
Online Scheduling Algorithm for Heterogeneous
Distributed Machine Learning Jobs

Ruiting Zhou ,Member, IEEE, Jinlong Pang , Qin Zhang, Chuan Wu , Senior Member, IEEE,

Lei Jiao ,Member, IEEE, Yi Zhong , and Zongpeng Li, Senior Member, IEEE

Abstract—Distributed machine learning (ML) has played a key role in today’s proliferation of AI services. A typical model of distributed

ML is to partition training datasets over multiple worker nodes to update model parameters in parallel, adopting a parameter server or

AllReduce architecture. ML training jobs are typically resource elastic, completed using various time lengths with different resource

configurations. A fundamental problem in a distributed ML cluster is how to explore the demand elasticity of ML jobs and schedule them

with different resource configurations, such that the utilization of resources is maximized and average job completion time is minimized.

To address it, we propose an online scheduling algorithm to decide the execution time window, the number and the type of concurrent

workers and parameter servers for each job upon its arrival, with a goal of minimizing the weighted average completion time. Our online

algorithm consists of (i) an online scheduling framework that groups unprocessed ML training jobs into a batch iteratively, and (ii) a

batch scheduling algorithm that configures each ML job to maximize the total weight of scheduled jobs in the current iteration. Our

online algorithm guarantees a good parameterized competitive ratio with polynomial time complexity. Extensive evaluations using real-

world data demonstrate that it outperforms state-of-the-art schedulers in today’s AI cloud systems.

Index Terms—Distributed machine learning, online scheduling

Ç

1 INTRODUCTION

NOWADAYS, most leading IT companies operate distributed
machine learning (ML) clusters of GPU servers, to run

ML jobs that train models over large datasets for providing
AI-driven services. To train a large model, hundreds of con-
current workers (typically implemented on virtual machines
or containers) are deployed in parallel. Either the training
dataset or the ML model is partitioned among workers,

realizing data parallelism or model parallelism [1], [2], [3]. In
model parallelism, each worker updates part of the parame-
ters using the entire input dataset [4]. In data parallelism, each
worker has an entire copy of the ML model and computes
parameter update (gradients) using a portion of input data; in
each training iteration, workers exchange locally-computed
gradients to obtain the global ML model update. As training
data is usually enormous, data parallelism is the dominant
form of parallel training in practice [1], [3].

There are two typical approaches for exchanging parameter
updates among workers: parameter server (PS) framework

and AllReduce framework [3], [5]. In the PS framework, PSs

maintain model parameters as a global key-value store, and

each worker uploads computed gradients to the PSs. The PSs

update the corresponding parameters based on received gra-

dients and then send updated parameters to the workers. In

the AllReduce framework, all nodes act as PS andworker con-

currently and first exchange gradients with others to obtain

the mean of the gradients. Then each node uses the resulting

gradient to update the model parameters. The workers and

PSs may be placed on different physical servers, when they

cannot be completely accommodated on the same server, or to

fully utilize expensive and fragment resources on servers [4].
ML training jobs are resource-intensive and time-consum-

ing. Existing distributed ML systems [6], [7], [8] require job
owners to estimate the amount of resources, including the num-
ber of workers and the resource configuration of each worker,
as well as the time needed, to train the MLmodel using a large
dataset. For example, Google uses Borg [9], andMicrosoft, Ten-
cent, and Baidu both use customized versions of YARN sched-
ulers [8] to aggressively provision each job asmuch resource as
possible according to user demand and job priority, using strat-
egies such as FIFO andmax-min fair allocations.

� Ruiting Zhou is with the Key Laboratory of Aerospace Information Secu-
rity and Trusted Computing, Ministry of Education, School of Cyber Sci-
ence and Engineering, Wuhan University, Wuhan, Hubei 430072, China,
and also with Department of Computer Science and Engineering, The Chi-
nese University of Hong Kong, Hong Kong. E-mail: ruitingzhou@whu.
edu.cn.

� Jinlong Pang and Yi Zhong are with the Key Laboratory of Aerospace
Information Security and Trusted Computing, Ministry of Education,
School of Cyber Science and Engineering, Wuhan University, Wuhan,
Hubei 430072, China. E-mail: {jinlongpang, yizhong}@whu.edu.cn.

� Qin Zhang and Zongpeng Li are with the School of Computer Science,
Wuhan University, Hubei, Wuhan 430072, China. E-mail: {qinzhangcs,
zongpeng}@whu.edu.cn.

� Chuan Wu is with the University of Hong Kong, Kowloon, Hong Kong.
E-mail: cwu@cs.hku.hk.

� Lei Jiao is with the University of Oregon, Eugene, OR 97403 USA.
E-mail: jiao@cs.uoregon.edu.

Manuscript received 2 February 2021; revised 18 November 2021; accepted 4
January 2022. Date of publication 14 January 2022; date of current version 7
June 2023.
This work was supported in part by the NSFC under Grants 62072344 and
U20A20177, in part by Hubei Science Foundation under Grant 2020CFB195, in
part by Compact Exponential Algorithm Project of Huawei YBN2020035131, in
part by the U.S. National Science Foundation under Grant CNS-2047719, and
in part by Hong Kong RGC under the contracts HKU under Grants 17204619,
17208920, and 17207621.
(Corresponding author: Jinlong Pang.)
Recommended for acceptance by Y. Yang.
Digital Object Identifier no. 10.1109/TCC.2022.3143153

1514 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

2168-7161 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on September 02,2023 at 08:24:13 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9681-6482
https://orcid.org/0000-0001-9681-6482
https://orcid.org/0000-0001-9681-6482
https://orcid.org/0000-0001-9681-6482
https://orcid.org/0000-0001-9681-6482
https://orcid.org/0000-0001-6425-9669
https://orcid.org/0000-0001-6425-9669
https://orcid.org/0000-0001-6425-9669
https://orcid.org/0000-0001-6425-9669
https://orcid.org/0000-0001-6425-9669
https://orcid.org/0000-0002-3144-4398
https://orcid.org/0000-0002-3144-4398
https://orcid.org/0000-0002-3144-4398
https://orcid.org/0000-0002-3144-4398
https://orcid.org/0000-0002-3144-4398
https://orcid.org/0000-0002-3964-3172
https://orcid.org/0000-0002-3964-3172
https://orcid.org/0000-0002-3964-3172
https://orcid.org/0000-0002-3964-3172
https://orcid.org/0000-0002-3964-3172
https://orcid.org/0000-0002-0626-7510
https://orcid.org/0000-0002-0626-7510
https://orcid.org/0000-0002-0626-7510
https://orcid.org/0000-0002-0626-7510
https://orcid.org/0000-0002-0626-7510
mailto:ruitingzhou@whu.edu.cn
mailto:ruitingzhou@whu.edu.cn
mailto:jinlongpang@whu.edu.cn
mailto:yizhong@whu.edu.cn
mailto:qinzhangcs@whu.edu.cn
mailto:zongpeng@whu.edu.cn
mailto:cwu@cs.hku.hk
mailto:jiao@cs.uoregon.edu

However, the job owner is often uncertain of the amount of
resources and time itmay take to complete a job. There is elastic-
ity in ML jobs’ resource demand: It takes different amounts of
time to train a certainmodel withworkers of different resource
configurations, especially of different numbers of GPUs. Fur-
ther, the processing time of a mini-batch is typically not
inversely proportional to the amount of resource allocated to
the worker, which is mainly due to overhead in parallel train-
ing [10]. Next, assigning training jobs less resources than what
they require in the ideal case (i.e., that leads to most expedited
single-job training [10], [11], [12]) may reduce average training
completion time in the entire system. For example, when train-
ing CIFAR-10 CNN for 100K steps until the model achieves
87% accuracy, the single-step training time (time to train a
mini-batch) can be 15 milliseconds with a single GPU and 10
milliseconds with two GPUs (suppose it is the ideal case) [10].
Thus, if there are two training jobs of this type submitted at the
same time and only three GPUs are available, with adequate
other resources, allocating one GPU to one job and two GPUs
for the other is the best strategy for minimizing the average job
completion time, which results in ð10þ 15Þ=2 ¼ 12:5 millisec-
onds, in contrast to allocating two GPUs to each job sequen-
tially,which results in ð10þ 20Þ=2 ¼ 15milliseconds.

Considering demand elasticity, a fundamental problem
for a ML cluster operator is: Given limited resources, how to
decide the number/type of workers (and PSs) and running time of
each job, such that resources are maximally utilized and average
weighted completion time is minimized? Here, the weight of
each job may characterize its processing priority.

To address the above problem, we first formulate the aver-
age weighted completion time minimization problem into a
time-indexed mathematical program. The program formu-
lates features ofML jobs (demand for large-volume data anal-
ysis capacity and high inter-node connection bandwidth).
Different from traditional makespan minimization problems,
it contains both conventional (packing-type) constraints and
non-conventional (set-type and natural language described)
constraints, which cannot be handled by existing approaches
[13], [14]. Decision variables include the number/type of
workers (and PSs), and the execution window of each job. To
compute schedules on the go with the shortest completion
time, we divide our design into two steps:

First,wepropose an online framework to convert the online
optimization problem into a series of batch scheduling prob-
lems by partitioning the overall timespan into intervals with
geometrically increasing length. Our online scheduling frame-
work employs a dual approximation algorithm as a subroutine
for performance guarantee. The dual approximation algo-
rithm finds an infeasible solution that is super-optimal, where
the performance of the algorithm ismeasured by the degree of
infeasibility allowed. The infeasible solution will finally
become feasible as job execution can span multiple intervals.
The super-optimal objective value contributes to bound the
average weighted completion time. This dual algorithm is
realized through a batch scheduling algorithm that solves the
maximum weighted schedule problem to schedule as many
unscheduled jobs as possible before a certain time point.

Second,we observe that the maximum weighted schedule
problem includes several non-conventional constraints for
characterizing the configuration/placement of workers and
PSs. To handle these set-type and natural language described

constraints, we encode each valid schedule in a variable and
reformulate the original program into an integer linear pro-
gram (ILP), where only conventional packing constraints are
included, at the price of introducing an exponential number
of variables. Instead of solving the ILP directly, which is
infeasible in practice due to time complexity, we design an
approximation algorithm by applying a tailored primal-dual
framework to the ILP’s LP relaxation and its dual LP. We
interpret dual variables as unit resource prices, and compute
the best schedule for each job based on resource consump-
tion cost and its ML framework. The algorithm schedules a
job if its weight is higher than its estimated serving cost.

We carry out rigorous theoretical analysis to prove that our
online algorithm runs in polynomial time, and achieves a
bounded competitive ratio. We evaluate practical effectiveness
of our online algorithm through trace-driven simulation stud-
ies.We implement four representative job scheduling strategies
used in existing cloud platforms, and compare them with our
algorithm. Simulation results confirm that our algorithm out-
performs existingmethods by at least 30% in averageweighted
completion time, especially in systemswith resource shortage.

In the following sections, we review related work litera-
ture in Section 2 and model the distributed ML system
working with PS framework in Section 3. Section 4 present
the online scheduling framework. Section 5 propose
approximation algorithms for scheduling batch jobs. And
Section 6 show that our online scheduling framework is
also applicable to the distributed ML clusters working with
Ring-AllReduce architecture. Simulation studies are pre-
sented in Section 7. Section 8 concludes the paper.

2 RELATED WORK

Job Scheduling and Resource Allocation in Distributed ML Sys-
tems.Ghodsi et al. [6] propose a fair allocation policy of multi-
ple resource types, similar to Mesos [7] and YARN [8]. In
these systems, job owner prescribes the number and resource
configuration of workers. In comparison, we design an online
algorithm to guide worker deployment and resource alloca-
tion, exploiting the demand elasticity of ML jobs. Bao et al.
[15] propose a deep learning-based job placement algorithm
tominimize interference among co-locatedML jobs. Resource
allocation among multiple jobs is not considered by these
work. Considering the heterogeneity of hardware accelerators
and workloads, Narayanan et al. [16] propose Gavel, which
expresses the existing scheduling policies as optimization
problems, and uses a round-based scheduling mechanism.
Xiao et al. [17] present AntMan, which co-designed cluster
scheduler and deep learning framework. AntMan introduces
dynamic scaling mechanisms for memory and computation
to share GPU resources. It allows GPUs to be utilized by over-
provision of opportunistic jobs at best-effort to minimize the
interference between jobs. Jeon et al. [18] analyze the trace of
deep learning jobs running on a multi-tenant GPU cluster in
Microsoft, and study three factors that affect cluster utiliza-
tion: job scheduling, locality on GPU utilization, and failures
during training. Focusing on the fairness of GPU allocation,
Mahajan et al. [19] design anML scheduling framework, The-
mis, to achieve long term finish-time fairness. Themis
presents a two-level scheduling architecture where ML apps
can bid on resources offered in an auction. Gu et al. [20]

ZHOU ETAL.: ONLINE SCHEDULING ALGORITHM FOR HETEROGENEOUS DISTRIBUTED MACHINE LEARNING JOBS 1515

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on September 02,2023 at 08:24:13 UTC from IEEE Xplore. Restrictions apply.

propose a preemptive scheduler, Tiresias, which aims tomini-
mize the average job completion time (i.e., time from job sub-
mission to job completion). Tiresias assigns jobs according to
the multiplication of a job’s remaining workload and the
number of resources, e.g., GPUs, RAM and CPUs. The above
schedulers study the scheduling problem ofML jobs, but they
pay more attention to analyzing different characteristics of
ML jobs, e.g., the fairness or the heterogeneity of hardware.
We explore the demand elasticity ofML jobs tomaximally uti-
lize resources, meanwhile minimize the average weighted job
completion time. Amiri et al. [21] propose a centralized sched-
uling strategy that assigns tasks to workers to minimize the
average completion time with the help of one master. Simi-
larly, Yan et al. [22] develop performancemodels that quantify
the impact of data partitioning and system provisioning on
system performance and scalability. Above papers don’t con-
sider online job scheduling and resource sharing problems.
Peng et al. [23] propose an online scheduler based on deep
reinforcement learning to minimize the average job comple-
tion time. They dynamically adjust the number of worker/PS,
but not the type. Bao et al. [4] design an online algorithm to
guide resource allocation over time in a distributed machine
learning system. Although we consider a similar problem,
this work is significantly different from [4]. First, our work is
the first that explores the demand elasticity. A job’s schedul-
ing and configuration are needed to be determined, while [4]
focuses on adjusting the number of customized workers in
each time slot, but does not address choices of different types
of workers/PSs for a job, nor colocation of workers and PSs
on the same physical server(s). Second, considering the
demand elasticity of ML jobs, the goal of our work is to mini-
mize the weighted completion time, while [4] aims to maxi-
mize the overall utility. Third, with the different optimization
objective, our algorithmic idea to solve the weighted comple-
tion time minimization problem is also different from [4], as
shown in Fig. 1.

Job Scheduling and Resource Allocation in Cloud Systems.Shi
et al. [24] propose the first online combinatorial auction for
cloud resource allocation and pricing. Zhang et al. [25] study
online resource allocation in a cloud computing platform
through posted-price mechanisms. Zhang et al. [26] design
mechanisms for online cloud resource bundling and provi-
sioning to maximize social welfare with server costs. Jiao
et al. [27], [28] devise online prediction-free and prediction-
aware algorithms to provision resources across clouds and
edges for serving dynamic demands. These studies satisfy
each job’s demand within a fixed window, and do not con-
sider the demand elasticity and scheduling dimensions in
the solution space.

For job scheduling, Azar et al. [29] study online cloud job
scheduling problems for deadline-sensitive jobs, assuming
that one server can only execute one job in each time slot.
Zhou et al. [30] design a mechanism for online cloud job
scheduling and resource allocation, where jobs have alterna-
tive deadlines corresponding to different job valuations.
Wang et al. [31] schedule jobs online via creating and run-
ning multiple replicas of each task in order to mitigate the
straggler issue. The resource demand of each job is specified
by the job owner in advance in the above literatures.

Resource Allocation in Other Systems.Sheikhalishahi et al.
[32] study an open shop scheduling problem, considering

the objective of human error, availability and make span.
They apply three meta-heuristic methods to find the pre-
ferred solution. Tian et al. [33] design a scheduling frame-
work to resolve co-flow scheduling of multi-stage jobs.
Wang et al. [34] develop a co-flow scheduling system which
focuses on minimizing the average weighted co-flow com-
pletion time. The scheduling problem studied in the above
work only focus on resource constrains, and don’t take the
characteristics of PS framework into consideration.

3 SYSTEM MODEL

3.1 System Overview

We consider a machine learning cluster where multiple ML
training jobs run using potentially different ML frameworks
(e.g., TensorFlow [35], MXNet [1], CNTK [36]).

Especially, a set of J training jobs arrive with large input
datasets during a large time span ½T � ¼ 1; 2; . . . ; T , to train
different ML models using synchronous training, i.e., syn-
chronous stochastic gradient descent (S-SGD) method. Syn-
chronous training can typically ensure model convergence
and achieve highermodel accuracy than asynchronous train-
ing [22], [37], and is hence widely adopted over the latter in
AI clouds of leading IT companies [38]. The large input data-
set of job j (j 2 ½J �) is divided into Dj equal-sized data
chunks. Each data chunk is divided into Kj equal-sized
mini-batches. We consider two distributed ML architectures
in this work:PS framework [3] and Ring-AllReduce architec-
ture [5], [39].

Let H denote the number of physical servers for the
deployment of workers and PSs. Each server h 2 ½H� offers
Cr

h units of type-r resource. R represents the number of
resource types, including GPU, CPU, memory and band-
width [40], [41]. Workers and PSs are implemented as vir-
tual machines (VMs) or containers in physical servers. We
refer to workers and PSs with different resource allocations
as different types. Let M and P denote the number of
worker and PS types, respectively. Each type-m (m 2 ½M�)
worker (type-p (p 2 ½P �) PS) consumes erm (zrp) units of type-r
(r 2 ½R�) resource. Let bm (Bp) be the bandwidth occupied
by each worker m (PS p), i.e., bm ¼ ebandwidthm (Bp ¼ zbandwidthp).

Upon the arrival of an ML job j at time aj, the following
decisions are made: (i) when to start the job, denoted by
binary variable xjt: xjt ¼ 1 if job j is executed with starting
time t; (ii) the number of allocated type-mworkers serving job
j deployed on physical server h at and after aj, indicated by
integer variable yjhm; (iii) the number of allocated type-p PSs
serving job j deployed on physical server h at and after aj,
indicated by integer variable sjhp; (iv) the amount of consecu-
tive time slots allocated to job j, which is related to the number
and processing capacity of workers serving job j, specified by
dj. We do not consider preemption in this work, because
when a job is suspended, the entire image of the job needs to
be stored temporarily, which increases the overhead. Table 1
summarizes important notations for easy reference.

3.2 Training Process With PS Framework

The set of global parameters of each ML job is partitioned
into several partitions, each maintained by one PS [3]. Each
worker of job j has a complete replica of the training model.
Each worker processes allocated mini-batches one by one,

1516 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on September 02,2023 at 08:24:13 UTC from IEEE Xplore. Restrictions apply.

sends computed gradients to and receives updated parame-
ters from all job j’s PSs after processing one mini-batch (one
iteration). The training process at all workers is synchro-
nized: in each iteration, each PS updates its parameters after
it has aggregated gradients from all workers, and then
sends updated parameters to all workers. When the entire
input dataset is trained for one round, an epoch is com-
pleted. For an ML job, the input dataset is trained for multi-
ple epochs. Let Ej be the required training epochs of job j.

Let vjm denote the time for a type-mworker to train a mini-
batch of job j. Assume the computation time at a type-p PS for
updating a partition of global parameters using gradients
from all workers in each iteration of job j is a constant, indi-
cated by Up

j . The time for a type-m worker of job j, deployed
on a server with no PS, to transfer gradients to all PSs in other
servers is

pj
bm

, and vice versa, assuming the upload and down-
load bandwidth are the same. When a worker is placed
together with some PS(s) in one server, exchanging parame-
ters/gradients with PS(s) in the same server needs no inter-
server bandwidth and takes less time. With synchronous
training, the time for exchanging gradients/parameters in one
iteration of a job depends on the worker that spends the lon-
gest time, which is bound by

pj
bm

, i.e., the time if any worker is
not co-locatedwith any PS.

We ignore fetching time of the input data as it can be
largely hidden behind training using pipelining. Let qj indi-
cate whether all workers and PSs of job j are deployed in
the same physical server (1) or not (0). Let rpjm denote the
processing capacity of each worker, i.e., the number of mini-
batches that can be trained by each worker in one time slot,
when job j employs type-m worker(s) and type-p PS(s).
Thus, we have

rpjm ¼ 1=ðvjm þ Up
j Þ; if qj ¼ 1

1=ðvjm þ Up
j þ 2pj

bm
Þ; if qj ¼ 0

(
(1)

Note that when not all workers and PSs of job j are on the
same server (qj ¼ 0), r

p
jm represents the upper-bound of

time for exchanging gradients/parameters in one training
iteration, for model simplification.

3.3 Problem Formulation

We exploit the demand elasticity of ML jobs to minimize
the sum of all jobs’ weighted completion times [13], that
is

P
j2J wjcj, where cj denotes the completion time of job

j and cj ¼
P

t2½T � xjtðtþ djÞ, and wj can be interpreted as
the priority of job j [9]. The objective is equivalent to
minimizing average weighted job completion time, given
the fixed total number of jobs, J . In practice, a cluster
manager can set job weights according to job arrival
times, deadlines and workloads. Jobs, which have larger
workload and smaller time interval between arrival time
and deadline, can be assigned larger weights. The larger
a job’s weight is, the sooner it is scheduled. If all weights
are the same, the system prefers to schedule small jobs
earlier, as the total completion time is shorter. This dis-
criminates large jobs. Assigning a larger weight to large
jobs can mitigate the problem.

The offline minimization problem can be formulated as
the following time-indexed program

minimize
X
j2½J �

wj

X
t2½T �

xjtðtþ djÞ (2)

subject to X
t2½T �

xjt ¼ 1; 8j; (2a)

jfm 2 ½M�j
X
h2½H�

yjhm > 0gj ¼ 1; 8j (2b)

jfp 2 ½P �j
X
h2½H�

sjhp > 0gj ¼ 1; 8j (2c)

qj ¼ 1 if and only if h ¼ h0;8h; h0 : yjhm > 0; sjh0p > 0;8j;
(2d)X

h2½H�

X
p2½P �

sjhp � 1; 8j; (2e)

dj
X
h2½H�

X
m2½M�

yjhmr
p
jm � EjDjKj;8j; 8p :

X
h2½H�

sjhp > 0 (2f)

X
h2½H�

X
m2½M�

yjhm � Dj; 8j; (2g)

X
j:t02ðt�dj;t�

xjt0 ð
X

m2½M�
ermyjhm þ

X
p2½P �

zrpsjhpÞ � Cr
h; 8t; 8r; 8h; (2h)

X
h02½H�h�

X
m2½M�

yjh0mbm �
X
p2½P �

sjhpBp; 8j; 8h :
X
p2½P �

sjhp > 0; (2i)

xjt ¼ 0; 8j; 8t < aj; (2j)

yjhm 2 f0; 1; . . .g; 8j; 8h; 8m; (2k)

sjhp 2 f0; 1; . . .g; 8j; 8h;8p; (2l)

TABLE 1
List of Notations

J # of jobs R # of resource types

T system timespan ½X� interger set f1; 2; . . .; Xg
aj arrival time of j Dj # of data chunks in j
wj weight of job j dj running duration of j
M # of worker types P # of PS types
Ej # of training epochs for job j
Kj # of mini-batches in one data chunk of job j
H # of servers to deploy workers and PSs
Cr

h capacity of type-r resource on server h
ermðzrpÞ type-r resource of worker m (PS p)
bmðBpÞ bandwidth of worker m (PS p)
vjm time to train a mini-batch of job j in worker m
pj size of gradients generated by each worker after

processing one mini-batch when serve job j
Up
j time to update parameters at a type-p PS

in each iteration of j
rpjm processing capacity of each worker when j

employs worker m and PS p
qj whether j’s all workers (and PSs) are running in

one server or not
xjt whether or not training job jwith starting time t
sjhp # of type-p PSs serving job j in server h
yjhm # of type-mworkers serving job j in server h

ZHOU ETAL.: ONLINE SCHEDULING ALGORITHM FOR HETEROGENEOUS DISTRIBUTED MACHINE LEARNING JOBS 1517

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on September 02,2023 at 08:24:13 UTC from IEEE Xplore. Restrictions apply.

dj 2 f0; 1; . . .g; 8j; (2m)

xjt 2 f0; 1g; 8j; 8t: (2n)

qj 2 f0; 1g; 8j: (2o)

where 8j; t; r; h;m; p represents 8j 2 ½J �; t 2 ½T �; r 2 ½R�; h 2
½H�;m 2 ½M�; p 2 ½P �. Constraint (2a) requires job j to be
scheduled once. Constraint (2b) ensures that each job selects
and employs one type of workers, as it is common to use
the same type of workers to process evenly allocated input
data batches for synchronous training. Though there have
been recent studies that assign different workers different
batch sizes [42], the relevant study is still in its infancy and
not widely used in practice. If different types of workers are
used in a job, the time for the workers to process equal-sized
data batches varies; hence, workers requiring less training
time need to wait for slower workers in each iteration, lead-
ing to lower resource efficiency. Constraint (2c) requires
that each job uses one type of PSs due to the same reason.

Constraint (2d) shows the relationship among qj, yjhm
and sjhp, which is hard and awkward to describe by linear
constraint. Constraint (2e) assures that there is at least one
PS allocated to each ML job for maintaining its global
parameters. Constraint (2f) guarantees that for job j, a suffi-
cient number of workers and time slots are allocated to
accomplish training of the dataset for Ej epochs. EjDjKj is
the total count of mini-batches trained in job j. Constraint
(2g) upper-bounds the number of workers by the number of
data chunks Dj, to ensure that one data chunk is trained by
at most one worker for Ej epochs. The resource capacity of
physical servers for running workers and PSs is formulated
by constraint (2h). Here, xjt0 ¼ 1; t0 2 ðt� dj; t� denotes that
job j is still running in time slot t. Since each of job j’s work-
ers needs to push gradients to and pull computed parame-
ters from all its PSs, the bandwidth reservation for PSs of
job j in server h should cover the total bandwidth of job j’s
workers placed on other servers, which can be formulated
as the linear constraint (2i). Here, H�h represents the set of
all the servers except h. Constraint (2j) indicates that it is
impossible to start job j before its arrival.

Without the non-linear constraints (2b) (2d), the
weighted completion time minimization problem in (2) is
still a mixed integer linear program (MILP). Even in the off-
line setting, with information of all jobs given, solving such
MILPs is non-trivial and typically NP-hard [43].

3.4 Algorithmic Idea

In order to solve the weighted completion time minimiza-
tion problem, we design an efficient online algorithm with
bounded competitive ratio (i.e., the maximum ratio of the
total weighted completion time incurred by our online algo-
rithm over that incurred by the offline optimal approach
which knows all the inputs in advance) in two steps, as
shown in Fig. 1.

i. In Section 4, we first group unprocessed ML jobs
until a certain time point into a batch, to convert the
online optimization problem into a series of batch
scheduling problems. Then, we invoke a dual
approximation algorithm Adual to schedule jobs in a

batch. According to Lemma 1 [14], the schedule pro-
duced by Adual is required to satisfy two properties.
It is hard to yield such a schedule directly. Rather
than solving the the batch scheduling problem
directly, we focus on a more solvable problem
instead, i.e., the total weight maximization problem.
Leveraging an approximation algorithm Amaxweight

for the total weight maximization problem, Adual

constructs a required schedule.
ii. In Section 5, we introduce an approximation algo-

rithm Amaxweight for batch processing, which solves
the the total weight maximization problem.
Amaxweight applies the primal-dual framework and
employs two subroutines (Amincost1 and Amincost2) to
choose the schedule with smallest cost for each job.

Here, Adual is a subroutine of Aonline and a dual approxi-
mation algorithm to solve the maximum weighted schedule
problem in Definition 1. Adual invokes Amaxweight and
Amaxweight invokes Amincost1 and Amincost2. Amincost1 and
Amincost2 solve the cost minimization problem in Section 5.2.
Performance guarantees of various proposed algorithms are
shown at the end of the yellow arrows in Fig. 1.

4 ONLINE SCHEDULING FRAMEWORK

In Section 4.1, we introduce an online scheduling frame-
work Aonline that partitions the timespan to group ML jobs.
It requires a dual approximation algorithm Adual for job sched-
uling, which is presented in Section 4.2.

4.1 Online Scheduling Algorithm

Our online algorithm is partly inspired by Leslie et al. [14].
The basic idea is to partition the timespan of potential com-
pletion times at geometrically increasing points, and itera-
tively schedule unprocessed ML jobs until a certain time
point. More specifically, let t0 ¼ 1, ti ¼ 2i�1. In rounds i ¼
1; 2; . . ., we wait until time ti. Let Ji represent the set of jobs
that have arrived by time ti, but still not scheduled. Next,
we require a dual approximation algorithm Adual for Ji, which
produces a schedule of length at most ati (a > 1, which is a
number to indicate the infeasibility of the schedule pro-
duced by Adual) and whose total weight is at least the opti-
mal weight of the maximum weighted schedule problem in
Section 5. The schedule generated by Adual is then assigned
to run from time ati to time atiþ1. Because atiþ1 � ati �
ati, it is flexible to run job with length at most ati in interval
½ati;atiþ1�, and hence our online algorithm produces feasi-
ble schedules.

Fig. 1. Main idea of our online Algorithm Aonline.

1518 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on September 02,2023 at 08:24:13 UTC from IEEE Xplore. Restrictions apply.

Definition 1. The Maximum Weighted Schedule Problem:
In an ML cluster, given a deadline ti, a set of jobs Ji at the
beginning, and a weight for each job, we aim to construct a fea-
sible schedule that maximizes the total weight of jobs completed
by time ti.

In Aonline (Algorithm 1), Js
i denotes the set of jobs sched-

uled during round i. Note that t0 ¼ 1 implies the assump-
tion that no job can complete within the first time slot. Lines
3-5 group unscheduled jobs into set Ji. We invoke the dual
approximation algorithm Algorithm Adual for Ji in line 6.
Next, we run j 2 ½Js

i � from time ati to time atiþ1 according
to the schedule produced by Adual in line 8-9. In line 11, we
add job(s) in Ji which is (are) not scheduled in round i to set
Jiþ1, to process in next round iþ 1.

Algorithm 1. An Online Algorithm Aonline

Input: T;Cr
h; 8h 2 ½H�; r 2 ½R�;

Output: xjt; yjhm; sjhp; dj; 8j 2 ½J�; t 2 ½T �; m 2 ½M�; p 2 ½P �; h 2
½H�;

1: Initialize xjt ¼ 0, yjhm ¼ 0; sjhp ¼ 0, dj ¼ 0, 8j 2 ½J�; t 2
½T �;m 2 ½M�; p 2 ½P �; h 2 ½H�, Ji ¼ ? ;

2: while i ¼ 1; 2; . . . do
3: while t < ti do
4: Ji ¼ Ji [fjg;
5: end while
6: ffxjtg; dj; fyjhmg; fsjhpggj2Ji;t2½ati� ¼ AdualðJi; ti; fCr

hgÞ;
7: for all j 2 ½Js

i � do
8: Run job j from time ati to time atiþ1 according to

ðfxjtg; dj; fyjhmg; fsjhpgÞ;
9: end for
10: Jiþ1 ¼ Jiþ1 [ðJi n Js

i Þ;
11: end while

Lemma 1. Given a dual approximation algorithm for Ji; i 2
1; 2; . . ., which produces a schedule satisfying two properties:
(i) the length of the schedule is at most ati; (ii) total weight of
the schedule is at least the optimal weight of the corresponding
maximum weighted schedule problem, Aonline is an online
4a-approximation algorithm to minimize the total weighted
completion time.

Proof. Consider a fixed optimal schedule for the problem in
(2). Let I be chosen to be the smallest integer so that all
jobs complete in this schedule by time tI , and let J�

i

denote the set of jobs that complete in the ith interval,
ðti�1; ti�, i ¼ 1; 2; . . . ; I. In a particular interval i, consider
jobs completed during the first i intervals according to the
optimal schedule, but do not run within the first i� 1 iter-
ations by Aonline, i.e., J

0
i ¼ [i

k¼1J
�
k � ð[i�1

k¼1J
s
kÞ. Each job j 2

J 0
i arrives by ti, since it can complete by ti in the optimal

schedule, besides, it has not been scheduled before ti
using Aonline. That is j 2 Ji, so that J 0

i � Ji. Moreover, all
jobs in J 0

i can be scheduled to complete within ti by the
optimal schedule for the total weighted completion times
minimization problem, as well as the optimal solution of
the maximum scheduled weight problem for Ji. Accord-
ing to the property (ii) of the dual approximation algo-
rithm, we obtain a set Js

i of total weight at least
P

j2J 0
i
wj

in iteration i, i.e., wðJs
i Þ � wðJ 0

iÞ, here wðJÞ ¼ P
j2J wj.

Furthermore, combining the definition of J 0
i , for each i ¼

1; 2; . . . ; I, the following inequation is satisfied:Pi
k¼1 wðJs

kÞ �
Pi

k¼1 wðJ�
k Þ: tu

It can be derived from the above inequation that Aonline

has scheduled all jobs by iteration I, i.e.
PI

i¼1 wðJs
i Þ ¼PI

i¼1 wðJ�
i Þ. Focus on the optimal schedule for the total

weight completion time minimization problem,P
j2½J � wjc

�
j �

PI
i¼1 ti�1wðJ�

i Þ. Here c�j denotes the comple-
tion time of job j in the optimal schedule. The schedulewhich
is iteratively constructed by Aonline has total weighted com-
pletion time at most

PI
i¼1 atiþ1wðJs

i Þ � 4a
PI

i¼1 ti�1wðJs
i Þ �

4a
PI

i¼1 ti�1wðJ�
i Þ � 4a

P
j2½J � wjc

�
j :

4.2 A Dual Approximation Algorithm

The dual approximation algorithm Adual (Algorithm 2) pro-
duces desired schedules based on a g-approximation algo-
rithm for the Maximum Weighted Schedule Problem, that
schedules as many unscheduled jobs as possible before a
deadline (to be detailed in Section 5). Lines 2-4 invoke the
g-approximation algorithm Amaxweight for a rounds. Specifi-
cally, in the ith (i 2 ½a�) round, we schedule jobs in Ji n Js

i ,
i.e., jobs in Ji but not served in before rounds, from time ði�
1Þti þ 1 to time iti.

Lemma 2. Given a g-approximation algorithm for the maximum
weighted schedule problem which schedules as many jobs as
possible before deadline ti, Adual constructs a schedule of length
at most ati and total weight at least the optimal objective value
of the corresponding maximum weighted schedule problem.

Proof. Let J�
ii and Js

ii be the set of jobs served optimally and
completed by Adual in the ith round, respectively. Thus,
the optimal objective value of the total weight maximiza-
tion problem for Ji is wðJ�

i1Þ. And let Js0
ii ¼ Js

ii \ J�
i1. In the

ith round, the input of the g-approximation algorithm is
Ji � [i�1

i0¼1J
s
ii0 . When i ¼ 1, we have

wðJs
i1Þ �

1

g
wðJ�

i1Þ: (3)

tu
For i � 2, consider jobs which can be scheduled by the

optimal solution but are not served by Adual in the first i� 1
rounds, i.e., J�

i1 � [i�1
i0¼1wðJs0

ii0 Þ. In ith round, since each j 2
½J�

i1 � [i�1
i0¼1wðJs0

ii0 Þ� can be completed by the optimal solution,
wðJ�

iiÞ � wðJ�
i1 � [i�1

i0¼1wðJs0
ii0 ÞÞ. Then we have

wðJs
iiÞ �

1

g
ðwðJ�

i1Þ �
Xi�1

i0¼1

wðJs0
ii0 ÞÞ �

1

g
ðwðJ�

i1Þ �
Xi�1

i0¼1

wðJs
ii0 ÞÞ (4)

For i 2 ½a�, the following inequality holds

Pi
i0¼1 wðJs

iiÞ � ½1� ð1� 1
g
Þi�wðJ�

i1Þ (5)

We prove (5) by induction. (5) must hold for i ¼ 1, since (3)
holds. Suppose (5) holds for i, according to (4), we havePiþ1

i0¼1 wðJs
iiÞ � 1 gwðJ�

i1Þ þ ð1� 1
g
ÞPi

i0¼1 wðJs
iiÞ � ½1� ð1�

1
g
Þiþ1�wðJ�

i1Þ: Thus we prove (5). Suppose for the specific i�,Pi�
i0¼1 wðJs

ii0 Þ � wðJ�
i1Þ and

Pi��1
i0¼1 wðJs

ii0 Þ < wðJ�
i1Þ: Note that

J�
i1 �[i��1

i0¼1wðJs
ii0 Þ 6¼ ? , thenwðJs

ii� Þ � minj2½J�
i1
�wj � wmin, here

wmin ¼ minj2½J �wj. And since (5), wðJs
ii� Þ � ð1� 1

g
Þi��1wðJ�

i1Þ.

ZHOU ETAL.: ONLINE SCHEDULING ALGORITHM FOR HETEROGENEOUS DISTRIBUTED MACHINE LEARNING JOBS 1519

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on September 02,2023 at 08:24:13 UTC from IEEE Xplore. Restrictions apply.

So ð1� 1
g
Þi��1wðJ�

i1Þ � wmin, then i� � logwðJ�
i1
Þ�logwmin

log g�log ðg�1Þ þ 1: We

can set a ¼ blogwðJÞ�logwmin
log g�log ðg�1Þ c þ 1, which satisfies

a � blogwðJ
�
i1
Þ�logwmin

log g�log ðg�1Þ c þ 1 � i�; 8i (6)

such that
Pa

i0¼1 wðJs
ii0 Þ � wðJ�

i1Þ; 8i.

Algorithm 2. A Dual Approximation Algorithm Adual

Input: Ji; ti; C
r
h; 8h 2 ½H�; r 2 ½R�;

Output: xjt; yjhm; sjhp; dj; J
s
i ; 8j 2 ½Ji�; t 2 ½ti�;m 2 ½M�; p 2 ½P �; h

2 ½H�;
1: Initialize xjt ¼ 0; dj ¼ 0; yjhm ¼ 0; sjhp ¼ 0;br

hðtÞ ¼ 0; Js
i ¼

? ; drhðtÞ ¼ Dr
hð0Þ; 8j 2 ½Ji�; t 2 ½ti�; m 2 ½M�; h 2 ½H�; p 2

½P �; r 2 ½R�;
2: for i ¼ 1 to a do
3: ffxjtg; dj; fyjhmg; fsjhpg gj2ðJinJsi Þ;t2½ði�1Þtiþ1;iti� ¼ Amaxweight

ðJi n Js
i ; ti; fCr

hgÞ;
4: end for

5 APPROXIMATION ALGORITHM FOR TOTAL

WEIGHT MAXIMIZATION

We next present an approximation algorithm Amaxweight for
batch processing, employing a primal-dual algorithm in
Section 5.1. As subroutines of Amaxweight, we design two
algorithms in Section 5.2 to compute the best schedule for
each job. Theoretical analysis is presented in Section 5.3.

5.1 The MaximumWeighted Schedule Problem

We formulate a maximum weighted schedule problem for
each round i in our online scheduling framework, that max-
imizes the total weight of jobs in Ji completed by time ti.

maximize
X
j2½Ji�

X
t2½ti�

wjxjt (7)

subject to

X
t2½ti �

xjt � 1; 8j 2 ½Ji�; (7a)

P
t2½ti � xjtðtþ djÞ � ti; 8j 2 ½Ji�; (7b)

ð2bÞ � ð2iÞ; ð2kÞ � ð2oÞ; where 8t 2 ½ti�:

This maximization problem involves integer variables,
non-linear constraint (2b) (2c) and constraints concerning
multiplication of variables (2f) (2h) (7b). To address these
challenges, we first apply the compact-exponential techni-
ques [30] to reformulate problem (7) into an equivalent con-
ventional integer linear program (ILP) with packing
structure

maximize
X
j2½Ji�

X
l2Gj

wjxjl (8)

subject to

X
j2½Ji�

X
l:t2T ðlÞ;h2l

xjlf
r
jhðlÞ � Cr

h;8t 2 ½ti�; r 2 ½R�; h 2 ½H�; (8a)

X
l2Gj

xjl � 1; 8j 2 ½Ji�; (8b)

xjl 2 f0; 1g; 8j 2 ½Ji�; l 2 Gj: (8c)

In the above ILP, Gj is the set of feasible schedules
for job j, each corresponding to the set of decisions
ðxjt; dj; yjhm; sjhp; qj; 8m 2 ½M�; p 2 ½P �; h 2 ½H�; t 2 ½ti�Þ satis-
fying constraints (7b)(2b)(2c)(2f)(2i)(2k)(2n). Binary variable
xjl indicates whether job j is scheduled according to sched-
ule l 2 Gj or not, 8j 2 ½J�; l 2 Gj. T ðlÞ records the allocated
time slots of job j in schedule l 2 Gj. We use h 2 l to indicate
that schedule l uses server h to deploy workers and PSs for
job j. fr

jhðlÞ denotes the total type-r resource occupation of
job j’s schedule l on server h, i.e., fr

jhðlÞ ¼
P

m2l;p2lðermyljhm þ
zrps

l
jhpÞ; 8h 2 l; r 2 ½R�, where m 2 l; p 2 l specify that sched-

ule l trains the model using type-m workers and type-p PSs,
and yljhm (sljhp) represents the given number of workers m
(PSs p) on server h in l.

Constraint (8a) is equivalent to (2h). Constraint (8b)
ensures that each job is executed according to at most one
schedule. A feasible solution to ILP (8) has a corresponding
feasible solution in problem (7), and vice versa, with the
same objective value. Note that we introduce an exponential
number of variables in ILP (8), each corresponding to a pos-
sible schedule of job j. To solve ILP (8), we formulate the
dual LP of ILP (8) by relaxing xjl 2 f0; 1g to xjl � 0 and
introducing dual variables drhðtÞ and uj to constraints (8a)
and (8b)

minimize
X
j2½Ji�

uj þ
X
t2½ti�

X
h2½H�

X
r2½R�

drhðtÞCr
h (9)

subject to

uj � wj �
X
t2T ðlÞ

X
h2l

X
r2½R�

drhðtÞfrjhðlÞ; 8j 2 ½Ji�; l 2 Gj; (9a)

drhðtÞ; uj � 0; 8j 2 ½Ji�; t 2 ½ti�; h 2 ½H�; r 2 ½R�: (9b)

If we interpret dual variable drhðtÞ as the unit cost of type-r
resource on server h in time t, then

P
t2T ðlÞ

P
h2l

P
r2½R�

drhðtÞfr
jhðlÞ is the total resource cost of all workers and PSs serv-

ing job j by schedule l. The RHS of (9a), i.e., job weight minus
overall resource cost of job j with schedule l, is the job utility.
Tominimize the dual objective, we assign dual variables uj to
be the maximum between 0 and the RHS of (9a) according to
the best schedule lj

uj ¼ maxf0;maxl2GjRHS of (9a)g: (10)

If uj > 0, we construct schedule of job j according to
lj (xjlj ¼ 1); or otherwise, we do not schedule it
(xjl ¼ 0; 8l 2 Gj). The rationale is that, given limited resour-
ces, we wish to schedule jobs with larger utility.

Amaxweight in Algorithm 3 is our offline algorithm for
the maximum weighted schedule problem with the input
job set f. Line 1 initializes primal and dual variables. For
each job j in f, lines 3 and 4 invoke Amincost2 and

1520 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on September 02,2023 at 08:24:13 UTC from IEEE Xplore. Restrictions apply.

Amincost1 to find a schedule with the lowest cost in the
two cases, i.e., qj ¼ 1 and qj ¼ 0, respectively. Comparing
the resulting solutions, we obtain the best schedule with
the highest utility uj for job j in lines 5-7. If uj > 0, we
set all primal variables according to lj in lines 10-11 and
update the dual variables using the following carefully
designed price functions drhð	Þ in line 14. Line 12 updates
Js
i , i.e., the set of jobs which have been scheduled in the

ith round. In line 13, br
hðtÞ records the amount of allo-

cated type-r resource on server h for time t.

drhðbrhðtÞÞ ¼ �

br
h
ðtÞ

Cr
h � 1; 8h 2 ½H�; r 2 ½R�; t 2 ½ti�;

where � ¼ 2ðTHRF Þ þ 1
(11)

Algorithm 3. Total Weight Maximization Amaxweight

Input: f; ti; C
r
h; 8h 2 ½H�; r 2 ½R�;

Output: xjt; yjhm; sjhp; dj; qj; J
s
i ; 8j 2 ½Ji�; t 2 ½ti�; m 2 ½M�;

p 2 ½P �; h 2 ½H�;
1: Initialize xjt ¼ 0; dj ¼ 0; yjhm ¼ 0; sjhp ¼ 0;br

hðtÞ ¼ 0; drhðtÞ ¼
Dr
hð0Þ; 8 j 2 ½f�; t 2 ½ti�;m 2 ½M�; h 2 ½H�; p 2 ½P �; r 2 ½R�;

2: for each job j 2 ½f� do
3: ðcostj; ljÞ ¼ Amincost2ðti; fbr

hðtÞg; fdrhðtÞg; fCr
hgÞ;

4: ðcost; lÞ ¼ Amincost1ðti; fbr
hðtÞg; fdrhðtÞg; fCr

hgÞ;
5: if cost < costj then
6: costj ¼ cost; lj (l;
7: end if
8: uj ¼ wj � costj;
9: if uj > 0 then
10: xjt� ¼ 1; dj ¼ Lj;
11: Set qj; yjhm; sjhp according to lj, 8h 2 lj;m 2 lj; p 2 lj;
12: Js

i ¼ Js
i [fjg;

13: br
hðtÞ ¼ br

hðtÞ þ fr
jhðljÞ; 8t 2 T ðljÞ; h 2 ½H�; r 2 ½R�;

14: Update drhðtÞ; 8t 2 T ðljÞ; h 2 ½H�; r 2 ½R�with (11);
15: end if
16: end for

We make two assumptions. First, we assume that a job’s
weight is proportional to its resource consumption, i.e., 1 �

wjP
t2T ðlÞ

P
h2l

P
r2½R� f

r
jh
ðlÞ � F; 8j; l; h; r. Here parameter F rep-

resents the upper bound of a job’s weight to its resources

consumption, and it will be used to design the price func-

tion of the unit resource. Second,
fr
jh
ðlÞ

Cr
h

� 1
log� , which implies

that the one type resource demand of each job on one server is
small as compared to the resource capacity of each server. The
price function starts at zero and increases exponentially with
the increase of resource consumption. When there is little
usage of type-r resource on server h, br

hðtÞ is close to zero,
which allows jobs to consume resource freely. When type-r
resource on server h is exhausted, br

hðtÞ is close to the resource
capacity Cr

h, and drhðtÞ grows fast to a carefully designed large
value �, so that type-r resource on server hwill be barely allo-
cated to a job, unless its weight is sufficiently large.

5.2 Cost Minimization Problem

Since wj is a constant, the utility maximization problem of
job j is equivalent to the following cost minimization prob-
lem

min
X

t2½t0 ;t0þdjÞ

X
h2½H�

X
r2½R�

xjt0d
r
hðtÞ

� X
m2½M�

ermyjhm þ
X
p2½P �

zrpsjhp

�
ð12Þ

subject to X
t2½ti�

xjt ¼ 1; (12a)

ð7bÞ; ð2bÞ � ð2gÞ; ð2iÞ; ð2kÞ � ð2oÞ; 8t 2 ½ti�; for the specific j:

We next show the schedule that minimizes job j’s cost
can be found efficiently and optimally using Algorithm 5
and Algorithm 4. When we fix the worker type m and the
PS type p serving job j, the number of acquired time slots is

at most dEjDjKj

r
p
jm

e. For a fixed allocated time slot dj, the num-

ber of workers needed is at least dEjDjKj

djr
p
jm

e. If we further

know the starting time of job j, problem (12) is simplified as
the following ILP, where m ¼ m0, p ¼ p0, t0 ¼ t�, tþ ¼
t� þ dj

miny;sy;s costðm0; p0; t�; tþÞ
¼

X
t2½t�;tþÞ

X
h2½H�

X
r2½R�

drhðtÞðerm0yjhm0 þ zrp0sjhp0 Þ ð13Þ

subject to

qj ¼ 1 if and only if h ¼ h0; 8h; h0 : yjhm0 > 0; sjh0p0 > 0; (13a)

X
h2½H�

yjhm0 � Dj; (13b)

X
h2½H�

yjhm0 �
�
EjDjKj

djr
p0
jm0

�
; (13c)

sjhp0Bp0 �
X

h02½H�h �
yjh0m0bm0 ; 8h : sjhp0 > 0;

(13d)

X
h2½H�

sjhp0 � 1; (13e)

yjhm0 ; sjhp0 2 f0; 1; . . .g; 8h 2 ½H�; 8p 2 ½P �; (13f)

qj 2 f0; 1g: (13g)

That is, we need to find the best placement scheme for job j
to minimize the overall resource cost satisfying constraints
(13a), (13b), (13c), (13d), (13e), (13f), and (13g). Note that con-
straint (13d) is satisfied naturally, since the RHS of (13d) is
zero. Besides, the processing capacity r

p
jm is affected by the

location of workers and PSs. If all workers and PSs of one job
are deployed in the same physical server, the bandwidth
occupied by exchanging gradient/parameters can be
ignored. Therefore, there are two cases according to whether
all workers and PSs are deployed in the same server. For dis-
tributed (qj ¼ 0) and centralized placement (qj ¼ 1),

ZHOU ETAL.: ONLINE SCHEDULING ALGORITHM FOR HETEROGENEOUS DISTRIBUTED MACHINE LEARNING JOBS 1521

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on September 02,2023 at 08:24:13 UTC from IEEE Xplore. Restrictions apply.

deployment solutions of workers and PSs are different. We
come up with algorithms to find the best schedule with the
smallest cost for job j as Amincost2 and Amincost1. Amincost2 han-
dles the case where all workers and PSs of job j are running
on one server, i.e., qj ¼ 1, rpjm ¼ 1=ðvjm þ Up

j Þ, and Amincost1

solves the other, i.e., qj ¼ 0, rpjm ¼ 1=ðvjm þ Up
j þ 2pj

bm
Þ.

Algorithm 4. Subroutine for Job j Amincost1

Input: ti;b
r
hðtÞ; drhðtÞ; Cr

h; 8h 2 ½H�; ; r 2 ½R�; t 2 ½ti�;
Output: lj; cost m;
1: Initialize uj ¼ 0; lj ¼ ? ; cost m ¼ þ1;
2: qj ¼ 0;vr

hðtÞ ¼ Cr
h � br

hðtÞ; 8h; r; t;
3: form0 ¼ 1 toM do
4: for p0 ¼ 1 to P do
5: for Lj ¼ dEjKj

r
p0
jm0

e to dEjDjKj

r
p0
jm0

e do

6: Nj ¼ dEjDjKj

Ljr
p0
jm0

e; N̂ ¼ Nj;

7: for t� ¼ 1 to ti � Lj do
8: List h 2 ½H� in nondecreasing order of Vh,

tþ ¼ t� þ Lj;
9: for n ¼ 1; . . . ; H do
10: yjhm ¼ 0; sjhp ¼ 0; 8m; p; h;
11: for k ¼ 1; . . . ; H do
12: ŷ ¼ minfminr2½R�;t2½t�;tþÞbv

r
k
ðtÞ

er
m0

c; N̂g;
13: yjkm0 ¼ ŷ;
14: if k ¼ n then
15: for g ¼ 0 to ŷ do
16: ŝ ¼ minr2½R�;t2½t�;tþÞb

vrnðtÞ�ger
m0

zr
p0

c;
17: if ŝBp0 � ðNj � gÞbm0 then
18: yjnm0 ¼ g;
19: sjnp0 ¼ minfŝ; dðNj�gÞbm0

Bp0
eg;

20: end if
21: end for
22: end if
23: N̂ ¼ N̂ � yjkm0 ;
24: end for
25: if N̂ > 0 or sjnp0 < 1 then
26: cost ¼ þ1;
27: else
28: Compute cost;
29: end if
30: if cost < cost m then
31: cost m ¼ cost; lj (ft�; Lj; yy; ss; qjg;
32: end if
33: end for
34: end for
35: end for
36: end for
37: end for
38: returnlj; cost m

In Amincost1, we record the amount of available type-r
resource on server h at time slot t using vr

hðtÞ in line 2. Next,
we enumerate the worker and PS types serving job j in line
3 and 4. Then, we traverse possible execution time and com-
pute the number of workers needed in lines 5-6. Given start-
ing time t� in line 7, we sort servers for worker m0

deployment in non-decreasing order of total resource costP
t2½t�;tþÞ

P
r2½R� d

r
hðtÞerm0 recorded by Vh in line 8. Then lines

9-33 maximally deploy workers starting from the cheapest
server, respecting capacity constraint (2h), the required
number of workers Nj in (13c) and bandwidth reservation
constraints (13d). Specifically, we decide the number of
workers and PSs in given server n in lines 14-22 in a greedy
manner, i.e., the maximum number of workers and PSs are
placed satisfying (13d). If there are not enough workers or
PSs, completing job j is infeasible (lines 25 and 26); other-
wise, we compute the overall cost

P
t2½t�;tþÞ

P
h2½H�P

r2½R� d
r
hðtÞðerm0yjhm0 þ zrp0sjhp0 Þ (line 28). We identify the

schedule with smallest cost in lines 30-32. Finally, we return
the resulting schedule lj and the corresponding cost cost_m
in line 38.

Compared to Amincost1, Amincost2 counts the range of
acquired time slots and number of workers needed with dif-
ferent processing capacities. We enumerate the server to run
all workers and PSs on it.

Algorithm 5. Subroutine for Job j Amincost2

Input: ti;b
r
hðtÞ; drhðtÞ; Cr

h; 8h 2 ½H�; ; r 2 ½R�; t 2 ½ti�;
Output: lj; cost m;
1: Initialize uj ¼ 0; lj ¼ ? ; cost m ¼ þ1;
2: qj ¼ 1;vr

hðtÞ ¼ Cr
h � br

hðtÞ; 8h; r; t;
3: while traverse the value space of variables m0 p0 Lj t

� in
order do

4: for h ¼ 1; . . . ; H do
5: yjhm ¼ 0; sjhp ¼ 0; 8m; p; h;
6: Compute yjhm0 and sjhp0 respecting (2h) and (13a)
7: Set cost according to the feasibility of yjhm0 and sjhp0
8: if cost < cost m then
9: cost m ¼ cost; lj (ft�; Lj; yy; ss; qjg;
10: end if
11: end for
12: end while
13: return lj; cost m

5.3 Theoretical Analysis

Theorem 1. Algorithms 4 and 5 yield an optimal solution of
problem (13) in two scenarios, respectively.

Proof. Please see Appendix, which can be found on the
Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TCC.2022.3143153. tu

Theorem 2. Amaxweight in Algorithm 3, with Amincost2 and
Amincost1, computes a feasible solution to problems (7)(8)(9).

Proof. Please see Appendix, available in the online supple-
mental material. tu

Theorem 3. The approximation ratio of Amaxweight in Algorithm
3 is 2log�.

Proof. Please see Appendix, available in the online supple-
mental material. tu

Theorem 4. Aonline in Algorithm 1 runs in polynomial time, with
time complexityOððlogwðJÞÞJMPT 2logT ðHlogH þH2ÞÞ.

Proof. Please see Appendix, available in the online supple-
mental material. tu

1522 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on September 02,2023 at 08:24:13 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TCC.2022.3143153
http://doi.ieeecomputersociety.org/10.1109/TCC.2022.3143153

Theorem 5. Aonline in Algorithm 1 is 4a-competitive, where a ¼
b logwðJÞ�logwmin
1þlog log��log ð2log ��1Þc þ 1, where � are defined in (11), wðJÞ ¼P
j2J wj and wmin ¼ minj2½J �wj.

Proof. Please see Appendix, available in the online supple-
mental material. tu

We observe that the typical value of a is close to 4 in simula-
tion studies. As shown by the proof of Lemma 2, the value
of a in each round i should satisfy inequality (6). According
to the definition of J�

i1, we can set a to be blogwðJiÞ�logwmin
log g�log ðg�1Þ c þ 1

in simulations. Further, if Js
i ¼ Ji for the specific i, we can

terminate the ith round iteration of Adual and turn to the
next round.

6 EXTENSION TO RING-ALLREDUCE FRAMEWORK

In this section, we consider the total weighted completion
time minimization problem with Ring-AllReduce architec-
ture. Section 6.1 model the distributed ML system. We show
that the approximation algorithm Amaxweight can also handle
the Ring-AllReduce architecture, in Section 6.2. We design
two algorithms, which act as subroutines of Amaxweight, in
Section 6.3 to find the best schedule for each job in the two
cases, respectively. Theoretical analysis is conducted in
Section 6.4.

6.1 Training Process With Ring-AllReduce
Architecture

With data parallelism and AllReduce architecture, each
worker of a job trains the entire model using different data
chunks. The major computation steps on each worker are:
(i) compute the gradient using a mini-batch; (ii) compute
the mean of the gradients generating on all workers and
return the resultant gradient to all other workers. This pro-
cess is called AllReduce; (iii) update the model parameters.

There are several algorithms to implement the AllReduce
operation, e.g., Tree AllReduce, Round-robin AllReduce,
Butterfly AllReduce and Ring-AllReduce. In this work, we
focus on the Ring-AllReduce architecture. Ring-AllReduce
eliminates the performance bottleneck by distributing the
computation and communication over the participant work-
ers. It has been more widely adopted than the others, given
that it is efficient and simple to implement.

Considering a certain job j, let F be the total number of
workers serving job j, i.e., F ¼ P

h2½H�
P

m2½M� yjhm, and each
worker is uniquely identified by a number ’ 2 F. Let G’ be
the gradient of worker ’ after training a mini-batch. First,
each worker divides its own gradient into F parts. G’k is
the k-th part of G’. Let G0 be the resultant gradient, whose
size is the same as G’. The k-th part of G0 is to be: G0k ¼
G1k Op G2k Op . . . Op GFk. Here Op is a binary operator.
For example, the SUM operation is used to compute the
mean of gradients in distributed deep learning. First, the
worker ’ sends G’’ to the next worker ’þ 1, while it
receives G’�1’�1 from the previous worker ’� 1 simulta-
neously. (The worker F sends GFF to the first worker, and
vice versa.) That is, all workers constitute a single ring. Sec-
ond, worker ’ performs the reduction operation to the
received gradient G’�1’�1 and its own gradient G’’�1, and
sends the reduced gradient to the next worker ’þ 1. By

repeating the receive-reduce-send steps F� 1 times, each
worker obtains a different portion of the resulting gradient.
Finally, all worker can obtain the completed gradient by
sharing the distributed partial results among them.

In the Ring-AllReduce algorithm, we can calculate the
amount of communication in each worker in the following
way. In the earlier half of the algorithm, each worker sends
gradients F� 1 times, whose total size is

pjðF�1Þ
F . Next, each

worker sends partial resulting gradient F� 1 times of the
same total size. Thus, the total amount of data each worker
sends throughout the algorithm is

2pjðF�1Þ
F , which is practi-

cally independent of F. Similarly, the computation time at
each worker for performing the reduction operation in the
earlier half of the algorithm is

UjðF�1Þ
F , here Uj is the time to

process gradients of size pj at a worker. When qj ¼ 1, i.e., all
workers of j are deployed on one server, the communication
time of each worker can be ignored. When qj ¼ 0, i.e., work-
ers of job j are placed on at least two servers, with synchro-
nous training, the time for all workers to transfer gradients
in one iteration is

2pjðF�1Þ
Fbm

. Thus, we have

rjm ¼ 1=ðvjm þ UjðF�1Þ
F Þ; if qj ¼ 1

1=ðvjm þ UjðF�1Þ
F þ 2pjðF�1Þ

Fbm
Þ; if qj ¼ 0

(
(14)

With Ring-AllReduce architecture, the offline minimization
problem is formulated as follows

minimize
X
j2½J �

wj

X
t2½T �

xjtðtþ djÞ (15)

subject to

qj ¼ 1 if and only if h ¼ h0; 8h; h0 : yjhm > 0; yjh0m > 0; 8j; (15a)

X
j:t02ðt�dj;t�

xjt0
X

m2½M�
ermyjhm � Cr

h; 8t; 8r;8h; (15b)

ð2aÞð2bÞ; ð2fÞ � ð2gÞ; ð2jÞ � ð2kÞ; ð2mÞ � ð2oÞ:

Constraint (15a) shows the relationship among qj and
yjhm. The resource capacity of physical servers for running
workers is formulated in constraint (15b). Here, xjt0 ¼ 1; t0 2
ðt� dj; t� denotes that job j is still running in time slot t.

Note that Aonline and Adual can be applied to both distrib-
uted ML architectures we described.

6.2 The Maximum Scheduled Weight Problem

The maximum scheduled weight problem for Ji by time ti
in each iteration i is formulated as the following integer pro-
gram

maximize
X
j2½Ji�

X
t2½ti�

wjxjt (16)

subject to

ð7aÞ; ð7bÞ; ð15aÞ; ð15bÞ; ð2bÞ; ð2fÞ � ð2gÞ; ð2kÞ; ð2mÞ � ð2oÞ;

where 8t 2 ½ti�:
To address non-conventional constraints (2b)(2f)(7b), we

reformulate problem (16) into an equivalent conventional

ZHOU ETAL.: ONLINE SCHEDULING ALGORITHM FOR HETEROGENEOUS DISTRIBUTED MACHINE LEARNING JOBS 1523

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on September 02,2023 at 08:24:13 UTC from IEEE Xplore. Restrictions apply.

ILP using the compact-exponential technique

maximize
X
j2½Ji�

X
l2Gj

wjxjl (17)

subject to

X
j2½Ji�

X
l:t2T ðlÞ;h2l

xjlf
r
jhðlÞ � Cr

h; 8t 2 ½ti�; r 2 ½R�; h 2 ½H�; (17a)

X
l2Gj

xjl � 1; 8j 2 ½Ji�; (17b)

xjl 2 f0; 1g; 8j 2 ½Ji�; l 2 Gj: (17c)

Here, each feasible schedule of job j l 2 Gj corresponds to
the set of decisions ðxjt; dj; yjhm; qj; 8m 2 ½M�; h 2 ½H�; t 2
½ti�Þ satisfying constraints (7b)(15a)(2b)(2f)-(2g)(2k)(2m)-
(2o). fr

jhðlÞ ¼
P

m2l e
r
my

l
jhm, 8h 2 l; r 2 ½R�. Constraint (17a) is

equivalent to (15b). A feasible solution to ILP (17) has a cor-
responding feasible solution in problem (16), and vice versa,
with the same objective value. To solve ILP (17) with an
exponential number of variables, we formulate the dual LP
of ILP (17) by relaxing xjl 2 f0; 1g to xjl � 0 and introducing
dual variables drhðtÞ and uj to constraints (17a) and (17b)

minimize
X
j2½Ji �

uj þ
X
t2½ti �

X
h2½H�

X
r2½R�

drhðtÞCr
h (18)

subject to

uj � wj �
X
t2T ðlÞ

X
h2l

X
r2½R�

drhðtÞfrjhðlÞ; 8j 2 ½Ji�; l 2 Gj; (18a)

drhðtÞ; uj � 0; 8j 2 ½Ji�; t 2 ½ti�; h 2 ½H�; r 2 ½R�: (18b)

P
t2T ðlÞ

P
h2l

P
r2½R� d

r
hðtÞfrjhðlÞ is the total cost of resource

occupied by job jwith schedule l. The RHS of (18a) is the job
utility, which equals to the job weight minus overall
resource cost of all workers serving job j by schedule l. We
minimize the dual objective by setting uj to maximum of 0
and the RHS of (18a) with the best schedule lj

uj ¼ maxf0;maxl2GjRHS of (18a)g: (19)

If uj > 0, we construct schedule of job j according to lj
(xjlj ¼ 1); or otherwise, we do not schedule it (xjl ¼ 0; 8l 2 Gj).

Note that Amaxweight can also handle the Ring-AllReduce
architecture by using subroutines ARAmincost1 and ARAmincost2

in line 3 and 4 and keeping sjhp; 8j 2 ½J�; h 2 ½H�; p 2 ½P �
equals to 0 all the time.

6.3 Cost Minimization Problem

The utility maximization problem of job j is equivalent to
the following cost minimization problem

min
X

t2½t0;t0þdjÞ

X
h2½H�

X
r2½R�

xjt0d
r
hðtÞ

X
m2½M�

ermyjhm ð20Þ

subject to X
t2½ti�

xjt ¼ 1; (20a)

ð7bÞ; ð15aÞ; ð2bÞ; ð2fÞ � ð2gÞ; ð2kÞ; ð2mÞ � ð2oÞ; 8t 2 ½ti�;

for the specific j:

Algorithm 6. Subroutine for Job j ARAmincost1

Input: ti;b
r
hðtÞ; drhðtÞ; Cr

h; 8h 2 ½H�; ; r 2 ½R�; t 2 ½ti�;
Output: lj; cost m;
1: Initialize uj ¼ 0; lj ¼ ? ; cost m ¼ þ1;
2: qj ¼ 1; /*deploy all j’s workers on one server*/
3: form0 ¼ 1 toM do
4: for F0 ¼ 1 toDj do

5: d̂j ¼ dEjDjKj

F0rjm0 e;
6: for t� ¼ 1 to ti � d̂j do
7: tþ ¼ t� þ d̂j;
8: for h ¼ 1; . . . ; H do
9: yjhm ¼ 0;vr

hðtÞ ¼ Cr
h � br

hðtÞ; 8t 2 ½ti�;m 2 ½M�;
p 2 ½P �; h 2 ½H�; r 2 ½R�;

10: yjhm0 ¼ minfminr2½R�;t2½t�;tþÞbv
r
h
ðtÞ

er
m0

c;F0g;
11: if F0 > yjhm0 then
12: cost ¼ þ1;
13: else
14: cost ¼ P

t2½t�;tþÞ
P

r2½R� d
r
hðtÞerm0yjhm0 ;

15: end if
16: if cost < cost m then
17: cost m ¼ cost; lj (ft�; d̂j; yy; qjg;
18: end if
19: end for
20: end for
21: end for
22: end for
23: return lj; cost m

We next show the schedule that minimizes job j’s cost
can be found efficiently and optimally using Algorithm 6
and Algorithm 7. When we fix the worker type m and the
number of workers serving job j, the number of acquired

time slots is at least d EjDjKjP
h2½H�

P
m2½M� yjhmrjm

e, i.e., the total

work time of all workers is at least dEjDjKj

rjm
e. If we further

know the starting time of job j, problem (21) is simplified as
the following ILP, where m ¼ m0,

P
h2½H�

P
m2½M� yjhm ¼ F0,

t0 ¼ t�, tþ ¼ t� þ dj

miny;sy;s costðm0; t�; tþÞ ¼
X

t2½t�;tþÞ

X
h2½H�

X
r2½R�

drhðtÞerm0yjhm0 ð21Þ

subject to

qj ¼ 1 if and only if h ¼ h0;8h; h0 : yjhm > 0; yjh0m > 0; (21a)

X
h2½H�

yjhm0 ¼ F0; (21b)

dj
X
h2½H�

yjhm0 � dEjDjKj

rjm0
e; (21c)

1524 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on September 02,2023 at 08:24:13 UTC from IEEE Xplore. Restrictions apply.

yjhm0 ; dj 2 f0; 1; . . .g; 8h 2 ½H�; (21d)

qj 2 f0; 1g: (21e)

That is, we need to find the best placement scheme for job
j to minimize the overall resource cost satisfying constraints
(21a), (21b), (21c), (21d), and (21e). Similarly, consider the
situation whether all j’s workers and PSs are deployed on
the same server, i.e., qj ¼ 1 or not i.e., qj ¼ 0. We come up
with algorithms to find the best schedule with the smallest
cost for job j as ARAmincost1 and ARAmincost2. ARAmincost1 han-
dles the case where all workers of job j are running on one

server, i.e., qj ¼ 1, rjm ¼ 1=ðvjm þ UjðF�1Þ
F Þ, and ARAmincost2

solves another, i.e., qj ¼ 0, rjm ¼ 1=ðvjm þ UjðF�1Þ
F þ 2pjðF�1Þ

Fbm
Þ.

Algorithm 7. Subroutine for Job j ARAmincost2

Input: ti;b
r
hðtÞ; drhðtÞ; Cr

h; 8h 2 ½H�; ; r 2 ½R�; t 2 ½ti�;
Output: lj; cost m;
1: Initialize uj ¼ 0; lj ¼ ? ; cost m ¼ þ1;
2: qj ¼ 0; /*deploy j’s workers on at least two servers*/
3: form0 ¼ 1 toM do
4: for F0 ¼ 1 toDj do

5: d̂j ¼ dEjDjKj

F0rjm0
e; N̂ ¼ d̂j;

6: for t� ¼ 1 to ti � d̂j do
7: tþ ¼ t� þ d̂j, Vh ¼ P

t2½t�;tþÞ
P

r2½R� d
r
hðtÞerm0 ;

8: List h 2 ½H� in nondecreasing order of Vh;
9: for h ¼ 1; . . . ; H do
10: vr

hðtÞ ¼ Cr
h � br

hðtÞ; 8t 2 ½ti�; h 2 ½H�; r 2 ½R�;
11: yjhm0 ¼ minfminr2½R�;t2½t�;tþÞbv

r
k
ðtÞ

er
m0

c; N̂g;
12: N̂ ¼ N̂ � yjhm0 ;
13: end for
14: if N̂ > 0 then
15: cost ¼ þ1;
16: else
17: cost ¼ P

t2½t�;tþÞ
P

h2½H�
P

r2½R� e
r
m0yjhm0drhðtÞ;

18: end if
19: if cost < cost m then
20: cost m ¼ cost; lj (ft�; d̂j; yy; qjg;
21: end if
22: end for
23: end for
24: end for
25: return lj; cost m

In ARAmincost1, we enumerate the worker types and the
potential number of workers serving job j in line 3 and 4. And
compute the execution time needed in lines 5. Given starting
time t� in line 6,we decide the deployment ofworkers in lines
8-19. More specifically, we enumerate the server to run all
workers on it. Line 9 sets fyjhmg8h2½H�;m2½M� to zero, and uses
vr
hðtÞ to record the amount of available type-r resource on

server h at time slot t. Lines 10 calculates the number of work-
ers respecting capacity constraint (2h), to fulfill job workload
EjDj. If not enough workers can be deployed, completing job
j is infeasible (lines 11 and 12); otherwise, we compute the
overall cost

P
t2½t�;tþÞ

P
h2½H�

P
r2½R� d

r
hðtÞerm0yjhm0 (line 14). We

identify the schedule with smallest cost in lines 16-17. Finally,
we return the resulting schedule lj and the corresponding
cost cost_m in line 23.

ARAmincost2 counts the maximum number of time slots with

different processing capacity, i.e., rjm ¼ 1=ðvjm þ UjðF�1Þ
F þ

2pjðF�1Þ
Fbm

Þ, which is related to the type and number of workers,

in line 5. Lines 9-13 maximally deploy workers starting from
the cheapest server, respecting capacity constraint (2h) and
the total number of workers F0 in (21b). Line 14 verifies the
feasibility of the solution and line 17 calculates the cost of fea-
sible solution. Results are returned in line 25.

6.4 Theoretical Analysis

Theorem 6. Algorithms 6 and 7 producess optimal solution of
problem (16) in two cases, respectively.

Proof. Please see Appendix, available in the online supple-
mental material. tu

Theorem 7. Amaxweight in Algorithm 3, with ARAmincost1 and
ARAmincost2, computes a feasible solution to problems (16)(17)(18).

Proof. Please see Appendix, available in the online supple-
mental material. tu

Theorem 8. The time complexity of Aonline in Algorithm 1 for
Ring-AllReduce architecture is polynomial.

Proof. Please see Appendix, available in the online supple-
mental material. tu

Note that the approximation ratio of Amaxweight for Ring-All-
Reduce architecture is the same as we claimed in Theorem
3. And the competitive ratio of Aonline for Ring-AllReduce
architecture is the same as we claimed in Theorem 5.

7 PERFORMANCE EVALUATION

Settings.We simulate anML cluster running for T 2 ½100; 300�
time slots (default value: 150). Each time slot is one hour long.
The default number of servers is 150. The overall resource
capacities,C, are set to be approximately [0.2,0.5] fraction of the
respective overall job resource demand, which is computed by
adding the ideal resource demand of all jobs. Resources config-
uration of each server is set according to Amazon EC2 GPU
instances P3, P2 and G3. The numbers of worker and PS types
are set to be 8 and 10, respectively. Following similar settings in
[3][4][2], we set resource configuration for each type worker as
follows: 1 to 4 GPUs, 1 to 16 vCPUs and bandwidth of
100Mbps to 5Gbps. Resource configuration for each type PS is:
1 to 16 vCPUs and bandwidth of 5Gbps to 20 Gbps. For each
job, wj is in [200,5000], Ej is set within [50,100], Dj is in [5,50],
Kj is in [10,50], Up

j is in [10,100] milliseconds, vjm is in
[0.001,0.05] time slots, and pj is within [30,575]MB [37], [4].

Algorithms for Comparison.WecompareAonline with three job
scheduling policies: (i) FIFO: default scheduler in Hadoop and
Spark [45]; jobs run by order of arrival, with fixed numbers
and resource configuration of workers (and PSs). The number
of workers is fixed to a number within [1,30] for FIFO. (ii)
Dominant Resource Fairness Scheduling (DRF): default sched-
uler in YARN [8] and Mesos [7]; the numbers of workers (and
PSs) are computed to achieve max-min fairness in dominant
resources [6]. (iii) AntMan [17]: a cluster scheduler, which
introduces two types of jobs: opportunistic job and resource-
guarantee job. AntMan schedules resource-guarantee jobs first
and allocates sufficient GPU resources to them. For

ZHOU ETAL.: ONLINE SCHEDULING ALGORITHM FOR HETEROGENEOUS DISTRIBUTED MACHINE LEARNING JOBS 1525

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on September 02,2023 at 08:24:13 UTC from IEEE Xplore. Restrictions apply.

opportunistic jobs, AntMan aims to utilize free resources to the
best of its ability. Resource-guarantee jobs that suffer long
queuing delay will be automatically executed as opportunistic
jobs. (iv) Tiresias [20]: a preemptive scheduler, which aims to
minimize the average JCT (i.e., time from job submission to job
completion). Tiresias assigns jobs according to the multiplica-
tion of a job’s remaining workload and the number of resour-
ces, (e.g., GPUs, RAM and CPUs). In (i)-(iv), the resource
configuration of workers (and PSs) is the same as that in the
ideal case, which is derived according to recent literature [10],
[11], [12] in our simulation studies. We compare Amaxweight

with an algorithm from recent literature [44] which proposes a
greedy strategy to schedule jobs with deadlines in the offline
scenario.

7.1 Performance of Aonline

1) Objective Value (PS framework): Fig. 2 compares the total
weighted completion time produced by different algorithms
under different numbers of jobs, where T ¼ 300. Aonline per-
forms at least 30% better than the other algorithms in both
cases. The objective valuemay growwith the increase of num-
ber of servers according to Fig. 3. Note that � in price function
(11) increases in linewith the number of serversH.Aonline pre-
fers to schedule jobs of largerweightwith larger �when avail-
able resources are insufficient. Thus, when the overall
resource capacities nearly remain the same, the total amount
of fragment resources increases and effective resource capac-
ity of the servers decreases with larger H. The objective val-
ues in Fig. 2 (Fig. 3) are the average of multiple trials. In
Figs. 2 and 3, the total weight job completion time obtained
by AntMan and Tiresias are both much larger than other
algorithms. This is because job execution duration is length-
ened due to frequent preemption. Fig. 4 calculates the

objective value obtained by Aonline under different F , i.e., the
upper bound of a job’s weight to its resources consumption.
Recall that parameter � in the price function and the theoreti-
cal competitive ratio are related to F . We can see that for
larger values of F , the objective value is larger. Larger F rep-
resents larger weights of served jobs, i.e., jobs with weight
which is not large enoughwill be executed later.

(Ring-AllReduce framework): Figs. 5 and 6 represent the
total weighted completion time achieved by five algo-
rithms under different numbers of jobs and servers,
respectively. And our online job scheduling algorithm
Aonline performs the best in both two cases. Compared to
Figs. 2 and 3, the results are similar, which illustrates that
Aonline outperforms four baselines. In Fig. 6, we can
observe that the total weighted completion time increases
as the increase of number of servers, which is similar to
the PS framework.

2) Running Time: We apply the tic and toc functions in
MATLAB to measure the execution time of our online algo-
rithm. We run 10 tests on a desktop computer (Intel Core i3-
6100/8GB RAM) and present the average result in Fig. 7.
We can observe that, the running time of Aonline increases

Fig. 2. Total weighted completion time with PS framework.

Fig. 3. Total weighted completion time with PS framework.

Fig. 4. Total weighted completion time of Aonline under different F .

Fig. 5. Total weighted completion time with RA framework.

Fig. 6. Total weighted completion time with RA framework.

1526 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on September 02,2023 at 08:24:13 UTC from IEEE Xplore. Restrictions apply.

with the number of jobs, but still remains at a low level (< 2
minutes).

3) The impact of demand elasticity: Fig. 9 compares the total
weighted job completion time obtained by PS and Ring-All-
Reduce framework under different types of workers. To
illustrate the impact of the types of workers, we select four
frequent-used types of Amazon EC2 instances [40] (i.e.,
p3.4xlarge, p2.2xlarge, p3.2xlarge and p2.xlarge) to act as dif-
ferent types ofworkers. Here, we assume that all jobs employ
the same type of workers. The deployment of workers and
PSs (including the number of workers/PSs and the execution
time window) are determined by Aonline. In Fig. 9, we can
observe that different types of workers greatly affect the total
weighted job completion time. Aonline explores the demand
elasticity, and chooses the best worker type for each job.
Therefore, Aonline can achieve the smallest total weighted job
time. To investigate the impact of the number of workers, we
plot the computing process of the number of workers in
Aonline. Aonline enumerates all possible numbers and always
selects the one with the smallest total weighted job

completion time. Fig. 10 illustrates that the total weighted job
completion time decreases as the increase of number of
workers deployed for jobs. This is because the more workers
allocated to the job, the faster the jobwould be completed.

7.2 Performance of Amaxweight

Fig. 8 compares the total weight achieved by Amaxweight with
related algorithm from recent literature [44]. Our offline
algorithm Amaxweight performs much better than the other.
Fig. 11 represents the total weight of Amaxweight under differ-
ent F , which is related to price function in line 14 of
Amaxweight. We can see that for smaller values of F , the total
weight is larger. Smaller F represents more jobs can be
served with the same total number of jobs, particularly, jobs
with smaller weight. Fig. 12 shows the total weight of
Amaxweight under different H, i.e., the number of servers to
deploy workers and PSs. It reflects that the total weight is
smaller for larger values of H because the total amount of
fragment resources increases with the increase of the num-
ber of servers. In Fig. 12, there is an upward trend in the
total weight with the increment of the number of jobs.

Fig. 7. Running time of Aonline with different ML distributed system
architectures.

Fig. 8. Total scheduled job weight of Amaxweight and Jain et al.’s algorithm
[44].

Fig. 9. The impact of workers’ types.

Fig. 10. The impact of the number of workers.

Fig. 11. Total weight of Amaxweight under different F .

Fig. 12. Total weight of Amaxweight under differentH.

ZHOU ETAL.: ONLINE SCHEDULING ALGORITHM FOR HETEROGENEOUS DISTRIBUTED MACHINE LEARNING JOBS 1527

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on September 02,2023 at 08:24:13 UTC from IEEE Xplore. Restrictions apply.

8 CONCLUSION

We proposed an online algorithm for scheduling synchro-
nous training jobs inML clusters. The online algorithm targets
total weighted completion timeminimization, consisting of (i)
an online greedy-interval algorithm that converts the online
scheduling problem into a series of batch processing prob-
lems; (ii) a primal-dual algorithm running for each batch,
which computes the best execution window of each job, with
proper number and type of workers (and parameter servers).
Both theoretical analysis and trace-driven simulation studies
validate our online algorithm’s good performance, as com-
pared to both offline optimum and commonly used schedul-
ing algorithms in read-world cloud systems.

REFERENCES

[1] T. Chen et al., “MXNet: A Flexible and efficient machine learning
library for heterogeneous distributed systems,” in Proc. NIPS
Workshop Mach. Learn. Syst., 2016.

[2] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project
Adam: Building an efficient and scalable deep learning training
system,” in Proc. USENIX Conf. Oper. Syst. Des. Implementation,
2014, pp. 571–582.

[3] M. Li et al., “Scaling distributed machine learning with the param-
eter server,” in Proc. USENIX Conf. Oper. Syst. Des. Implementation,
2014, pp. 593–598.

[4] Y. Bao, Y. Peng, C. Wu, and Z. Li, “Online job scheduling in dis-
tributed machine learning clusters,” in Proc. IEEE Conf. Comput.
Commun., 2018, pp. 495–503.

[5] Baidu-Allreduce. [Online]. Available: https://github.com/baidu-
research/baidu-allreduce

[6] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker,
and I. Stoica, “Dominant resource fairness: Fair allocation of mul-
tiple resource types,” in Proc. USENIX Conf. Netw. Syst. Des. Imple-
mentation, 2011, pp. 323–336.

[7] B. Hindman et al., “Mesos: A platform for fine-grained resource
sharing in the data center,” in Proc. USENIX Conf. Netw. Syst. Des.
Implementation, 2011, pp. 295–308.

[8] V. K. Vavilapalli et al., “Apache hadoop YARN: Yet another
resource negotiator,” in Proc. ACM 4th Annu. Symp. Cloud Comput.,
2013, pp. 1–16.

[9] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune,
and J. Wilkes, “Large-scale cluster management at Google
with Borg,” in Proc. ACM 10th Eur. Conf. Comput. Syst., 2015,
pp. 1–17.

[10] Y. Gao, L. Chen, and B. Li, “Spotlight: Optimizing device place-
ment for training deep neural networks,” in Proc. ACM 35th Int.
Conf. Mach. Learn., 2018, pp. 1676–1684.

[11] H. Zhang et al., “Poseidon: An efficient communication architec-
ture for distributed deep learning on GPU clusters,” in Proc. USE-
NIX Annu. Tech. Conf., 2017, pp. 181–193.

[12] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: An effi-
cient dynamic resource scheduler for deep learning clusters,” in
Proc. ACM 13th EuroSys Conf., 2018, pp. 1–14.

[13] S. Li, “Scheduling to minimize total weighted completion time via
time-indexed linear programming relaxations,” in Proc. IEEE 58th
Annu. Symp. Found. Comput. Sci., 2017, pp. 283–294.

[14] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein, “Scheduling to
minimize average completion time: Off-line and on-line approxi-
mation algorithms,” Math. Operations Res., vol. 22, no. 3, pp. 513–
544, 1997.

[15] Y. Bao, Y. Peng, and C. Wu, “Deep learning-based job placement
in distributed machine learning clusters,” in Proc. IEEE Conf. Com-
put. Commun., 2019, pp. 505–513.

[16] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phanishayee,
and M. Zaharia, “Heterogeneity-aware cluster scheduling policies
for deep learning workloads,” in Proc. USENIX Conf. Oper. Syst.
Des. Implementation, 2020, pp. 481–498.

[17] W. Xiao et al., “AntMan: Dynamic scaling on GPU clusters for
deep learning,” in Proc. USENIX Conf. Oper. Syst. Des. Implementa-
tion, 2020, pp. 533–548.

[18] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, and
F. Yang, “Analysis of large-scale multi-tenant GPU clusters for
DNN training workloads,” in Proc. USENIX Annu. Tech. Conf.,
2019, pp. 947–960.

[19] K. Mahajan et al., “THEMIS: Fair and efficient GPU cluster sched-
uling,” in Proc. USENIX 17th Conf. Netw. Syst. Des. Implementation,
2020, pp. 289–304.

[20] J. Gu et al., “Tiresias: A GPU cluster manager for distributed deep
learning,” in Proc. USENIX Conf. Netw. Syst. Des. Implementation,
2019, pp. 485–500.

[21] M. M. Amiri and D. G€und€uz, “Computation scheduling for dis-
tributed machine learning with straggling workers,” in Proc. IEEE
Int. Conf. Acoust. Speech Signal Process., 2019, pp. 8177–8181.

[22] F. Yan, O. Ruwase, Y. He, and T. Chilimbi, “Performance model-
ing and scalability optimization of distributed deep learning sys-
tems,” in Proc. ACM Int. Conf. Knowl. Discov. Data Mining, 2015,
pp. 1355–1364.

[23] Y. Peng, Y. Bao, Y. Chen, C. Wu, C. Meng, and W. Lin, “DL2: A
deep learning-driven scheduler for deep learning clusters,” 2019,
arXiv:1909.06040.

[24] W. Shi, L. Zhang, C. Wu, Z. Li, and F. C. Lau, “An online auction
framework for dynamic resource provisioning in cloud
computing,” in Proc. ACM SIGMETRICS Int. Conf. Meas. Model.
Comput. Syst., 2014, pp. 71–83.

[25] Z. Zhang, Z. Li, and C. Wu, “Optimal posted prices for online
cloud resource allocation,” in Proc. ACM SIGMETRICS Meas.
Anal. Comput. Syst., 2017, pp. 1–26.

[26] X. Zhang, Z. Huang, C. Wu, Z. Li, and F. Lau, “Online auctions in
IaaS clouds: Welfare and profit maximization with server costs,”
in Proc. ACM SIGMETRICS Int. Conf. Meas. Model. Comput. Syst.,
2015, pp. 3–15.

[27] L. Jiao, A. Tulino, J. Llorca, Y. Jin, and A. Sala, “Smoothed online
resource allocation in multi-tier distributed cloud networks,”
IEEE/ACMTrans. Netw., vol. 25, no. 4, pp. 2556–2570, Aug. 2017.

[28] L. Jiao, A. Tulino, J. Llorca, Y. Jin, A. Sala, and J. Li, “Online con-
trol of cloud and edge resources using inaccurate predictions,” in
Proc. IEEE/ACM 26th Int. Symp. Qual. Service, 2018, pp. 1–6.

[29] Y. Azar, I. Kalp-Shaltiel, B. Lucier, I. Menache, J. S. Naor, and J.
Yaniv, “Truthful online scheduling with commitments,” in Proc.
ACM Conf. Econ. Comput., 2015, pp. 715–732.

[30] R. Zhou, Z. Li, C. Wu, and Z. Huang, “An efficient cloud market
mechanism for computing jobs with soft deadlines,” IEEE/ACM
Trans. Netw., vol. 25, no. 2, pp. 793–805, Apr. 2017.

[31] T. Wang, Z. Qian, L. Jiao, X. Li, and S. Lu, “Geoclone: Online task
replication and scheduling for geo-distributed analytics under
uncertainties,” in Proc. IEEE/ACM 28th Int. Symp. Qual. Service,
2020, pp. 1–10.

[32] M. Sheikhalishahi, N. Eskandari, A. Mashayekhi, and A. Azadeh,
“Multi-objective open shop scheduling by considering human
error and preventive maintenance,” Appl. Math. Model., vol. 67,
pp. 573–587, 2019.

[33] B. Tian et al., “Scheduling coflows of multi-stage jobs to minimize
the total weighted job completion time,” in Proc. IEEE INFOCOM,
2018, pp. 864–872.

[34] Z. Wang et al., “Efficient scheduling of weighted coflows in
data centers,” IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 9,
pp. 2003–2017, Sep. 2019.

[35] M. Abadi et al., “TensorFlow: A system for large-scale machine
learning,” in Proc. USENIX 12th Conf. Oper. Syst. Des. Implementa-
tion, 2016, pp. 265–283.

[36] Microsoft Cognitive Toolkit. [Online]. Available: https://www.
microsoft.com/en-us/cognitive-toolkit/

[37] F. N. Iandola, M. W. Moskewicz, K. Ashraf, and K. Keutzer,
“FireCaffe: Near-linear acceleration of deep neural network train-
ing on compute clusters,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2016, pp. 2592–2600.

[38] Distributed Training in TensorFlow. [Online]. Available: https://
www.tensorflow.org/guide/distribute_strategy

[39] S. Jeaugey, “NCCL 2.0,” 2017.
[40] Amazon EC2 Instances. [Online]. Available: https://aws.amazon.

com/ec2/instance-types/
[41] ”Google Cloud TPU,” 2017. [Online]. Available: https://cloud.

google.com/tpu
[42] C. Chen, W. Wang, and B. Li, “Round-robin synchronization: Mit-

igating communication bottlenecks in parameter servers,” in Proc.
IEEE Conf. Comput. Commun., 2019, pp. 532–540.

1528 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on September 02,2023 at 08:24:13 UTC from IEEE Xplore. Restrictions apply.

https://github.com/baidu-research/baidu-allreduce
https://github.com/baidu-research/baidu-allreduce
https://www.microsoft.com/en-us/cognitive-toolkit/
https://www.microsoft.com/en-us/cognitive-toolkit/
https://www.tensorflow.org/guide/distribute_strategy
https://www.tensorflow.org/guide/distribute_strategy
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://cloud.google.com/tpu
https://cloud.google.com/tpu

[43] G. Gens and E. Levner, “Complexity of approximation algorithms
for combinatorial problems: A survey,” ACM SIGACT News,
vol. 12, no. 3, pp. 52–65, 1980.

[44] N. Jain, I.Menache, J. S. Naor, and J. Yaniv, “Near-optimal schedul-
ing mechanisms for deadline-sensitive jobs in large computing
clusters,”ACMTrans. Parallel Comput., vol. 2, no. 1, 2015, Art. no. 3.

[45] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Sto-
ica, “Spark: Cluster computing with working sets,” in Proc. 2nd
USENIX Conf. Hot Top. Cloud Comput., 2010, Art. no. 10.

Ruiting Zhou (Member, IEEE) received the PhD
degree from the Department of Computer Science,
University of Calgary, Calgary, Canada, in 2018.
She has been an associate professor with the
School of Cyber Science and Engineering, Wuhan
University since June 2018. Her research interests
include cloud computing, machine learning and
mobile network optimization. She has published
research papers in top-tier computer science con-
ferences and journals, including IEEE INFOCOM,
ACM MobiHoc, ICDCS, IEEE/ACM Transactions

on Networking, IEEE Journal on Selected Areas in Communications, IEEE
Transactions onMobile Computing. She also serves as a reviewer for jour-
nals and international conferences such us the IEEE Journal on Selected
Areas in Communications, IEEE Transactions onMobile Computing, IEEE
Transactions on Cloud Computing, IEEE Transactions on Wireless Com-
munications, and IEEE/ACM IWQOS.

Jinlong Pang received the BE degree from the
School of Power and Machinery and the second
BE degree from the School of Computer both
from Wuhan University, Wuhan, China. Currently
he is working toward the ME degree with the
School of Cyber Science and Engineering at
Wuhan University, Wuhan, China. His research
interests include distributed machine learning,
federated learning, online learning, and algorithm
optimization.

Qin Zhang received the BE degree and the ME
degree both from the School of Computer Science,
Wuhan University, Wuhan, China. Her research
interests include distributed machine learning,
online scheduling, and algorithm optimization.

Chuan Wu (Senior Member, IEEE) received her
BEngr and MEngr degrees from the Department of
Computer Science and Technology, Tsinghua Uni-
versity, China, in 2000 and 2002, respectively, and
the PhD degree from the Department of Electrical
and Computer Engineering, University of Toronto,
Toronto, Canada, in 2008. Since September 2008,
She has been with the Department of Computer
Science at the University of Hong Kong, where she
is currently a professor and serves as an associate
head on curriculum and development matters. Her

current research interests include the areas of cloud computing, distributed
machine learning/big data analytics systems, network function virtualiza-
tion, and data center networking. She is a member of ACM, and served as
the chair of the Interest Group on Multimedia services and applications
over Emerging Networks (MEN) of the IEEE Multimedia Communication
Technical Committee (MMTC) from 2012 to 2014. She is an associate edi-
tor of IEEETransactions onCloudComputing, IEEETransactions onMulti-
media and ACMTransactions onModeling and Performance Evaluation of
Computing Systems. She has also served as TPCmembers and reviewers
for various international conferences and journals. She was the co-recipi-
ent of the best paper awards of HotPOST2012 and ACMe-Energy 2016.

Lei Jiao (Member, IEEE) received the PhD degree
in computer science from the University of
G€ottingen, G€ottingen, Germany. He is currently an
assistant professor with the Department of Com-
puter and Information Science, University of Ore-
gon, USA. Previously he worked as a member of
technical staff at Alcatel-Lucent/Nokia Bell Labs in
Dublin, Ireland and also as a researcher at IBM
Research in Beijing, China. His research interests
include the mathematics of optimization, control,
learning, and mechanism design applied to com-

puter and telecommunication systems, networks, and services. He pub-
lishes papers in journals such as IEEE Journal on Selected Areas in
Communications, IEEE/ACM Transactions on Networking, IEEE Transac-
tions on Parallel and Distributed Systems, IEEE Transactions on Mobile
Computing, and IEEE Transactions on Dependable and Secure Comput-
ing, and in conferences such as INFOCOM, MOBIHOC, ICNP, ICDCS,
SECON, and IPDPS. He is a recipient of the NSFCAREERAward. He also
received the best paper awards of IEEE LANMAN 2013 and IEEE CNS
2019, and the 2016 Alcatel-Lucent Bell Labs U.K. and Ireland Recognition
Award.Hewason the program committees of conferences including INFO-
COM, MOBIHOC, ICDCS, IWQoS, and ICC, and was also the program
chair ofmultiple workshopswith INFOCOMand ICDCS.

Yi Zhong received the BE degree from the
School of Information Management from Wuhan
University, Wuhan, China. Now she is currently
working toward the ME degree with the School of
Cyber Science and Engineering at Wuhan Uni-
versity, Wuhan, China. Her research interests
include optimization algorithms, online schedul-
ing, and network security.

Zongpeng Li (Senior Member, IEEE) received the
BE degree in computer science from Tsinghua Uni-
versity, Beijing, China, in 1999, and the PhD degree
from the University of Toronto, Toronto, Canada, in
2005. He has been with the University of Calgary
and then Wuhan University. His research interests
include computer networks and cloud computing.
He was named an Edward S. Rogers Sr. Scholar, in
2004, won theAlberta Ingenuity NewFaculty Award,
in 2007, and was nominated for the Alfred P. Sloan
Research Fellow, in 2007. He coauthored papers

that received best paper awards at the following conferences: PAM 2008,
HotPOST 2012, and ACM e-Energy 2016. He received the Department
Excellence Award from the Department of Computer Science, University of
Calgary, the Outstanding Young Computer Science Researcher Prize from
the Canadian Association of Computer Science, and the Research Excel-
lenceAward from the Faculty of Science, University of Calgary.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

ZHOU ETAL.: ONLINE SCHEDULING ALGORITHM FOR HETEROGENEOUS DISTRIBUTED MACHINE LEARNING JOBS 1529

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on September 02,2023 at 08:24:13 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

