

minimizes the objective value of IQP (4), thus,

Λ(yi
vs) ≤ Λ(yi

vs

′
) ≤

∑

v∈Vi

∑

s∈[S]

(P i
vs + F i

vs

s
)yi

vs

′
+ V 2

i

≤ Λ∗ + εV 2
i + V 2

i = Λ∗ + (1 + ε)V 2
i .

Theorem 3: The approximation ratio of Asub1 is α, where
α = 1 + (1 + ε)cVi and c = maxv1,v2,s1,s2

{
P i

v1,s1
/P i

v2,s2

}
.

Proof: The optimal objective value of IQP (4) is Λ∗ ≥∑
v∈Vi

∑
s∈[S] P

i
vsy

i
vs

∗ ≥ Vi

c since P i
vs ≥ 1

c , ∀v, s. Accord-
ing to Lemma 3, we have

Λ(yi
vs)

Λ∗ ≤ 1 +
(1 + ε)V 2

i

Λ∗ ≤ 1 + (1 + ε)cVi.

C. A Heuristic Algorithm

We next introduce a heuristic algorithm that starts with
an empty solution, and iteratively selects a container for
greedy assignment to an available zone. At the v-th iteration,
we simply choose the v-th container from set Vi. Let Δ(yi

vs)
denote the increment of the objective value of IQP (4) due to
the assignment of yi

vs = 1. To select a zone for container v,
we first compute a candidate set S that includes all available
zones. If the amount of allocated type-k resource in zone s has
exceeded the bound Bks, s is removed from S. We continue
to compute the value of Δ(yi

vs), for s ∈ S, and choose s∗

so that Δ(yi
vs∗) = mins∈Set Δ(yi

vs). We assign container v to
zone s∗. The time complexity of this algorithm is O(V S) since
we execute Vi iterations and evaluate S zones during each
iteration. We summarize this algorithm in Asub2. While we do
not prove a performance guarantee, trace-driven simulations in
Sec. VI show that Asub2 can produce a 2-approximate solution
in all cases tested.

V. ONLINE ALGORITHM DESIGN

Leveraging the cost minimization algorithms from Sec. IV
as a building block, we next present our online algorithm
in Sec. V-A. Upon the arrival of each request, the algorithm
determines immediately whether to accept it, and if so, how
to place its CC. Theoretical analysis is conducted in Sec. V-B.
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Algorithm 3 A Greedy Algorithm Asub2

Input: Input: Φi, {P i
vs}, {P i

v1,v2,s1,s2
}, {ai

vk}
1: for all v ∈ Vi do
2: S = [S];
3: for all s ∈ [S] do
4: if zi

ks + ai
vk > Bks, ∀k ∈ [K] then

5: S = S\s;
6: end if
7: end for
8: for all s ∈ S do
9: Compute the increase Δ(yi

vs) of the objective func-
tion value of IQP (4a) due the assignment of yi

vs = 1;
10: end for
11: s∗ = arg mins∈S{Δ(yi

vs)};
12: yi

vs∗ = 1; zks∗ = zi
ks∗ + ai

vk, ∀k ∈ [K];
13: end for
14: costi =

∑
v∈Vi

∑
s∈[S] P

i
vsy

i
vs +

∑
v1,v2∈Vi

∑
(s1,s2)∈E

P i
v1,v2,s1,s2

yi
v1,s1

yi
v2,s2

; Save {yi
vs} to l∗;

15: Return costi, l
∗.

A. Online Algorithm Framework

Our main idea for the online algorithm design is as follows.
We resort to the help of the classic primal-dual technique,
and apply it to the compact-exponential ILP (2) and its
dual (3). If request i’s placement scheme l is accepted, then
let xil = 1, and update the corresponding variables xi and
yi

vs in IP (1) according to l. Upon arrival of a request i,
a set of primal variables xil, ∀l ∈ ζi and the associated
dual constraints (bil −

∑
m∈M

∑
t∈[t−i ,t+i ] f

il
m,tpm,t, ∀l ∈ ζi)

appear. Complementary slackness requires that xil remains
zero unless constraint (3a) is tight for scheme l. Next, let’s
examine the right hand side (RHS) of constraint (3a). If we
interpret dual variable pm,t as the price per unit of type-m
resource at time t, then

∑
m∈M

∑
t∈[t−i ,t+i ] f

il
m,tpm,t is the

placement cost of request i’s CC according to scheme l. The
RHS of (3a) can be viewed as request i’s utility with scheme l.
If we interpret dual variable ui as request i’s utility, ui can be
assigned to the maximum of 0 and the RHS of (3a), i.e.,

ui = max
{
0, max

l∈ζi

{bil −
∑

m∈M

∑

t∈[t−i ,t+i ]

f il
m,tpm,t}

}
. (7)

Accordingly, if ui > 0, we accept request i; otherwise,
we reject request i. The challenge lies in finding scheme l that
maximizes the RHS of (3a), which is equivalent to finding
the scheme that minimizes the placement cost of request
i’s CC. Given pm,t, it is easy to compute the computation
cost P i

vs and communication cost P i
v1,v2,s1,s2

. Then the
problem becomes the one-shot CC placement problem we
studied in Sec. IV, and can be formulated into an IQP (4).
Assume that Asub is an α-approximation algorithm for IQP
(4). It returns a scheme l∗ with cost costi. Then, we have
costi

α ≤ ∑
m∈M

∑
t∈[t−i ,t+i ] f

il
m,tpm,t, ∀l ∈ ζi. Let ui =

max
{
0, bi − costi

α

}
, satisfying constraints (3a) for any l ∈ ζi.

If ui > 0, request i is accepted and its CC is placed according
to scheme l∗; if ui ≤ 0, request i is rejected.

Algorithm 4 A Primal-Dual Online Framework Aonline

Input: {Φi}, {Cm}, {ai
vk}, U, α

1: Initialize λ = 2(αU + 1);
2: Upon the arrival of the ith CC request
3: Compute {P i

vs} and {P i
v1,v2,s1,s2

} based on {pm,t};
4:

(
costi, l

∗) = Asub

(
Φi, {P i

vs}, {P i
v1,v2,s1,s2

}, {ai
vk}

)
;

5: if bi − costi

α > 0 then
6: ui = bi − costi

α ; xi = 1; xil∗ = 1;
7: Update yi

vs and f il∗
m,t according to option l∗.

8: Accept request i and allocate its CC according to yi
vs;

9: for t ∈ [t−i , t+i ] do
10: zm,t = zm,t + f il∗

m,t, ∀m ∈ M;
11: pm,t = λ

zm,t
Cm − 1, ∀m ∈ M;

12: end for
13: else
14: Reject request i.
15: end if

We next discuss the update of dual variable pm,t. Recall
that pm,t represents the unit price of type-m resource at t.
We define a new variable zm,t as the amount of type-m
resource consumed at t, and let pm,t be a function of zm,t,
as follows:

pm,t(zm,t) = λ
zm,t
Cm − 1, ∀m ∈ M, ∀t ∈ [T ], (8)

where λ = 2(αU + 1). pm,t starts at zero and increases
exponentially with the increase of resource consumption. pm,t

is close to zero when resources are abundant, allowing CCs
to consume resources freely. It grows quickly to a carefully
designed large value λ when zm,t is close to the capacity Cm,
so that the service provider will barely allocate any type-m
resource to a CC, unless its valuation is sufficiently high.

Aonline in Algorithm 4 is our online algorithm, which calls
Asub for each CC request to determine its placement scheme.
Note that Aonline can call either of the algorithms designed
in the previous section (Asub1 and Asub2), or any alternative
that solves IQP (4), as its sub-routine. By default, all variables
are set to zero. Line 1 initializes the value of λ, to prepare
for the update of the dual variable pm,t. Upon the arrival of
a request i, we first compute the computation and communi-
cation costs when assigning containers to different zones in
line 3. Asub is executed for each request to compute a place-
ment scheme l∗ and the corresponding cost costi. If request
i can obtain a positive utility in some scheme, it is accepted,
and the corresponding primal and dual variables are updated
(lines 6–8). We then increase the usage of resources and raise
resource prices accordingly (lines 9–12).

B. Theoretical Analysis

Next we analyze properties of Aonline, based on the
assumption that Asub can compute an α-approximate solution
to IQP (4) in polynomial time.

1) Feasibility and Running Time:
Lemma 4: Aonline computes a feasible solution to IP (2)

and one for ILP (2a), respectively.
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Proof: We first examine ILP (2). Constraint (2b) is satisfied
because line 6 in Aonline guarantees that only one option can
be accepted. Next, we prove that the capacity constraint (2a)
is never violated. Otherwise, let request i be the first accepted
request that violates the capacity constraint of type-m resource
at time t with option l∗. The amount of allocated type-m
resource before request i arrives is: zm,t > Cm − f il∗

m,t. Under

the assumption that
fil∗

m,t

Cm
≤ 1

log λ , the price of type-m resource
at t for request i is:

pm,t ≥ λ1− fil∗
m,t
Cm − 1 ≥ λ1− 1

log λ − 1 ≥ λ

2
− 1 = αU.

Thus, by U ≥ bi

fil∗
m (t)

, we can obtain

costi ≥ pm,tf
il∗
m,t ≥ αUf il∗

m ≥ αbi.

We further have bi − costi

α ≤ 0, which contradicts the
assumption that request i is accepted with bi − costi

α > 0.
Thus, constraint (2a) holds.

We next investigate IP (1). Constraints (1c), (1d) and (1f) are
satisfied by algorithm Asub. In addition, the correspondance
relation between IP (1) and ILP (2) guarantees constraints (1a),
(1b), and (1e) hold.

Lemma 5: Aonline outputs a feasible solution to LP (3).
Proof: Let OPTi be the optimal objective value

of the subproblem in (4) for request i. OPTi equals
minl∈ζi{

∑
m∈M

∑
t∈[t−i ,t+i ] f

il
m,tpm,t}. Because Asub is an

α-approximation algorithm that generates an objective value
costi, we have costi

α ≤ OPTi. If bi − costi

α > 0, Aonline

updates dual variable ui in line 6, we obtain

ui =bi − costi
α

≥ bi − OPTi ≥ bi−
∑

m∈M

∑

t∈[t−i ,t+i ]

f il
m,tpm,t,

∀l ∈ ζi.

Otherwise, ui = 0 ≥ bi − OPTi. Therefore, constraint (3a)
holds for each request i and the lemma follows.

Theorem 4: Aonline generates feasible solutions for IP (1),
ILP (2) and LP (3) in polynomial time.

Proof: Line 1 takes one step to compute the value of λ.
Upon the arrival of request i, line 3 takes O((SVi)2) steps to
initialize the cost vector. Asub in line 4 runs in polynomial
time to compute placement cost. Within the body of the if
statement, lines 6–8 update primal variables in O(ViS+(t+i −
t−i + 1)|M|) steps. The complexity of the for loop in lines
9–12 is O((t+i − t−i + 1)|M|). Therefore, the running time of
Aonline is polynomial. Combining Lemma 4 and Lemma 5,
we finish the proof.

2) Competitive Ratio: We next analyze the competitive ratio
of Aonline. The competitive ratio is the upper-bound ratio of
optimal objective of IP (1) to the objective value achieved by
Aonline. We first prove the primal-dual analysis framework in
Lemma 6, which guides the analysis of the competitive ratio.
We next define the Resource-Price Relationship for Aonline

and the differential version of it, respectively. We prove that if
the Resource-Price Relationship holds for a given β, Aonline

satisfies the inequality in Lemma 6. We then present the value
of β in Lemma 8 and prove that Aonline is αβ-competitive in
Theorem 5.

Let OPT1 and OPT2 be the optimal objective values of IP
(1) and ILP (2), respectively. We have OPT1 = OPT2. Let Pi

and Di denote the objective value of primal ILP (2) and that
of dual LP (3) returned by Aonline after processing request i.
Let P0 and D0 be the initial values. Aonline guarantees P0 =
D0 = 0. Let PI and DI be the final primal and dual objective
values achieved by Aonline.

Lemma 6: If there exist two constants α ≥ 1 and β ≥ 1
such that Pi − Pi−1 ≥ 1

αβ (Di − Di−1), ∀i ∈ [I], then the
competitive ratio of Aonline is αβ.

Proof: Summing up the inequalities for each request i,
we have

PI =
∑

i

(Pi − Pi−1) ≥ 1
αβ

∑

i

(Di − Di−1) =
1

αβ
DI .

According to weak duality [36], DI ≥ OPT2, hence, PI ≥
1

αβ OPT2 = 1
αβ OPT1. The competitive ratio of Aonline

is αβ.
We next define a Resource-Price Relationship and prove that

if it holds for a given β, then the primal and dual objective
values achieved by Aonline satisfy the inequality in Lemma 6.
Let pi

m,t denote the price of type-m resource at time t after
handling request i. zi

m,t represents the amount of consumed
type-m resource at time t after processing request i.

Definition 1: The Resource-Price Relationship for Aonline

with β ≥ 1 is: pi−1
m,t(z

i
m,t − zi−1

m,t ) ≥ 1
β Cm(pi

m,t − pi−1
m,t),

∀i ∈ [I], ∀m ∈ M, ∀t ∈ [t−i , t+i ].
Lemma 7: If the Resource-Price Relationship holds for a

given β ≥ 1, then Aonline guarantees that Pi − Pi−1 ≥
1

αβ (Di − Di−1), ∀i ∈ [I].
Proof: If request i is rejected, then Pi − Pi−1 = Di −

Di−1 = 0. Otherwise, we assume that request i is accepted
and placed according to option l. The increment of the primal
objective value is: Pi − Pi−1 = bi. Note that Aonline assigns
ui to bi− 1

α

∑
m∈M

∑
t∈[t−i ,t+i ] f

il
m,tpm,t when request i with

option l is accepted. Therefore,

bi = ui +
1
α

∑

m∈M

∑

t∈[t−i ,t+i ]

pi−1
m,t(z

i
m,t − zi−1

m,t ).

The increase of the dual objective value is:

Di − Di−1 = ui +
∑

m∈M

∑

t∈[t−i ,t+i ]

Cm(pi
m,t − pi−1

m,t).

By summing up the Resource-Price Relationship over all m ∈
M and t ∈ [t−i , t+i ], we can obtain:

Pi − Pi−1 ≥ ui +
1

αβ
(Di − Di−1 − ui).

Since ui ≥ 0 and αβ ≥ 1, we have Pi − Pi−1 ≥ 1
αβ (Di −

Di−1).
In order to compute the value of β, we make the following

mild assumption and define the differential version of the
Resource-Price Relationship based on it.

Assumption 1: The job demand is much smaller than the
resource’s capacity, i.e., f il

m,t � Cm.
In the real world, a job’s demand is usually smaller than a

type of resource’s capacity in a large data center. We make this
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assumption mainly to facilitate our theoretical analysis, such
that techniques from calculus (differentiation) can be used.
We don’t consider extreme cases which are rare in practice.
For example, if a high-valued bid demanding almost all the
resource is rejected, because a small fraction of the resource
is used by other users, then the worst-case competitive ratio
can be infinitely large. It is also worth noting that, similar
assumptions are made in relevant literature of online resource
allocation [43]–[45]. We also relax this assumption completely
in our simulation studies.

Under Assumption 1, zi
m,t−zi−1

m,t can be expressed as dzm,t.
The derivative of the Resource-Price Relationship under the
above assumption is:

Definition 2: The Differential Resource-Price Relationship
for Aonline with β ≥ 1 is: pm,tdzm,t ≥ Cm

β dpm,t, ∀m ∈
M, ∀t ∈ [t−i , t+i ].

Lemma 8: β = ln λ and the price function defined in (8)
satisfy the Differential Resource-Price Relationship.

Proof: The derivative of the price function is: dpm,t =
λ

zm,t
Cm

lnλ
Cm

dzm,t. The Differential Resource-Price Relationship
is:

(λ
zm,t
Cm − 1)dzm,t ≥ Cm

β
λ

zm,t
Cm

1
Cm

ln λdzm,t

⇒ β ≥ ln λ
λ

zm,t
Cm

λ
zm,t
Cm − 1

≥ ln λ.

Therefore this lemma holds for β = ln λ. �
Theorem 5: The online auction Aonline in Alg. 4 is αβ-

competitive, where β = ln λ and α is the approximate ratio
of Asub.

Proof: Under Assumption 1, dzm,t = zi
m,t − zi−1

m,t is
much smaller than the capacity of type-m resource (Cm),
we have dpm,t = p′mdzm,t = pi

m,t − pi−1
m,t . As a result,

we can conclude that the Resource-Price Relationship holds
for β = ln λ. Then, combining Lemma 6 and Lemma 7,
we finish the proof.

VI. PERFORMANCE EVALUATION

We evaluate the performance of our one-shot algorithms
Asub1, Asub2 and online algorithm Aonline through trace-
driven simulation studies. We first introduce the simulation
setup for evaluation of the two one-shot algorithms. The
default number of zones is set to 9 according to the number
of Google data centers in the United States [41]. We exploit
Google Cluster Data version 1 [42], and configure each CC
according to each job’s information in the trace. We assume
that each CC contains 2–8 containers and consumes two
types of computational resource, since the trace data only
includes resource demands for CPU and RAM. The resource
consumption ai

vk is set according to the resource demand of
each subtask in the trace [42]. The traffic volume between
containers Δi

v1,v2
is randomly generated within a range of

[0, 10]. The cost P i
vs and P i

v1,v2,s1,s2
are randomly drawn from

[0, 1]. The default value of Bks is 10. For the online setup,
we assume each time slot is 5 minutes and the system spans
100 slots by default. Each request’s start and end times are
set based on each job’s timestamp in the trace. The resource

Fig. 2. Cost of Asub1, Asub2 and NSCD [23] under different values of Vi.

Fig. 3. Performance ratio of Asub1, Asub2 and NSCD [23] under different
values of S.

Fig. 4. Performance ratio of Asub1, Asub2 and NSCD [23] under different
values of Vi and K .

capacities, Cks and Ds1,s2 are randomly generated within
[50, 100]. The request value bi is randomly chosen from an
interval determined by U , whose default value is 50. We repeat
each set of simulations 20 times, and use the average result to
plot the corresponding figure.

A. Performance of Asub1 and Asub2

1) Cost and Performance Ratio: Fig. 2 compares the total
cost produced by Asub1 and Asub2 with the optimal cost under
different numbers of containers. We can observe that the gap
between the cost of Asub1 and the optimal cost becomes larger
when the number of containers increases, and gets smaller
when the value of ε decreases, which is in line with the
analysis in Lemma 3. In addition, Asub1 achieves a lower cost
than Asub2 when we input a smaller ε.
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Fig. 5. The average running time of Asub1 and Asub2 with different Vi.

We next examine the performance ratio, measured by the
ratio of the objective value of IQP (4) generated by our
algorithms to the optimal objective value of IQP (4). We fix the
number of containers to 5, and plot the performance ratios of
Asub1 and Asub2 in Fig. 3. It can be observed that both Asub1

and Asub2 perform well with a low performance ratio (< 2).
The value of S has little impact on the performance of Asub1

while the value of ε is related to the ratio, echoing Theorem 3.
Asub1 outperforms Asub2 when ε is relatively small (0.6).
We further modify the number of containers and plot the ratios
in Fig. 4. The ratio increases with the growth of the number
of containers, validating the analysis in Theorem 3 that the
value of Vi determines the approximate ratio. Moreover, when
there is more than one type of computational resource, Asub2

also works well and the ratio is smaller than 2. We implement
Tao et al.’s one-time algorithm, NSCD [23], which deploys
the container cluster to the cheapest zone, for comparison with
our one-shot Algorithms Asub1 and Asub2. In Fig. 2, Fig. 3
and Fig. 4, we can observe that our one-shot algorithms have
a better performance than NSCD.

2) Time Complexity: We apply the tic and toc functions
in MATLAB to measure the execution time of the main
program of Asub1 and Asub2 without counting the initialization
stage. We run 20 tests on a laptop computer (Intel Core i7-
6700HQ/16GB RAM) and present the average result in Fig. 5.
We implement the optimal one-shot algorithm by listing all
possible placement schemes. We can observe that both Asub1

and Asub2 run much faster than the optimal algorithm. The
running time grows with an increasing Vi, and the observed
values are below 0.5 seconds.

B. Performance of Aonline

1) Performance Ratio and Objective Value: We first exam-
ine the performance ratio of Aonline, when we call the sub-
algorithm that exactly solves IQP (4) (labeled by Aonline),
Asub1 (labeled by Aonline + Asub1) and Asub2 (labeled by
Aonline+Asub2), in Aonline. The performance ratio of Aonline

is the ratio of the optimal objective value of IP (1) to the
objective value of IP (1) generated by Aonline. Based on the
observation from the above subsection, we set α = 2 for both
Asub1 and Asub2. We fix the number of containers in each
CC to 3 and the number of CC requests to 100, but vary the
number of zones. The results are plotted in the right of Fig. 6.
We observe that the ratio drops sharply with the increase
of S, but remains steady when S ≥ 5. This is because more

Fig. 6. Performance ratio of Aonline, Ar and SWMOA in [34] under
different V and S.

Fig. 7. Performance ratio of Aonline, Ar and SWMOA in [34] with
different U .

zones bring more placement options. As a result, each CC
request has a high probability of being accepted by Aonline,
leading to a better performance. When S is large enough,
the ratio is dominated by other parameters, e.g., Vi and U .
The left of Fig. 6 illustrates that a lower ratio comes with a
smaller number of CCs. Comparing Fig. 3 and Fig. 4 with
Fig. 6, we can conclude that our online algorithm framework
incurs only a small loss in performance ratio. In Fig. 7 and
Fig. 8, we examine the impact of two parameters: U and I .
Again, Aonline with the optimal sub-algorithm has the best
performance. The observed ratios are better than the theoretical
worst-case bound and remain at a low level. Fig. 7 shows
that the performance ratio is larger for a larger value of U .
The theoretical competitive ratio proven in Theorem 5 implies
this result. The ratio fluctuates with the number of requests
in Fig. 8, which indicates that the value of I does not have a
major influence on the ratio.

We further compare our online algorithm with two related
algorithms: i) Shi et al.’s online algorithm [34], SWMOA,
which also makes decisions based on the current resource
prices. Their price function depends on the number of
resources and the number of time slots; ii) an online algorithm,
Ar, which only considers current available resources, i.e.,
accepts the CC request if there exists one possible placement
option (under capacity limit). We have implemented their
algorithms and evaluated them using the same trace data.
In Fig. 6, we can observe that our online algorithm can
achieves a much lower performance ratio than SWMO and
Ar, under different values of Vi and S. In Fig. 7 and Fig. 8,
we vary the value of another two parameters, U and I , and still
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Fig. 8. Performance ratio of Aonline, Ar and SWMOA in [34] with
different I .

Fig. 9. Objective Value achieved by Aonline.

Fig. 10. Percentage of winners under different I .

obtain the same observation that our online algorithm always
outperforms SWMOA and Ar.

We next investigate the objective value of ILP (2a) achieved
by Aonline. Fig. 9 reflects that there is an upward trend with
a larger number of requests. The underlying reason is that
Aonline can select more high-value requests from a large set of
participants. Similar to the observation in Fig. 7, the objective
value achieved by Aonline + Asub1 with a small ε is higher
than that of Aonline + Asub2.

2) Winner Satisfaction and Time Complexity: User satisfac-
tion, which is measured by the percentage of winners, is shown
in Fig. 10. The three solid lines represent the percentages of
winners when Cks = 100, and the three dot lines are for the
case of Cks = 50. We can see that the percentage of winners
drops when a high number of CCs wait for deployment. The
reason can be explained as follows: The number of winners
remains relatively steady when the resource capacity is fixed.

Fig. 11. The average running time of Aonline.

Therefore, only a small percentage of CC requests can be
selected from a large set. The resource capacity influences
the number of winners. Thus, a higher percentage of winners
comes with a large capacity. We next fix the number of
containers in each CC to 5. Fig. 11 shows the average running
time of our online algorithms with varying number of requests.
Again, the shortest running time is observed when we call
Asub2 in our online algorithm. Aonline with Asub1 has a
slightly longer running time, followed by Aonline with the
optimal one-shot algorithm.

VII. CONCLUSION

This work presented an efficient online algorithm for placing
container clusters in cloud zones, taking container deployment
and the demand of inter-container traffic into consideration.
Our online placement scheme consists of a one-shot algorithm
that determines the placement scheme for the current CC and
an online algorithm framework that decomposes the online
decision making into on-spot decisions based on resource
prices. We leverage exhaustive sampling and ST rounding
techniques to compute quality solutions to the one-shot prob-
lem, and further exploit compact-exponential and the online
primal-dual techniques for guaranteeing a good competitive
ratio. Our online algorithm achieves computational and eco-
nomical efficiencies.
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