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A Truthful Online Mechanism for Location-Aware
Tasks in Mobile Crowd Sensing

Ruiting Zhou, Zongpeng Li, Chuan Wu

Abstract—Effective incentive mechanisms are invaluable in mobile crowd sensing, for stimulating participation of smartphone users.
Online auction mechanisms represent a natural solution for such sensing task allocation. Departing from existing studies that focus on
an isolated system round, we optimize social cost across the system lifespan, while considering location constraints and capacity
constraints when assigning sensing tasks to users. The winner determination problem (WDP) at each round is NP-hard even without
inter-round coupling imposed by user capacity constraints. We first propose a truthful one-round auction, comprising of an
approximation algorithm for solving the one-round WDP and a payment scheme for computing remuneration to winners. We then
propose an online algorithm framework that employs the one-round auction as a building block towards a flexible mechanism that
makes on-spot decisions upon dynamically arriving bids. Through both theoretical analysis and trace-driven simulations, we
demonstrate that our online auction is truthful, individually rational, computationally efficient, and achieves a good competitive ratio.

Index Terms—Mobile Crowd Sensing; Mechanism Design; Approximation Algorithms
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1 INTRODUCTION

C ROWDSOURCING, a recent term coined in 2006 [1],
refers to a creative process of serving business goals,

designing products or solving problems by leveraging the
collective intelligence from an online community. With the
proliferation of smartphones over the past decade, mo-
bile crowd sensing has emerged as a new crowdsourcing
paradigm that collects distributed sensory data from smart-
phone users [2]. It has the capacities to provide various
sensing services, as smartphones are usually equipped with
many sensing facilities (e.g., accelerometer, digital compass,
GPS and camera) and can be easily embedded with pro-
fessional sensors (e.g., poisonous chemical detection and air
quality sensors) [2].

As shown in Fig. 1, a typical mobile crowd sensing
system consists of a cloud-based platform and mobile smart-
phone users. These smartphone users act as sensing service
providers, and the platform recruits them to provide sensing
services. The recent years have witnessed applications of
mobile crowd sensing in a number of areas. For example,
Waze [3] is one of the well-known use cases of mobile crowd
sensing on the market; it takes live traffic information from
users on the road to generate real-time reports on road
conditions. Mobile applications like Weathermob [4] and
Sunshine [5] improve the accuracy of weather forecasting
by using real-time weather reports from users in specific
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Fig. 1. An example application of mobile crowd sensing. The platform
posts a sensing task of collecting realtime traffic data in downtown.
Smartphone users can report traffic condition at different locations to
the platform.

locations. Air condition monitoring is another typical use
case of mobile crowd sensing. In such systems, a large
number of users employ air quality sensors ported to their
smartphones to measure and upload air quality data to
the platform, helping generating and predicting air quality
profiles of a city [6].

Existing mobile crowd sensing applications often assume
voluntary user participation [3], [4], [5], which is not always
practical in the real world. Smartphone users consume their
own resources such as battery, CPU and manpower when
performing sensing tasks. Moreover, they are subject to
potential privacy threats by sharing location-based data [7].
Therefore, smartphone users may not be ready to contribute
to crowd sensing tasks unless satisfying remuneration is
received to compensate for their cost/risk. What price to
offer as remuneration can be a tricky question. If the price
offered is too low, participation is sparse and the data
collected may be insufficient; if the price offered is too high,
the platform may incur an unnecessarily high operational
cost. Auction mechanisms represent a natural and efficient
approach to incentivize smartphone users to participate
in mobile crowd sensing. It automatically discovers the
right market price that helps select low-cost users to jointly
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accomplish a sensing job.
As compared to crowdsourcing jobs, a mobile crowd

sensing job is often marked by location awareness that is
central to most sensing tasks. A sensing task typically spec-
ifies the locations from which desired information are to be
collected. Sensing data such as traffic condition or air quality
are most valuable only when they are measured at des-
ignated locations. Such data become less valuable or even
invalid if gathered from irrelevant locations. Unfortunately,
most existing incentive mechanisms do not address the im-
portance of location information [8][9]. Another observation
is that a smartphone user’s level of participation is limited
in practice [6][10]. It is often unrealistic to assume that a
smartphone user can participate in all tasks at all times
in a crowd sensing process. Battery consumption, available
work time and specific locations are a few examples of
practical concerns that may impose limitations on when and
how a user participates. An abstract notion of capacity can
be associated to a user to characterize such limitations on
the degree of participation [6][10], when designing crowd
sensing mechanisms.

This work explores the space of modelling and incentive
mechanism design in mobile crowd sensing applications,
and proposes an online auction such that: i) it runs over
multiple rounds in the system lifespan; user bids for under-
taking sensing jobs can arrive at any round and is subject to
a capacity constraint over a given period; ii) the auction is
computationally efficient and executes in polynomial time;
iii) the auction is truthful, i.e., bidding true cost represents a
dominate strategy for each smartphone user; and iv) social
cost is approximately minimized when assigning location-
aware sensing tasks to smartphone users.

We first formulate an integer linear program (ILP) that
characterizes the winner determination problem (WDP)
for social cost minimization in the online mobile crowd
sensing auction. Solving the ILP to determine winners at
each round requires complete knowledge over the entire
system lifespan, which is infeasible in practice. We instead
first consider a one-round WDP, by relaxing user capacity
constraints that impose inter-round coupling, and develop
the online auction later by employing the one-round auction
as a building block.

We reformulate the one-round WDP and its dual prob-
lem by introducing a new scaled cost for each bid. The
scaled cost acts as a key technique that connects a series
of one-round auctions into an online auction, and will be
explained later. We show that the one-round WDP with
location awareness is NP-hard. We propose an efficient ap-
proximation algorithm that iteratively selects winners based
on a greedy strategy, solving the primal and dual programs
simultaneously. We analyze the approximation ratio of the
algorithm and prove a small bound. Furthermore, we prove
that the winner determination process is monotone, and can
be combined with a critical value based payment scheme to
form a truthful auction. The end result is a truthful and indi-
vidually rational one-round auction that can be executed in
polynomial time and achieves a good approximation ratio
in social cost.

We proceed to propose an online primal-dual auction
framework that connects a series of one-round auctions into
an online auction. The user’s capacity constraint is the main

concern during such a process. The online auction strate-
gically protects a user’s potential of future participation by
avoiding depleting its capacity too soon. This is realized
by introducing a dual variable for each user to augment
its cost based on the remaining level of its capacity. The
new scaled cost is adjusted judiciously, serving as input to
the one-round auctions, which serves as building blocks in
the online auction framework. Through theoretical analysis,
we prove that there is only a small additive loss in the
competitive ratio in connecting the one-round auctions. Our
online auction further guarantees truthfulness, individual
rationality and computational efficiency.

We evaluate the performance of the online and one-
round crowd sensing mechanisms through extensive simu-
lations based on real-world traces. We demonstrate that both
mechanisms perform well in minimizing social cost with a
low performance ratio (< 1.3), and investigate other proper-
ties such as bounded overall payment, winner satisfaction,
time complexity and individual rationality.

In the rest of the paper, we review related work in
Sec. 2, and discuss our system model in Sec. 3. Sec. 4 and
Sec. 5 present the one-round and online auctions, which are
evaluated in Sec. 6. Sec. 7 concludes the paper.

2 RELATED WORK

Crowdsourcing has been extensively studied with different
focuses. Poetz et al. [11] investigate the value of crowd-
sourcing and Ipeirotis et al. [12] present quality management
algorithms for crowdsourcing services. Recently, a series of
incentive mechanisms are designed for encouraging users
to participate in crowdsourcing. Singla et al. [13] design an
incentive mechanism for online procurement in crowdsourc-
ing systems, using a regret minimization approach to handle
the buyer’s budget constraint. Chen et al. [14] propose a new
extrinsic reward mechanism when considering the network
effects as a contributing factor. All of these work study
general crowdsourcing rather than mobile crowd sensing.
Moreover, some of them [15] focus on the network effect for
one-round auctions, and some rely on a limiting assumption
that user cost is sampled from a given distribution [13].

With the rapid development of mobile devices and em-
bedded sensors, mobile crowd sensing has been a focal point
of latest crowdsourcing research. Many researchers inves-
tigate auction mechanism design in mobile crowd sensing
systems. Feng et al. [6] take into consideration location
information when assigning sensing jobs to smartphones,
and propose a truthful auction tailored for such a mobile
crowd sensing system. Jin et al. [8] incorporate user’s quality
of information into the design of incentive mechanisms
for mobile crowd sensing systems. Han et al. [9] study
incentive mechanisms for a scheduling problem in mobile
crowd sensing. The above two studies [8][9] fail to address
location awareness when assigning sensing tasks to smart-
phone users. They make an impractical assumption that any
user can perform any task. Furthermore, the optimization
problem with location considered in our work is a special
set cover problem, which requires different solution tech-
niques. Although Feng et al. [6] acknowledge the importance
of location information, they focus on one-round auction
design only. Moreover, their one-round auction model is
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structurally different from ours, in that each sensing task
needs to be covered only once and each smartphone user
can be accepted up to ri bids where ri is a positive
integer. Thus, to solve our one-round winner determina-
tion problem, we propose a primal-dual algorithm with a
different greedy strategy and analyze the approximation
ratio by applying the LP-duality based approach. Different
objectives of incentive mechanism design for mobile crowd
sensing have also been considered widely. Yang et al. [16]
aim to maximize the crowd sourcer’s utility from both
the crowd sourcer’s and users’ perspectives. Koutsopoulos
et al. [17] introduce a randomized incentive mechanism
to minimize the total payment to the participating users,
while delivering a certain quality of service to subscribers.
Luo et al. [18] develop an all-pay auction based incentive
mechanism, targeting expected profit maximization and
individual rationality. The above literature considers only
one-round auction that happens at a single time spot. Many
practical sensing tasks, as exemplified by weather and traffic
information collection, require continuous and realtime par-
ticipation. Consequently, a multiple-round online auction
over a desired time domain constitutes a natural incentive
mechanism.

Kang et al. [10] study quality-aware online assignment
of location-based tasks. They assume voluntary user par-
ticipation, and aim to optimize the overall quality of task-
completion. Zhao et al. [19] focus on an online auction
model where users arrive randomly and bid tasks within
their service coverage. Their online mechanisms aim to
maximize the values of services under a platform’s budget
constraint, targeting different optimization objectives. Wei
et al. [20] investigate two-sided online interactions among
mobile crowdsourcing service providers and users. Their
online double auction framework can work with different
price schedules. Two practical concerns were overlooked in
the above incentive mechanism [20], which we address in
this work: location awareness and user capacity limits. Gao
et al. [21] study the long-term sensor selection problem in
a location-aware sensing system. Their online auction aims
to maximize the expected social welfare over all possible
information realizations. Compared with the above existing
literature, we target social welfare maximization, which is
equivalent to social cost minimization in our setting. In ad-
dition, we have a different model for task coverage and user
constraints. Our online mechanism design contains a non-
trivial online set cover problem with capacity constraints,
bringing more technical challenges.

Auction mechanisms have been been exclusively studied
in many other network systems, such distributed systems
[22], multi-agent systems [23], cloud computing systems
[24]. However, none of them can be directly applied to the
mobile crowd sensing systems, which have their unique
characteristics: covering requirements since each sensing
task needs to be covered at least once, location awareness
and user capacity limits, leading to different optimization
problems.

The primal-dual method with LP-duality based analysis
is a powerful algorithmic technique that has been applied
to solve many NP-hard problems. Briest et al. [25] design
primal-dual greedy algorithms to solve packing integer
programs like single-minded combinatorial auctions, un-

splittable flow routing and multicast routing. For covering
integer programs, Vazirani [26] uses the LP-duality ap-
proach to analyze a greedy algorithm for the minimum set
multi-cover problem. Our one-round winner determination
problem is a special set multi-cover problem, which involves
both conventional constraints (covering requirement) and
unconventional constraints (XOR-only bidding). The latter
further lead to unconventional dual variables that are hard
to update by the LP-duality approach we will leverage.
With the help of auxiliary variables, we develop a new
primal-dual greedy algorithm to solve the primal and dual
programs simultaneously, achieving a good, provable ap-
proximation ratio.

3 SYSTEM MODEL AND PRELIMINARIES

3.1 System Model

We consider a mobile crowd sensing system consisting of
a large number of smartphone users and a cloud-based
platform. The platform publicizes K sensing tasks S =

{s1, s2, . . . , sK} for execution by smartphones, with remu-
neration. A sensing task specifies the desired service (e.g.,
collecting and reporting traffic or air quality information)
and the location where the sensing data are to be collected.
The platform acts as the auctioneer who procures sensing
service and data from smartphone users through a reverse
auction.

Let [X] denote the integer set {1, 2, . . . , X}. Assume there
are at most I smartphone users bidding for sensing tasks,
and the set of users is [I] = {1, 2, . . . , I}. As illustrated in
Fig. 2, each smartphone user i ∈ [I] is aware of its own
location through a location service such as GPS, and is
confined by a geographical service coverage. Only sensing
tasks within its service coverage can be performed by user
i. The service coverage naturally varies for different users,
depending on their locations and the configuration of their
smartphones.

Task 7
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Task 6

Task 5

Task 4

7

phone3

Task 1

phone1phone2

The service 

coverage of phone 1
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Fig. 2. An illustration of service coverage of smartphones. The blue
circle denotes the service coverage of smartphone 1, within which three
sensing requests (tasks 2, 3 and 4) fall. Thus, smartphone 1 can provide
sensing service over any of the three tasks.

The system evolves in a time-slotted fashion over T time
slots (a.k.a. rounds). A sensing task sk needs Q

(t)
k partici-

pants to achieve desired quality (e.g., frequency, precision
and fidelity) in the sensing data at round t ∈ [T ]. At
the beginning of round t, the platform publishes a set of
sensing tasks to be performed at the current round. If no
sensing data is needed for task sk in round t, Q(t)

k is set to
zero. A smartphone user may arrive in any round. Assume
user i ∈ [I] arrives at the ti−th round. It first submits
an integer pair (ti+,Γi), where Γi is user i’s capacity, i.e.,
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the maximum number of tasks user i can accommodate
from now (ti−th round) to a future time (ti+th round) it
specifies. Without loss of generality, we assume that each
sensing task consumes one unit of the user’s capacity. Such
a user sensing capacity constraint is generally considered
in the mobile crowd sensing literature [6], [10], and the
values of Γi and ti+ depend on a number of factors, e.g., the
smartphone’s battery level and the user’s available service
period. Then within [ti−, ti+], at the beginning of round t,
user i may submit up to J alternative bids, each of which is
a tasks-bid pair (S

(t)
ij , b

(t)
ij ): S(t)

ij ⊆ S is a set of sensing tasks
that user i is willing to perform within its service coverage
in t, and b

(t)
ij is the claimed cost that user i wants to charge

for the service. We further adopt the XOR-bidding language
[27] and assume that each user can win at most one bid
(including one set of sensing tasks) during each round.

3.2 Truthful Mechanism Preliminaries
In each round t, after receiving user bids, the platform
computes and announces the auction result. A binary vari-
able x

(t)
ij equals 1 if the platform accepts user i’s jth bid

in slot t, and 0 otherwise. The platform also calculates the
remuneration p

(t)
i for a winner i. It pays p(t)

i to the winner i
after verifying the data (e.g., check whether the desired tasks
are completed within the time limit). Let v(t)

ij denote the true
cost of user i to perform tasks in set S(t)

ij , the utility of that
bid with bidding price b(t)ij is:

uij(b
(t)
ij ) =

{
p

(t)
i − v

(t)
ij if x(t)

ij = 1

0 otherwise

In terms of strategic behaviour, users are assumed to be
rational but selfish, with a natural goal of maximizing their
respective utilities. They may choose to submit a falsified
bid b

(t)
ij 6= v

(t)
ij , if doing so may lead to a higher utility. We

instead value the “happiness” of the entire crowd sensing
ecosystem, and pursue highest social welfare possible, for
which it is important to elicit truthful bids from users.
Important notations are listed in Table 1 for easy reference.

TABLE 1
Summary of Notation

I # of users [X] integer set {1, . . . , X}
T # of time slots J # of bids per user
K # of sensing tasks HK

∑K
k=1

1
k

S task set S = {s1, s2, . . . , sK}
S

(t)
ij set of tasks in user i’s jth bid
b
(t)
ij asking price of user i to execute tasks in S(t)

ij

v
(t)
ij true cost of user i to execute tasks in S(t)

ij

x
(t)
ij user i’s jth bid wins (1) or not (0) at slot t
Q

(t)
k # of participants required for task sk in slot t

Γi user i’s capacity from round ti− to round ti+
p

(t)
i payment to user i in slot t

Definition (Dominant Strategy): A strategy is dominant if,
the strategy earns a user a larger utility than any other
strategies, regardless of what any other users do.

Definition (Truthfulness in Bidding Price): A mobile crowd
sensing auction is truthful in bidding price if for any user i,

bidding its true cost v(t)
ij forms its dominant strategy, i.e., for

all b(t)ij 6= v
(t)
ij , uij(v

(t)
ij ) ≥ uij(b(t)ij ).

Definition (Individual Rationality): Users always obtain
nonnegative utility, u(t)

ij (b
(t)
ij ) ≥ 0.

Definition (Social Welfare, Social Cost): The social welfare
in the online mobile crowd sensing auction is the aggre-
gate utility of the platform (−

∑
t∈[T ]

∑
i∈[I]

∑
j∈[J] p

(t)
i x

(t)
ij )

and smartphone users (
∑
t∈[T ]

∑
i∈[I]

∑
j∈[J](p

(t)
i − v

(t)
ij )x

(t)
ij ).

The social welfare is −
∑
t∈[T ]

∑
i∈[I]

∑
j∈[J] v

(t)
ij x

(t)
ij when

payments cancel themselves. Maximizing the social
welfare is equivalent to minimizing the social cost∑
t∈[T ]

∑
i∈[I]

∑
j∈[J] v

(t)
ij x

(t)
ij .

3.3 Online Auction Problem

Under truthful bidding, the winner determination problem
for social cost minimization can be modelled by the follow-
ing integer linear program (ILP):

minimize
∑
t∈[T ]

∑
i∈[I]

∑
j∈[J]

b
(t)
ij x

(t)
ij (1)

subject to:
∑

i∈[I],j∈[J]:sk∈S
(t)
ij

x
(t)
ij ≥ Q

(t)
k , ∀k ∈ [K],∀t ∈ [T ], (1a)

∑
j∈[J]

x
(t)
ij ≤ 1, ∀i ∈ [I], ∀t ∈ [T ], (1b)

∑
t∈[ti−,ti+]

∑
j∈[J]

|S(t)
ij |x

(t)
ij ≤ Γi ∀i ∈ [I], (1c)

x
(t)
ij ∈ {0, 1},∀i ∈ [I], ∀j ∈ [J ], ∀t ∈ [T ]. (1d)

Constraint (1a) guarantees that each sensing task sk ∈ S
is covered by at least Q(t)

k participants in round t, for quality
control. Constraint (1b) specifies that each user wins at most
one bid in each round. Each user’s capacity constraint is
modelled in (1c), to practically limit user i’s participation.
Note that a user may choose not to submit any bid in
the current round, due to its remaining capacity, preference
or work schedule. That can be equivalently modelled by
setting its bidding prices to infinity.

We relax the integrality constraints of x(t)
ij ∈ {0, 1} to

x
(t)
ij ≥ 0 and add one more set of constraints x(t)

ij ≤ 1,∀i ∈
[I], ∀j ∈ [J ], ∀t ∈ [T ] to the above ILP. By introducing dual
variables y(t)

k , z(t)
ij , γ(t)

i and λi to constraints (1a), x(t)
ij ≤ 1,

(1b) and (1c) respectively, the dual of the resulting linear
program relaxation, which will be used in the online primal-
dual auction design in Sec. 5.1, can be formulated as:

maximize
∑
t∈[T ]

(
∑
k∈[K]

Q
(t)
k y

(t)
k −

∑
i∈[I]

∑
j∈[J]

z
(t)
ij −

∑
i∈[I]

γ
(t)
i )−

∑
i∈[I]

Γiλi

(2)
subject to:

∑
k∈[K]:sk∈S

(t)
ij

y
(t)
k − |S

(t)
ij |λi − z

(t)
ij − γ

(t)
i ≤ b

(t)
ij ,

∀i ∈ [I], ∀j ∈ [J ],∀t ∈[ti−, ti+]. (2a)

y
(t)
k , z

(t)
ij , γ

(t)
i , λi ≥ 0, ∀i ∈ [I], ∀j ∈ [J ], ∀k ∈ [K],∀t ∈ [T ]. (2b)

To obtain the optimal solution to (1), complete knowledge
about the entire crowd sensing system over its entire lifes-
pan is needed. However, winners must be determined at
the beginning of each round without future information.
Towards design of such an online auction, we first relax
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users’ capacities constraints (1c) that impose temporal cor-
relation in auction decision making, and design a truthful
auction that is carried out at each round to determine the
winners. Then based on the one-round auction, we present
an online auction framework that can decompose the long
term auction to a series of one-round auctions by modifying
the bidding prices according to remaining available capacity,
with a proven small loss factor in competitive ratio.

Definition (Competitive ratio): The competitive ratio is the
upper-bound ratio of the social cost generated by our online
auction to the social cost produced by an optimal solution
of the offline WDP in (1).

4 ONE-ROUND AUCTION MECHANISM

In this section, we first formulate the one-round WDP in
Sec. 4.1. We then introduce our one-round auction in Sec. 4.2,
which will be used later for developing the online mecha-
nism in Sec. 5. Theoretical analysis of the one-round auction
is presented in Sec. 4.3.

4.1 The One-Round Winner Determination Problem
The one-round WDP is formulated as follows, which in-
cludes the same constraints related to the current time slot
from (1), and excludes user capacity constraints (1c). We
modify the cost b(t)ij to a scaled cost w(t)

ij according to the
level of remaining capacity, and use it in the objective func-
tion. Although we delete constraints (1c), they are actually
considered in the design of the scaled cost (which will be
discussed later in Sec. 5.1).

minimize
∑
i∈[I]

∑
j∈[J]

w
(t)
ij x

(t)
ij (3)

subject to:
∑

i∈[I],j∈[J]:sk∈S
(t)
ij

x
(t)
ij ≥ Q

(t)
k , ∀k ∈ [K], (3a)

∑
j∈[J]

x
(t)
ij ≤ 1, ∀i ∈ [I], (3b)

x
(t)
ij ∈ {0, 1}, ∀i ∈ [I], ∀j ∈ [J ]. (3c)

By relaxing integrality constraints of x(t)
ij into 0 ≤ x

(t)
ij ≤

1,∀i ∈ [I], ∀j ∈ [J ], the dual of the above ILP’s LP relaxation
can be formulated as follows. Here y(t)

k , z(t)
ij and γ

(t)
i are the

same dual variables as in the dual of (1), corresponding to
constraints (3a), x(t)

ij ≤ 1 and (3b), respectively.

maximize
∑
k∈[K]

Q
(t)
k y

(t)
k −

∑
i∈[I]

∑
j∈[J]

z
(t)
ij −

∑
i∈[I]

γ
(t)
i (4)

subject to:∑
k∈[K]:sk∈S

(t)
ij

y
(t)
k − z

(t)
ij − γ

(t)
i ≤ w

(t)
ij , ∀i ∈ [I], ∀j ∈ [J ] (4a)

y
(t)
k , z

(t)
ij , γ

(t)
i ≥ 0, ∀i ∈ [I], ∀j ∈ [J ], ∀k ∈ [K]. (4b)

Consider a special case of the primal problem in (3) by
letting Q(t)

k = 1, ∀k ∈ [K], and removing constraint (3b). The
resulting problem is an instance of the minimum weighted
set cover problem, known to be NP-hard [28]. Because the
minimum weighted set cover problem is a special case of
WDP (3), WDP (3) is also NP-hard. We resort to an efficient
approximation algorithm for solving WDP (3) instead, and
tailor a payment scheme to work in concert with the algo-
rithm to form a truthful auction.

4.2 One-Round Auction Design

We first briefly introduce the main idea of our approxima-
tion algorithm. We say a sensing task sk is alive in t until the
number of participants at t reaches the requirement Q(t)

k .
The algorithm iteratively selects winning bids based on a
greedy strategy. In each iteration, a bid is picked to cover
alive tasks at the least average cost.

We next define some variables. Consider a set A(t) =
{(i1, j1), (i2, j2), . . . } indicating a subset of bids submitted at
the tth round, e.g.,(i1, j1) denotes the j1th bid submitted by
user i1. Let ρA

(t)

k =
∑

(i,j)∈A(t):sk∈S
(t)
ij

1 be the total number

of participants to task sk among all bids in A(t). The utility
of set A(t) is defined as U(A(t)) =

∑
k∈[K] min(ρA

(t)

k , Q
(t)
k ),

representing the valid contribution of bids in A(t) to all
tasks in S. The marginal contribution of user i’s jth bid is
the increased utility from adding i into A(t), defined as:

Uij(A
(t)) = U(A(t) ∪ (i, j))− U(A(t))

=
∑
k∈[K]

(min(ρ
A(t)∪(i,j)
k , Q

(t)
k )−min(ρA

(t)

k , Q
(t)
k )). (5)

We present our one-round auction ORA in Algorithm 1.
ORA selects one winning bid per iteration, and adds it to
the set of winning bids A(t). Let L(t)

ij be a set that records
current alive tasks in user i’s jth bid. Then Uij(A

(t)) also
denotes the number of alive tasks in that bid. To analyze
the approximation ratio of ORA, which is the upper-bound
ratio of the social cost generated by ORA to the social cost
produced by an optimal solution of WDP (3), we seek the
help of its dual problem (4). By LP duality [29], the bound
between the primal and dual objective values also bounds
the approximation ratio.

In ORA, F (t) is a grand set of all bids in t, and C(t)

is the candidate set of all valid bids, i.e., bids satisfying
XOR-bidding (3b) and user capacity constraints (1c). Line
1 initializes the set of winning bids as ∅. All primal and dual
variables are initialized to zero. The While loop in lines
2-11 adopts a greedy strategy to select winning bids, calcu-
lates payments and updates primal variables. Specifically, a
winning bid with minimum average cost is determined in
line 3, with the corresponding primal variable x(t)

i∗j∗ updated
to 1 in line 4. When a tasks set S(t)

i∗j∗ is accepted, its cost
w

(t)
i∗j∗ is ascribed to pairs (k, S

(t)
i∗j∗) for each alive task sk it

can cover, i.e., for each such pair, define a cost for task sk:

c(k, S
(t)
i∗j∗) =

w
(t)

i∗j∗

Ui∗j∗ (A(t))
, ∀k : sk ∈ L

(t)
i∗j∗ . Lines 5-6 compute

the payment to winner i∗ based on the critical value rule
[30], [31], ensuring that if the winner reports a smaller cost,
it must win (see Lemma 3 for details). Line 7 determines
the winning bid if we relax the XOR-bidding constraint
(3b) and user capacity constraint (1c). Another cost variable
c(k, S

(t)

i+j+
)′ is recorded in line 8 to help compute dual vari-

ables. Other bids from user i∗ are removed from candidate
set C(t), for implementing XOR-bidding. Line 10 adds the
winning bid to set A(t) and removes it from the bid set
F (t). We update dual variables based on the cost of the
task to bound the approximation ratio. Lines 12-15 compute
values of dual variables y(t)

k , where HK =
∑K
k=1

1
k

is the Kth
harmonic number. The for loop in lines 16-19 assign values
to dual variables z(t)ij corresponding to winning bids, and
announces the auction result.
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Algorithm 1 One-Round Auction ORA

Input: (w
(t)
ij , S

(t)
ij ), Q

(t)
k , C(t), F (t), ∀i, j, k

Output: A(t)

1: Define A(t) = ∅; Initialize x(t)
ij = 0, p

(t)
i = 0, y

(t)
k = 0, z

(t)
ij =

0, γ
(t)
i = 0,∀i ∈ [I], j ∈ [J ], k ∈ [K];

2: while U(A(t)) <
∑
k∈[K] Q

(t)
k do

3: (i∗, j∗) = arg min(i,j)∈C(t)

w
(t)
ij

Uij(A(t))
;

4: x
(t)
i∗j∗ = 1; c(k, S(t)

i∗j∗) =
w

(t)

i∗j∗

Ui∗j∗ (A(t))
, ∀k : sk ∈ L(t)

i∗j∗ ;

5: (i−, j−) = arg min(i,j)∈C(t):(i,j)6=(i∗,j∗)

w
(t)
ij

Uij(A(t))
;

6: p
(t)
i∗ = Ui∗j∗(A(t)) ·

w
(t)

i−j−

U
i−j− (A(t))

;

7: (i+, j+) = arg min(i,j)∈F (t)

w
(t)
ij

Uij(A(t))
;

8: c(k, S
(t)

i+j+
)′ =

w
(t)

i+j+

U
i+j+

(A(t))
, ∀k : sk ∈ L(t)

i+j+
;

9: C(t) = C(t)\(
⋃
j∈[J](i

∗, j));

10: A(t) = A(t) ∪ (i∗, j∗);F (t) = F (t)\(i∗, j∗);
11: end while
12: max(k) = max

S
(t)
ij

{{c(k, S(t)
ij )} ∪ {c(k, S(t)

ij )′}},∀k ∈ [K];

13: min(k) = min
S
(t)
ij

{{c(k, S(t)
ij )} ∪ {c(k, S(t)

ij )′}},∀k ∈ [K];
14: εk = max(k)/min(k), ∀k ∈ [K]; ε = maxk∈[K] εk;
15: mc(k) = max

S
(t)
ij

{c(k, S(t)
ij )}, y(t)

k = mc(k)/(HKε), ∀k;

16: for all x
(t)
ij == 1 do

17: z
(t)
ij =

∑
k:sk∈L

(t)
ij

(mc(k)− c(k, S(t)
ij ))/(HKε);

18: Accept user i’s jth bid; Collect and verify sensing
data; Pay p(t)

i to user i;
19: end for
20: Return A(t);

We next use a simple example to illustrate the winner
determination and the payment calculation process in ORA.
Here we ignore the superscript (t). Assume in the current
round, the platform publishes two tasks: s1 and s2 with
Q1 = Q2 = 2. Three smartphone users participate in the
auction. User 1 submits 2 bids:($2, (s1, s2)), ($1.2, s1). User
2 also submits 2 bids: ($2, s1), ($1.8, s2). User 3 submits 1
bid: ($3, (s1, s2)). Assume the candidate set C includes all
five bids and wij = bij .

• Initialization: A = ∅;U(A) = 0.
• First iteration: because U(A) < 4, we compute

w11

U11(A) = 1, w12

U12(A) = 1.2, w21

U21(A) = 2, w22

U22(A) =
1.8, w31

U31(A) = 1.5. As w11

U11(A) is the minimum, user 1’s
first bid is selected. We next compute the payment
to user 1. User 1’s second bid is the threshold bid
as it has the second minimum average cost, thus the
payment is calculated as p1 = U11(A)× w12

U12(A) = 2.4.
We exclude user 1’s bids from the candidate set C
and update A = {(1, 1)}, U(A) = 2.

• Second iteration: Since U(A) = 2 < 4, we continue
to compute w21

U21(A) = 2, w22

U22(A) = 1.8, w31

U31(A) = 1.5.
As w31

U31(A) is the minimum, user 3’s bid wins. User
2’s second bid is the threshold bid and the payment
to user 3 is p3 = U31(A)× w22

U22(A) = 3.6. We exclude
user 3’s bid from the candidate set C and update
A = {(1, 1), (3, 1)}, U(A) = 4. Now U(A) =

∑
kQk,

ORA terminates.

4.3 Theoretical Analysis
We next analyze the performance of ORA, in terms of
correctness, polynomial running time, approximation ratio
in social cost, truthfulness and individual rationality.
i) Correctness and Polynomial Time
Lemma 1. ORA in Algorithm 1 generates a feasible solution

to dual problem (4).

Proof: Case 1: First, suppose user i’s jth bid is not picked
by ORA. Let’s order the tasks in S

(t)
ij by the reverse order

in which their participation requirement (Qk(t)) is satisfied.
When task sk’s participation requirement is satisfied, S(t)

ij

has at least k unsatisfied tasks. Therefore, it can cover the

alive tasks at a cost no larger than
w

(t)
ij

k
. Recall that max(k)

and min(k) represent the maximum and minimum costs,
respectively, of sk when we consider all bids and ignore
constraints (3b) and (1c). When sk’s requirement is satisfied,

its cost mc(k) should be at most
w

(t)
ij

k
max(k)
min(k)

.

∑
k∈[K]:sk∈S

(t)
ij

y
(t)
k − z

(t)
ij − γ

(t)
i =

∑
k∈[K]:sk∈S

(t)
ij

y
(t)
k

=
1

HKε

∑
k∈[K]:sk∈S

(t)
ij

mc(k) ≤
w

(t)
ij

HKε

|S(t)
ij |∑
k=1

1

k

max(k)

min(k)

≤
w

(t)
ij

HKε
H|S(t)

ij |
ε ≤

w
(t)
ij

HKε
HKε = w

(t)
ij .

Thus, constraint (4a) holds when user i’s jth bid fails.
Case 2: Next assume user i’s jth bid wins in the one-round
auction ORA, Then∑

k∈[K]:sk∈S
(t)
ij

y
(t)
k − z

(t)
ij − γ

(t)
i =

∑
k∈[K]:sk∈S

(t)
ij

y
(t)
k − z

(t)
ij

=
1

HKε

( ∑
k:sk∈S

(t)
ij \L

(t)
ij

mc(t) +
∑

k:sk∈L
(t)
ij

c(k, S
(t)
ij )
)

=
1

HKε

( ∑
k:sk∈S

(t)
ij \L

(t)
ij

mc(t) + w
(t)
ij

)
Order tasks in L

(t)
ij first, and the remaining tasks (S(t)

ij \L
(t)
ij

) in the reverse order of their participation requirement
satisfaction. Then ∀sk ∈ S

(t)
ij \L

(t)
ij , when sk’s requirement

is satisfied, its cost mc(k) should be at most
w

(t)
ij

k+|L(t)
ij |
· max(k)
min(k)

.

Therefore, the right hand side of constraint (4a) is bounded
by w(t)

ij . ut
Theorem 1. ORA in Algorithm 1 returns a feasible solution

to ILP (3) and (4) in polynomial time.

Proof: (Polynomial running time): Line 1 initializes all the
variables in linear time, within O(IJK) steps. The while
loop runs at most I times since it selects one winner during
each iteration and there are at most I users. The body of the
while loop (lines 3-10) takes O(IJK) steps to determine
the winner, calculates the payments and updates variables.
Thus, the computation complexity of the while loop is
O(I2JK). The values of max(k),min(k), εk, ε,mc(k), and y

(t)
k



7

can be computed in O(IJK) steps (lines 12-15). The for
loop (lines 16-19) iterates IJ times to update the dual
variable z(t)

ij , and its running time is O(IJK). The last step in
line 20 takes one step to return the winner set. In summary,
the running time of ORA in Algorithm 1 is O(I2JK).
(Primal feasibility): If the one-round WDP (3) is solvable,
there exists at least a feasible solution by selecting one bid
per user. Therefore, Algorithm 1 terminates either before
or when the candidate set C(t) becomes empty. When it
terminates, U(A(t)) ≥

∑
k∈[K] Q

(t)
k and ρA

(t)

k ≥ Q
(t)
k ,∀k ∈ [K],

satisfying constraints (3a). Constraints (3b) hold because line
3 and line 9 guarantee each user can have at most one bid
accepted. Constraints (3c) will not be violated as values x(t)ij
are initialized to 0 (line 1) and updated to 1 only (line 4).
(Dual feasibility): Lemma 1 proves that ORA returns a feasi-
ble solution to LP (4). ut
ii) Approximation Ratio

Theorem 2. Let p and d be the primal objective value in (3)
and the dual objective value in (4) returned by ORA,
respectively. ORA guarantees αd ≥ p with α = HKε,
where HK =

∑K
k=1

1
k

and ε is defined in line 14 of
Algorithm 1. The approximation ratio of ORA is α.

Proof: Upon termination of ORA, the objective value of the
dual problem (4) is:

d =
1

HKε

∑
k∈[K]

Q
(t)
k mc(k)− 1

HKε

∑
i,j

∑
k:sk∈L

(t)
ij

(mc(k)− c(k, S(t)
ij ))

=
1

HKε

∑
i,j

∑
k

c(k, S
(t)
ij ).

The second equality holds because for each sensing
task sk, there are Q

(t)
k cost variables (c(k, S(t)

ij )) cor-
responding to it. Furthermore, c(k, S

(t)
ij ) is assigned a

value only when sk belongs to set L
(t)
ij . Consequently,∑

i,j

∑
k:sk∈L

(t)
ij

(mc(k) − c(k, S
(t)
ij )) can be rewritten as∑

k∈[K] Q
(t)
k mc(k)−

∑
i,j

∑
k c(k, S

(t)
ij ).

The objective value of the primal problem (3) is:

p =
∑

(i,j)∈A(t)

w
(t)
ij =

∑
i,j

∑
k

c(k, S
(t)
ij ).

The above equality follows because when bid (S
(t)
ij , w

(t)
ij ) is

selected by ORA, w(t)
ij is distributed over variables c(k, S(t)

ij )

of the tasks that are inside S(t)
ij and still alive.

Therefore, HKε · d = p. Let p∗ be the optimal objec-
tive value of ILP (3). By LP duality [29], p∗ ≥ d, then
p/p∗ ≤ p/d = HKε = α. The approximation ratio of ORA
is α. Furthermore, if each user submits only one bid at each
round, we can obtain HKd = p and the approximation ratio
is HK under this typical scenario. ut
iii) Truthfulness and Individual Rationality

Lemma 2. ORA is bid-monotonic, i.e., ∀i ∈ [I], ∀j, j̃ ∈ [J ], if
w

(t)

ij̃
< w

(t)
ij and S

(t)

ij̃
= S

(t)
ij , x(t)

ij = 1 implies x(t)

ij̃
= 1.

Proof: Assume user i’s jth bid wins, i.e., x(t)
ij = 1 , then

this bid has the minimum
w

(t)
ij

Uij(A(t))
in the current iteration.

If user i reports a smaller cost w(t)

ij̃
( < w

(t)
ij ) to cover the

same set of sensing tasks, as Uij̃(A
(t)) = Uij(A

(t)) according

to the definition in (5),
w

(t)

ij̃

U
ij̃

(A(t))
<

w
(t)
ij

Uij(A(t))
implies that bid

(w
(t)

ij̃
, S

(t)

ij̃
) wins in or even before the current iteration by

our greedy algorithm in ORA. Therefore, Lemma 2 holds.
ut

Lemma 3. The payments to all winners calculated by ORA
are critical in the following sense: assume a winning bid,
user i∗’s j∗th bid, reports a new cost w̃(t)

i∗j∗ instead of
w

(t)
i∗j∗ ; user i∗’s j∗th will win if w̃(t)

i∗j∗ ≤ pi∗ , and will fail
otherwise.

Proof: According to ORA, user i−’s j−th bid is the thresh-
old bid for it since when we exclude (i∗, j∗) from the
candidate set, user i−’s j−th bid is the first bid that is
accepted by ORA. Apparently, user i∗’s j∗th bid will win

if
w̃

(t)

i∗j∗

Ui∗j∗ (A(t))
≤

w
(t)

i−j−

U
i−j− (A(t))

and will fail otherwise. By set-

ting p
(t)
i∗ = Ui∗j∗(A(t)) ·

w
(t)

i−j−

U
i−j− (A(t))

, ORA guarantees that

w̃
(t)

i∗j∗

Ui∗j∗ (A(t))
≤

w
(t)

i−j−

U
i−j− (A(t))

when w̃
(t)
i∗j∗ ≤ pi∗ and

w̃
(t)

i∗j∗

Ui∗j∗ (A(t))
>

w
(t)

i−j−

U
i−j− (A(t))

when w̃
(t)
i∗j∗ > pi∗ . Thus, we conclude that each

winner is paid with a critical value. ut
Theorem 3. ORA is truthful in bidding price.

Proof: The Myerson’s theorem [30], [31] indicates that a
reverse auction is truthful in bidding price if and only if
i) the auction result (x(t)ij ) is monotonically non-decreasing
with the decrease of the reported cost (w(t)

ij ) and ii) each
winner is paid with a critical value. Hence, combining
Lemma 2 and Lemma 3, we finish the proof. ut
Theorem 4. The one-round auction ORA achieves individual

rationality.

Proof: As indicated in Lemma 3, bid (w
(t)

i−j−
, S

(t)

i−j−
) is

the threshold bid for winning bid (w
(t)
i∗j∗ , S

(t)
i∗j∗), and

w
(t)

i∗j∗

Ui∗j∗ (A(t))
≤

w
(t)

i−j−

U
i−j− (A(t))

. It is clear that the payment p(t)i∗ to

winner i∗ is at least w(t)
i∗j∗ as p(t)

i∗ = Ui∗j∗(A(t)) ·
w

(t)

i−j−

U
i−j− (A(t))

.

Furthermore, w(t)
i∗j∗ ≥ b

(t)
i∗j∗ (lines 6-7 in OPD), the utility of

user i∗’s j∗th bid with bidding price b(t)i∗j∗ is u(t)i∗j∗(b
(t)
i∗j∗) =

p
(t)
i − v

(t)
i∗j∗ = p

(t)
i − b

(t)
i∗j∗ ≥ 0 as Theorem 3 guarantees

v
(t)
i∗j∗ = b

(t)
i∗j∗ . Therefore, smartphone users always obtain

non-negative utility. ut

5 THE ONLINE MECHANISM

We next design the online auction mechanism for task allo-
cation and participation incentivization, based on an online
auction framework that decomposes the online WDP into a
series of one-round WDPs.

5.1 Online Auction Mechanism
The key challenge of online task allocation lies in users’
capacity constraints over their available periods: different
overall social costs can be produced when the capacities
are spent at different rounds. If a user’s bid with a large
set of tasks is accepted at an early stage, that user may
lose opportunities to participate later in the crowd sensing
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Algorithm 2 The Online Auction Mechanism OPD

Input: (b
(t)
ij , S

(t)
ij ), Q

(t)
k ,Γi, ti−, ti+, ∀i, j, k, t

Output: A(t),∀t
1: Initialize λ(t)

i = 0, τi = 0, ∀i ∈ [I], ∀t ∈ [T ];
2: Define F (t) = ∪i∈[I],j∈[J](i, j), C

(t) = F (t), ∀t ∈ [T ];
3: for all 1 ≤ t ≤ T do
4: for all i ∈ [I], j ∈ [J ] do
5: if t ∈ [ti−, ti+] and τi + |S(t)

ij | > Γi then
6: w

(t)
ij = b

(t)
ij ;C(t) = C(t)\(i, j);

7: else w
(t)
ij = b

(t)
ij + |S(t)

ij |λ
(t−1)
i ;

8: end if
9: end for

10: A(t) = ORA((w
(t)
ij , S

(t)
ij ), Q

(t)
k , C(t), F (t), ∀i, j, k)

11: for all (i, j) ∈ A(t) do

12: λ
(t)
i = λ

(t−1)
i

(
1 +

|S(t)
ij |
αΓi

)
+

b
(t)
ij |S

(t)
ij |

αΓ2
i

; τi = τi + |S(t)
ij |;

13: end for
14: for all (i, j) 6∈ A(t) do
15: λ

(t)
i = λ

(t−1)
i ;

16: end for
17: end for
18: λi = λ

(T )
i , ∀i ∈ [I]; Return A(t),∀t ∈ [T ];

auction, due to capacity depletion, limiting future decision
space of the platform. The platform may be consequently
forced to purchase service from more expensive alternatives,
leading to a higher social cost. The optimal strategy may
intend to let a user i participate in all rounds between round
ti− and round ti+ such that the platform can make the best
decision among all users.

Along this direction, we should avoid exhausting a
user’s capacity prematurely, by adjusting its cost based on
remaining capacity. Following this intuition, OPD in Algo-
rithm 2 is our online auction framework. A new variable
λ

(t)
i is introduced for each user in line 1. It increases with

the decrease of a user’s remaining capacity. τi stores the
number of performed tasks for user i before the current
round, and is initialized to zero in line 1. A grand set F (t)

that includes all bids is defined in line 2. A candidate set C(t)

that contains all valid bids for the current round (satisfying
constraints (3b) and (1c)) is initialized to F (t). At each round,
the new scaled cost w

(t)
ij will be used in the one-round

auction ORA. When the number of tasks in the current
bid plus the number of perviously performed tasks exceed
user i’s capacity (line 5), w(t)

ij remains the same but that
bid is excluded from the candidate set (line 6). w(t)

ij equals
b
(t)
ij + |S(t)

ij |λ
(t−1)
i (line 7) otherwise. In this way, a bid with

a smaller remaining capacity will be assigned a higher cost,
reducing its chance to win. λ(t)

i is updated carefully for each
winning bid in the current round (lines 11-13), consisting
of both the proportion of the capacity consumption and
the proportion of the corresponding cost increment, and
remains unchanged otherwise (lines 14-16). We set the dual
variable λi to λ

(T )
i in line 18. The adjustment of λ(t)

i at each
round is the increment of λi at each round, which will be
used to bound the competitive ratio.

Note that OPD invokes the one-round auction ORA in
each round t, and winners are paid during the execution of
ORA (line 18 of Algorithm 1).

We next use a simple example to illustrate the idea of
our online auction OPD. Suppose the online system spans 3
time slots (a.k.a. rounds). Both user 1 and user 2 arrive at the
first round and stay to the last round. They submit one bid
at each round and have the same capacity, i.e., J = 1,Γ1 =
Γ2 = 2. For ease of presentation, we assume the one-round
auction ORA can output the optimal solution with α = 1.

• First round: The platform publishes one sensing task
s1 withQ1

1 = 1. User 1 asks $4 to perform s1 and user
2 asks $6 to perform s1. Because λ01 = λ02 = 0, the
new scaled cost w1

11 = b111 = 4 and w1
21 = b121 = 6.

ORA selects user 1 as the winner. We update λ11 =
4/4 = 1 and λ12 = 0.

• Second round: The platform publishes s2 with Q2
2 =

1. User 1 asks $6 to perform s2 and user 2 asks $6.5 to
perform s2. We compute the scale cost: w2

11 = b211 +
1×λ11 = 7, w2

21 = b221 + 0 = 6.5. User 2 is selected by
ORA. We continue to update λ21 = 1, λ22 = 6.5/4 =
1.625.

• Third round: The platform publishes s3 with Q3
3 = 1.

User 1 asks $2 to perform s3 and user 2 asks $8 to
perform s3. We compute the scale cost: w3

11 = b311 +
1 × λ21 = 3, w3

21 = b321 + 1 × λ22 = 9.625. User 1
is selected by ORA. As this is the last round, OPD
terminates.

Without the online optimization, a greedy algorithm
produces a higher total cost, even if it can output the optimal
bid from the candidate set at each round. Because it selects
user 1 at the first round, user 1 at the second round and
user 2 at the third round (user 1 runs out of capacity). The
cost equals $4 + $6 + $8 = $18. At the same time, both the
optimal strategy and our online auction generates a lower
cost $12.5.

5.2 Theoretical Analysis

We next prove the properties of our online auction.
i) Correctness and Polynomial Time

Theorem 5. OPD in Algorithm 2 computes a feasible solution
for ILP (1) and its dual (2) in polynomial time.

Proof: (Polynomial time): Lines 1-2 define three new variables
and initialize one dual variable in O(IJT ) steps. The outer
for loop iterates T times to determine winners at each
round. The first inner for loop calculates the scaled cost
in O(IJ) steps. Then ORA is executed in line 10 to select
winners, and its running time is O(I2JK) according to
Theorem 1. The second and third inner for loops can be
executed in O(I) steps to update dual variable λ(t)

i . There-
fore, the running time of the outer for loop is O(I2JKT ).
The last line takes O(IT ) steps to assign value to λi and
return winner sets. In summary, the running time of OPD in
Algorithm 2 is O(I2JKT ).
(Primal feasibility): Constraints (1a), (1b) and (1d) can be
guaranteed by constraints in (3). Constraint (1c) holds be-
cause if the number of tasks in the current bid exceeds
the user’s remaining capacity, that bid is excluded from the
candidate set C(t) by OPD (lines 5-6) and is never accepted
by the platform.



9

(Dual feasibility): Since ORA produces a feasible solution to
LP (4), constraint (4a) holds. Based on the assignment of
w

(t)
ij , either w(t)

ij = b
(t)
ij + |S(t)

ij |λ
(t−1)
i and we have∑

k∈[K]:sk∈S
(t)
ij

y
(t)
k − z

(t)
ij − γ

(t)
i ≤ w

(t)
ij = b

(t)
ij + |S(t)

ij |λ
(t−1)
i

≤ b(t)ij + |S(t)
ij |λ

(T )
i = b

(t)
ij + |S(t)

ij |λi,

or w(t)
ij = b

(t)
ij and we obtain∑

k∈[K]:sk∈S
(t)
ij

y
(t)
k − z

(t)
ij − γ

(t)
i ≤ w

(t)
ij = b

(t)
ij ≤ b(t)ij + |S(t)

ij |λi,

which satisfies constraint (2a). Because λi ≥ 0, constraint
(2b) also holds. ut
ii) Competitive Ratio

We next analyze the competitive ratio of our online
auction (which is defined in Sec. 3). Let P (t) and D(t) be
the primal and dual objective values in (1) and (2) returned
by OPD after tth iteration, respectively. Then PT and DT

are the final primal and dual objective values achieved by
OPD. Let P ∗ denote the optimal objective value of ILP (1).

Lemma 4. Let ∆P (t) and ∆D(t) be the incremental in-
crease of the primal and dual objective values after
tth iteration, i.e., ∆P (t) = P (t) − P (t−1) and ∆D(t) =

D(t) − D(t−1). For all t ∈ [T ], ∆P (t) ≤ α β
β−1

∆D where
β = mini∈[I],j∈[J],t∈[T ]

Γi

|S(t)
ij |

.

Proof: Recall that p and d are the primal objective value in
(3) and the dual objective value in (4) returned by ORA,
respectively. Theorem 2 proves that αd ≥ p. At time t,
∆P (t) =

∑
(i,j)∈A(t) b

(t)
ij .

∆D(t) =
∑
i∈A(t)

Γi(λ
(t−1)
i − λ(t)

i ) + d

= d−
∑

(i,j)∈A(t) |S(t)
ij |λ

(t−1)
i

α
−

∑
(i,j)∈A(t)

b
(t)
ij

α
·
|S(t)
ij |
Γi

≥ p

α
−
∑

(i,j)∈A(t) |S(t)
ij |λ

(t−1)
i

α
−
∑

(i,j)∈A(t) b
(t)
ij

αβ

≥
∑

(i,j)∈A(t) w
(t)
ij

α
−
∑

(i,j)∈A(t) |S(t)
ij |λ

(t−1)
i

α
−
∑

(i,j)∈A(t) b
(t)
ij

αβ

= (
1

α
− 1

αβ
)

∑
(i,j)∈A(t)

b
(t)
ij = (

1

α
− 1

αβ
)∆P (t). ut

Theorem 6. OPD is α β
β−1 -competitive in social cost.

Proof: Because P (0) = D(0) = 0 and ∆P (t) ≤ α β
β−1

∆D, we
can obtain P (T ) =

∑T
t=0(P (t) − P (t−1)) ≤ α β

β−1

∑T
t=0(D(t) −

D(t−1)) = α β
β−1

D(T ). By LP duality [29], P ∗ ≥ DT , thus
P
P∗ ≤ PT

DT ≤ α β
β−1 . The competitive ratio of OPD is α β

β−1
.
ut

When users submit a small number of tasks as compared
to their capacities, i.e., β → +∞, the competitive ratio of
OPD approaches α, which means that OPD achieves near
zero loss when decomposing the online auction into a series
of one-round auctions.

iii) Truthfulness and Individual Rationality

Theorem 7. OPD in Algorithm 2 is a truthful and individ-
ually rational online auction that solves the WDP (1) in
polynomial time and is α β

β−1 -competitive in social cost.

Proof: (Truthfulness in bidding price): ORA is truthful in
bidding price (Theorem 3) running at each round with an
input of the scaled cost. The scaled cost is based on the
bidding price and is known only to the platform. Therefore,
OPD with ORA ensures truthfulness in bidding price.
(Truthfulness in task set S(t)

ij ): We need to show that a user
will never bid sensing tasks that are not within its service
coverage. As indicated by line 18 in ORA, if a winner
cannot complete its submitted tasks, it will not receive any
payment. Thus, users have no incentives to lie about the
task set.
(Truthfulness in ti−, ti+ and Γi): ti− is the time when user
i starts to submit bids, which is recorded by the platform.
Thus, user i cannot lie about it. If user i reports a smaller ti+
and Γi, its utility in the single round remains the same, but
it may lose opportunities to win in some rounds, reducing
its overall utility. As a result, no user will take the risk to do
that. If user i reports a larger ti+ and Γi, it may be assigned
to perform tasks that it cannot finish, and then it will not be
paid and its overall utility cannot be improved by doing so.

Individual rationality, competitiveness in social cost, cor-
rectness and polynomial running time of OPD are guaran-
teed by Theorem 4, Theorem 6 and Theorem 5. ut

6 PERFORMANCE EVALUATION

We evaluate the performance of our one-round and online
auctions based on real-world trace data. We further compare
our mechanism with two related mechanisms from recent
literature [6][19]. A widely-adopted trace [32], which in-
cludes GPS coordinates of approximately 320 taxis collected
over 30 days in Rome, Italy, is utilized in our simulation
study. We select a specific region, as marked in Fig. 3, and
a 12-hour period (00:00 am−11:59 am on 02/01/2014) from
the trace. We assume that a smartphone is carried by the
driver or the passenger of a taxi.

Fig. 3. The selected region of Rome, surrounded by red pins.

Inside the selected region, we randomly deploy 50-150
sensing tasks on some streets and identify 150-300 cars
that are moving along these streets. By default, the costs
of bids are uniformly distributed in the range of [10, 30].
Q

(t)
k is set within the range of [5, 50]. For the one-round

auction, we choose a 10-minute trace and assume that if
a taxi passes a sensing task along its route within the 10
minutes, then that task is within the service coverage of the
smartphone on the taxi. We pick tasks randomly within the
user’s service coverage to form the task set S(t)

ij . For the
online auction, we vary the number of rounds (T ) from 1
to 20, and assume the length of each round is 30 minutes.
ti− and ti+ are randomly picked between [1, T ] and [ti−, T ],
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Fig. 4. Performance of ORA under different num-
bers of tasks and bids per user.
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Fig. 5. Performance of ORA and Feng et al.’s
one-round auction [6] under different numbers of
users.
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Fig. 6. Social cost vs. payment with different
numbers of tasks and distributions.

respectively. Γi is a random number within the range of
[K,KT/2]. The default value of T , J , I and K are 10, 2, 150
and 100, respectively.

6.1 Performance of One-round Auction ORA
Performance Ratio. We first examine the performance of our
one-round auction, measured by the ratio of the objective
value of ILP (3) returned by Algorithm 1 to the optimal
objective value of (3). Fig. 4 shows the change of the ratio
of ORA when we vary the number of tasks (K) and the
number of bids per user (J). We can observe that it always
performs well with a very low ratio (< 1.3). Its performance
becomes better with the decrease of K and J , achieving a
close-to-optimal ratio (≈ 1) when there is a small set of
tasks and each user submits only one bid. The observation is
consistent with the theoretical analysis in Theorem 2, which
indicates that the performance ratio is upper bounded by
the the value of HKε. The value of HK increases when K

becomes larger and the value of ε grows larger when a user
submits multiple bids.

Feng et al. [6] consider the location information when
designing their one-round auction. We have evaluated their
mechanism using the same trace data. Fig. 5 compares the
performance of the two one-round auctions. ORA achieves
a clearly lower performance ratio than Feng et al.’s mecha-
nism. Furthermore, the ratio of ORA slightly decreases with
the increment in the number of participants. This is because
ORA is able to select more low-cost bids to cover the same
sensing tasks from a larger set of bidders.
Social Cost and Payment. We generate the cost of bids using
three distributions: uniform distribution (UNM), normal
distribution (NORM) and exponential distribution (EXP),
and plot the social cost (solid line) and payment (dashed
line) returned by ORA under different numbers of tasks in
Fig. 6. UNM is the default setting with the cost in [10, 30].
The mean and standard deviation of NORM are 20 and
10, respectively. The mean of EXP is set to 30. When the
number of tasks increases, the platform must employ more
smartphone users, incurring a higher social cost. The social
cost of the exponential distribution is lower than those of
the other two distributions, as it generates low cost bids
with higher probabilities. The social cost of the uniform
distribution is higher than that of the normal distribution,
due to the fact that the probability of generating high cost
bids (> 15) from the uniform distribution is much larger
than that from the normal distribution. In addition, the total
payment to winners is always higher than the social cost,
as ORA guarantees that the payment to each winner is no
smaller than its cost.
Winner Satisfaction and Time Complexity. Winner satis-
faction of ORA, as measured by the percentage of winning

users, is illustrated in Fig. 7. The highest value occurs when
there are a small number of users and a large number of
tasks. Winner satisfaction drops when a high number of
users participate in the auction but only a small number
of tasks are to be covered. The reason can be explained as
follows: The number of winners remains relatively steady
when the number of tasks is fixed. Therefore, only a small
percentage of users can win when a large number of users
submit bids. Furthermore, the platform does not need to
hire many users when there is a small set of tasks, reducing
the number of winners.

Fig. 8 illustrates the complexity of ORA under different
input scales. We use tic and toc functions in MATLAB to
measure the execution time of the main program without
counting the initialization stage. We run five tests on our
laptop (Intel Core i7-6700HQ/16GB RAM) and present the
average result. It can be observed that the running time is
less than 100 milliseconds even with a large input size and
increases linearly with the increase of the number of tasks
and users. We also compare our one-round auction with
Feng et al.’s one-round auction, and then observe similar
performance.
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6.2 Performance of Online Auction OPD
Performance Ratio. We show the ratio computed by divid-
ing the social cost generated by OPD to the offline optimal
social cost under different numbers of tasks and users in the
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Fig. 9. Performance of OPD, Feng, OMZ and
OMG from Zhao et al. [19].
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numbers of tasks.

left of Fig. 9. Comparing to the performance ratio of the one-
round auction ORA in Fig. 4, we can observe that there is
only a small loss. Furthermore, the ratio slightly decreases
with user population increases and task number decrease.
This is because OPD can select more low-cost bids from a
larger candidate set, achieving a better performance ratio.
However, when the number of tasks grows, OPD performs
worse, which is in line with Theorem 7. Next, we construct
an online mechanism, labelled Feng, by running Feng et
al.’s one-round auction [6] at each round. Zhao et al.’s two
online auctions (OMZ and OMG) [19] are also designed for
location-based tasks. We directly use their simulation results
which show the performance ratio under a larger budget
(2000) and compare it with Feng. The figure on the right in
Fig. 9 shows that the performance of Feng becomes worse
when the number of tasks increases. Note that although the
performance of Zhao et al.’s online auctions is slightly better
than Feng, their study in [19] shows that the ratio can reach
3.4 with a small budget. It can be observed that our online
auction OPD always outperforms the other three solutions
over a wide range of user and task populations.

We further plot the ratio in Fig. 10 with varying number
of rounds (T ) and number of bids per user (J ). Similar to the
observation in Fig. 4, a larger J leads to worse performance.
The growth of T has a negative influence on the ratio. This
can be explained as follows. We proved that the competitive
ratio of OPD depends on α and β. When the platform allows
users to submit multiple bids and the online auction consists
of many rounds, α and β are more likely to have larger
values. Fig. 10 also illustrates that Feng’s performance ratio
is larger than ours and grows with the increase of T . This
is because Feng is built by repeating Feng et al.’s one-round
auction [6] without careful online coordination.
Social Cost and Payment. We plot two sets of data in
Fig. 11 when we vary the number of tasks. The three upper
lines represent the social cost generated by OPD, the total
payment and the optimal social cost when the number of
users is 150; and the three lower lines are for the case of
I = 250. Again, we can see a downward trend in social
cost with the increment of I and the decrease of K . The
overall cost in the online auction is always lower than the
total payment, but slightly higher than the optimal cost.
Individual rationality and Time complexity. Finally, we
verify individual rationality by comparing each winning
bid’s real cost with its payment. The result is shown in
Fig. 12, where the payment is plotted by a triangle mark
and the cost is labelled by a star mark. It is clear that the
payment is always greater than the cost. Fig. 13 shows the
average running time of OPD. Again, the execution time
is short even when we include 1000 users, 600 tasks and
600 one-round auctions. The running time linearly grows
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Fig. 13. The average running time of OPD under different numbers of
tasks and rounds when I = 1000.

with the increment of K and T , confirming our analysis in
Theorem 5.

7 CONCLUDING REMARKS

We study online mechanism design for mobile crowd sens-
ing systems, for incentivizing user participation and assign-
ing location-aware sensing tasks to dynamically arriving
users each subject to a capacity constraint. Our mechanism
design consists of a one-round auction and an online algo-
rithm framework. Theoretical analysis and trace-driven sim-
ulations demonstrate that our online mechanism achieves
truthfulness, individual rationality, computational efficiency
and a good competitive ratio. The scope of auction-based
incentive mechanism design for mobile crowd sensing is
a wide one. For example, there are natural alternatives to
the XOR bidding rule. It is also interesting to consider a
variation of the online decision making requirement where
bids arriving in each decision interval are processed in
batches, with the hope of more informed decision making.
We will explore these interesting problem settings in our
future work.
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