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This article studies emergency demand response (EDR) mechanisms from a data center perspective, where a

cloud participates in a mandatory EDR program while receiving computing job bids from cloud users in an

online fashion. We target a realistic EDR mechanism where (i) the cloud provider dynamically packs different

types of resources on servers into requested VMs and computes job schedules to meet users’ requirements,

(ii) the power consumption of servers in the cloud is limited by the grid through the EDR program, and

(iii) the operation cost of the cloud is considered in the calculation of social welfare, measured by an elec-

tricity cost that consists of both volume charge and peak charge. We propose an online auction for dynamic

cloud resource provisioning that is under the control of the EDR program, runs in polynomial time, achieves

truthfulness, and close-to-optimal social welfare for the cloud ecosystem. In the design of the online auc-

tion, we first propose a new framework, compact exponential LPs, to handle job scheduling constraints in

the time domain. We then develop a posted pricing auction framework toward the truthful online auction

design, which leverages the classic primal-dual technique for approximation algorithm design. We evaluate

our online auctions through both theoretical analysis and empirical studies driven by real-world traces.

CCS Concepts: • Information systems → Data centers; • Theory of computation → Packing and cov-

ering problems; Algorithmic mechanism design; • Hardware → Enterprise level and data centers

power issues;

Additional Key Words and Phrases: Cloud computing, demand response, mechanism design, approximation

algorithms

ACM Reference format:

Ruiting Zhou, Zongpeng Li, and Chuan Wu. 2018. An Online Emergency Demand Response Mechanism for

Cloud Computing. ACM Trans. Model. Perform. Eval. Comput. Syst. 3, 1, Article 5 (February 2018), 25 pages.

https://doi.org/10.1145/3177755

1 INTRODUCTION

As in the traditional power grid, the quintessential problem in a smart grid is the realtime supply-
demand balance, for the stability of the power network. Demand response facilitates the efficiency,
reliability, and sustainability of smart grids by reducing and temporally shifting peak loads (Zhou
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et al. 2015). Data centers are ideal candidates for participation in such demand response programs,
as they represent a substantial fraction of the total power demand witnessed by the grid, part of
which naturally exhibit an elastic nature (Wierman et al. 2014). In 2011, data centers consumed
approximately 1.5% of all electricity worldwide, and the ratio is predicted to increase to 8% by 2020
(Liu et al. 2014). U.S. data centers consumed an estimated 91 billion kilowatt hours of electricity
and incurred 9 billion for electricity bills in 2013 (NRDC 2016). Furthermore, computing jobs in
data centers are often elastic and hence can be scheduled flexibly across the temporal domain
(Wierman et al. 2014), amenable to demand curtailing and temporal shifting.

A representative scenario for data centers to participate in a demand response program is coordi-
nated consumption reduction dictated by the grid in emergency demand response (EDR), when sta-
bility of the grid is otherwise jeopardized. When an emergency is imminent (e.g., extreme weather
conditions), EDR coordinates the power usage of large electricity users to prevent blackouts. Be-
cause of their huge and flexible demand, data centers now serve as a main force in EDR. For
example, on July 22, 2011, hundreds of data centers participated in EDR by shifting their work-
load to reduce the power consumption, preventing a nationwide blackout in the USA and Canada
(Misra 2016). Since then, the grid has witnessed a rapid increase in EDR participation. In PJM, a
major regional transmission organization in the USA, EDR participation is projected to increase
from under 1,700MW in 2006−2007 to close to 15,000MW in 2015−2016, based on existing capac-
ity commitments (PJM 2014). A typical type of EDR program is mandatory EDR (PJM 2014; PJM
2016). Data centers sign a contract ahead with the smart grid, and commit to reduce load or only
consume electricity up to a certain level when an EDR signal is dispatched. They receive mone-
tary remuneration when their actual power consumption is below the commitment level, and face
a heavy penalty if they fail to do so. EDR helps consumers save billions of dollars each year—for
instance, PJM credited $11.8 billion in one year to consumers, the majority of which is produced
by EDR (ENERNOC 2016).

We focus on EDR in cloud data centers that run jobs from many users. Such a cloud data center
faces a highly non-trivial optimization problem in the event of EDR, in which it strives to sat-
isfy the power consumption reduction dictated by the grid, make judicious online decisions on
accepting/declining job bids submitted by cloud users, and compute the most efficient execution
schedules for the accepted jobs to minimize operating cost. Operating cost of the cloud comes
mainly from electricity cost, which in turn is directly coupled with the processing power of the
cloud data center, i.e., how fast the cloud can serve the admitted jobs. A cloud user’s job bid spec-
ifies (a) the number of each type of virtual machine (VM) required, which can be directly mapped
to the amount of each type of cloud resources (e.g., CPU, RAM, disk) required; (b) the length of the
job, measured in the number of time slots required for job execution; (c) the preferred deadline for
job completion, as well as a penalty function that describes the cost incurred by different degrees of
deadline violation; and (d) the amount of monetary remuneration the cloud user is willing to pay.

The goal of this work is to design an online auction for execution at the cloud upon an EDR event,
such that (i) the auction runs in an online fashion, making job admission and scheduling decisions
immediately upon the arrival of a bid; (ii) the auction mechanism is time efficient and executes in
polynomial time; (iii) the auction is truthful, in that it guarantees truthful bidding and constitutes
a dominant strategy for each cloud user; and (iv) social welfare, including the net utility of both the
cloud and its users, are maximized. By definition, the social welfare depends on which cloud jobs
are served as well as the cloud’s operating cost for serving them. Such operating cost is comprised
of primarily electricity cost, which in turn is composed of two components today: a volume charge,
which is the product of the total volume of power consumption and a pre-determined per-unit
price, as well as a peak charge, which is the product of a per-unit peak consumption price and the
maximum per-slot volume of consumption. In real-world scenarios, the grid sets the two per-unit
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charges such that the volume charge and the peak charge are often comparable, with the latter
exceeding the former in many occasions (Zhang et al. 2015a; Hydro 2016).

To focus on the challenges introduced by the EDR program, online job scheduling and the truth-
ful bidding requirement, we first restrict our attention to the case where electricity bills paid by the
cloud follows the simple volume charge rule. The extra challenge associated with the peak charge
term is handled later in the article. We first formulate the social welfare maximization problem
into a natural integer convex program. Such natural formulation consists of both conventional
constraints (resource capacity limits) that are well understood and easy to handle in a primal-dual
framework, as well as non-conventional constraints (job completion deadlines) whose correspond-
ing dual variables are hard to interpret and update in a primal-dual algorithm. A key contribution
of this work is a new technique based on a compact exponential formulation of the convex pro-
gram, as well as an accompanying dual oracle, which can work in concert with the primal-dual
optimization framework for effectively handling non-conventional constraints such as deadline
requirements. More specifically, we reformulate the social welfare maximization problem into a
compact convex program that consists of traditional capacity-type constraints only, at the cost of
introducing an exponential number of variables, each corresponding to a different job schedule
in the temporal domain. Correspondingly, the dual program has an exponential number of con-
straints. Nonetheless, we show a dual oracle that can efficiently identify a polynomial number of
dual constraints that need to be considered.

By combining the compact exponential optimization technique with the classic primal-dual
method, we are able to adapt the recent posted-pricing auction framework to design an online
cloud EDR auction that runs in polynomial time, guarantees truthful bidding, and achieves near-
optimal social welfare. In particular, we update the dual variables that correspond to primal ca-
pacity constraints carefully in the online auction, to filter out low-price bids and to reserve cloud
resources for potential future bids with high bidding prices. Consequently, a good competitive ra-
tio in social welfare can be theoretically proven. Upon the arrival of a job bid, our posted-pricing
auction compares its bidding price with the optimal cost for serving this job. Here we design an ef-
ficient scheduling algorithm that computes the minimum cost of serving a job with a soft deadline,
given static resource prices in different time windows. Whether a job is accepted depends solely on
whether its bidding price exceeds its minimum serving cost. As a result, our auction mechanism
is both online and truthful.

We further extend our studies of online mechanism design with the peak charge component
considered, taking on an extra dimension of challenge corresponding to the online optimization
nature of peak electricity charges. We formulate the compact exponential version of the social
welfare maximization problem, as well as its dual problem. In the primal-dual framework, we now
need to handle the dual variables that correspond to the peak charge constraints in the primal
compact exponential program. Based on two different strategies of handling the dual variables for
peak charges, we present two versions of the online posted-pricing mechanism: a simple version
that handles the dual variables in a peak-oblivious fashion and an improved version that updates
the dual variables by taking into account the hitherto peak consumption rate. We analyze and com-
pare these two versions of online mechanisms for peak charges through both theoretical studies
and simulations driven by real-world traces.

The rest of the article is structured as follows. In Section 2, we review related work in demand
response and cloud market mechanisms. Section 3 outlines the problem model and assumptions.
Section 4 presents and analyzes an online cloud EDR auction based on a volume charge model
for electricity cost; Section 5 further generalizes the studies to the more general and realistic case
where electricity charges consist of both a volume charge term and a peak charge term. Section 6
presents performance evaluation, and Section 7 concludes the article.
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2 RELATED WORK

This work investigates efficient mechanisms for data centers to admit and schedule cloud jobs
while participating in a mandatory EDR program. We first review some related works about auc-
tion design in clouding computing. The earliest cloud auctions do not consider the dynamic pro-
visioning of VMs based on user demand, and assume that there are a signal type of VMs or the
number and types of VMs are fixed before the auction starts (Wang et al. 2012; Zaman and Grosu
2013). Subsequently, auction design for dynamic VM provisioning, in which the cloud provider as-
sembles VMs based on demand expressed in user bids, starts to appear in the past two years. Zhang
et al. (2014) formulate the dynamic resource provisioning problem in the cloud into a combinatorial
optimization problem with a packing nature, and propose a truthful randomized auction to solve it.
Their approach is based on an LP decomposition technique, computing an α-approximate solution
in polynomial time, with α ∼ 2.72 in typical scenarios. Zhang et al. (2015c) employ smoothed anal-
ysis and randomized reduction techniques to design a randomized cloud resource auction. Their
randomized mechanism achieves truthfulness, polynomial running time, and (1 − ϵ )-optimal so-
cial welfare, all in expectation. These mechanisms focus on a one-round auction, without consid-
ering the more realistic scenario where bids from could users arrive online.

Recently, a series of studies focused on the online auction design for dynamic VM allocation
in cloud computing. Shi et al. present the first online combinatorial auction for cloud computing
(Shi et al. 2014). They assume that cloud users are subject to budget constraints and bids arrive at
the beginning of each round of the auction. Their online framework first decomposes the long-
term optimization problem into a series of one-round auctions, and then applies the primal-dual
technique to design a truthful one-round auction. Zhang et al. (2015) consider a more practical
scenario where cloud users’ bids arrive randomly over a long time span. They further include
server cost when computing the social welfare and the cloud provider’s profit. The end result is
a truthful online auction that approximately maximizes the social welfare and provider’s profit in
polynomial running time. Compared with existing studies, a cloud user in our EDR auction bids
for a schedule rather than a fixed time window for its job execution. This work is among the first in
online EDR auction design for dynamic cloud resource provisioning that presents the scheduling
dimension in solution spaces.

Well-designed auction mechanisms are also a natural candidate for incentivizing demand re-
sponse participation. Zhou et al. (2015) present an efficient randomized approach for carrying out
demand response between the power grid and large electricity users, microgrids, and electricity
storage devices. Samadi et al. propose a VCG mechanism that aims to maximize the social wel-
fare of a smart grid. Their design requires electricity users to report their energy demand, and
computes the electricity payment based on the demand (Samadi et al. 2012). The majority of the
demand response literature studies demand response from the smart grid’s perspective, and is not
dedicated to the design of data center demand response.

Along the direction of data center demand response, Wierman et al. survey the opportunities
and challenges for data centers to participate in EDR (Wierman et al. 2014). Zhang et al. (2015b)
study EDR in multi-tenant colocation data centers, where each tenant manages its own servers
and participates in the EDR by reducing its power consumption. They propose a truthful reverse
auction to provide monetary remuneration to tenants, consummate to their energy reduction.
Zhou et al. (2015) consider the electricity trade between smart grids and green data centers in the
demand response service. They tailor a pricing scheme for geo-distributed green data centers to
minimize the energy cost. Zhang et al. (2015a) propose online electricity cost saving algorithms
for colocation data centers, when the electricity charge contains both volume charge and peak

charge. They consider two approaches to incentivize tenants to shed energy consumption: a pricing
approach and an auction approach. Different from the above studies, this work is from the data
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center’s perspective and focuses on the admission and scheduling of the cloud user’s jobs to satisfy
the power consumption constraint in EDR, while striving to maximize social welfare of the cloud
ecosystem. We consider the realistic scenario where electricity cost comprises both volume charge
and peak charge, making the auction design more challenging.

3 SYSTEM MODEL

We consider a typical type of demand response program, mandatory EDR (PJM 2014; PJM 2016).
The data center signs a contract with the smart grid a priori (e.g., one year ahead with PJM (2014))
and receives financial rebates for its committed load reduction, whereas failure to cut load as re-
quired during EDR incurs a heavy penalty. In the event of EDR, the grid sends a signal to the data
center at the beginning of the auction, specifying the amount of energy reduction that the data
center needs to reduce in each time slot. Based on that, the data center then calculates the amount
of available power in each slot, Et ,∀t ∈ [T ], to schedule its job execution.

The cloud data center hosts S servers and offers K types of resources, as exemplified by CPU,
RAM, and disk storage, which can be dynamically assembled into different types of VMs. Let [X ]
denote the integer set {1, 2, . . . ,X }. We assume the amount of type-k resource available in server
s ∈ [S] is cks units. The cloud service provider acts as the auctioneer to lease VMs to cloud users
through an online auction.

There are I cloud users, each submitting one bid for executing its job, during a large time span
1, 2, . . . ,T . User bids arrive randomly, each requesting a bundle of tailor-made VMs for job execu-
tion, mapping to a required amount of each type of resource. We consider batch jobs such as big
data analytics and Google crawling data processing. They don’t request always-on VM services,
and may tolerate a certain level of delay in the job completion. Let Bi denote user i’s bid. It submits
at time ti and contains (i) rk

i , the amount of type-k resource required to configure the tailor-made
VMs; (ii) wi , the number of time slots (not necessarily consecutive) needed to complete the job
by the tailor-made VMs; (iii) di , the desired deadline for job completion; and (iv) дi (τi ), a penalty
function defined over deadline violation, τi :

дi (τi ) =

{
дci

(τi ), if τi ∈ [0,T − di ]

+∞, otherwise
, (1)

where di + τi is the job completion time. Let bi denote user i’s bidding price if its job is completed
before the deadline di , and then bi − дi (τi ) is the corresponding bidding price with completion
time di + τi . дci

(τi ) is a nondecreasing function with дci
(0) = 0. User i’s bidding language can be

expressed as follows: Bi = {ti , {rk
i }k ∈[K ],wi ,di ,bi ,дi (τi )}.

Upon the arrival of each bid, the cloud provider immediately computes the resource allocation
and announces the auction results: (i) xis ∈ {0, 1}, where xis = 1 if user i’s job is accepted and
allocated on server s , and 0 otherwise; (ii) yis (t ) ∈ {0, 1} encodes the scheduling of user i’s job,
where yis (t ) = 1 if user i’s job is scheduled to run on server s at time t , and 0 otherwise; (iii)
pi , user i’s payment. Let vi and д′i (τi ) be user i’s true valuation if its job is completed before di

and true penalty function, and then vi − д′i (τi ) is the true valuation of user i’s bid. User i’s utility
with bidding price bi − дi (τi ) is ui (bi − дi (τi )) =

∑
s ∈[S]vixis − д′i (τi ) − pi . Each user is assumed

to be selfish and rational, with a natural aim to maximize its own utility. They may choose to lie
about the true valuation if doing so leads to a higher utility. In our online auction design, social
“happiness” is the target of optimization; towards this goal, it is important to elect truthful bids.

Definition 3.1. (Truthful Auction): A cloud auction is truthful if bidding true valuation is a dom-
inant strategy for a cloud user, always maximizing the user utility: for all bi − дi (τi ) � vi − д′i (τi ),
ui (vi − д′i (τi )) ≥ ui (bi − дi (τi )).
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Table 1. Summary of Notations

I # of users [X ] integer set {1, . . . ,X }
T # of time slots S # of servers

K # of resource types ti user i’s arrival time

ht electricity price at t hpeak peak electricity price

д penalty function pi user i’s payment

rk
i demand of type-k resource by user i

wi # slots requested by user i

τi # slots that pass the deadline for user i

di deadline of user i’s job

bi bidding price of user i’s job if completed before di

vi true valuation of user i’s job if completed before di

xis serve bid i on server s (1) or not (0)

yis (t ) whether to allocate user i’s job on server s at t

cks capacity of type-k resource on server s

e (t ) amount of power consumption at slot t

Et amount of available power at slot t , from EDR

It is natural to consider the operating cost when we aim to maximize the social welfare. The
operating cost mainly comprises power consumption of the servers, increasing with the incre-
ment of the resource occupied on the server. The power consumption of a server can typically
be modelled as

∑
k ∈[K ] βkuk (Tian and Zhao 2014), where uk is the utilization of type-k resource,

and βk represents the power consumption when type-k resource is in full usage. βk usually takes
the value within [20, 60] for CPU and [0.2, 2] for RAM (Tian and Zhao 2014; Kansal et al. 2010).
The operating cost equals the electricity charge paid by the data center to the utility company. In
this article, we consider two charge models: a basic model with volume charges only, and a more
realistic model with both volume charges and peak charges (Hydro 2016; Zhang et al. 2015a).

3.1 The Basic Volume Charge Model

Let e (t ) be the actual power consumption in slot t , the operating cost of the data center at t can
be defined as

ft (e (t )) =

{
hte (t ), if e (t ) ≤ Et

+∞, otherwise
, (2)

where ht is electricity price at time t , known by the data center before the auction starts.

Definition 3.2. (Social Welfare): The social welfare is the aggregate of users’ utilities∑
i ∈[I ] (

∑
s ∈[S]vixis − д′i (τi ) − pi ) plus cloud provider’s utility

∑
i ∈[I ] pi −

∑
t ∈[T ] ft (e (t )). Since

payments cancel themselves, the social welfare becomes
∑

i ∈[I ] (
∑

s ∈[S]vixis − д′i (τi )) −∑
t ∈[T ] ft (e (t )).

3.2 The Volume and Peak Charge Model

Let hpeak be the peak electricity cost, occurring in the slot with the maximum power consump-
tion. The utility of the cloud provider equals the aggregate of users’ payments minus the op-
erating cost. i.e.,

∑
i ∈[I ] pi −

∑
t ∈[T ] ft (e (t )) − hpeak maxt e (t ). The social welfare in this model

is
∑

i ∈[I ] (
∑

s ∈[S]vixis − д′i (τi )) −∑
t ∈[T ] ft (e (t )) − hpeak maxt e (t ). We summarize important no-

tations in Table 1 for easy reference.
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4 ONLINE AUCTION DESIGN UNDER THE VOLUME CHARGE MODEL

We start with a basic electricity cost model, in which the data center pays electricity charges
according to a fixed unit cost and its total volume of consumption (the volume charge model).
We first formulate the social welfare maximization problem and introduce the new framework to
handle job deadline constraints in Section 4.1. We then design an online auction in Section 4.2 and
present the theoretical analysis in Section 4.3.

4.1 Social Welfare Maximization Problem

Under the assumption of truthful bidding, the social welfare maximization problem can be formu-
lated into the following convex program:

maximize
∑
i ∈[I ]

��
�

∑
s ∈[S]

bixis − дi (τi )��
�
−

∑
t ∈[T ]

ft (e (t )), (3)

subject to ∑
s ∈[S]

xis ≤ 1, ∀i ∈ [I ], (3a)

yis (t )t ≤ di + τi ,∀t ∈ [T ],∀s ∈ [S], ∀i ∈ [I ] : ti ≤ t , (3b)

wixis ≤
∑

t ∈[T ]:ti ≤t

yis (t ),∀i ∈ [I ], ∀s ∈ [S], (3c)

∑
i ∈[I ]:ti ≤t

rk
i yis (t ) ≤ cks ,∀k ∈ [K[, ∀s ∈ [S],∀t ∈ [T ], (3d)

∑
s ∈[S]

∑
k ∈[K ]

βks
�
�

∑
i ∈[I ]:ti ≤t r

k
i yis (t )

cks

�
�
≤ e (t ),∀t ∈ [T ], (3e)

τi , e (t ) ≥ 0,xis ,yis (t ) ∈ {0, 1}, ∀i ∈ [I ],∀s ∈ [S],∀t ∈ [T ]. (3f)

Note that the following constraint is redundant, and is not explicitly included in the above
convex problem: yis (t ) ≤ xis ,∀i ∈ [I ],∀s ∈ [S],∀t ∈ [T ]. Constraint Equation (3a) indicates that
each user’s job is executed on at most one server. Constraint Equation (3b) ensures that a job is
scheduled to run only after its arrival time. Constraint Equation (3c) guarantees that the number
of time slots allocated to an accepted bid is sufficient for completing the job. The capacity limit of
each type of resource is modelled in constraint Equation (3d), and constraint Equation (3e) records
the total power consumption in each time slot into e (t ). Setting ft (e (t )) = +∞ when e (t ) > Et

ensures that the actual power consumption is capped at the EDR-specified amount.
If we letдi (τi ) = ft (e (t )) = 0, even in the offline setting, problem Equation (3) without constraint

Equations (3b), (3b), (3c), and (3e) is still an NP-hard combinatorial optimization problem, equiv-
alent to the classic knapsack problem. The challenge further escalates when we involve the jobs’
soft deadlines and operating cost. We shall resort to the primal-dual algorithm design technique
to address some of these challenges. However, the technique cannot be directly applied to Equa-
tion (3) since it involves unconventional constraints for modelling job deadlines. We first propose a
new framework to handle these unconventional constraints. More specifically, we reformulate the
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original problem Equation (3) into a compact exponential convex problem with a compact packing
structure, at the price of involving an exponential number of decision variables:

maximize
∑
i ∈[I ]

∑
l ∈ζi

bilxil −
∑

t ∈[T ]

ft (e (t )), (4)

subject to ∑
l ∈ζi

xil ≤ 1, ∀i ∈ [I ], (4a)

∑
i ∈[I ]

∑
l :t ∈T (l ),s ∈S (l )

rk
i xil ≤ cks ,∀k ∈ [K],∀s ∈[S],∀t ∈ [T ], (4b)

∑
s ∈[S]

∑
k ∈[K ]

βks

(∑i ∈[I ]
∑

l :t ∈T (l ),s ∈S (l ) r
k
i xil

cks

)
≤ e (t ),∀t ∈ [T ], (4c)

e (t ) ≤ 0,xil ∈ {0, 1},∀t ∈ [T ],∀i ∈ [I ], ∀l ∈ ζi . (4d)

Here ζi is the set of feasible time schedules for user i’s job. A feasible time schedule is the vector
l = ({xis }∀s ∈[S], {yis (t )}∀s ∈[S],t ∈[T ],τi ) that satisfies constraint Equations (3a), (3b), and (3c). xil is
the binary decision variable where xil = 1 if user i’s job is accepted and executed according to
schedule l ∈ ζi , and 0 otherwise.bil is the value based on schedule l , which equalsbi − дi (τi ) where
τi is the duration of deadline violation according to l .T (l ) and S (l ) represent the set of time slots and
the server when and where user i’s job is executed in schedule l , respectively. Constraint Equations
(4b) and (4c) are equivalent to Equations (3d) and (3e). Constraint Equation (4a) guarantees that a
job can only be accepted according to one schedule. A feasible solution to Equation (3) corresponds
to a feasible solution in Equation (4) and vice versa, and hence the optimal objective values of both
problems are equal.

We relax xil ∈ {0, 1} to xil ≥ 0 and introduce dual variablesui ,pks (t ) andm(t ) to Equations (4a),
(4b), and (4c). The Fenchel dual (Boyd and Vandenberghe 2004; Devanur et al. 2016) of the relaxed
problem Equation (4) is

minimize
∑
i ∈[i]

ui +
∑

k ∈[K ]

∑
s ∈[S]

∑
t ∈[T ]

ckspks (t ) +
∑

t ∈[T ]

f ∗t (m(t )), (5)

subject to

ui ≥ bil −
∑

k ∈[K ]

∑
t ∈T (l )

∑
s ∈S (l )

rk
i

(
pks (t ) +m(t )

βks

cks

)
,∀i ∈ [I ],∀l ∈ ζi , (5a)

pks (t ),ui ,m(t ) ≥ 0,∀i ∈ [I ],∀k ∈ [K],∀s ∈ [S],∀t ∈ [T ], (5b)

where f ∗t (m(t )) is the convex conjugate (Bauschke and Lucet 2012) of the cost function ft (·),
defined as

f ∗t (m(t )) = sup
e (t )≥0

{m(t )e (t ) − ft (e (t ))}.

Proposition 4.1. The explicit expression of f ∗t (m(t )) is

f ∗t (m(t )) =

{
0, m(t ) ≤ ht

(m(t ) − ht )Et , m(t ) > ht
. (6)

Proof. By the definition of f ∗t (m(t )), f ∗t (m(t )) = (m(t ) − ht )e (t ) if e (t ) ≤ Et and f ∗t (m(t )) =
−∞ otherwise. Thus, we only need to consider the case when e (t ) ≤ Et . If m(t ) − ht ≥ 0,
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(m(t ) − ht )e (t ) is maximized when e (t ) = Et with the maximum value (m(t ) − ht )Et ; if m(t ) −
ht ≤ 0, the maximum value of (m(t ) − ht )e (t ) is 0 when e (t ) = 0. �

4.2 Online Auction Design

A key problem in the online auction design is to decide whether to accept user i’s job and how
to schedule its job to maximize its utility, while the power consumption in each slot is limited
by the EDR program. If the cloud provider accepts user i’s job on server s with schedule l , then
xis = 1, τi is assigned according to the completion time, yis (t ) is updated and e (t ) is increased for
slots in T (l ). To solve the original convex problem Equation (3), we seek the help of the compact
exponential convex problem Equation (4) and its dual Equation (5). We observe that for each primal
variable xil , there is a dual constraint Equation (5a) associated to it. Complementary slackness in
the primal-dual technique indicates that xil is updated based on its dual constraint. xil remains
zero unless its associated dual constraint becomes tight. Because dual variable ui is nonnegative,
we let ui be the maximum of 0 and the right-hand side (RHS) of constraint Equation (5a), that is,

ui = max
��
�
0,max

l ∈ζi

⎧⎪⎪⎨⎪⎪⎩
bil −

∑
k ∈[K ]

∑
t ∈T (l )

∑
s ∈S (l )

rk
i

(
pks (t ) +m(t )

βks

cks

)⎫⎪⎪⎬⎪⎪⎭
��
�
. (7)

Accordingly, the winner is determined based onui : the cloud provider accepts user i’s job ifui > 0,
and serves it according to the schedule that maximizes the RHS of Equation (5a). The cloud provider
rejects user i’s job if ui ≤ 0.

The rational can be explained as follows. If we interpret pks (t ) as the unit capital price of type-k
resource on server s at time t and m(t ) as the unit electricity price at time t , then

∑
k ∈[K ]

∑
t ∈T (l )∑

s ∈S (l ) r
k
i (pks (t ) +m(t )

βks

cks
) is the total cost of user i’s job if it is accepted and scheduled by l .

Furthermore, the RHS of Equation (5a) is user i’s utility with schedule l . If we interpret ui as user
i’s utility, the assignment of ui in Equation (7) guarantees that user i’s job is always served with
the schedule that effectively maximizes its utility based on the current price, which leads to social
welfare maximization and truthfulness.

Although there are an exponential number of dual constraints involved in the computation of
ui , most of them can be filtered by a dual oracle based on dynamic programming. This is realized
through the selection of schedules. We fix a polynomial number of schedules by the dual oracle
(lines 1–14 in Algorithm 2), and let ui be the maximum of zero and the RHS of Equation (5a)
with these schedules. For each server s ∈ [S], we construct a set of best schedules. We fix the job
completion time to be tc (tc ∈ [ti +wi − 1,T ), then the best schedule is the one with the minimum
price among all schedules of the same completion time. The output of the dual oracle is such S sets
of best schedules. The construction of the best schedules can be accomplished through dynamic
programming method. The base case is the schedule l0 with slots in [ti , ti +wi − 1]. We push the
completion time one slot forward each time. We calculate the price c (t ) for user i’s job running

at time t , i.e., c (t ) =
∑

k ∈[K ] r
k
i (pks (t ) +m(t )

βks

cks
). If the completion time passes the deadline di ,

the price will be increased by the corresponding penalty, i.e., c (t ) =
∑

k ∈[K ] r
k
i (pks (t ) +m(t )

βks

cks
) +

дi (t − di ). In the process of replacing the completion time, we only need to compare the price of
the old competition time andwi − 1 slots preceding the old competition time. We next use a simple
example to illustrate how the algorithm works. If user i arrives at time 3 withwi = 4, then the basic
schedule is l0 = {3, 4, 5, 6}. The next step is to construct the best schedule with completion time
7. Assume that arg maxt ∈{3,4,5} c (t ) = 3, the best schedule is {6, 4, 5, 7} if c (6) < c (3) and {3, 4, 5, 7}
otherwise. This process is repeated until the completion time reaches T .
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We next discuss the design of the two prices: unit capital price pks (t ) and unit electricity price
m(t ). Recall that ht is the unit electricity price at time t charged by the power grid; thus we let
m(t ) = ht based on the interpretation of dual variablem(t ). For the design of pks (t ), we introduce
a new variable zks (t ), representing the amount of allocated type-k resource on server s at time
t . Let Uk and Lk be the maximum and minimum values per unit of type-k resource per unit of
time, respectively. Uk and Lk represent how users evaluate a unit of type-k resource, considering
both the capital cost and electricity cost. Hence, we assume that Lk > ht ,∀t ∈ [T ], without loss of
generality. We propose a price function such that the total unit price pks (t ) +m(t ) equals Lk at
the beginning and reaches Uk ultimately. Because m(t ) = h(t ), we let pks (t ) start at Lk − ht and
exponentially increase with the growth of the current usage zks (t ). pks (t ) equals Uk − ht when
zks (t ) exceeds its capacity cks . In this case, the cloud provider will not accept any more jobs. To
sum up, pks (t ) andm(t ) are defined as follows:

pks (t ) (zks (t )) = (Lk − ht )

(
Uk − ht

Lk − ht

) zks (t )

cks

, (8)

m(t ) = ht ,∀t ∈ [T ], (9)

where Uk = maxi ∈[I ]:r k>0
i
{ bi

r k
i

} and Lk = mini ∈[I ]:r k>0
i
{ bi−дi (T−di )

wi
∑

k∈[K ] r k
i

} with truthful bidding.

ALGORITHM 1: A Primal-Dual Online Auction Aonline1

Input: bidding language {Bi }, {cks }, {βk }, {Et }, {ht }
1: Define cost function ft (e (t )) according to Equation (2);
2: Define function pks (zks (t )) according to Equation (8);
3: Initialize xis = 0,yis (t ) = 0, zks (t ) = 0,τi = 0,xil = 0,ui = 0,pks (t ) = 0,m(t ) = ht , e (t ) = 0,∀i ∈ [I ],

l ∈ ζi ,k ∈ [K], s ∈ [S], t ∈ [T ];

4: Upon the arrival of the ith user

5:
(
xis , {yis (t )},pi , {pks (t )}, {zks (t )}, {e (t )}

)
= Acor e

(
Bi , {cks }, {Et }, {pks (t )}, {zks (t )}, {m(t )}, {e (t )}

)
;

6: if ∃s ∈ [S],xis = 1 then

7: Accept user i’s bid and allocate resources to server s according to yis (t ); Charge pi from
user i;

8: else

9: Reject user i .
10: end if

The online auction Aonline1 is shown in Algorithm 1 with scheduling algorithm Acor e1 in Algo-
rithm 2 running for each user. Aonline1 first defines the cost function and price function in lines 1
and 2. Line 3 initializes all primal and dual variables. Upon the arrival of the ith user, the sched-

uling algorithm Acor e1 selects the best schedule l̂ that maximizes user i’s utility through the dual
oracle (lines 1–15). If user i can obtain positive utility, primal variables xis , yis , and xil are updated
accordingly (line 17). Then line 18 calculates the utility and the payment. Line 19 increases the
usage of K resources on the specified server and records the current power consumption level.
Finally, unit resource price is updated in line 20.

4.3 Theoretical Analysis

(i) Correctness, Polynomial Running Time, and Truthfulness.

We first analyze the running time ofAonline1 and prove its correctness in Theorem 4.2, and then
present the proof of its truthfulness in Theorem 4.3.
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ALGORITHM 2: A Scheduling Algorithm Acor e1.

Input: Bi , {cks }, {Et }, {pks (t )}, {zks (t )}, {m(t )}, {e (t )}
Output: xis , {yis (t )},pi , {pks (t )}, {zks (t )}, {e (t )}

1: for all s ∈ [S] do

2: Add slot t ∈ [ti ,T ] to set T if zks (t ) + rk
i ≤ cks ,∀k ∈ [K] and

∑
k ∈[K ] βksr

k
i /cks + e (t ) ≤ Et ;

3: Let schedule l0 include the first wi slots (t1, t2, . . . , twi ) in T ; Define j = 1;
4: while wi + j ≤ |T | do

5: lj = lj−1;
6: Let tc is the (wi + j )th slot in T ;

7: c (t ) =
∑

k ∈[K ] r
k
i (pks (t ) +m(t )

βks

cks
),∀t ∈ {t1, t2, . . . , twi , tc };

8: If tc > di , c (tc ) = c (tc ) + дi (tc − di );
9: tm = arg maxt ∈{t1, ...,twi −1 } c (t );

10: If c (twi ) < c (tm ), for schedule lj , replace the slot tm with twi
; Save tc into twi

;
11: Pj =

∑
t ∈T (lj ) c (t ); j = j + 1;

12: end while

13: s∗ = arg minj {Pj };P∗s = Ps∗ ; l
∗
s = ls∗ ;

14: end for

15: ŝ = arg mins {P∗s }; P̂ = P∗ŝ , l̂ = l
∗
ŝ

;

16: if bi − P̂ > 0 then

17: xi ŝ = 1;yi ŝ (t ) = 1,∀t ∈ T (l̂ ); x
i l̂
= 1;

18: ui = bi − P̂;pi =
∑

k ∈[K ]
∑

t ∈T (l̂ )
rk
i (pkŝ (t ) +m(t )

βkŝ

ckŝ
);

19: zkŝ (t ) = zkŝ (t ) + rk
i ,∀k ∈ [K], t ∈ T (l̂ ); e (t ) = e (t ) +

∑
k ∈[K ] r

k
i βkŝ/ckŝ ,∀t ∈ T (l̂ );

20: pkŝ (t ) = pkŝ (zkŝ (t )),∀k ∈ [K], t ∈ T (l̂ );

21: end if

22: Return xis , {yis (t )},pi , {pks (t )}, {zks (t )}, {e (t )}

Theorem 4.2. Algorithm Aonline1 terminates in polynomial time, and returns a feasible solution

for problem Equations (3), (4), and (5).

Proof. Correctness:Aonline1 generates a feasible solution for problem Equation (4) because con-
straint Equation (4b) is satisfied by the if condition at line 2 in AlgorithmAcor e1. Line 19 inAcor e1

guarantees that the LHS of constraint Equation (4c) equals its RHS. Line 17 updates the value of x
i l̂

to 1 for one particular schedule l̂ , satisfying constraint Equations (4a) and (4d). Furthermore, the
corresponding relation between convex problems Equations (3) and (4) implies that the solution
returned by Aonline1 will never violate the constraints in Equation (3). For the dual problem Equa-
tion (5), if the maximum value of the RHS of constraint Equation (5a) is nonnegative, ui equals
the maximum value, and remains 0 otherwise. Therefore, Aonline1 ensures feasibility of the dual
problem Equation (5).

Polynomial Running Time: We first examine the running time ofAcor e1. During each iteration of
the for loop, line 2 takesO (KT ) steps to initialize the feasible slot set T . Line 2 defines a schedule
l0 inwi steps. The while loop iterates almostT −wi rounds to compute the best schedule with the
fixed completion time. Inside the while loop, lines 5–8 takeO (wi + 1) steps to update the value of
c (t ). The slot with the largest price can be founded in O (wi − 1) steps in line 9. The comparison
and addition in lines 10 and 11 can be executed in constant time. Hence, the running time of the
while loop is O ((T −wi )wi ). The running time of line 13 is linear to T −wi . Then the execution
time of the for loop is O (S (T −wi )wi ). The if statement (lines 16–21) updates the primal and
dual variables in O (Kwi ) steps. In summary, the running time of Acor e1 is O (KST 2).
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We then can investigate the running time of Aonline1. The definition of the cost and price func-
tion in lines 1 and 2 takes constant time. Line 3 initializes all the primal and dual variables in
linear time. Upon the arrival of the ith user, Acor e1 makes the decision and computes the schedule
in O (KST 2) steps. Lines 6–10 process user i’s request in constant time. Thus, the overall running
time of Aonline1 is O (IKST 2). �

Theorem 4.3. The online auction Aonline1 is a truthful auction.

Proof. Our auction Aonline1 falls into the family of posted pricing mechanism (Huang and Kim
2015), where the winner determination process and the payment calculation depend only on the
current prices of resources. The price that a winning user i pays for its job execution depends on
the amount of resources allocated, and user i’s demand. It is independent of user i’s bidding price.
Consequently, a user cannot improve its utility by lying about its bidding price as the utility is the
difference between its valuation and the price. In addition, our algorithm Acor e1 always computes
the best schedule for user i to maximize its utility given the current prices. Therefore, our online
auction Aonline1 is a truthful auction that guarantees the maximum utility is achieved by truthful
bidding. �

(ii) Competitive Ratio.

We proceed to analyze the competitiveness of Aonline1 in social welfare, measured by the com-
petitive ratio. The competitive ratio is the upper-bound ratio of the social welfare achieved by the
optimal solution of convex problem Equation (3) to the social welfare achieved byAonline1. We first
introduce a primal-dual analysis framework in Lemma 4.4, which states that if there exists a bound
between the increase of the primal objective value and the increase of the dual objective value, then
the competitive ratio is also bounded. We next define an Allocation-Price Relationship for Aonline1

and the differential version of it in Definition 4.5 and Definition 4.7, respectively. We prove that if
the Allocation-Price Relationship holds for a given α1, Aonline1 satisfies the inequality in Lemma
4.4. We then present the value of α1 in Lemma 4.8 and prove that Aonline1 is α1-competitive in
Theorem 4.9.

LetOPT1 andOPT2 be the objective value of convex problem Equations (3) and (4), respectively. It
is clear thatOPT1 = OPT2. Let Pi and Di denote the objective value of primal problem Equation (4)
and that of dual problem Equation (5) returned by an algorithm after handling user i’s bid. Let
P0 = D0 = 0 be the initial values. Then PI and DI are the final primal and dual objective values at
the end of T .

Lemma 4.4. If there exists a constant α ≥ 1 such that Pi − Pi−1 ≥ 1
α

(Di − Di−1) for every i , then

the algorithm is α-competitive in social welfare.

Proof. If we sum up the inequality for each i , we can obtain

PI =
∑

i

(Pi − Pi−1) ≥ 1

α

∑
i

(Di − Di−1) =
1

α
DI .

The above inequality holds because P0 = D0 = 0. By weak duality (Boyd and Vandenberghe
2004), DI ≥ OPT2, therefore PI ≥ 1

α
OPT2 =

1
α
OPT1. So we can conclude that the algorithm is α-

competitive in social welfare. �

Let pi
ks

(t ) denote the price of type-k resource in server s after processing user i’s bid. zi
ks

(t ) is
the amount of allocated type-k resource in server s after handling user i’s job. Note that Aonline1

guarantees P0 = D0 = 0.
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Definition 4.5. The Allocation-Price Relationship for Aonline1 with α1 ≥ 1 is

pi−1
ks (t ) (zi

ks (t ) − zi−1
ks (t )) ≥ 1

α1
cks (pi

ks (t ) − pi−1
ks (t )),

∀i ∈ [I ],∀k ∈ [K],∀t ∈ T (l ),∀s ∈ S (l ).

Lemma 4.6. If Allocation-Price Relationship holds for a given α1 ≥ 1, then Aonline1 guarantees

Pi − Pi−1 ≥ 1
α1

(Di − Di−1) for all i ∈ [I ].

Proof. If user i’s job is rejected by the cloud provider, then Pi − Pi−1 = Di − Di−1 = 0. In the
following analysis, we assume that user i’s job is accepted, and let l be the schedule of it. The
increment of the primal objective function after handling user i’s job is

Pi − Pi−1 = bil −
∑

t ∈T (l )

(
ft (ei (t )) − ft (ei−1 (t ))

)

= ui +
∑

k ∈[K ]

∑
t ∈T (l )

∑
s ∈S (l )

rk
i

(
pi−1

ks (t ) +mi−1 (t )
βks

cks

)

−
∑

t ∈T (l )

(
ft (ei (t )) − ft (ei−1 (t ))

)
.

The second equation holds because when user i’s job is accepted by the server s with sched-
ule l , the left hand side of constraint Equation (5a) equals the RHS of it. Since ft (e (t )) =
hte (t ),

∑
t ∈T (l ) ( ft (ei (t )) − ft (ei−1 (t ))) =

∑
t ∈T (l ) ht (

∑
k ∈[K ]

∑
s ∈S (l ) r

k
i βks/cks ). Also, we know that

mi−1 (t ) = ht , hence,

Pi − Pi−1 = ui +
∑

k ∈[K ]

∑
t ∈T (l )

∑
s ∈S (l )

rk
i p

i−1
ks (t ).

According to the expression of f ∗t (m(t )) in Equation (6) and the definition of m(t ) in Equation
(9), f ∗t (m(t )) = 0, thus,

D =
∑
i ∈[i]

ui +
∑

k ∈[K ]

∑
s ∈[S]

∑
t ∈[T ]

ckspks (t ).

The increase of the dual objective value is

Di − Di−1 = ui +
∑

t ∈T (l )

∑
s ∈S (l )

∑
k ∈[K ]

cks

(
pi

ks (t ) − pi−1
ks (t )

)
.

Note that zi
ks

(t ) − zi−1
ks

(t ) = rk
i . By summing up the Allocation-Price Relationship over all s ∈ S (l ),

k ∈ [K] and t ∈ T (l ), we can obtain

Pi − Pi−1 ≥ ui +
1

α1
(Di − Di−1 − ui ).

Since ui ≥ 0 and α ≥ 1, it is obvious that Pi − Pi−1 ≥ 1
α1

(Di − Di−1). �

We observe that each inequality in the Allocation-Price Relationship involves variables only for
type-k resource in server s . Next, we are trying to identify the corresponding α1,ks for each pair of
k and s that satisfies the Allocation-Price Relationship. Then α1 is just the maximum value among
all α1,ks . To compute the value of α1,ks , we make the following mild assumption and define the
differential version of the Allocation-Price Relationship based on it:

Assumption 1. The job demand is much smaller than the sever’s capacity, i.e., rk
i � cks .

In the real world, a job’s demand is usually smaller than a server’s capacity in a large data
center. We make this assumption mainly to facilitate our theoretical analysis, such that techniques
from calculus (differentiation) can be used. We don’t consider extreme cases, which are rare in
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practice. For example, if a high-valued bid demanding almost all the resource is rejected, because a
small fraction of the resource is used by other users, then the worst-case competitive ratio can be
infinitely large. It is also worth noting that similar assumptions are made customarily in relevant
literature of online resource allocation (Zhang et al. 2015; Zhou et al. 2017; Agrawal et al. 2014;

Jaillet and Lu 2012). In addition, we can relax Assumption 1 and assume an upper bound on
r k

i

cks
.

Instead of differential equation and integration, we can use difference equation and summation to
derive similar results. We also relax this assumption completely in our simulation studies. Under
Assumption 1, zi

ks
(t ) − zi−1

ks
(t ) = dzks (t ) and the Differential Allocation-Price Relationship is

Definition 4.7. The Differential Allocation-Price Relationship for Aonline1 with α1,ks ≥ 1 is

pks (t )dzks (t ) ≥ cks

α1,ks
dpks (t ),

∀i ∈ [I ],∀k ∈ [K],∀t ∈ T (l ),∀s ∈ S (l ).

Lemma 4.8. α1,ks = ln Uk−ht

Lk−ht
and the marginal price defined in Equation (8) satisfies the Differen-

tial Allocation-Price Relationship for Aonline1.

Proof. The deferential of the marginal price function is

dpks (t ) = (Lk − ht )

(
Uk − ht

Lk − ht

) zks (t )

cks

ln

(
Uk − ht

Lk − ht

) 1
cks

.

The Differential Allocation-Price Relationship is

(Lk − ht )

(
Uk − ht

Lk − ht

) zks (t )

cks

dzks (t )

≥ ck

α1,ks
(Lk − ht )

(
Uk − ht

Lk − ht

) zks (t )

cks

ln

(
Uk − ht

Lk − ht

)
1

cks
dzks (t )

⇒ α1,ks ≥ ln
Uk − ht

Lk − ht
.

Therefore this lemma holds for α1,ks = ln Uk−ht

Lk−ht
. �

Theorem 4.9. The online auction Aonline1 in Algorithm 1 is α1-competitive in social welfare with

α1 = maxk ∈[K ]{ln Uk−hmax

Lk−hmax
}, where hmax = maxt ∈[T ] ht .

Proof. α1 = maxk ∈[K ]{ln Uk−hmax

Lk−hmax
} with hmax = maxt ∈[T ] ht , then α1 = maxk ∈[K ],t ∈[T ]

{ln Uk−ht

Lk−ht
} as when Uk and Lk are fixed, maxt ∈[T ]{ln Uk−ht

Lk−ht
} = ln Uk−hmax

Lk−hmax
. According to the proof

in Lemma 4.8, α1 satisfies the Differential Allocation-Price Relationship. Under Assumption
1, we have dpks (t ) = p ′

ks
(zks (t ))dzks (t ) = pi

ks
(t ) − pi−1

ks
(t ). As a result, we can obtain that the

Allocation-Price Relationship holds for α1. Lemma 4.4 and Lemma 4.6 together imply the
theorem. �

5 ONLINE AUCTION DESIGN WITH VOLUME AND PEAK CHARGES

In this section, we consider a more realistic electricity charge model that involves a peak charge
term in the operating cost. We formulate the social welfare maximization problem in Section 5.1,
and design an online auction in Section 5.2, which is further improved in Section 5.3.
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5.1 The Social Welfare Maximization Problem

Under the assumption of truthful bidding, the social welfare maximization problem with both
volume charge and peak charge considered for electricity cost is

maximize
∑
i ∈[I ]

∑
s ∈[S]

bixis − дi (τi ) −
∑

t ∈[T ]

ft (e (t )) − hpeak max
t

e (t ), (10)

subject to constraint Equations (3a)−(3f ).
Let emax be the maximum of e (t ), i.e., e (t ) ≤ emax ,∀t ∈ [T ], and move the upper bound of e (t )

from the cost function to the constraint; the above convex problem can be reformulated as follows:

maximize
∑
i ∈[I ]

∑
s ∈[S]

bixis − дi (τi ) −
∑

t ∈[T ]

hte (t ) − hpeakemax , (11)

subject to

constraint Equations (3a)−(3e ),

e (t ) ≤ Et , ∀t ∈ [T ], (11f)

e (t ) ≤ emax , ∀t ∈ [T ], (11g)

τi , e (t ), emax ≥ 0,xis ,yis (t ) ∈ {0, 1},∀i ∈ [I ],∀s ∈ [S],∀t ∈ [T ]. (11h)

As the convex function in the objective function has been removed, the corresponding compact
exponential integer linear programming (ILP) is

maximize
∑
i ∈[I ]

∑
l ∈ζi

bilxil −
∑

t ∈[T ]

hte (t ) − hpeakemax, (12)

subject to

constraint Equations (4a)−(4c ),

constraint Equations (11f )−(11д),

e (t ), emax ≥ 0,xil ∈ {0, 1},∀t ∈ [T ],∀i ∈ [I ],∀l ∈ ζi . (12f)

We introduce dual variables ui , pks (t ),m(t ), σt , and γt to Equations (12a), (12b), (12c), (12d), and
(12e). The dual of the relaxed ILP Equation (12) is

minimize
∑
i ∈[i]

ui +
∑

k ∈[K ]

∑
s ∈[S]

∑
t ∈[T ]

ckspks (t ) +
∑

t ∈[T ]

σtEt , (13)

subject to

ui ≥ bil −
∑

k ∈[K ]

∑
t ∈T (l )

∑
s ∈S (l )

rk
i

(
pks (t ) +m(t )

βks

cks

)
,∀i ∈ [I ],∀l ∈ ζi , (13a)

ht + σt + γt ≥ m(t ),∀t ∈ [T ], (13b)

hpeak ≥
∑

t ∈[T ]

γt , (13c)

pks (t ),ui ,m(t ),σt ,γt ≥ 0,∀i ∈ [I ],∀k ∈ [K],∀s ∈ [S],∀t ∈ [T ]. (13d)
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5.2 The First Online Auction with Peak Charges

We apply the posted pricing primal and dual framework to solve the convex problem Equation(10).
We seek the help of the compact exponential ILP Equation (12) and its dual Equation (13): xil

remains zero unless its dual constraint Equation (13a) becomes tight. User i’s utility ui is assigned
based on the current resource price, and is equal to the maximum of zero and the RHS of constraint
Equation (13a). For the design of the electricity price functionm(t ), we observe that there is a new
set of dual variables γt associated with the peak consumption constraint (e (t ) ≤ emax ), and the
sum of all γt cannot exceed the peak price hpeak . Thus, we can interpret γt as the peak electricity
price at time t . Let tmax = arg maxt {e (t )}, then γtmax

= hpeak ,γt = 0,∀t � tmax . Furthermore, dual
constraints Equation (13b) indicate that if we let σt = 0, m(t ) = ht + γt is the electricity price at
time t , consisting of both volume price ht and peak price γt . However, it is impossible to determine
which slot has the peak consumption, as we don’t have complete knowledge about the system over
its entire lifespan in the arrival of bids. We first adopt a straightforward way to allocate hpeak to all
γt , by equally allocating the peak price to all slots. The capital price functionpks (t ) is still a function
of zks (t ), increasing from Lk −m(t ) toUk −m(t ). More specifically, pks (t ) andm(t ) are defined as

pks (t ) (zks (t )) =

(
Lk − ht −

hpeak

T

) ��
�
Uk − ht −

hpeak

T

Lk − ht −
hpeak

T

��
�

zks (t )

cks

, (14)

m(t ) = ht + γt = ht +
hpeak

T
,∀t ∈ [T ]. (15)

ALGORITHM 3: A Primal-Dual Online Auction Aonline2

Input: bidding language {Bi }, {cks }, {βk }, {Et }, {ht },hpeak

1: Define function pks (zks (t )) according to Equation (14);

2: Initialize xis = 0, yis (t ) = 0, zks (t ) = 0, τi = 0, xil = 0, ui = 0,pks (t ) = 0,γt =
hpeak

T ,m(t ) = ht + γt ,

e (t ) = 0, emax = 0,σt = 0,∀i ∈ [I ], l ∈ ζi ,k ∈ [K], s ∈ [S], t ∈ [T ];

3: Line 4–10 in Algorithm 1;
4: emax = maxt ∈[T ] e (t );

Aonline2 in Algorithm 3 is the first online auction for the peak charge model, with the scheduling
Algorithm 2 running for each user. The properties of Aonline2 are described in Theorem 5.1.

Theorem 5.1. The online auction Aonline2 for the peak charge model is a truthful auction that

outputs a feasible solution for problem Equations (11), (12), and (13) in polynomial time.

Proof. Similar proofs for the polynomial running time and truthfulness can be found in Theo-
rem 4.2 and Theorem 4.3, respectively, and we omit the details here. For the feasibility ofAonline2, a
similar proof can also be found in Theorem 4.2. The main difference lies in the dual constraint Equa-
tions (13b) and (13c). Constraints Equation (13b) are satisfied because σt = 0 and m(t ) = ht + γt .
Constraints Equation (13c) hold as hpeak =

∑
t ∈[T ] γt . �

5.3 A More Intelligent Online Auction

In Algorithm 3, we did not keep track of the hitherto peak consumption, which makes the algo-
rithm less intelligent in the update of peak price γt . We next manipulate γt in a more sophisticated
way to take into account the current level of peak consumption. The basic idea is to let γt = ht at
the beginning. After the ith user is handled, γt is increased by a certain value for the current peak
slot. As there are a total of I users and the sum of all γt is at most hpeak , γt is increased by hpeak/I
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in each round for the current peak slot, pks (t ) is updated based on the current value of m(t ), as
shown in lines 5–7 in Algorithm 5.

ALGORITHM 4: The Improved Primal-Dual Online Auction Aonline3

Input: bidding language {Bi }, {cks }, {βk }, {Et }, {ht },hpeak

1: Initialize xis = 0, yis (t ) = 0, zks (t ) = 0, τi = 0, xil = 0, ui = 0,pks (t ) = 0,σt = 0,m(t ) = ht , e (t ) = 0,

emax = 0,γt = 0,∀i ∈ [I ], l ∈ ζi ,k ∈ [K], s ∈ [S], t ∈ [T ];

2: Upon the arrival of the ith user

3: (xis , {yis (t )},pi , {pks (t )}, {zks (t )}, {m(t )}, {e (t )}) = Acor e2 (Bi , {cks }, {Et }, {pks (t )}, {zks (t )},
{m(t )}, {e (t )});

4: Lines 6–10 in Algorithm 1;
5: emax = maxt ∈[T ] e (t );

ALGORITHM 5: A Scheduling Algorithm Acor e2.

Input: Bi , {cks }, {Et }, {pks (t )}, {zks (t )}, {m(t )}, {e (t )}
Output: xis , {yis (t )},pi , {pks (t )}, {zks (t )}, {m(t )}, {e (t )}

1: Lines 1–15 in Algorithm 2;
2: if bi − P̂ > 0 then

3: Lines 17–19 in Algorithm 2;
4: end if

5: tmax = arg maxt ∈[T ] e (t );

6: γtmax = γtmax + hpeak/I ,m(tmax ) = htmax + γtmax ;

7: pkŝ (t ) = (Lk −m(t )) (
Uk−m (t )
Lk−m (t ) )

zks (t )

cks ,∀k ∈ [K], t ∈ l̂ ;
8: Return xis , {yis (t )},pi , {pks (t )}, {zks (t )}, {m(t )}, {e (t )}

Aonline3 in Algorithm 4 is the improved primal-dual online auction. The new one-round algo-
rithm Acor e2 in Algorithm 5 is executed for each user with the scheduling approach and new price
functions. We next analyze the properties of Aonline3, including correctness, polynomial running
time, truthfulness, and competitiveness in social welfare. The two ways of updating dual variables
for peak consumption are further compared in simulation studies in Section 6.

Theoretical Analysis.

(i) Correctness, Polynomial Running Time, and Truthfulness.

Theorem 5.2. Aonline3 is a truthful auction that computes a feasible solution for problem Equa-

tions (11), (12), and (13) with polynomial running time.

Proof. There are a total of I users, so constraints Equation (13c) hold because
∑

t ∈[T ] γt equals
hpeak according to line 6 in Algorithm 5. The rest of the proof is similar to that of Theorem 5.1 and
is omitted here. �

(ii) Competitive Ratio.

The proof of the competitive ratio follows the same structure as that in Section 4.3. Let Pi and
Di be the primal Equation (12) and dual Equation (13) objective values, respectively, returned by
Aonline3 after processing user i’s job. By Lemma 4.4, Aonline3 is α3-competitive in social welfare if
Pi − Pi−1 ≥ 1

α3
(Di − Di−1). We next define two relationships in Definition 5.3 and Definition 5.4,

respectively. We show that if both of them hold, then Pi − Pi−1 ≥ 1
α3

(Di − Di−1) also holds for a
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certain α3 in Lemma 5.5. We obtain the value of α3 through the analyses in Lemma 5.7 and Lemma
5.8, and finally prove that Aonline3 is α3-competitive in Theorem 5.9.

Definition 5.3. The Allocation-Price Relationship for Aonline3 with αp1 ≥ 1 is

pi−1
ks (t ) (zi

ks (t ) − zi−1
ks (t )) ≥ 1

αp1
cks (pi

ks (t ) − pi−1
ks (t )),

∀i ∈ [I ],∀k ∈ [K],∀t ∈ T (l ),∀t ∈ T (l ).

Definition 5.4. The Primal Objective Increment Relationship for Aonline3 with αp2 > 0 is

Pi − Pi−1 ≥
1

αp2
hpeak (ei

max − ei−1
max ),∀i ∈ [I ].

Lemma 5.5. If the Allocation-Price Relationship holds for a given αp1 ≥ 1 and Primal Objective

Increment Relationship holds for a given αp2 > 0, then Aonline3 guarantees

Pi − Pi−1 ≥
1

αp1 (1 + αp2)
(Di − Di−1),∀i ∈ [I ].

Proof. Again, we assume that user i’s job is accepted and allocated according to schedule l .
Note thatm(t ) = ht + γt , then the increment of the primal objective value is

Pi − Pi−1 = bil −
∑

t ∈T (l )

ht (ei (t ) − ei−1 (t )) − hpeak (ei
max − ei−1

max )

= ui +
∑

k ∈[K ]

∑
t ∈T (l )

∑
s ∈S (l )

rk
i

(
pi−1

ks (t ) +mi−1 (t )
βks

cks

)

−
∑

t ∈T (l )

ht (ei (t ) − ei−1 (t )) − hpeak (ei
max − ei−1

max )

= ui +
∑

k ∈[K ]

∑
t ∈T (l )

∑
s ∈S (l )

rk
i

(
pi−1

ks (t ) + γ i−1 (t )
βks

cks

)

− hpeak (ei
max − ei−1

max ).

The increase of the dual objective value is

Di − Di = ui +
∑

k ∈[K ]

∑
t ∈T (l )

∑
s ∈S (l )

cks (pi
ks (t ) − pi−1

ks (t )).

By the Primal Objective Increment Relationship, we have

(1 + αp2) (Pi − Pi−1) ≥ Pi − Pi−1 + hpeak (ei
max − ei−1

max )

≥ Pi − Pi−1 + hpeak (ei
max − ei−1

max ) −
∑

k ∈[K ]

∑
t ∈T (l )

∑
s ∈S (l )

rk
i γ

i−1 (t )
βks

cks

= ui +
∑

k ∈[K ]

∑
t ∈T (l )

∑
s ∈S (l )

rk
i p

i−1
ks (t )

≥ ui +
1

αp1

∑
k ∈[K ]

∑
t ∈T (l )

∑
s ∈S (l )

cks (pi
ks (t ) − pi−1

ks (t ))

≥ 1

αp1
(Di − Di ).

Therefore, Pi − Pi−1 ≥ 1
αp1 (1+αp2 ) (Di − Di−1). �
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To compute the value of αp1, we define a differential version of the Allocation-Price Relationship
for each pair of k and s , and provide the value of αp1,ks in Lemma 5.7; αp1 is just the maximum
among all αp1,ks .

Definition 5.6. The Differential Allocation-Price Relationship for Aonline3 with αp1,ks is

pks (t )dzks (t ) ≥ cks

αp1,ks
dpks (t ),

∀i ∈ [I ],∀k ∈ [K],∀t ∈ T (l ),∀s ∈ S (l ).

Lemma 5.7. αp1,ks = ln Uk−m (t )
Lk−m (t ) and the marginal price defined at line 7 in Algorithm 5 satisfies

the Differential Allocation-Price Relationship for Aonline3.

Proof. We observe that the Differential Allocation-Price Relationship for Aonline3 is same as
that for Aonline1. Thus, the detailed proof can be found in Lemma 4.8. �

Lemma 5.8. αp2 ≥
hpeak

∑
k∈[K ]

∑
s∈S (l ) r k

i βks /cks

bi−(wi+1)hpeak
∑

k∈[K ]
∑

s∈S (l ) r k
i βks /cks

satisfies the Primal Objective Increment

Relationship.

Proof. If user i’s job is not allocated to the slot with the final maximum power
consumption, ei

max − ei−1
max = 0, αp2 can be any value. Otherwise, hpeak (ei

max − ei−1
max ) =

hpeak
∑

s ∈S (l )
∑

k ∈[K ] r
k
i βks/cks , and Pi − Pi−1 = bi −

∑
t ∈T (l )

∑
k ∈[K ]

∑
s ∈S (l ) htr

k
i βks/cks −

hpeak
∑

s ∈S (l )
∑

k ∈[K ] r
k
i βks/cks ≥ bi − (wi + 1)hpeak

∑
k ∈[K ]

∑
s ∈S (l ) r

k
i βks/cks , thus,

hpeak (e i
max−e i−1

max )

Pi−Pi−1
≤ hpeak

∑
k∈[K ]

∑
s∈S (l ) r k

i βks /cks

bi−(wi+1)hpeak
∑

k∈[K ]
∑

s∈S (l ) r k
i βks /cks

. And the value of αp2 satisfies the Pri-

mal Objective Increment Relationship. �

Theorem 5.9. The online auction Aonline3 in Algorithm 4 is α3-competitive in social welfare with

α3 = αp1 (1 + α2), where

αp1 = max
k

{
ln

Uk − hmax − hpeak

Lk − hmax − hpeak

}
with hmax = max

t
ht , and

α2 = max
i

ec

bi − (wi + 1)ec
with ec = max

k,s

{
hpeak

∑
k ∈[K ]

rk
i

βks

cks

}
.

Proof. αp1 satisfies the Allocation-Price Relationship for Aonline3 as αp1 = maxk,s {αp1,ks }. α2

also satisfies the Primal Objective Increment Relationship for Aonline3 as α2 is the maximum value
among all possible αp2. Therefore,Aonline3 is α3-competitive in social welfare. The value of αp1 and
α2 depend on the system configuration, and our trace-driven simulation studies show that α3 < 2
with αp1 ≈ 1.4 and α2 ≈ 0.3. �

6 PERFORMANCE EVALUATION

We evaluate the performance of our online auctionsAonline1,Aonline2, andAonline3 through large-
scale simulation studies based on real-world traces. We first briefly introduce the simulation setup.
Trace Version 1 in Google Cluster Data (Google 2016) contains information about jobs running on
Google compute cells, including start time, execution, duration, and normalized job demand (CPU
and RAM). We translate each job into a bid, requesting two types of resources at demands extracted
from the traces. We assume each time slot is 5 minutes (Google 2016) and each job consumes
[1, 12] slots, arriving sequentially in 18 hours. Each job’s deadline is randomly generated between
its arrival time and the system end time. We set the bidding price of each job by multiplying the
overall resource demands by unit prices randomly picked within the range [Lk ,Uk ]. The default
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Fig. 1. Competitive ratio ofAonline1 under

different numbers of users and servers.

Fig. 2. Competitive ratio ofAonline1 under

different Uk/Lk and estimated Uk .

value of Lk is 5 and Uk is 50 for Aonline1. We let Lk = 905 and Uk = 2000 in Aonline2 and Aonline3.
The capacity of type-k resource in server s , cks , is set to 1 as the resource demand is in normalized
units.

For the power consumption of a server, parameter βks is set within [20, 60] for CPU and within
[0.2, 2] or RAM (Tian and Zhao 2014; Kansal et al. 2010). We assume that the data center is powered
by BC Hydro with a peak charge of $9.95 per kWh and a volume charge of ¢4.86 per kWh (Zhang
et al. 2015a; Hydro 2016). The value of ht is generated by adding randomness to the volume charge
of ¢4.86 per kWh. The available power at each time slot Et is set to within the range of [20,100]
kW based on a report of data center server power usage and required demand response power
reduction (ZDnet 2013).

6.1 Performance of Aonl ine1

We first examine the competitive ratio achieved by Aonline1. The optimal social welfare of the
convex problem Equation (3) is computed by CVX with the Gurobi Optimizer. Figure 1 shows the
competitive ratio ofAonline1 under different numbers of users and servers. We observe thatAonline1

always performs well with a lower competitive ratio (<1.5), which is noticeably better than the
theoretically proven bounds. The competitive ratio decreases as the number of servers increases,
and fluctuates when the number of users grows. Our algorithm Aonline1 allocates a user’s job on
the cheapest server to maximize its utility. Therefore, the algorithm has a larger solution space
to explore when the number of servers is large, leading to a better competitive ratio. The number
of users doesn’t influence the value of ratio, as confirmed by the analysis in Theorem 4.9. Recall
thatUk and Lk are the maximum and minimum unit price of type-k resource, respectively, defined
in the price function Equation (8). Figure 2 illustrates that Aonline1 still achieves a good compet-
itive ratio when we vary the value of Uk/Lk and use the estimated values of Uk as the input of
Aonline1. We notice that the competitive ratio becomes larger with the increment of Uk/Lk , while
both underestimation and overestimation have minor impact on the performance, as compared to
that achieved by the real Uk (labelled by 100%). Theorem 4.9 reveals that Uk/Lk determines the
competitive ratio, which is consistent with the downward trend in Figure 2. Moreover, underes-
timation is slightly better than overestimation, due to the reason that overestimation leads to a
higher price, filtering out jobs that are supposed to be accepted.

We next investigate the social welfare and the cloud service provider’s revenue achieved by
Aonline1. Figure 3 compares the social welfare achieved by Aonline1 to the optimal social welfare
under different lengths of job execution time (wi ). Aonline1 always achieves close-to-optimal per-
formance regardless the value of wi . When wi ≤ 18, the social welfare increases when the user
requests more slots for its job, which is reasonable because the social welfare is mostly contributed
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Fig. 3. Social welfare of Aonline1 under dif-

ferent values of wi .

Fig. 4. Social welfare ofAonline1 under differ-

ent numbers of users and Uk/Lk .

Fig. 5. Social welfare of Aonline1 under

different values of I and S .

Fig. 6. Cloud service provider’s revenue of

Aonline1 with different numbers of servers

and users.

by the bidding price, and the user will raise its bidding price when its job needs a long execution
time. The gap between the social welfare returned by Aonline1 and the optimal social welfare be-
comes larger with the increment ofwi , as long execution time brings more computation difficulties
for Aonline1 to approach the optimal solution. Another interesting observation is that the social
welfare drops sharply when wi > 20. This is because the competition for resources in each time
slot is fiercer with a larger wi , then the number of winners would decrease when the number of
users is fixed, leading to a smaller overall social welfare.

The 3D figure in Figure 4 shows that a large social welfare comes with a large number of users
and a high value ofUk/Lk . The underlying reason is that Aonline1 can select more high-value bids
when there is a large set of users participating in the auction. Furthermore, the bidding price rises
when the value of Uk/Lk increases, and hence a higher social welfare is achieved by high-value
bids. In Figure 5, we consider a large input scale, and vary the number of users and the number of
servers. Again, we observe an upward trend in the social welfare with the increases of the number
of users and the number of servers. It remains steady when the number of servers is larger than
the number of users, as all users’ jobs are accepted, achieving the same social welfare. In Figure 6,
we plot the revenue of the cloud service provider under different numbers of users and servers.
The change of the number of servers doesn’t have major influence on the revenue. The cloud
service provider is able to gain higher profit with a larger set of users, as more jobs with high
bidding prices would be accepted to contribute to the revenue.

The performance of Aonline1 in terms of winner satisfaction, as measured by the percentage of
winning users, is demonstrated in Figure 7. We observe that more jobs are successfully allocated
when the number of participating users is small and Uk/Lk is large. The reason can be explained
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Fig. 7. Percentage of winners of Aonline1

with different numbers of users andUk/Lk .

Fig. 8. Power consumption over the sys-

tem time for Aonline1 with Et = 50.

Fig. 9. Power consumption over the system

time for Aonline1 with Et ∈ [60, 100].

Fig. 10. Competitive ratio ofAonline2 and

Aonline3.

as the following: the number of winners is almost fixed and limited by the resource capacity and
the available power. The users face stiff competition when a large number of users submits bids
to the cloud. Furthermore, the winner is determined by the current price of the resource, which
rises from Lk toUk . When Lk is close toUk , the difference between the bidding prices is small. As
a result, more bids with similar bidding prices are rejected as the price is increased during each
round.

Finally, we vary the distribution of the amount of power reduction required by the EDR (and
hence the amount of available power) in each time slot, and plot the power consumption over the
system time in Figure 8 and Figure 9. There are only minor differences in the competitive ratio
under these two distributions: 1.1991 and 1.2055. We also observe that the power consumption in
both the optimal solution and Aonline1 fluctuates and doesn’t follow the distribution of Et .

6.2 Performance of Aonl ine2 and Aonl ine3

In this subsection, we evaluate the performance of our online auctions under the peak charge
model. We first compare the social welfare achieved by Aonline2 and Aonline3 with the offline op-
timum. The left figure in Figure 10 shows the competitive ratio of Aonline2 and Aonline3 when
we vary the number of servers, and the right figure plots the competitive ratio with different
numbers of users. Figure 10 confirms that Aonline3 is a more intelligent auction with a lower com-
petitive ratio (<2). Both Aonline2 and Aonline3 perform well with a small loss in social welfare
when we involve the peak charge term. The increment of the competitive ratio is smaller than 0.5
for Aonline3. In addition, the downward trend observed in Figure 10 is similar to that in Figure 1.
Figure 11 presents the detailed comparison amongAonline2,Aonline3, and offline optimum in terms
of provider’s profit, volume charge, peak charge, and social welfare. Compared toAonline2,Aonline3

generates a higher profit for the cloud service provider with a lower operation cost. We also
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Fig. 11. Comparison betweenAonline2 and

Aonline3.

Fig. 12. Social welfare of Aonline2 and

Aonline3 with different numbers of users.

Fig. 13. Social welfare of Aonline2 and

Aonline3 under different values of S
when I = 400.

Fig. 14. Electricity charge of Aonline2

and Aonline3 with different numbers of

users.

observe that the peak charge contributes a major part of the operation cost. The optimal solu-
tion achieves a higher social welfare because it spreads out the workload evenly to reduce both
the volume charge and the peak charge.

Figure 12 demonstrates that the social welfare achieved byAonline2 andAonline3 increases when
the number of users grows. The underlying reason is similar to the explanation for Figure 4. Fur-
thermore, Aonline3 always brings a higher social welfare, as it tracks the current peak to avoid
accumulating power consumption on the same slot, which contributes to cutting down the even-
tual peak consumption. In Figure 13, we fix the number of users to 400 and change the number
of servers. We obtain a similar observation as compared to Figure 5. The increase of the number
of servers has a positive impact on the social welfare. Figure 14 illustrates the operation costs of
the two online auctions with different numbers of users. We observe that although the volume
charge of the two schemes are similar, the peak charge generated by Aonline3 is smaller than that
of Aonline2. The volume charge increases gradually when there are more users participating in the
auction, while the peak charge fluctuates. This is because the volume charge is the electricity cost
over all slots, which increases when more jobs are executing, while peak charge is the cost that
occurs in one slot only.

We next investigate user satisfaction in Figure 15. The percentage of winners decreases in both
schemes when the number of users increases, and Aonline3 accepts more jobs than Aonline2 does,
leading to a higher social welfare. This is due to the setting of the electricity price function m(t ).
The value of m(t ) in Aonline3 is lower than that in Aonline2 at the beginning, improving the prob-
ability of winning. The last figure in Figure 14 depicts the power consumption over the system
time. The peak consumption is marked by a circle. An interesting observation is that the optimal
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Fig. 15. Percentage of winners forAonline2

and Aonline3 with different numbers of

users.

Fig. 16. Power consumption over the sys-

tem time for Aonline2 and Aonline3.

approach averages the workload to cut down the peak consumption, which is quite different from
the observation in Aonline1. The peak in Aonline3 occurs in the middle, between that of Aonline2

and the optimal one.

7 CONCLUSION

We studied data center EDR where (i) the power grid dictates an upper bound in power consump-
tion in each time slot during the EDR period and (ii) cloud jobs with soft deadlines arrive in an
online fashion. We adapt the classic primal-dual framework for efficient approximation algorithm
design, and employ a posted-pricing framework for truthful online mechanism design, to derive
a truthful online auction that runs efficiently and approaches optimal social welfare. However, it
turns out that the above techniques alone are not sufficient. A salient feature of this work lies
in the new compact exponential optimization technique we introduce, which works in concert
with a dual oracle to handle the job-completion time constraints imposed by their soft deadlines.
Our compact exponential method may further shed light on other algorithm and mechanism de-
sign scenarios where the optimization problem contains both conventional and non-conventional
constraints, such as delay-constrained optimization in cyber physical systems.
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