
DAPPLE: A Pipelined Data Parallel Approach for
Training Large Models

Shiqing Fan
Alibaba Group

shiqing.fsq@alibaba-inc.com

Yi Rong
Alibaba Group

rongyi.ry@alibaba-inc.com

Chen Meng
Alibaba Group

mc119496@alibaba-inc.com

Zongyan Cao
Alibaba Group

zongyan.cao@alibaba-inc.com

Siyu Wang
Alibaba Group

siyu.wsy@alibaba-inc.com

Zhen Zheng
Alibaba Group

james.zz@alibaba-inc.com

Chuan Wu
The University of Hong Kong

cwu@cs.hku.hk

Guoping Long
Alibaba Group

guopinglong.lgp@alibaba-inc.com

Jun Yang
Alibaba Group

muzhuo.yj@alibaba-inc.com

Lixue Xia
Alibaba Group

lixue.xlx@alibaba-inc.com

Lansong Diao
Alibaba Group

lansong.dls@alibaba-inc.com

Xiaoyong Liu
Alibaba Group

xiaoyong.liu@alibaba-inc.com

Wei Lin
Alibaba Group

weilin.lw@alibaba-inc.com

Abstract
It is a challenging task to train large DNN models on so-
phisticated GPU platforms with diversified interconnect ca-
pabilities. Recently, pipelined training has been proposed
as an effective approach for improving device utilization.
However, there are still several tricky issues to address: im-
proving computing efficiency while ensuring convergence,
and reducing memory usage without incurring additional
computing costs. We propose DAPPLE, a synchronous train-
ing framework which combines data parallelism and pipeline
parallelism for large DNN models. It features a novel paral-
lelization strategy planner to solve the partition and place-
ment problems, and explores the optimal hybrid strategies of
data and pipeline parallelism.We also propose a new runtime
scheduling algorithm to reduce device memory usage, which
is orthogonal to re-computation approach and does not come
at the expense of training throughput. Experiments show
that DAPPLE planner consistently outperforms strategies
generated by PipeDream‘s planner by up to 3.23× speedup
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8294-6/21/02. . . $15.00
https://doi.org/10.1145/3437801.3441593

under synchronous training scenarios, and DAPPLE runtime
outperforms GPipe by 1.6× speedup of training throughput
and saves 12% of memory consumption at the same time.

CCSConcepts: •Computingmethodologies→Massively
parallel algorithms.

Keywords: deep learning, data parallelism, pipeline paral-
lelism, hybrid parallelism

1 Introduction
The artificial intelligence research community has a long
history of harnessing computing power to achieve signifi-
cant breakthroughs [44]. For deep learning, a trend has been
increasing the model scale up to the limit of modern AI
hardware. Many state-of-the-art DNN models (e.g., NLP[39],
search/recommendation systems[13, 45]) have billions of
parameters, demanding tens to hundreds of GBs of device
memory for training. A critical challenge is how to train
such large DNN models on hardware accelerators, such as
GPUs, with diversified interconnect capabilities [18, 29, 34].

A common approach is sychronous data parallel (DP) train-
ing. Multiple workers each performs complete model com-
putation and synchronizes gradients periodically to ensure
proper model convergence. DP is simple to implement and
friendly in terms of load balance, but the gradients sychro-
nization overhead can be a major factor preventing linear
scalability. While the performance issue can be alleviated by
optimizations such as local gradients accumulation[1, 5, 6] or
computation and communication overlap techniques[27, 43],

https://doi.org/10.1145/3437801.3441593

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea
Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen Zheng, Chuan Wu, Guoping Long, Jun Yang, Lixue Xia, Lansong Diao, Xiaoyong Liu,

and Wei Lin

aggressive DP typically requires large training batch sizes,
which makes model tuning harder from the perspective of
retaining convergence [20].
Recently, pipeline parallelism[24, 36, 52] has been pro-

posed as a promising approach for training large DNN mod-
els. The idea is to partition model layers into multiple stages
and place them on a set of inter-connected devices. During
training, each input batch is further divided into multiple
micro-batches, which are scheduled to run over multiple de-
vices in a pipelined manner. Prior research on pipeline train-
ing generally falls into two categories. One is on optimizing
pipeline parallelism for synchronous(sync) training[24, 52].
This approach requires necessary gradient synchronizations
between adjacent training iterations to ensure convergence.
At runtime, it schedules as many concurrent pipe stages
as possible in order to maximize device utilization. In prac-
tice, this scheduling policy can incur notable peak memory
consumption. To remedy this issue, re-computation[12, 26]
can be introduced to trade redundant computation costs
for reduced memory usage. The other category is asynchro-
nous(async) pipeline training [36]. This manner inserts mini-
batches into pipeline continuously and discards the original
sync operations to achieve maximum throughput.
Although these efforts have made good contributions to

advance pipelined training techniques, they have some se-
rious limitations. While PipeDream[23] made progress in
improving the time-to-accuracy for some benchmarks with
async pipeline parallelism, async training is not a common
practice in important industry application domains due to
convergence concerns. This is reflected in a characterization
study[47] of widely diversified and fast evolving workloads
in industry scale clusters. In addition, the async approach
requires the storage of multiple versions of model parame-
ters. This, while friendly for increasing parallelism, further
exacerbates the already critical memory consumption issue.
As for sync training, current approach[24] still requires no-
table memory consumption, because no backward process-
ing(BW) can be scheduled until the forward processing(FW)
of all micro-batches is finished. GPipe[24] proposes to dis-
card some intermediate results to free the memory and re-
computes them during BW when needed. But it introduces
additional re-computation overhead[4].
In this paper, we propose DAPPLE, a distributed training

scheme which combines pipeline parallelism and data par-
allelism to ensure both training convergence and memory
efficiency. DAPPLE adopts sync training to guarantee con-
vergence, while avoiding the storage of multiple versions of
parameters in async approach.
Specifically, we address two design challenges. The first

challenge is how to determine an optimal parallelization
strategy given model structure and hardware configurations.
The target optimization space includes DP, pipelined par-
allelism, and hybrid approaches combining both. Current

state-of-the-art pipeline partitioning algorithm [36] is not ap-
plicable for sync training effectively. Some other work[4, 24]
rely on empirical and manual optimizations, and lack con-
sideration of some parallelism dimensions. We introduce a
sync pipeline planner, which generates optimal paralleliza-
tion strategies automatically by minimizing execution time
of training iterations. Our planner combines pipeline and
data parallelism (via stage-level replication) together while
partitioning layers intomultiple stages. Besides pipeline plan-
ning, for those models that can fit into a single device and
with high computation/communication ratio, the planner is
also capable of producing DP strategies directly for runtime
execution.
The second challenge is how to schedule pipeline stage

computations, in order to achieve a balance among paral-
lelism, memory consumption and execution efficiency. We
introduce DAPPLE schedule, a novel pipeline stage sched-
uling algorithm which achieves decent execution efficiency
with reasonably low peak memory consumption. A key fea-
ture of our algorithm is to schedule forward and backward
stages in a deterministic and interleaved manner to release
the memory of each pipeline task as early as possible.
We evaluate DAPPLE on six benchmarks over three rep-

resentative application domains (i.e., image classification,
machine translation and language modeling). For all bench-
marks, experiments show that our planner can consistently
produce optimal hybrid parallelization strategies combining
data and pipeline parallelism on three typical GPU hardware
environments in industry. Besides large models,DAPPLE also
works well for medium scale models with relatively large
weights yet small activations (i.e. VGG-19).

The contributions of DAPPLE are summarized as follows:

• We systematically explore hybrid of data and pipeline
parallelism with a pipeline stage partition algorithm
for sync training, incorporating a topology-aware de-
vice assignment mechanism given model graphs and
hardware configurations. This facilitates large model
training and reduces communication overhead of sync
training, which is friendly for model convergence.

• We feature a novel parallelization strategy DAPPLE
planner to solve the partition and placement problems
and explore the optimal hybrid strategies of data and
pipeline parallelism, which consistently outperforms
SOTA planner’s strategies in sync training scenes.

• We eliminate the need of storing multiple versions of
parameters. DAPPLE introduces a pipeline task sched-
uling approach to further reduce memory consump-
tion. This method is 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙 to re-computation ap-
proach and does not come at the expense of training
throughput. Experiments show that DAPPLE can fur-
ther save about 20% of device memory on the basis of
enabling re-computation optimization.

DAPPLE PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

2. DAPPLE
Planner

User Input
1. DAPPLE

Profiler

Per-layer Statistics:
- Compute Times
- Activation Sizes
- Parameter Sizes

Distributed
Training

3. DAPPLE
Runtime

Hardware
Configurations

Hybrid Parallel Model

Model

Global Batch Size

Figure 1. DAPPLE framework overview.

GPU0

GPU1

GPU2

GPU3

GPU0

GPU1

GPU2

GPU3

NVLink

Ethernet

Pipeline	Parallelism

Machine0	(Stage0) Machine1	(Stage1)

D
at
a	
Pa
ra
lle
lis
m

NVLink

NVLink

NVLink

NVLink

NVLink

Figure 2. Device mapping on hierarchical interconnects.

2 The DAPPLE Approach Overview
Fig. 1 shows high-level workflow of DAPPLE which features
a profiler, a planner and a runtime system. Overall, DAPPLE
profiler takes one DNN model as input, and profiles execu-
tion time, activation sizes and parameter sizes for each layer.
Taking profiling results as input, DAPPLE planner generates
an optimized (hybrid) parallelization plan on a given global
batch size. Both DAPPLE profiler and planner are offline and
can be completed within a few seconds for all our bench-
mark models (Table 1). Finally DAPPLE runtime takes the
planner’s results, and transforms the original model graph
into a pipelined parallel graph. At this stage, global batch size
is further split into multiple micro-batches and then been
scheduled for execution by DAPPLE runtime.

We also explore the mapping of a single stage onto multi-
ple devices. With the replication of pipeline stages on multi-
ple devices, DAPPLE processes training with the hybrid of
data and pipeline parallelism. In practice, this hybrid strategy
can exploit hierarchical interconnects effectively. Fig. 2 gives
an example where a model is partitioned into two stages
and each stage is replicated on four devices within the same
server(NVLink connections within server), while inter-stage
communication goes over the Ethernet. This mapping ex-
ploits workload characteristics by leveraging the high-speed
NVLink for heavy gradients sync, while using the slow Eth-
ernet bandwidth for small activations communication. We
discuss details of our planner in Section 4.

3 DAPPLE Schedule
3.1 Limitations of GPipe Schedule
To improve pipeline training efficiency, GPipe[24] proposes
to split global batch into multiple micro-batches and injects
them into the pipeline concurrently (Fig. 3 (a)). However, this
scheduling pattern alone is not memory-friendly and will
not scale well with large batch. The activations produced
by forward tasks have to be kept for all micro-batches until
corresponding backward tasks start, thus leads to the mem-
ory demand to be proportional (𝑂 (𝑀)) to the number of
concurrently scheduled micro-batches (𝑀). GPipe adopts re-
computation to savememorywhile brings approximately 20%
extra computation. In DAPPLE, we propose early backward
scheduling to reduce memory consumptions while achieving
good pipeline training efficiency(Fig. 3 (b)).

3.2 Early backward scheduling
The main idea is to schedule backward tasks(BW) earlier and
hence free the memory used for storing activations produced
by corresponding forward tasks(FW). Fig. 3(b) shows DAP-
PLE’s scheduling mechanism, compared to GPipe in Fig. 3 (a),
where the numbers in the cells represent micro-batch ids..
Firstly, instead of injecting all𝑀 micro-batches at once, we
propose to inject K micro-batches (𝐾 < 𝑀) at the beginning
to release memory pressure while retaining high pipeline
efficiency. Secondly, we schedule one FW of a micro-batch
followed by one BW strictly to guarantee that BW can be
scheduled earlier. Fig. 3 (c) shows how the memory con-
sumptions change over time in GPipe and DAPPLE. At the
beginning, the memory usage inDAPPLE increases with time
and is the same as GPipe’s until𝐾 micro-batches are injected,
then it reaches the maximum due to the early BW sched-
uling. Specifically, with strictly controlling the execution
order of FW and BW, the occupied memory for activations
produced by the FW of a micro-batch will be freed after
the corresponding BW so that it can be reused by the next
injected micro-batch. In comparison, GPipe’s peak memory
consumptions increases continuously and has no opportu-
nity for early release. Moreover, DAPPLE does not sacrifice
in pipeline training efficiency. Actually, DAPPLE introduces
the exact same bubble time as GPipe when given the same
stage partition, micro-batches and device mapping. We will
present the details in section 5.3.
Note that the combination of early backward scheduling

and re-combination allows further exploitation in memory
usage.We present detailed performance comparisons ofDAP-
PLE and GPipe in Section 6.4.

4 DAPPLE Planner
DAPPLE Planner generates an optimal hybrid parallelism
execution plan given profiling results of DAPPLE profiler,
hardware configurations and a global training batch size.

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea
Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen Zheng, Chuan Wu, Guoping Long, Jun Yang, Lixue Xia, Lansong Diao, Xiaoyong Liu,

and Wei Lin

6
Forward Backward

GPU0

GPU1

GPU2

GPU0

GPU1

GPU2

0
0

0

1
1

1

2
2
3

2
3

3 3
3

3

2
2

2

1
1

1

0
0

0

4
5

5
6

6

4 5
4

6
6

6

5
5
4

4
45

Peak	M
em

ory

Time

20
0

0

1
1

1 2

3
32

3 3
3

3

2
2

2

1
1

1

0
0

0 4
4

4

5
5

5

6
6

64
4

4

5
5

5

6
6

6

(c)	Memory	consumption	of	GPU0		from	(a)	and	(b)	

(a)	GPipe
(b)	DAPPLE

(b)	DAPPLE

(a)	GPipe

Figure 3. The different scheduling between GPipe(a) and
DAPPLE(b) and their memory consumptions.

1

0 1

0 1 2 3

0

0

4

Stage	4
AllReduce

Stage	0

Stage	1

Forward Backward

2

0 1 2

0 1 2

0

0 1

1 1

0

0

0

0

3

3

3

2

2 2

2

3

3

3

3

1

1

1

4

4

4

2

2

2

5 1 6 2 7 3

5

5

5

3

3

3 6

6

6 4

4

4 7

7

7

4

4 4

4

5

5

5

5

6

6 6

6

7

7 7

7

5

5

5

6

6

6

7

7

7

4 5 6 7

Stage	2
AllReduce

AllReduce Network	Transmission

Stage	2

Tw (Warmup Phase) Ts (Steady Phase) Te (Ending Phase)

Stage	3

Stage	4

Bubble

Figure 4. DAPPLE pipeline example. The numbers in the
cells represent micro-batch ids and Stage-4 is the pivot stage.

4.1 The Optimization Objective
For synchronous training, we use the execution time of a
single global batch as our performance metric, which we
call pipeline latency. The optimization objective is to mini-
mize pipeline latency 𝐿 with the consideration of all solution
spaces of data parallelism and pipeline parallelism.

In synchronous pipeline training, computations and cross-
stage communication of all stages usually form a trapezoid.
Fig.4 shows a pipelined training example with well designed
task scheduling arrangement, where network communica-
tions are arranged as individual stages.We use blue and green
blocks to indicate forward and backward computations, re-
spectively, with numbers in them represent micro-batch ids.
Gray blocks indicate bubble overheads, which refer to some
idle time per accelerator introduced by stage partitions. Such
shape shown above is formed due to the nature of DNN train-
ing: for example, the forward block of micro-batch 𝑖 at stage
𝑠 must be performed before the forward block of micro-batch
𝑖 at stage 𝑠 + 1 as well as the forward block of micro-batch
𝑖 + 1 at stage 𝑠 . We denote the stage with the least bubble
overhead as pivot stage, which will be the dominant factor
in calculating pipeline latency 𝐿. Let its stage id be 𝑄 . How
to choose the pivot stage is discussed is Section 4.3.

A pipeline training iteration consists of three phases, namely
warmup phase, steady phase and ending phase. As an exam-
ple shown in Fig. 4 where the pivot stage is the last stage.
Pivot stage dominates steady phase. We call the execution pe-
riod from the start to pivot stage’s first forward micro-batch
as warmup phase in a pipeline iteration, the period from
pivot stage’s last backward micro-batch to the end as ending
phase. Pipeline latency 𝐿 is the sum of these three phases.
The optimization objective for estimating 𝐿 is as follows:

𝑇𝑤 =

𝑄∑
𝑠=0

𝐹𝑠

𝑇𝑠 = (𝑀 − 1) × (𝐹𝑄 + 𝐵𝑄)

𝑇𝑒 =
𝑆−1max
𝑠=0

(𝐴𝑅(𝑃𝑠 , 𝑔𝑠) +
{
−∑𝑠

𝑎=𝑄 𝐵𝑎 𝑠 > 𝑄∑𝑄
𝑎=𝑠 𝐵𝑎 𝑠 ≤ 𝑄

)

(1)

𝐿 = 𝑇𝑤 +𝑇𝑠 +𝑇𝑒 (2)
𝑇𝑤 denotes the execution time of warmup phase, which is

the sum of forward execution time of stages till 𝑄 for one
micro-batch. 𝑇𝑠 denotes the steady phase, which includes
both forward and backward time of the pivot stage 𝑄 for all
micro-batches except for the one contributing to warmup
and ending phase, respectively.𝑇𝑒 corresponds to the ending
phase. 𝑇𝑒 includes allreduce overhead and thus considers
stages both before and after 𝑄 . Note that some stages before
𝑄 may contribute to𝑇𝑒 with allreduce cost.𝑀 , 𝑆 , 𝐹𝑠 and 𝐵𝑠 de-
note the total number of micro-batches, the number of stages
(computation stages + network stages), forward and back-
ward computation time of stage 𝑠 , respectively. 𝐴𝑅(𝑃𝑠 , 𝑔𝑠)
represents the gradients synchronization (AllReduce) time
for stage 𝑠 , with its parameter set 𝑃𝑠 on the device set 𝑔𝑠 .
Note here we consider inter-stage communication as an

independent stage alongside the computation stages, e.g., the
Stage 1 and Stage 3 in Fig. 4. The AllReduce time𝐴𝑅(𝑃𝑠 , 𝑔𝑠) is
always 0 for these inter-stage communication stages. More-
over, we define 𝐹𝑠 and 𝐵𝑠 for a communication stages as its
following forward and backward communication time.
In practice, synchronous pipelines in some cases include

bubbles in the pivot stage 𝑄 , which may contribute a small
fraction of additional delay to the pipeline latency 𝐿. This
objective does not model those internal bubbles, and thus is
an approximation to the true pipeline latency. But it works
practically very well for all our benchmarks (Section 6).

4.2 Device Assignment
Device assignment affects communication efficiency and
computing resource utilization. Previous work [36] uses hi-
erarchical planning and works well for asynchronous train-
ing. However, it lacks consideration of synchronous pipeline
training, in which the latency of the whole pipeline, rather
than of a single stage, matters to overall performance. It can-
not be used to efficiently estimate the whole pipeline latency.

DAPPLE PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

Occupied	GPUi Returned	GPUi	after	policy Available	GPUi

10 32 54 76

98 1110 1312 1514

10 32 54 76

98 1110 1312 1514

1716 1918 2120 2322

10 32 54 76

98 1110 1312 1514

1716 1918 2120 2322

(c)	Append	First	based	on	(a)

(b)	Fresh	First	based	on	(a)

(d)	Scatter	First	based	on	(a)

M2

M1

M0

i i i

(a)	Original	device	assignment	state

1716 1918 2120 2322

10 32 54 76

98 1110 1312 1514

1716 1918 2120 2322

M2

M1

M0

Mk: the kth machine

Figure 5. Device assignment examples: applying for 6 de-
vices using three different strategies respectively from (a).

Meanwhile, it does not allow stages to be placed on arbitrary
devices. Our approach essentially allows a specific stage to
be mapped to any set of devices, and therefore is able to
handle more placement cases, at a reasonable searching cost.

Instead of enumerating all possibilities of placement plans
using brute force, we designed three policies (Fig. 5), and
explore their compositions to form the final placement plan.

Fresh First allocates GPUs from a fresh machine. It tends
to put tasks within a stage onto the same machine, which
can leverage high-speed NVLink [8] for intra-stage com-
munication. A problem of this policy is that, it can cause
fragmentation if the stage cannot fully occupy the machine.

Append First allocates from machines that already have
GPUs occupied. It helps to reduce fragmentation. It also
largely implies that the stage is likely to be within the same
machine.

Scatter First tries to use available GPUs equally from all
used machines, or use GPUs equally from all machines if they
are all fresh. It is suitable for those stages that have negligible
weights compared to activation sizes (less intra-stage com-
munication). This policy could also serve as an intermediate
state to allocate GPU with minimal fragmentation.

The overall device placement policies reduce search space
effectively down to less than 𝑂 (2𝑆), while retaining room
for potential performance gain.

In the Formulation section 4.3, we will use a Pseudo func-
tion 𝐷 (𝑔𝑖𝑑𝑠, 𝑛) to denote the returned results of our device
placement policies, when requested 𝑛 GPUs from the states
𝑔𝑖𝑑𝑠 .

4.3 Planning Algorithm
Our planning algorithm use Dynamic Programming to find
the optimal partition, replication and placement strategy, so
that the pipeline latency 𝐿 (as defined in formula 2) is mini-
mized. Here we first present how to update the pivot stage
id 𝑄 along the planning process, and then the formulation
of our algorithm.
Determining The Pivot Stage 𝑄 . It is vital to select a
proper pivot stage 𝑄 for the estimation of 𝐿. The insight
is to find the stage with minimum bubbles, which dominates
steady phase. We use a heuristic to determine 𝑄 .

Planned	layers New	stage	s'1

m	GPUs m'	GPUs

0 j j' N-1

New	stage	s'2

layer	id:
Currently, we get:
TPL(j, m, g)

Next step, we get:
TPL(j', m+m', g+g')

(G	-	m	-	m')	GPUs

Figure 6. Planning process for j’.

𝑄 = arg 0max
𝑠=𝑆−1

max
(
𝑇
𝑄
𝑠𝑡 +

𝑄−1∑
𝑠′=𝑠+1

(𝐹𝑠′ + 𝐵𝑠′),𝑇 𝑠
𝑠𝑡

)
(3)

Algorithm 1 Iteratively update Q
1: let Q = S-1, s = Q-1
2: while 𝑠 ≥ 0 do
3: let 𝑙1 = (𝑀 − 1) × (𝐹𝑠 + 𝐵𝑠)
4: let 𝑙2 = (𝑀 − 1) × (𝐹𝑄 + 𝐵𝑄)
5: for 𝑠 ′ = 𝑠 + 1; 𝑠 ′ < 𝑄 ; 𝑠 ′ = 𝑠 ′ + 1 do
6: 𝑙2 += 𝐹𝑠′ + 𝐵𝑠′
7: end for
8: if 𝑙1 > 𝑙2 then
9: 𝑄 = 𝑠

10: end if
11: 𝑠 = 𝑠 − 1
12: end while

Formula 3 along with Algorithm 1 describe how to update
stage 𝑄 iteratively from stage 𝑆 − 1 to stage 0. The initial 𝑄
is set to 𝑆 − 1. 𝑇 𝑗

𝑠𝑡 = (𝑀 − 1) × (𝐹 𝑗 + 𝐵 𝑗) means the duration
of steady phase, without bubbles, suppose pivot stage is 𝑗 .
For a stage 𝑠 < 𝑄 , if 𝑇 𝑠

𝑠𝑡 is larger than the sum of 𝑇𝑄
𝑠𝑡 and

corresponding forward/backward costs between the stage 𝑠
and current stage 𝑄 , it means the steady phase will have less
bubbles if pivot stage is set to 𝑠 other than current 𝑄 . 𝑄 will
then be updated to 𝑠 .
Algorithm Formulation.We define the estimated pipeline
latency 𝑇𝑃𝐿 (𝑗,𝑚,𝑔) as the subproblem, for which we have
planned the strategy for the first 𝑗 layers using𝑚 GPUs (with
device id set 𝑔). The unplanned layers forms the last stage
and replicates on the other (𝐺 −𝑚) GPUs. Our objective is
to solve for 𝑇𝑃𝐿 (𝑁,𝐺,G),G = {0, 1, ...,𝐺 − 1}. 𝑁 , 𝐺 and G
denote the number of layers, number of GPUs and GPU set,
respectively. Formula 4 describes the algorithm.

𝑇𝑃𝐿 (𝑁,𝐺,G) = min
1≤ 𝑗<𝑁

min
1≤𝑚<𝐺

min
𝑔∈𝐷 (G,𝑚)

𝑇𝑃𝐿 (𝑗,𝑚,𝑔) (4)

Our DP algorithm (Formula 4) tries to split the layers
into two parts, with the second part being a single stage
and recursively partition the first part. For each split, the
algorithm enumerates the number of GPUs allocated to the
last stage, and use the three strategies (section 4.2) for device
placement.

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea
Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen Zheng, Chuan Wu, Guoping Long, Jun Yang, Lixue Xia, Lansong Diao, Xiaoyong Liu,

and Wei Lin

Forward
Backward

GPU0

GPU1
0

0
0

GPU0
GPU1

1
0 0 1

0
1

1

1
0

0
1 1

1

Figure 7. Uneven pipeline minimum example.

Fig. 6 describes the iterative planning process. Suppose
we have already planned for the first 𝑗 (0 ≤ 𝑗 < 𝑁) layers
and have the estimation 𝑇𝑃𝐿 (𝑗,𝑚,𝑔) as pipeline latency. The
layers after 𝑗 forms a stage 𝑠 ′. Meanwhile, we get the optimal
𝑄 for current strategy along with the cost of 𝐹𝑄 and 𝐵𝑄 for
stage𝑄 . Next step, we try to add one more partition in stage
𝑠 ′, supposing after layer 𝑗 ′ (𝑗 < 𝑗 ′ ≤ 𝑁), and split 𝑠 ′ into
two new stages 𝑠 ′1 and 𝑠 ′2. We assign 𝑚′ GPUs for 𝑠 ′1 and
(𝐺 −𝑚−𝑚′) GPUs for 𝑠 ′2, and estimate𝑇𝑃𝐿 (𝑗 ′,𝑚 +𝑚′, 𝑔+𝑔′)
according to formula 5. Note DAPPLE enumerates the three
strategies in section 4.2 for device placement of stage 𝑠 ′1.

𝑇𝑃𝐿 (𝑗 ′,𝑚 +𝑚′, 𝑔 + 𝑔′) = 𝐿 (5)

Here, 𝐿 is the same with that in formula 2. The key for
the estimation of 𝐿 in formula 5 is to find 𝑄 of subproblem
𝑇𝑃𝐿 (𝑗 ′,𝑚 +𝑚′, 𝑔 + 𝑔′). In the sample in Fig. 6, we get 𝑄 𝑗 for
𝑇𝑃𝐿 (𝑗,𝑚,𝑔). We apply formula 3 to get 𝑄 𝑗 ′ for 𝑇𝑃𝐿 (𝑗,𝑚 +
𝑚′, 𝑔 +𝑔′) with the help of𝑄 𝑗 : if𝑄 𝑗 is not 𝑠 ′, we do not need
to iterate all stages before 𝑗 , but use 𝑄 𝑗 for all stages before
layer 𝑗 instead in the iterative process.

Along the above process, we record the current best split,
replication and placement for each point in our solution
space using memorized search.

4.4 Contributions over previous work
This section highlights our contributions of planning for
hybrid parallelism. The resulting strategies and performance
gain on real-world models are demonstrated in Section 6.6.

Uneven Pipeline Partitioning with Fewer Stages. In
sync pipeline parallelism scenarios, we find two insights
that could provide an additional performance improvements.
The first one is to partition the model into as few stages as
possible to minimize the bubble overhead under the same
number of micro-batches. This conclusion is also mentioned
in GPipe. The second one is that partitioning the model in a
slightly uneven way yields much higher performance than a
perfectly even split, like the example in Fig. 7.

VersatileDevice Placement.DAPPLE device assignment
strategy covers a broad solution space for stage placement,
and is a strict superset of PipeDream’s hierarchical recur-
sive partitioning approach. This allows us to handle various
real world models. For example, for models that have layers
with huge activations compared to their weights, DAPPLE
allows such a layer to be replicated across multiple machines
(Scatter First) to utilize high-speed NVLink for activation
communication and low-speed Ethernet for AllReduce.

(a)	Split	replicated	stage	across	multiple	devices	by	dividing	micro	batch	size	

(b)	Each	device	of	replicated	stage	consumes	the	whole	micro	batch	size
and	resulting	in	more	bubbles

GPU2

GPU1

GPU0
Stage0

Stage1

0 0 1 1 2 2 3 3 4 4
1 3 1 3
0 2 0 4 2 4

GPU2
GPU1

GPU0
Stage0

Stage1

Forward

Backward

Idle

0 0 1 1 2 2 3 3 4 4
0 1 0 2 1 3 2 4 3 4
0 1 0 2 1 3 2 4 3 4

Figure 8. Efficiency of two-stage replication approaches.
𝑆𝑡𝑎𝑔𝑒0 consumes twice as much time as 𝑠𝑡𝑎𝑔𝑒1 for a micro-
batch.

5 DAPPLE Runtime
5.1 Overview
We design and implement DAPPLE runtime in Tensorflow[9]
(TF) 1.12, which employs a graph based execution paradigm.
As common practices, TF takes a precise and complete com-
putation graph (DAG), schedules and executes graph nodes
respecting all data/control dependencies.
DAPPLE runtime takes a user model and its planning re-

sults as input, transforms the model graph into a pipelined
parallel graph and executes on multiple distributed devices
(as shown in Fig. 1). It first builds forward/backward graphs
separately for each pipeline stage. Then additional split/concat
nodes are introduced between adjacent stages for activation
comm. Finally, it builds a subgraph to performweights update
for sync training. In this work, we implement this pipelined
graph construction process by manually manipulating com-
putation nodes of user models. This graph transformation
can be done automatically, which is left as our future work.
Section 5.2 presents how to build basic Tensorflow[9]

graph units for a single micro-batch. Section 5.3 discusses
how to chain multiple such units using control dependencies
to facilitate DAPPLE execution.

5.2 Building Micro-batch Units
5.2.1 Forward/Backward Stages. In order to enforce ex-
ecution orders with control dependencies between stages, we
need to build forward and backward graphs stage by stage to
deal with the boundary output tensors such as activations.

Specifically, we first construct the forward graph of each
stage in sequence and record the boundary tensors. No back-
ward graphs should be built until all forward graphs are
ready. Second, backward graphs will be built in reverse order
for each stage.

5.2.2 Cross Stage Communication. DAPPLE replicates
some stages such that the number of nodes running a stage
can be different between adjacent stages, and the commu-
nication patterns between them are different from straight
pipeline design. We introduce special split-concat operations
between these stages.

DAPPLE PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

GA Apply

Apply

A
llR

educe

Replica	0

reduced
gradients

reduced
gradientsReplica	n

......

accumulated
gradients

compute	next	micro	batch

GA

accumulated
gradients

gradients
FW BW

BWFW
gradients

compute	next	micro	batch

Figure 9. Weights update. GA means gradient
accumulation[6].

Fig. 8(a) shows the replication in DAPPLE for a 2-stage
pipeline, whose first stage consumes twice as much time as
the second stage for a micro-batch and thus is replicated
on two devices. For the first stage, we split the micro-batch
further into 2 even slices, and assign each to a device. An
alternative approach[36] (Fig. 8(b)) is not to split, but to
schedule an entire micro-batch to two devices in round robin
manner. However, the second approach has lower pipeline
efficiency due to tail effect[15]. Though the second approach
does not involve extra split-concat operations, the overhead
of tail effect is larger than split-concat in practice. We hence
use the first approach with large enough micro-batch size
setting to ensure device efficiency.

5.2.3 Synchronous Weights Update. Weights updating
in DAPPLE is different with naive training as there are mul-
tiple micro-batches injected concurrently. Meanwhile, the
replicationmakesweights updatingmore complex. As shown
in Fig. 9, each device produces and accumulates gradients
for all micro-batches. There is an AllReduce operation to
synchronize gradients among all replicas, if exists. A normal
Apply operation updates weights with averaged gradients
eventually.

5.3 Micro-batch Unit Scheduling
The early backward scheduling strikes a trade-off between
micro-batch level parallelism and peak memory consump-
tion: feeding more micro-batches into pipeline at once im-
plies higher parallelism, but may lead to more memory usage.
DAPPLE scheduler enforces special execution orders be-

tween micro-batches to reduce memory usage. For the first
stage, we suppose 𝐾 micro-batches are scheduled concur-
rently at the beginning for forward computation. Specifically,
𝐾𝑖 is the number of scheduled micro-batches at the begin-
ning for stage 𝑖 . The overall execution follows a round robin
order with interleaving FW and BW.

Fig. 10 shows how up to threemicro-batches are connected
via control dependencies to implement the schedule for a
two stage pipeline. Control dependency is not required when
there is only one micro-batch (Fig. 10(a)). With two micro-
batches (Fig. 10(b)), two control edges (red dotted arrow)
are introduced. The situation with three micro-batches (Fig.
10(c)) is similar. An appropriate 𝐾𝑖 is essential as it indicates
the peak memory consumption for stage 𝑖 . There are two

F0GPU0

Forward	Pass

Backward	Pass
B0F0

B0

F0

B0F0

B0F1

F1 B1

B1

F0

B0F0

B0F1

F1 B1

B1F2

F2 B2

B2

GPU1

(a)	One	micro-batch

(b)	Two	micro-batches

(c)	Three	micro-batches

Data	Dependency

Control	Dependency

GPU0

GPU1

GPU0

GPU1

Figure 10. Micro-batches scheduling. The solid blue and
dotted red arrows denote data and control dependencies,
respectively.

primary factors for deciding 𝐾𝑖 : memory demand for one
micro-batch execution, and the ratio between cross stage
communication latency and the average FW/BW computa-
tion time (referred as activation communication ratio, ACR in
short). The former determines how many forward batches
can be scheduled concurrently at most.
We implement two policies to set 𝐾𝑖 in practice. Policy A

(𝑃𝐴): 𝐾𝑖 =𝑚𝑖𝑛(𝑆 − 𝑖, 𝐷). 𝑃𝐴 works well when ACR is small,
i.e. the impact of cross stage communication overhead is
negligible. Policy B (𝑃𝐵): 𝐾𝑖 =𝑚𝑖𝑛(2∗ (𝑆 − 𝑖) −1, 𝐷). Here we
schedule twice the number of forward micro-batches than
𝑃𝐴. The underlying intuition is that in some workloads, the
cross stage communication overhead is comparable with for-
ward/backward computations and thus more micro-batches
is needed to saturate the pipeline.

In our experiments, we do observe two workloads (VGG-
19 and AmoebaNet-36 in section 6.4), for which 𝑃𝐵 works
better. In both polices, we keep 𝐾𝑖 at 𝑂 (𝑆). In practice, the
number of pipeline stages (𝑆) produced by the DAPPLE plan-
ner is typically much smaller than the number of micro-
batches (𝑀). This is important to constrain peak memory
consumption. A further implication is that DAPPLE encour-
ages relatively large granularity of stage computations, thus
achieving decent execution efficiency.

6 Evaluation
6.1 Experimental Setup
Benchmarks. Table 1 summarizes all the six representative
DNN models that we use as benchmarks in this section. The
datasets applied for the three tasks are WMT16 En-De [42],
SQuAD2.0 [40] and ImageNet[41], respectively.
Hardware Configurations. Table 2 summarizes three com-
mon hardware environments for DNN training in our experi-
ments, where hierarchical and flat interconnections are both
covered. In general, hierarchical interconnection is popular
in industry GPU data centers. We also consider flat Ether-
net networks interconnections because NVLink may not
be available and GPU resources are highly fragmented in

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea
Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen Zheng, Chuan Wu, Guoping Long, Jun Yang, Lixue Xia, Lansong Diao, Xiaoyong Liu,

and Wei Lin

Table 1. Benchmark models.

Task Model # of
Params

(Profile Batch Size,
Memory Cost)

Translation GNMT-16 291M (64, 3.9GB)
Language
Model

BERT-48 640M (2, 11.4GB)
XLNet-36 [50] 500M (1, 12GB)

Image
Classification

ResNet-50 24.5M (128, 1GB)
VGG-19 137M (32, 5.6GB)
AmoebaNet-36 933M (1, 20GB)

Table 2. Hardware configurations.

Config GPU(s) per
server(𝑁𝑠)

Intra-server
connnections

Inter-server
connections

A 8x V100 NVLink 25 Gbps
B 1x V100 N/A 25 Gbps
C 1x V100 N/A 10 Gbps

Table 3. Normalized training throughput speedup of sched-
uling policies 𝑃𝐵 compared to 𝑃𝐴.

Model Bert-48 XLNet-36 VGG-19 GNMT-16
Speedup 1.0 1.02 1.1 1.31

some real-world production clusters. All servers run 64-bits
CentOS 7.2 with CUDA 9.0, cuDNN v7.3, NCCL 2.4.2[7] and
TF-1.12.
Batch Size and Training Setup. The batch sizes of offline
profiling for the benchmarks are shown in the last column of
Table 1 (profile batch size). As for AmoebaNet-36, it reaches
OOM even if 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 1 on a single V100. Thus we
extend to two V100s where 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 1 just works. We
use large enough global (GBS) batch size for each benchmark
to ensure high utilization on each device. All global batch
sizes we use are consistent with common practices of the ML
community. Note that all the pipeline latency optimizations
proposed in this paper give equivalent gradients for training
when keeping global batch size fixed, and we have tested all
benchmarks with accuracy vs. epoch result recorded. Results
show that DAPPLE can reach target accuracy consistently in
a similar number of epochs as Data Parallel, which will not
be further discussed for space constraints.

6.2 Planning Results
Table 4 summarizes DAPPLE planning results of six models
in the three hardware environments, where the total number
of available devices are all fixed at 16. The first column also
gives the global batch size (𝐺𝐵𝑆) correspondingly.

We use three notations to explain the output plans.
Aplan of P:Q indicates a two stage pipeline, with the first

stage and the second stages replicated on 𝑃 and 𝑄 devices,
respectively. For example, when 𝑃 = 8 and 𝑄 = 8, we put

Table 4. DAPPLE planning results.

Model
(GBS) #𝑆𝑒𝑟𝑣𝑒𝑟𝑠 × 𝑁𝑠

Output
Plan

Split
Position 𝐴𝐶𝑅

ResNet-50
(2048)

2 × 8 (A) DP - -
16 × 1 (B) DP - -
16 × 1 (C) DP - -

VGG-19
(2048)

2 × 8 (A) DP - -
16 × 1 (B) DP - -
16 × 1 (C) 15 : 1 13 : 6 0.40

GNMT-16
(1024)

2 × 8 (A) 8 : 8 9 : 7 0.10
16 × 1 (B) 8 : 8 9 : 7 0.10
16 × 1 (C) Straight - 3.75

BERT-48
(64)

2 × 8 (A) 8 : 8 23 : 25 0.06
16 × 1 (B) Straight - 0.50
16 × 1 (C) Straight - 1.25

XLNet-36
(128)

2 × 8 (A) 8 : 8 18 : 18 0.03
16 × 1 (B) 8 : 8 18 : 18 0.03
16 × 1 (C) Straight - 0.67

AmoebaNet-36
(128)

2 × 8 (A) 8 : 8 24 : 12 0.18
16 × 1 (B) 11 : 5 27 : 9 0.14
16 × 1 (C) 11 : 5 27 : 9 0.35

each stage on one server, and replicate each stage on all 8
devices within the server(config-A). Besides, for plans where
𝑃 > 8 or𝑄 > 8 (e.g., 15 : 1) where some stages are replicated
across servers, it will most likely be chosen for configura-
tions with flat interconnections such as Config-B or Config-C,
since for Config-A replicating one stage across servers incurs
additional inter-server communication overhead.

A straight plan denotes pipelines with no replication.
A DP plan means the optimal strategy is data-parallel.

We treat DP and straight as special cases of general DAPPLE
plans.

The Split Position column of Table 4 shows the stage parti-
tion point of each model for the corresponding pipeline plan.
The 𝐴𝐶𝑅 column of the table shows the 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 ratio of
cross-stage comm latency (i.e. comm of both activations in
FW and gradients in BW) and stage computation time.

ResNet-50. The best plan is consistently DP for all three
hardware configurations. This is not surprising due to its rel-
atively small model size (100MB) yet large computation den-
sity. Even with low speed interconnects𝐶𝑜𝑛𝑓 𝑖𝑔−𝐶 , DP with
notably gradients accumulation and computation/communication
overlap outperforms the pipelined approach.

VGG-19. Best plans in config 𝐴 and 𝐵 are also DP (Fig. 11
(a) and(b)), due to the moderate model size (548MB), rela-
tively fast interconnects (25 Gbps), and the overlapping in
DP. The weights and computation distributions of VGG19
are also considered overlapping-friendly, since most of the
weights are towards the end of the model while computa-
tions are at the beginning, allowing gradients aggregation
to be overlapped during that computation-heavy phase. In
the case of low speed interconnects (𝐶𝑜𝑛𝑓 𝑖𝑔 − 𝐶), a 15 : 1
pipelined outperforms DP (Fig. 11 (c)).

DAPPLE PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

0

4

8

12

16

0 1024 2048 3072 4096

Tr
ai

ni
ng

Sp
ee

du
p

Global Batch Size

DP No Overlap

DP+Normal Overlap

Best Hybrid Speedup

(a) VGG-19 on config 𝐴

0

4

8

12

16

0 1024 2048 3072 4096

Tr
ai

ni
ng

Sp
ee

du
p

Global Batch Size

DP No Overlap

DP+Normal Overlap

Best Hybrid Speedup

(b) VGG-19 on config 𝐵

0

4

8

12

16

0 1024 2048 3072 4096

Tr
ai

ni
ng

Sp
ee

du
p

Global Batch Size

DP No Overlap

DP+Normal Overlap

Best Hybrid Speedup

(c) VGG-19 on config𝐶

0

4

8

12

16

0 1024 2048 3072 4096

Tr
ai

ni
ng

Sp
ee

du
p

Global Batch Size

DP No Overlap

DP+Normal Overlap

Best Hybrid Speedup

(d) GNMT-16 on config 𝐴

0

4

8

12

16

0 1024 2048 3072 4096

Tr
ai

ni
ng

Sp
ee

du
p

Global Batch Size

DP No Overlap

DP+Normal Overlap

Best Hybrid Speedup

(e) GNMT-16 on config 𝐵

0

4

8

12

16

0 1024 2048 3072 4096

Tr
ai

ni
ng

Sp
ee

du
p

Global Batch Size

DP No Overlap

DP+Normal Overlap

Best Hybrid Speedup

(f) GNMT-16 on config𝐶

0

4

8

12

16

0 64 128 192 256

Tr
ai

ni
ng

Sp
ee

du
p

Global Batch Size

DP No Overlap

DP+Normal Overlap

Best Hybrid Speedup

(g) BERT-48 on config 𝐴

0

4

8

12

16

0 64 128 192 256

Tr
ai

ni
ng

Sp
ee

du
p

Global Batch Size

DP No Overlap

DP+Normal Overlap

Best Hybrid Speedup

(h) BERT-48 on config 𝐵

0

4

8

12

16

0 64 128 192 256

Tr
ai

ni
ng

Sp
ee

du
p

Global Batch Size

DP No Overlap

DP+Normal Overlap

Best Hybrid Speedup

(i) BERT-48 on config𝐶

0

4

8

12

16

0 64 128 192 256

Tr
ai

ni
ng

Sp
ee

du
p

Global Batch Size

DP No Overlap

DP+Normal Overlap

Best Hybrid Speedup

(j) XLNet-36 on config 𝐴

0

4

8

12

16

0 64 128 192 256

Tr
ai

ni
ng

Sp
ee

du
p

Global Batch Size

DP No Overlap

DP+Normal Overlap

Best Hybrid Speedup

(k) XLNet-36 on config 𝐵

0

4

8

12

16

0 64 128 192 256

Tr
ai

ni
ng

Sp
ee

du
p

Global Batch Size

DP No Overlap
DP+Normal Overlap
Best Hybrid Speedup

(l) XLNet-36 on config𝐶

0

4

8

12

16

0 256 512 768 1024

Tr
ai

ni
ng

Sp
ee

du
p

Global Batch Size

DP No Overlap

DP+Normal Overlap

Best Hybrid Speedup

(m) AmoebaNet-36 on config 𝐴

0

4

8

12

16

0 256 512 768 1024

Tr
ai

ni
ng

Sp
ee

du
p

Global Batch Size

DP No Overlap

DP+Normal Overlap

Best Hybrid Speedup

(n) AmoebaNet-36 on config 𝐵

0

4

8

12

16

0 256 512 768 1024

Tr
ai

ni
ng

Sp
ee

du
p

Global Batch Size

DP No Overlap

DP+Normal Overlap

Best Hybrid Speedup

(o) AmoebaNet-36 on config𝐶

Figure 11. Speedups on configurations with hierarchical/flat interconnects.

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea
Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen Zheng, Chuan Wu, Guoping Long, Jun Yang, Lixue Xia, Lansong Diao, Xiaoyong Liu,

and Wei Lin

GNMT-16/BERT-48/XLNet-36. All three models have
uniform layer structures, i.e., each layer has roughly the same
scale of computations and parameters. And the parameter
scales of these models vary from 1.2 GB up to 2.6 GB(Table 1).
In config-A where all three models achieve low 𝐴𝐶𝑅 values
(0.10, 0.06 and 0.03, respectively, as shown in Table 4), a two
stage 8 : 8 pipeline works best. Unlike VGG-19, the three
models’ layers are relatively uniformly distributed, thus a
symmetric, evenly partitioning is more efficient. In config
𝐶 , a straight pipeline works best for all three models. In this
config, all devices have approximately the same workload.
More importantly, no replication eliminates gradients sync
overheads for relatively large models (1.2-2.6 GB) on a slow
network (10 Gbps).

AmoebaNet-36. For AmoebaNet-36, DP is not available
due to device memory limit. AmoebaNet-36 has more com-
plex network patterns than other models we evaluated, and
larger ACR in config 𝐴 as well. Thus, more successive for-
ward micro-batches are needed to saturate the pipeline. For
all three configs, two-stage pipeline (8 : 8, 11 : 5 and 11 : 5,
respectively) works best.

6.3 Performance Analysis
In this work, we measure training speed-up as the ratio be-
tween the time executing all micro-batches sequentially on
a single device and the time executing all micro-batches in
parallel by all devices, with the same global batch size.
Fig. 11 shows training speed-ups for all models except

ResNet-50 on config A, B and C. For ResNet-50, the plan-
ning results are obvious and we simply present it in Table
4. For the other models, we compare training speed-ups of
three different implementations: (1) Best Hybrid Speedup,
performance of the best hybrid plan of pipeline and data par-
allelism returned by DAPPLE planner; (2) DP No Overlap,
performance of DP with gradients accumulation but with-
out computation/communication overlap; (3) DP Overlap,
performance of DP with both gradients accumulation and
intra-iteration computation/comm. overlap between back-
ward computation and gradients communication[53].

Overall analysis across these five models from Fig. 11, for
fixed 𝐺𝐵𝑆 = 128, we can find that the hybrid approaches
from DAPPLE outperform the DP approach with best intra-
batch overlapping with averaged 1.71×/1.37×/1.79× speedup
for config-A, config-B and config-C, respectively. Specially,
this speedup is up to 2.32× for GNMT-16 on config-C. Specific
analysis for each model is given below.

VGG-19. For VGG-19, about 70% of model weights (about
400 MB) are in the last FC layer, while the activation size
between any two adjacent layers gradually decreases from
the first convolution (conv) layer to the last FC layer, varying
dramatically from 384 MB to 3 MB for batch size of 32. Thus,
the split between VGG-19’s conv layers and FC layers leads to
very small activation (3MB), and only replicating all the conv

layers other than FC layers greatly reduces communication
overhead in case of relatively slow interconnects (Fig. 11 (c)).

GNMT-16. GNMT-16 prefers a two-stage pipeline on hi-
erarchical network (config 𝐴) and flat network with relative
high-speed connection (config 𝐵). And the corresponding
spit position is 9 : 7 but not 8 : 8, this is because the per-layer
workloads of encoder and decoder of GNMT are unbalanced
(about 1 : 1.45), thus the split position of DAPPLE plan shifts
one layer up into decoder for pursuit of better system load-
balance. For low speed interconnection environments (config
𝐶), straight pipeline ranks first when 𝐺𝐵𝑆 = 1024. Each de-
vice is assigned exactly one LSTM layers of GNMT, and the
𝐺𝐵𝑆 is large enough to fill the 16-stage pipeline.

BERT-48/XLNet-36. The best DAPPLE plan outperforms
all DP variants for both models (Fig. 11 (g) to (l)) in all config-
urations. Compared to XLNet, the memory requirement for
BERT is much smaller and thus allows more micro-batches
on a single device. More computation per-step implies more
backward computation time can be leveraged for overlap-
ping comm overhead. As for config 𝐵 and 𝐶 , the slower the
network is(from 25 Gbps to 10 Gbps), the higher the advan-
tage of our approach has over DP variants. This is because
the cross stage communication for both models is negligible
with respect to gradients communication and the pipelined
approach is more tolerant of slow network than DP.
AmoebaNet-36. The DAPPLE plan works best in all three

configurations when𝐺𝐵𝑆 = 128. Unlike BERT-48 and XLNet-
36, AmoebaNet has non uniform distributions of per layer
parameters and computation density. The last third part of
the model holds 73% of all parameters, and the per-layer
computation time increases gradually for large layer id and
the overall maximum increase is within 40%. As DAPPLE
planner seeks for load-balanced staging scheme while con-
sidering the allreduce overhead across replicated stages, the
split positions of pipelined approach for AmoebaNet-36 will
obviously tilt to larger layer ID for better system efficiency.

6.4 Scheduling Policy
As discussed in Section 5.3, the number of successive for-
ward micro-batches (𝐾𝑖 for stage 𝑖) scheduled in the warm
up phase is an important factor to pipeline efficiency. We
implement two policies, 𝑃𝐴 and 𝑃𝐵 , referring to smaller and
larger 𝐾𝑖 numbers, respectively. Table 3 shows the normal-
ized speedups for four benchmark models on hierarchical
interconnects(config 𝐴), where all models’ stage partition
and replication schemes are consistent with the planning
results of 2 servers of config 𝐴 as shown in Table 4.
For VGG-19 and GNMT-16 (as well as AmoebaNet-36,

which is not given in this figure yet), where the 𝐴𝐶𝑅 ratio
is relative high (0.16, 0.10, 0.18, respectively), there exists
notable performance difference between these two policies
(10%, 31% improvement from 𝑃𝐴 to 𝑃𝐵 , respectively). Hence
we choose a larger 𝐾𝑖 to maximize pipeline efficiency. For
the other models (BERT-48, XLNet-36), whose𝐴𝐶𝑅𝑠 are very

DAPPLE PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

Table 5.DAPPLE vs. GPipe on BERT-48 with 2-stage pipeline
when keeping micro-batch size fixed to 2 on Config-B. RC is
short for re-computation.

Config # of micro
batch (𝑀)

Throughput
(samples/sec)

Average Peak
Memory (GB)

GPipe 2 5.10 12.1
3 – 𝑂𝑂𝑀

GPipe + RC
2 4.00 9.9
5 5.53 13.2
8 – 𝑂𝑂𝑀

DAPPLE
2 5.10 10.6
8 7.60 10.6
16 8.18 10.6

DAPPLE + RC
2 4.24 8.5
8 6.23 8.5
16 6.77 8.5

small (0.06, 0.03, respectively), the cross stage communica-
tion overhead is negligible compared to intra-stage computa-
tion time, leading to little performance difference. In this case,
we prefer a smaller 𝐾𝑖 to conserve memory consumption.

6.5 Comparison with GPipe
Table 5 shows the performance comparisons with GPipe. We
focus on the throughput and peak memory usage on BERT-
48 with a 2-stage pipeline in Config-B. To align with GPipe,
we adopt the same re-computation strategy which stores
activations only at the partition boundaries during forward
pass [24]. Note that all the pipeline latency optimizations in
DAPPLE give equivalent gradients for training when keeping
global batch size fixed, thus convergence is safely preserved
and tested, and will not be further analysed here.
When applying re-computation, both DAPPLE and GPipe

save about 19% averaged peak memory at the expense of 20%
on throughput when keeping𝑀 = 2 fixed.
When both without re-computation, DAPPLE gets 1.6×

higher throughput with𝑀 = 16, and consumes 0.88× aver-
aged peak memory compared to GPipe, which only supports
up to 2 micro-batches. The speedup is mainly because higher
𝑀 leads to lower proportion of 𝑏𝑢𝑏𝑏𝑙𝑒𝑠 . Note DAPPLE al-
lows more micro-batches as the peak memory requirement
is independent of𝑀 due to early backward scheduling.

The combination ofDAPPLE scheduler and re-computation
allows a further exploitation in memory usage. Compared
with baseline GPipe (without re-computation), DAPPLE + RC
achieves 0.70× memory consumption when𝑀 = 16, which
allows us to handle larger micro-batch size or larger model.

6.6 Comparison with PipeDream
We compare the results of our plannerwith those of PipeDream’s
under the synchronous training scenarios. We use the same
configurations for both planners (e.g. same device topology,
same interconnect and same profiling data), and evaluate

Table 6. DAPPLE and PipeDream strategies comparison. in
the form of (start layer, end layer)@[GPU IDs].
Model
(Global Batch Size) DAPPLE PipeDream

VGG19
(1024)

(0, 16) @ [G0-G13]
(17, 25) @ [G14,G15]

(0, 11) @ [G0-G7]
(11, 17) @ [G8-G13]
(17, 19) @ G14
(19, 25) @ G15

AmoebaNet-36
(128)

(0, 30) @ [G0-G7]
(31, 43) @ [G8-G15] straight

BERT Large
(128)

(0, 13) @ [G0-G7]
(14, 26) @ [G8-G15]

(0, 4) @ [G0,G1]
(4, 13) @ [G2-G7]
(13, 16) @ [G8, G9]
(16, 19) @ [G10,G11]
(19, 22) @ [G12,G13]
(22, 26) @ [G14,G15]

XLNet-36
(128)

(0, 22) @ [G0-G7]
(23, 41) @ [G8-G15] straight

23.8 24.4

12.7

16.315.7

19.2

7.4

2.2

14.9 14.5

11.6
9.6

8.6

11.5

6.3

3.0

S
pe

ed
up

0.0

10.0

20.0

30.0

XLNet-36 BERT-Large AmoebaNet-36 VGG-19

DAPPLE 4x8 DAPPLE w/ PipeDream Strategy 4x8 DAPPLE 2x8 DAPPLE w/ PipeDream Strategy 2x8

Figure 12. Performance comparison with PipeDream.

both planners with DAPPLE Runtime. Table 6 shows the
strategy results under a two-machine cluster of config-A. Fig.
12 shows the performance results for the strategies running
in both 2 × 8 and 4 × 8 configurations.

6.7 Large Model Scalability
Table 7 shows the maximum model size that DAPPLE sup-
ports under reasonable input size with re-computation en-
abled. We scale the model by varying the numbers of layers.
We are able to scale BERT to 5.5B on 8 V100s with NVLink.
There is a slight reduction in average GPU utilization due
to more bubbles introduced by longer pipeline. In this case,
the maximum model size scales linearly due to the balanced
distribution of model params over encoder layers in BERT.

7 Related Work
Large DNN models are increasingly computational intensive.
It is a common practice to parallelize training by leveraging
multiple GPUs[14, 18, 29, 38, 54].
Data parallelism, model parallelism and pipeline paral-

lelism are common approaches for distributed training of
DNNmodels. Note we discuss pipeline parallelism separately
from model parallelism.

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea
Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen Zheng, Chuan Wu, Guoping Long, Jun Yang, Lixue Xia, Lansong Diao, Xiaoyong Liu,

and Wei Lin

Table 7.Maximum model size of BERT supported by DAP-
PLE + re-computation on V100 (16GB each) on config-A.
BERT-L: BERT model with 𝐿 encoder layers. Each model
parameter needs 16 bytes since we applied Adam optimizer.

Config BERT-L # of Model
Params

Total Model
Params Mem

Avg. GPU
Util

Native-1 48 640M 10.2GB 93%
Pipeline-2 106 1.4B 21.9GB 89%
Pipeline-4 215 2.7B 43.8GB 89%
Pipeline-8 428 5.5B 88.2GB 87%

Data Parallelism [32] . Some prior studies [2, 3, 10, 28,
43, 51] focus on reducing the comm overheads for data par-
allelism. As a commonly used performance optimization
method, gradients accumulation[5, 6, 33] offers an effective
approach to reduce comm-to-computation ratio. Another
complementary approach is computation and comm overlap,
with promising results reported in someCNNbenchmarks[27,
53].

Model Parallelism. Model Parallelism[30] partitions DNN
models among GPUs to mitigate comm overhead and mem-
ory bottlenecks for distributed training [11, 14, 16, 19, 23–
25, 38, 48]. This paper focuses on model partition between
layers, namely, pipeline parallelism.

The pipe-basedmodel parallelism can benefit from: 1) over-
coming the single node’s GPU memory limitation through
partitioning large model and distributing to each device. 2)
reducing communication overhead compared to data parallel,
where only intermediate outputs (and corresponding gradi-
ents) of the boundary layers needs to transmit to its neigh-
bours. However, this approach suffers from low resource
utilization as only one device is active in the execution of
pipeline workflow.

Pipeline parallelism. Pipeline Parallelism[17, 23, 24, 49,
52] has been recently proposed to train DNN in a pipelined
manner. This approach achieves better overlap of communi-
cation and computation with each other, as communication
and computation are executed in a finner granularity through
the pipeline workflow.

GPipe[24, 31] explores synchronous pipeline approach to
train largemodels with limited GPUmemory. PipeDream[23]
explores the hybrid approach of data and pipeline parallelism
for asynchronous training. [11, 17, 22]make further optimiza-
tion based on PipeDream. Pal et al. [38] evaluated the hybrid
approach without thorough study. Some researchers have
been seeking for the optimal placement strategy to assign
operations in a DNN to different devices[21, 35, 37, 46] to
further improve system efficiency.

8 Conclusion
In this paper, we propose DAPPLE framework for pipelined
training of large DNN models. DAPPLE addresses the need

for synchronous pipelined training and advances current
state-of-the-art by novel pipeline planning and micro-batch
scheduling approaches. On one hand, DAPPLE planner au-
tomatically determines an optimal parallelization strategy
givenmodel structure and hardware configurations as inputs.
On the other hand, DAPPLE scheduler is capable of simulta-
neously achieving optimal training efficiency and moderate
memory consumption, without storing multiple versions
of parameters and getting rid of the strong demand of re-
computation which hurts system efficiency at the same time.
Experiments show that DAPPLE planner consistently outper-
forms strategies generated by PipeDream‘s planner by up
to 3.23× speedup under synchronous training scenarios, and
DAPPLE scheduler outperforms GPipe by 1.6× speedup of
training throughput and saves 12% of memory consumption
at the same time.

References
[1] 2016. A New Lightweight, Modular, and Scalable Deep Learning Frame-

work. https://caffe2.ai/.
[2] 2018. Baidu-allreduce. https://github.com/baidu-research/baidu-

allreduce.
[3] 2019. Byteps, A high performance and generic framework for distributed

DNN training. https://github.com/bytedance/byteps.
[4] 2019. GpipeTalk. https://www.youtube.com/watch?v=9s2cum25Kkc.
[5] 2019. Gradients Accumulation-PyTorch. https://gist.github.com/

thomwolf/ac7a7da6b1888c2eeac8ac8b9b05d3d3.
[6] 2019. Gradients Accumulation-Tensorflow. https://github.com/

tensorflow/tensorflow/pull/32576.
[7] 2019. NCCL. https://developer.nvidia.com/nccl.
[8] 2019. NVLink. https://www.nvidia.com/en-us/data-center/nvlink/.
[9] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg S. Corrado, AndyDavis, Jeffrey Dean,Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. http://tensorflow.org/ Software available from
tensorflow.org.

[10] Naveen Arivazhagan, Ankur Bapna, Orhan Firat, Dmitry Lepikhin,
Melvin Johnson, Maxim Krikun, Mia Xu Chen, Yuan Cao, George
Foster, Colin Cherry, et al. 2019. Massively multilingual neural ma-
chine translation in the wild: Findings and challenges. arXiv preprint
arXiv:1907.05019 (2019).

[11] Chi-Chung Chen, Chia-Lin Yang, and Hsiang-Yun Cheng. 2018. Effi-
cient and robust parallel dnn training through model parallelism on
multi-gpu platform. arXiv preprint arXiv:1809.02839 (2018).

[12] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016.
Training Deep Nets with Sublinear Memory Cost. arXiv preprint
arXiv:1604.06174 (2016).

[13] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural
Networks for YouTube Recommendations. In Proceedings of the 10th
ACM Conference on Recommender Systems, ACM, New York, NY, USA.
ACM.

[14] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Mark Mao, Marc’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke
Yang, et al. 2012. Large scale distributed deep networks. In Advances

https://caffe2.ai/
https://github.com/baidu-research/baidu-allreduce
https://github.com/baidu-research/baidu-allreduce
https://github.com/bytedance/byteps
https://www.youtube.com/watch?v=9s2cum25Kkc
https://gist.github.com/thomwolf/ac7a7da6b1888c2eeac8ac8b9b05d3d3
https://gist.github.com/thomwolf/ac7a7da6b1888c2eeac8ac8b9b05d3d3
https://github.com/tensorflow/tensorflow/pull/32576
https://github.com/tensorflow/tensorflow/pull/32576
https://developer.nvidia.com/nccl
https://www.nvidia.com/en-us/data-center/nvlink/
http://tensorflow.org/

DAPPLE PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

in neural information processing systems. 1223–1231.
[15] Julien Demouth. 2015. CUDA Pro Tip: Minimize the Tail Effect. https:

//devblogs.nvidia.com/cuda-pro-tip-minimize-the-tail-effect/
[16] Nikoli Dryden, Naoya Maruyama, Tim Moon, Tom Benson, Marc Snir,

and Brian Van Essen. 2019. Channel and filter parallelism for large-
scale CNN training. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. 1–20.

[17] Jinkun Geng, Dan Li, and Shuai Wang. 2019. Elasticpipe: An efficient
and dynamic model-parallel solution to dnn training. In Proceedings of
the 10th Workshop on Scientific Cloud Computing. ACM, 5–9.

[18] Jinkun Geng, Dan Li, and Shuai Wang. 2019. Horizontal or Vertical?:
A Hybrid Approach to Large-Scale Distributed Machine Learning. In
Proceedings of the 10th Workshop on Scientific Cloud Computing. ACM,
1–4.

[19] Jinkun Geng, Dan Li, and Shuai Wang. 2019. Rima: An RDMA-
Accelerated Model-Parallelized Solution to Large-Scale Matrix Factor-
ization. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE). IEEE, 100–111.

[20] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming
He. 2017. Accurate, large minibatch sgd: Training imagenet in 1 hour.
arXiv preprint arXiv:1706.02677 (2017).

[21] Juncheng Gu, Mosharaf Chowdhury, Kang G Shin, Yibo Zhu, Myeong-
jae Jeon, Junjie Qian, Hongqiang Liu, and Chuanxiong Guo. 2019.
Tiresias: A {GPU} cluster manager for distributed deep learning. In
16th {USENIX} Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 19). 485–500.

[22] Lei Guan, Wotao Yin, Dongsheng Li, and Xicheng Lu. 2019. XPipe:
Efficient Pipeline Model Parallelism for Multi-GPU DNN Training.
arXiv preprint arXiv:1911.04610 (2019).

[23] Aaron Harlap, Deepak Narayanan, Amar Phanishayee, Vivek Seshadri,
Nikhil Devanur, Greg Ganger, and Phil Gibbons. 2018. Pipedream:
Fast and efficient pipeline parallel dnn training. arXiv preprint
arXiv:1806.03377 (2018).

[24] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao
Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui
Wu, et al. 2019. Gpipe: Efficient training of giant neural networks
using pipeline parallelism. InAdvances in Neural Information Processing
Systems. 103–112.

[25] Zhouyuan Huo, Bin Gu, Qian Yang, and Heng Huang. 2018. Decoupled
parallel backpropagation with convergence guarantee. arXiv preprint
arXiv:1804.10574 (2018).

[26] Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter
Abbeel, Joseph Gonzalez, Kurt Keutzer, and Ion Stoica. 2020. Check-
mate: Breaking the memory wall with optimal tensor rematerialization.
Proceedings of Machine Learning and Systems 2 (2020), 497–511.

[27] Anand Jayarajan, JinliangWei, Garth Gibson, Alexandra Fedorova, and
Gennady Pekhimenko. 2019. Priority-based parameter propagation
for distributed DNN training. arXiv preprint arXiv:1905.03960 (2019).

[28] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong,
Feihu Zhou, Liqiang Xie, Zhenyu Guo, Yuanzhou Yang, Liwei Yu,
et al. 2018. Highly scalable deep learning training system with
mixed-precision: Training imagenet in four minutes. arXiv preprint
arXiv:1807.11205 (2018).

[29] Zhihao Jia, Sina Lin, Charles R Qi, and Alex Aiken. 2018. Exploring the
Hidden Dimension in Accelerating Convolutional Neural Networks.
(2018).

[30] Zhihao Jia, Matei Zaharia, and Alex Aiken. 2018. Beyond data
and model parallelism for deep neural networks. arXiv preprint
arXiv:1807.05358 (2018).

[31] Chiheon Kim, Heungsub Lee, Myungryong Jeong, Woonhyuk Baek,
Boogeon Yoon, Ildoo Kim, Sungbin Lim, and Sungwoong Kim. 2020.
torchgpipe: On-the-fly Pipeline Parallelism for Training Giant Models.
arXiv preprint arXiv:2004.09910 (2020).

[32] Alex Krizhevsky. 2014. One weird trick for parallelizing convolutional
neural networks. arXiv preprint arXiv:1404.5997 (2014).

[33] Tung D Le, Taro Sekiyama, Yasushi Negishi, Haruki Imai, and Kiyokuni
Kawachiya. 2018. Involving CPUs into Multi-GPU Deep Learning. In
Proceedings of the 2018 ACM/SPEC International Conference on Perfor-
mance Engineering. ACM, 56–67.

[34] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen,
Orhan Firat, Yanping Huang, Maxim Krikun, Noam Shazeer, and
Zhifeng Chen. 2020. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668
(2020).

[35] Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus
Larsen, Yuefeng Zhou, Naveen Kumar, Mohammad Norouzi, Samy
Bengio, and Jeff Dean. 2017. Device placement optimization with rein-
forcement learning. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70. JMLR. org, 2430–2439.

[36] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei
Zaharia. 2019. PipeDream: generalized pipeline parallelism for DNN
training. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles. ACM, 1–15.

[37] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, and
Matei Zaharia. 2020. Memory-Efficient Pipeline-Parallel DNNTraining.
arXiv preprint arXiv:2006.09503 (2020).

[38] Saptadeep Pal, Eiman Ebrahimi, Arslan Zulfiqar, Yaosheng Fu, Victor
Zhang, Szymon Migacz, David Nellans, and Puneet Gupta. 2019. Opti-
mizing multi-GPU parallelization strategies for deep learning training.
IEEE Micro 39, 5 (2019), 91–101.

[39] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, and J. Peter Liu. 2019.
Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. https://arxiv.org/abs/1910.10683 (2019).

[40] Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018. Know What You
Don’t Know: Unanswerable Questions for SQuAD. arXiv preprint
arXiv:1806.03822 (2018).

[41] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, et al. 2015. Imagenet large scale visual recogni-
tion challenge. International journal of computer vision 115, 3 (2015),
211–252.

[42] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Edinburgh
neural machine translation systems for WMT 16. arXiv preprint
arXiv:1606.02891 (2016).

[43] Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast
and easy distributed deep learning in TensorFlow. arXiv preprint
arXiv:1802.05799 (2018).

[44] Rich Sutton. 2019. The Bitter Lesson. http://www.incompleteideas.net/
IncIdeas/BitterLesson.html.

[45] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao,
and Dik Lun Lee. 2018. Billion-scale Commodity Embedding for E-
commerce Recommendation in Alibaba. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 839–848.

[46] Minjie Wang, Chien-chin Huang, and Jinyang Li. 2019. Supporting
very large models using automatic dataflow graph partitioning. In
Proceedings of the Fourteenth EuroSys Conference 2019. 1–17.

[47] Mengdi Wang, Chen Meng, Guoping Long, Chuan Wu, Jun Yang, Wei
Lin, and Yangqing Jia. 2019. Characterizing Deep Learning Training
Workloads on Alibaba-PAI. arXiv preprint arXiv:1910.05930 (2019).

[48] SiyuWang, Yi Rong, Shiqing Fan, Zhen Zheng, LanSong Diao, Guoping
Long, Jun Yang, Xiaoyong Liu, and Wei Lin. 2020. Auto-MAP: A
DQN Framework for Exploring Distributed Execution Plans for DNN
Workloads. arXiv preprint arXiv:2007.04069 (2020).

https://devblogs.nvidia.com/cuda-pro-tip-minimize-the-tail-effect/
https://devblogs.nvidia.com/cuda-pro-tip-minimize-the-tail-effect/
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea
Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen Zheng, Chuan Wu, Guoping Long, Jun Yang, Lixue Xia, Lansong Diao, Xiaoyong Liu,

and Wei Lin

[49] Bowen Yang, Jian Zhang, Jonathan Li, Christopher Ré, Christopher R
Aberger, and Christopher De Sa. 2019. PipeMare: Asynchronous
Pipeline Parallel DNN Training. arXiv preprint arXiv:1910.05124 (2019).

[50] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan
Salakhutdinov, and Quoc V Le. 2019. XLNet: Generalized Autore-
gressive Pretraining for Language Understanding. arXiv preprint
arXiv:1906.08237 (2019).

[51] Yang You, Jonathan Hseu, Chris Ying, James Demmel, Kurt Keutzer,
and Cho-Jui Hsieh. 2019. Large-batch training for LSTM and beyond.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1–16.

[52] Jun Zhan and Jinghui Zhang. 2019. Pipe-Torch: Pipeline-Based Dis-
tributed Deep Learning in a GPU Cluster with Heterogeneous Net-
working. In 2019 Seventh International Conference on Advanced Cloud

and Big Data (CBD). IEEE, 55–60.
[53] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiao-

dan Liang, Zhiting Hu, Jinliang Wei, Pengtao Xi, and Eric P. Xing.
2017. Poseidon: An Efficient Communication Architecture for Dis-
tributed Deep Learning on GPU Clusters. In 2017 USENIX Annual Tech-
nical Conference (USENIX ATC 17). USENIX Association, Santa Clara,
CA, 181–193. https://www.usenix.org/conference/atc17/technical-
sessions/presentation/zhang

[54] Zhen Zheng, Pengzhan Zhao, Guoping Long, Feiwen Zhu, Kai Zhu,
Wenyi Zhao, Lansong Diao, Jun Yang, and Wei Lin. 2020. Fusion-
stitching: boosting memory intensive computations for deep learning
workloads. arXiv preprint arXiv:2009.10924 (2020).

https://www.usenix.org/conference/atc17/technical-sessions/presentation/zhang
https://www.usenix.org/conference/atc17/technical-sessions/presentation/zhang

	Abstract
	1 Introduction
	2 The DAPPLE Approach Overview
	3 DAPPLE Schedule
	3.1 Limitations of GPipe Schedule
	3.2 Early backward scheduling

	4 DAPPLE Planner
	4.1 The Optimization Objective
	4.2 Device Assignment
	4.3 Planning Algorithm
	4.4 Contributions over previous work

	5 DAPPLE Runtime
	5.1 Overview
	5.2 Building Micro-batch Units
	5.3 Micro-batch Unit Scheduling

	6 Evaluation
	6.1 Experimental Setup
	6.2 Planning Results
	6.3 Performance Analysis
	6.4 Scheduling Policy
	6.5 Comparison with GPipe
	6.6 Comparison with PipeDream
	6.7 Large Model Scalability

	7 Related Work
	8 Conclusion
	References

