HAP: SPMD DNN Training on Heterogeneous GPU Clusters with Automated Program Synthesis

Shiwei Zhang
The University of Hong Kong
swzhang@cs.hku.hk

Lansong Diao
Alibaba Group
lansong.dls@alibaba-inc.com

Chuan Wu
The University of Hong Kong
cwu@cs.hku.hk

Zongyan Cao
Alibaba Group
zongyan.cao@alibaba-inc.com

Siyu Wang
Alibaba Group
siyu.wsy@alibaba-inc.com

Wei Lin
Alibaba Group
weilin.lw@alibaba-inc.com

Abstract

Single-Program-Multiple-Data (SPMD) parallelism has recently been adopted to train large deep neural networks (DNNs). Few studies have explored its applicability on heterogeneous clusters, to fully exploit available resources for large model learning. This paper presents HAP, an automated system designed to expedite SPMD DNN training on heterogeneous clusters. HAP jointly optimizes the tensor sharding strategy, sharding ratios across heterogeneous devices and the communication methods for tensor exchanges for optimized distributed training with SPMD parallelism. We novelly formulate model partitioning as a program synthesis problem, in which we generate a distributed program from scratch on a distributed instruction set that semantically resembles the program designed for a single device, and systematically explore the solution space with an A*-based search algorithm. We derive the optimal tensor sharding ratios by formulating it as a linear programming problem. Additionally, HAP explores tensor communication optimization in a heterogeneous cluster and integrates it as part of the program synthesis process, for automatically choosing optimal collective communication primitives and applying sufficient factor broadcasting technique. Extensive experiments on representative workloads demonstrate that HAP achieves up to 2.41x speed-up on heterogeneous clusters.

CCS Concepts: • Computing methodologies → Distributed computing methodologies.

Keywords: Distributed system, Neural networks, Program synthesis

1 Introduction

Recent machine learning research has demonstrated that scaling up deep neural network (DNN) models not only improves their prediction performance but also expands their capabilities. For instance, a language model can perform a task with few-shot prompting after reaching a certain model scale [49]. Massive models with billions or trillions of parameters have emerged [6, 11]. Training these models necessitates the use of large clusters of accelerator devices (dominantly GPUs), as well as sophisticated parallelization paradigms. Consequently, a number of parallelization schemes have been proposed and adopted in distributed training of large DNNs, including data/model/pipeline parallelism [17, 19, 29, 36, 44, 45, 47, 52, 55]. However, the majority of the existing proposals concentrate on DNN training on homogeneous clusters, where all devices are of the same type and interconnect network links have identical bandwidth.

On the other hand, the rapid evolution of accelerator devices (e.g., GPUs, TPUs, Habana chips) and multi-tenant resource sharing have resulted in mixed device types and uneven interconnect bandwidth in many clusters. Efficient exploitation of available heterogeneous resources for DNN training has piqued significant interest from AI practitioners [16, 25, 27, 30, 43, 53, 56]. A prevalent approach for making use of heterogeneous clusters is to distribute multiple training jobs onto different homogeneous subsets of the cluster [50, 57]. However, this approach imposes a constraint on the maximum model size, as it is bound by the capacity of the subsets. With the emergence of large language models, the demand for employing the whole heterogeneous cluster to train a large model has become increasingly crucial.

The limited existing heterogeneity-aware DNN training designs mostly support data parallelism and inter-op model parallelism [27, 53, 56]. For data parallelism, each device
trains the DNN model for a distinct portion of the dataset, allocated according to capacity of the device, and synchronizes model gradients among each other at the end of each training iteration. Inter-op model parallelism involves placing different operations in the DNN model across devices, with intermediate tensors transmitted among devices during training. For better GPU utilization, inter-op model-parallel training is often scheduled in a pipelined manner, with micro-batches of data processed on different devices at the same time. Due to constrained memory capacity of GPUs, pure data parallelism or inter-op model parallelism may not be feasible or efficient for training large DNN models. For instance, in models with Mixture-of-Expert (MoE) [40] layers, a single tensor may surpass the GPU’s memory limit. In these cases, it becomes necessary to employ intra-op model parallelism, which partitions the operations/tensors and distributes the shards to different devices. It is especially challenging to devise efficient strategies on tensor sharding and deployment across a cluster of heterogeneous devices, due to the large strategy space.

This work studies Single-Program-Multiple-Data (SPMD) parallelism for efficient training of large DNNs on heterogeneous clusters. SPMD parallelism generalizes data parallelism and intra-layer model parallelism with tensor sharding along any of its dimensions and input data partitioning across the devices. It has been proven effective in training various state-of-the-art models. For example, GShard [22] uses model parallelism for MoE layers and data parallelism for other layers, and Megatron [41] designs an SPMD strategy for the Transformer layers [46]. One of the key benefits of SPMD parallelism is that each device executes the same program, thereby enabling scaling to a large number of devices with a constant program compilation time.

SPMD parallelism has so far been exploited on homogeneous clusters. Enabling efficient SPMD training on a set of heterogeneous resources facilitates better utilization of available resources for substantially lowered cost of large model learning. Three key decisions are involved in applying SPMD parallelism in heterogeneous clusters: (i) the sharding strategy, i.e., deciding which dimension to partition (sharding dimension) for each tensor; (ii) the sharding ratios across the devices, i.e., different tensor partition sizes to assign to heterogeneous devices according to their computation and memory capacities, to optimize device utilization; and (iii) selection of the communication methods, which decides the implementation of each collective communication operation for each tensor, to best cater to different tensor sizes and different interconnect bandwidths across devices. The three decisions are co-related. For example, if the sharding ratios are relatively even among the devices, inter-device communication pattern resembles that of homogeneous clusters, and standard collective communication generally performs well. In contrast, if the sharding ratio differs significantly across devices, heterogeneity-aware communication are needed.

We propose HAP, an SPMD DNN training system for heterogeneous clusters, that automatically decides optimal tensor sharding dimension/ratios and communication methods for expedited training and optimized resource utilization. We make the following contributions in designing HAP:

- We design an iterative optimization process that alternatively optimizes the SPMD sharding strategy and sharding ratios while fixing the other one. In comparison to existing methods that only optimize each aspect once [43], our iterative optimization enables us to approach the global optimum while still maintaining an acceptable optimization time (Sec. 3).
- We novelly formulate SPMD model sharding as a program synthesis problem, to construct a distributed program on a distributed instruction set to emulate a given tensor program implemented on a single-device instruction set. We analyze the single-device program to build a background theory T of semantic constraints, and then employ syntax-guided synthesis [3] with an $A*$-based search algorithm to automatically synthesize a distributed program to achieve minimal training time, that is equivalent to the single-device program under the theory T (Sec. 4).
- We design a linear cost model and formulate sharding ratio optimization as a linear programming problem, and solve it optimally with off-the-shelf solvers (Sec. 5).
- We explore two communication optimization techniques and integrate them into the program synthesis, to optimize communication on heterogeneous clusters jointly with SPMD sharding. The first optimization involves the trade-off between two All-Gather implementations on heterogeneous clusters and the second is to automatically apply sufficient factor broadcasting [51] that reduces the communication volume for certain operators (Sec. 4.4).
- We implement HAP on PyTorch and evaluate it on a 64-GPU heterogeneous cluster on a public cloud. The user API of HAP is analogous to the built-in DDP module of PyTorch. Experiments with four representative image classification and language models demonstrate that HAP consistently outperforms existing systems on heterogeneous clusters and show competitive performance on homogeneous clusters while introducing only seconds of overhead in program synthesis.

2 Background and Motivation

2.1 Large Neural Networks and SPMD Parallelism

There has been a noticeable increase in size of state-of-the-art DNN models, with examples such as GPT-3 [6] containing 175 billion parameters and PaLM [11] containing 540 billion parameters. These large neural networks are often constructed using Transformer [46] layers. Many of them incorporate Mixture-of-Expert (MoE) [40] layers as well, which contain sparsely activated experts (each input token is processed by a fixed number of experts, regardless of the total
With SPMD parallelism, the same program is executed on 4 dimensions of parallelism by sharding operators on the tensor on all devices. All-Gather can be used to gather the shards across devices along the e, d dimension. As a result, we decouple the performance of the distributed program from the implementation details of the provided primitive operations to support unevenly sliced tensor shards without padding, at the cost of a higher kernel launching overhead.

2.2 Collective Communication

Four MPI-style [28] collective communication operations are commonly used in distributed DNN training. As illustrated in Fig. 1, $\text{All-Gather}(\hat{e}, d)$ concatenates the slices of tensor \hat{e} across devices along the d dimension. $\text{All-Reduce}(\hat{e})$ sums the replicas of a tensor \hat{e} across devices, element-wisely. $\text{Reduce-Scatter}(\hat{e})$ is equivalent to performing All-Reduce and then sharding the results on each device, but is implemented in a more efficient way. $\text{All-To-All}(\hat{e}, d_1, d_2)$ takes as input the tensor \hat{e} that is sharded on its d_1 dimension and outputs the tensor that is sharded on the d_2 dimension.

The current collective communication libraries have been developed for homogeneous clusters and may not exhibit optimal performance when applied to tensors of different sizes in a cluster of different inter-device bandwidths. For instance, NCCL [18] requires all tensors to be of the same size for All-Gather. In order to perform this communication operation on unevenly sharded tensors, the tensor shards must be first padded to the same size and subsequently trimmed upon completion of the operation, resulting in wasted bandwidth and extra memory access. Alternatively, All-Gather can be implemented with multiple Broadcast operations to support unevenly sliced tensor shards without padding, at the cost of a higher kernel launching overhead.

2.3 Syntax-Guided Synthesis

Syntax-guided synthesis [3] is a type of program synthesis, where the inputs include a syntax specification that defines the program space, a semantic correctness specification that describes the desired properties of the synthesized program, and a background theory to verify whether a given program satisfies the semantic correctness specification. Automated program synthesis has been successfully applied to optimize various kinds of programs, such as SQL [38] and Datalog [48]. Compared to the programs implemented in general-purpose programming languages, these programs typically have simpler structures that allow easier semantic analysis. Tensor programs that implement DNNs share the same characteristics as they are non-recursive and have no side-effects.

We exploit syntax-guided synthesis to systematically generate feasible distributed programs for SPMD parallelism, in order to identify the best one that maximizes training speed. Most literature uses manually defined background theories, such as the linear integer arithmetic (LIA) [4]. We construct a background theory for each single-device program in the form of Hoare triples [15] by automatically analyzing the single-device program. During the synthesis of the distributed program, only the mathematical relations between the model output and the model inputs are utilized. As a result, we decouple the performance of the distributed program from the implementation details of the provided single-device program. Moreover, we automatically explore alternative implementations of operations that achieve the same mathematical results during program synthesis.

Some existing distributed DNN training systems may be categorized as a form of "transformational program synthesis", wherein an initial program undergoes successive modifications based on a set of rewriting rules. As an example, Unity [45] performs pattern matching and substitution on a
proposed parallel computation graph to transform programs. Each optimized step in this process yields a complete and correct program, by the correctness of the applied rewriting rules. In contrast, our approach diverges by exploring incomplete and potentially incorrect programs throughout the synthesis process, and validate the semantics of the resulting distributed program using the background theory derived from the single-device program.

2.4 Optimal Sharding Ratios

With pure data parallelism, the optimal sharding ratios can be readily decided by profiling the computation speed of different devices and setting the ratios in proportion to computation speeds of devices. This does not work optimally for SPMD parallelism where All-Gather and Reduce-Scatter are utilized to concatenate tensor shards or aggregate tensor replicas and then shard the result across devices. In these communication operations, the devices send and receive tensor shards of sizes proportional to the sharding ratios. The communication time therefore depends on the size of the largest shard. Minimal communication time is achieved when the tensors are sharded evenly, as the size of the largest shard is minimized in this case.

To demonstrate this, we train a Transformer model with intra-op model parallelism on two machines, one equipped with two P100 GPUs and the other with two A100 GPUs. Tensors in the model are sharded across the GPUs in two ways: CP, with sharding ratios proportional to the computational power of the devices, and EV, evenly sharding the tensors. We manipulate the hidden feature dimension of the model to alter the computation-to-communication ratio. Fig. 2 shows that when the computation time dominates, CP performs better as it balances computation time on different devices; EV performs better when communication is the bottleneck. EV leads to lower communication time for All-Gather and Reduce-Scatter operations and is preferable when the computation-to-communication ratio is low. When computation time and communication time are similar, a “sweet point” may exist between CP and EV that achieves the optimal trade-off between load balance on different devices and fast communication operations. Further, since different layers of a model may exhibit different computation-to-communication ratios, the optimal sharding ratios may vary for each layer. In HAP, we formulate sharding ratio optimization as a linear programming problem to determine the optimal ratios for each part of the model.

2.5 Communication Optimization

When a tensor is partitioned unevenly, standard collective communication routines that assume homogeneous clusters do not perform optimally. To explore opportunities for heterogeneity-aware communication, we study a few techniques that can potentially benefit collective communication in heterogeneous environments and show that these optimizations need to be jointly decided with the sharding strategy and sharding ratio selection.

2.5.1 Padded All-Gather and Grouped Broadcast

The All-Gather and Reduce-Scatter operations implemented in NCCL require all shards to be of the same size. To perform these operations for unevenly partitioned tensors, we can either pad the shards to the same size before communication, or broadcast each shard separately using a NCCL group call. Fig. 3 visualizes the two approaches.

Selection between the two approaches is highly contingent upon the tensor sharding ratios employed. When the tensors are nearly evenly partitioned, the required padding is minimal, and the padded All-Gather method outperforms other approaches owing to optimizations in NCCL. In contrast, when a tensor is sharded using heavily skewed ratios among devices, the grouped broadcast approach yields better performance. Fig. 4 illustrates this phenomenon as we test the two approaches on a 4MB tensor in a cluster of two machines, each equipped with two NVIDIA A100 GPUs. We allocate the largest shard to the first device and evenly partition the remaining among the other devices. The sharding ratio on the first device then decides the skewness of sharding, depicted as the x-axis in Fig. 4. The bandwidth is computed by dividing the full tensor size by the communication time, without taking into account any padding.

As performance of the two implementations depends on the sharding ratios, when we optimize the sharding ratios, the communication methods should be updated accordingly to achieve the optimal overall performance. In HAP, we include the selection of the two methods into the program synthesis process and interleave its optimization with the sharding ratio optimization.

2.5.2 Sufficient Factor Broadcasting (SFB)

SFB [51] exploits low-rank structures in gradient tensors to reduce parameter synchronization communication by replacing the All1-Reduce operation on gradient tensors with All1-Gather operations on smaller tensors called sufficient factors, which are sufficient to calculate the gradients. Fig. 5 gives an example of SFB for an MatMul operation. The output is an $f \times h$ tensor, which is the gradient of the parameter in a fully-connected layer. The inputs are the activation tensor
of shape \(b \times h \) and the gradient of the output with shape \(f \times b \), where \(b \) is the local batch size on each device and \(B \) is the global batch size. When \(b \) is small, the gradient (the \(f \times h \) tensor) is not full rank, and the two aggregated tensors (the \(B \times h \) and \(f \times B \) tensors) are its sufficient factors as the gradient can be calculated from the two tensors without further communication. With standard data parallelism, the gradients are aggregated among devices with All-Reduce, as shown in Fig. 5(b). With SFB, the input tensors are first collected with All-Gather and then each device calculates the complete gradient independently. SFB changes the communication process from transferring the gradient to transferring the sufficient factors, which can be of smaller sizes when the global batch size \(B \) is small.

The performance of SFB is primarily determined by the batch size and the number of devices involved \([7, 54]\). TAG [56] proposes an integer linear programming-based technique to automatically identify beneficial application of SFB to tensors in a DNN model trained in a homogeneous cluster. However, uneven tensor partitioning across heterogeneous resources introduces additional complication to this problem. As analyzed in Sec. 2.5.1, performance of All-Gather is influenced by the sharding ratios, on which whether SFB is beneficial depends as well. Moreover, in the case of SFB, every device performs the MatMul operation with a full batch size \(B \), which may pose substantial computation overhead on slower devices. Therefore, SFB presents a different trade-off in heterogeneous clusters. In HAP, we integrate SFB into program synthesis to ensure optimal application of SFB as we update the sharding ratios.

3 Design Overview

We propose HAP that jointly decides the sharding strategy, sharding ratios, and communication methods of all tensors in a DNN model for effective SPMD model training on a heterogeneous cluster. The input to HAP consists of a single-device DNN model (DNN training program written for a single device), represented as a computation graph \((V, E)\), and a cluster specification comprising \(m \) virtual devices. A virtual device can refer to a solitary computation unit (such as a GPU) or a small homogeneous group of physical devices (such as a machine containing multiple GPUs). We consider the distributed training strategy at the virtual device level. In the latter case, we assume that data parallelism is employed within each virtual device, as inter-connections within a machine typically exhibits high bandwidth (e.g., NVLink) and data parallelism tends to yield reasonable performance.

3.1 Main Components

HAP comprises two pivotal components: a program synthesizer and a load balancer. The program synthesizer generates the optimal distributed program \(Q \) for given sharding ratios \(B \) of the tensors in the DNN model, while the load balancer produces the optimal sharding ratios \(B \) for a fixed distributed program \(Q \). The distributed program \(Q \) is a program on a distributed instruction set that can be executed on all devices for distributed DNN training with the SPMD parallelism. The tensor sharding strategies and communication methods are implicitly embedded in \(Q \).
The goal is to find the optimal combination of distributed program and sharding ratios \((Q^*, B^*)\) that minimizes the DNN per-iteration training time \(t(Q, B)\). HAP adopts an iterative optimization approach. During each step \(s\), we fix one of the two decision aspects and identify the optimal solution for the other:

\[
Q^{(s)} = \arg\min_Q t(Q, B^{(s-1)}) \tag{1}
\]

\[
B^{(s)} = \arg\min_B t(Q^{(s)}, B) \tag{2}
\]

Starting with the initial sharding ratios \(B^{(0)}\), which are selected to be proportional to the computation power of devices, we first execute the program synthesizer to generate \(Q^{(1)}\) following Eqn. (1). Then we compute \(B^{(1)}\) based on \(Q^{(1)}\) utilizing Eqn. (2). We proceed to calculate \(Q^{(2)}\) based on \(B^{(1)}\), and so on, until convergence or oscillation of the solutions is attained. In the case of oscillation, we use the pair of \(Q\) and \(B\) achieving the lowest cost within the optimization process.

3.2 Cost Modeling

Directly profiling the training performance for each combination of \((Q, B)\) would be resource expensive. We provide an estimate of the per-iteration training time \(t(Q, B)\) by simulating the execution of the distributed program \(Q\) with \(B\) on the heterogeneous cluster.

Collective communication typically requires every participant device to both send and receive data to and from all other participants. It is hence reasonable to assume that all devices are synchronized before communication operations commence. This allows us to divide the execution of a distributed program into stages, with each stage starting with a communication operation followed by a series of computation operations (except for the first stage which only contains computation), as illustrated in Fig. 6. For example, the first two instructions in the program in Fig. 7 are in the first stage of this program and the other two instructions are in the second stage. All devices are synchronized at the beginning of a stage.

Let \(\text{comm}^{(i)}\) and \(\text{comp}^{(i)}_j\) denote the communication time and computation time of the \(i\)-th stage on the \(j\)-th device, respectively. As each stage is globally synchronized, the iteration time is the sum of execution time of all stages. The execution time of a stage is determined by the maximum running time of that stage on all devices. Therefore, we have

\[
t(Q, B) = \sum_{i \in \text{stages}(Q)} \left(\text{comm}^{(i)}(B) + \max_{j \in [m]} \text{comp}^{(i)}_j(B_j) \right)
\]

where \([m] = \{1, \ldots, m\}\) is the list of devices. \(\text{comp}^{(i)}_j(B_j)\) can be calculated based on the profiled flops-per-second of the \(j\)-th device and the estimated number of flops of the computation operations in stage \(i\). Specifically, common operations in DNNs have numbers of flops that are linear to some of the dimensions of the input tensors. If one of these dimensions are sharded, the number of flops of this operation on a device is proportional to the sharding ratio of this device; otherwise, the number of flops does not change. The computation time \(\text{comp}^{(i)}_j(B_j)\), which is calculated for each operator in the \(i\)-th stage by dividing the flops with the flops-per-second of the \(j\)-th device, is therefore a linear function of the sharding ratio \(B_j\). In the case of running HAP on virtual devices which represent machines (each may contain multiple GPUs), we add the internal communication time estimated by the internal bandwidth and parameter sizes in the stage into \(\text{comp}^{(i)}_j(B_j)\). \(\text{comp}^{(i)}_j(B)\) is determined based on the collective operation type, the sharding ratio \(B\), and NCCL’s profiling data on the cluster’s network. We run each collective operation on the cluster with tensors of different sizes and fit the latency and bandwidth in a linear model. \(\text{comp}^{(i)}_j(B)\) is then estimated using the fitted model, with the input of the tensor size of the largest shard.

4 Distributed Program Synthesis

Various optimizations such as SFB (Sec. 2.5.2) and different implementations of collective communications (Sec. 2.5.1) can be considered in tensor sharding strategy search, which has not been comprehensively investigated in previous SPMD training frameworks [19, 44, 47, 58]. In HAP, we systematically approach tensor sharding strategy design in a novel way by formulating it as a program synthesis problem. Instead of selecting a partitioning method for each operator to modify the single-device program, we synthesize a distributed program from scratch on a distributed instruction...
set that emulates the single-device program, as illustrated in Fig. 7. To ensure that the synthesized program is equivalent to the original single-device program, we formalize the semantics of the single-device program and then generate the distributed program under the constraint that the generated program must produce a semantically equivalent output as the single-device program for any inputs.

4.1 Distributed Programs

A distributed program \(Q \) is defined as a sequence of symbols that follows the syntax in Fig. 8. An instruction is a computation operation or a collective communication operation with a set of tensors as inputs and produces a tensor as the output. The computation instructions in the distributed instruction set are largely similar to the single-device instruction set, i.e., the tensor operators provided by DNN frameworks like PyTorch [33], except for some specialized operations like Placeholer-Shard, which is akin to the Placeholder operation utilized in single-device programs to read model inputs, but assumes that the input tensor is partitioned along a specific dimension. Executing a distributed instruction involves executing the same instruction on all devices, where the inputs are local tensors on each device.

4.2 Program Semantics

To produce distributed programs that are equivalent to the single-device program, we first analyze the semantics of the single-device program to form a background theory \(\mathcal{T} \), which is utilized to express the semantic constraints during program synthesis.

The semantics of a program are expressed as a set of properties. To formally define these properties, we introduce distributed tensors, which are tensors produced by and used in distributed programs. A distributed tensor is a collection of instances (i.e., shards of shared tensors and replicas of replicated tensors) of the same tensor on all devices. A property of a distributed tensor describes its mathematical relationship with a reference tensor, referring to a tensor in the single-device graph \((V, E) \). The properties of a distributed tensor \(\hat{e} \) are expressed as \(e \parallel I \), where \(e \in E \) is a reference tensor and \(I \) is an instruction such that executing \(I \) with \(\hat{e} \) as input produces a distributed tensor whose instances on all devices are equal to \(e \). For example, if a distributed tensor \(\hat{e} \) has the property \(e \parallel \text{A11-Gather}(0) \), then after executing \(\text{A11-Gather}(\hat{e}, 0) \) (where 0 denotes the sharding dimension), all devices will have a tensor that is equivalent to \(e \). The set of tensors generated by a program \(Q \) is denoted by \(E(Q) \), and the properties of a program \(Q \) are defined as the properties of all tensors in \(E(Q) \), denoted as \(P(Q) \).

The background theory \(\mathcal{T} \) is expressed as a set of Hoare triples [15]. A Hoare triple is represented as:

\[
\{ \text{precondition} \} \text{instruction} \{ \text{postcondition} \}
\]

When the precondition is satisfied, executing the instruction establishes the postcondition. The instruction is either a computation operation or a collective communication operation that runs simultaneously across all devices. The precondition and postcondition are expressed as sets of properties. If a program contains all properties in the precondition, appending the instruction to the program results in a new program that contains the properties in the postcondition.

We derive the background theory \(\mathcal{T} \) by analyzing the single-device computation graph with a set of pre-defined rules that encodes mathematical characteristics of common tensor operations. Fig. 9 provides some examples of such rules on four collective communication operations and the MatMul operation. For conciseness, we do not explicitly name the tensors produced by an operation, but just use \(\hat{e} \) to refer to the distributed tensor that has the property in the precondition associated with a reference tensor \(e \). For example, in the first rule in Fig. 9, the precondition \(e \parallel \text{A11-Reduce} \) means that there is a tensor \(\hat{e} \) in the program running \(\text{A11-Reduce} \) with which produces a distributed tensor that equals a reference tensor \(e \). When this condition is met, appending the instruction \(\text{A11-Reduce}(\hat{e}) \) to the program leads to a new program that meets the postcondition \(e \parallel \text{Identity} \), which means that a distributed tensor produced by the new program is equivalent to the reference tensor \(e \) (Identity is an operator that returns its input). As another example, the last rule in Fig. 9 describes what is usually called reduction parallelism for MatMul: if \(e_1 \) is shared on its second dimension and \(e_2 \) is shared on its first dimension, the MatMul operation can be executed with instances of the two tensors on all devices, but an extra \(\text{A11-Reduce} \) needs to be used on the result to obtain a tensor that equals the single-device MatMul.

The background theory \(\mathcal{T} \) is obtained for the single-device graph \((V, E) \) by enumerating all rules and finding matches in the single-device graph, and then gathering the Hoare triples from the matched rules. The semantic constraint of the distributed program \(Q \) is defined as \((l \parallel \text{A11-Reduce}) \in P(Q) \), where \(l \) is the output tensor (typically the training loss) of the single-device graph. If a distributed program can be proved to have property \(l \parallel \text{A11-Reduce} \) under theory \(\mathcal{T} \), it is deemed equivalent to the single-device graph as it produces the same output as the single-device graph. We will use such semantic constraints to produce equivalent distributed programs with different tensor sharding and communication strategies.
We use A* algorithm combined with the idea of dynamic programming to search for the optimal distributed program Q^*, as given in Fig. 10. We maintain a priority queue S that contains partial programs and their scores. The score of a partial program Q is an estimate of the per-iteration execution time of the optimal complete program Q_c that starts with Q: $\text{score}(Q) = \text{cost}(Q) + \text{ecost}(Q)$, where $\text{cost}(Q)$ is the execution time of the partial program Q and $\text{ecost}(Q)$ is a heuristic function that estimates the future cost of the program $\text{cost}(Q_c) = \text{cost}(Q)$. In order for the A* algorithm to find the optimal program, the heuristic function ecost must not overestimate the future cost (i.e., we need $\text{ecost}(Q) \leq \text{cost}(Q)$).

Figure 9. Examples of the semantics of common collective communication operations and the MatMul operation.

4.3 Program Search Algorithm

A naive way to generate the best distributed program Q (that minimizes the iteration time with B) is to enumerate all possible programs, produced by sharding tensors along different dimensions and using different suitable collective communication following the syntax in Fig. 8. We can produce the programs in a breadth-first search manner and verify if a result program is semantically equivalent to the single-device program. However, the number of possible distributed programs grows exponential with the number of instructions. The exhaustive search is impractical for DNN models with hundreds or more operators.

We propose a more efficient program search algorithm based on the following ideas: (i) we estimate a cost lower-bound (execution time) for a partial program and stop searching further based on this partial program if its cost lower-bound is higher than the current best program; (ii) if two programs lead to the same set of properties, we discard the one with a higher cost. A program Q is considered complete if $\forall e \in \text{All-Reduce} \in P(Q)$, indicating that it is already semantically equivalent to the single-device program and no additional instructions are required. Programs constructed during the search that are not complete are called partial programs.

We use A^* algorithm combined with the idea of dynamic programming to search for the optimal distributed program Q^*, as given in Fig. 10. We maintain a priority queue S that contains partial programs and their scores. The score of a partial program Q is an estimate of the per-iteration execution time of the optimal complete program Q_c that starts with Q: $\text{score}(Q) = \text{cost}(Q) + \text{ecost}(Q)$, where $\text{cost}(Q)$ is the execution time of the partial program Q and $\text{ecost}(Q)$ is a heuristic function that estimates the future cost of the program $\text{cost}(Q_c) = \text{cost}(Q)$. In order for the A^* algorithm to find the optimal program, the heuristic function ecost must not overestimate the future cost (i.e., we need $\text{ecost}(Q) \leq \text{cost}(Q)$).

Figure 10. A* algorithm for sharding strategy search

1. **Input:** computation graph (V, E), sharding ratios B
2. **Output:** Optimal distributed program Q^*
3. Initialize a priority queue S with an empty program Q_0
4. Initialize best program $Q^* = \text{null}$ and set $\text{cost}(Q^*) = \infty$
5. **while** $\exists Q \in S$, $\text{score}(Q) < \text{cost}(Q^*)$ **do**
6. Remove the program Q with lowest score from S
7. **for** $(\text{precondition}) \text{ instruction } (\text{postcondition}) \in T'$ of the single-device program where $\text{precondition} \subseteq P(Q)$ and $\text{postcondition} \subseteq P(Q)$ **do**
8. $Q' = Q \cup \text{instruction}$; $\text{cost}(Q') = \text{cost}(Q) \cup \text{postcondition}$
9. **if** $\exists Q_s \in S \text{ s.t. } P(Q_s) \supseteq P(Q')$ and $\text{cost}(Q_s) \leq \text{cost}(Q')$ **then**
10. **continue**
11. **end if**
12. **for** $Q_s \in S$ where $P(Q_s) \supseteq P(Q_s)$ and $\text{cost}(Q_s) \leq \text{cost}(Q_s)$ **do**
13. remove Q_s from S
14. **end for**
15. **if** Q' is complete **then**
16. $Q^* \leftarrow Q'$ if $\text{cost}(Q') < \text{cost}(Q^*)$
17. **else**
18. add Q' into S
19. **end if**
20. **end for**
21. **end while**
The resulting program contains both computation operations and communication operations (as in instructions). The sharding strategy is implicitly included in the generated program when synthesizing communication operations and special operations like Placeholder-Shard. Following our semantic constraints, the generated collective communication is guaranteed to properly handle the tensors the computation produces. For example, All-Gather(e_1, 0) will only be generated upon a tensor e_1 that is previously sharded on its 0-th dimension. Similarly, All-Reduce(e_2) will only be generated if performing this operation produces a tensor that equals a tensor e_2 in the single-device graph.

We give an example of the searching process in Fig. 11. Suppose that the single-device program contains 4 instructions, as given on the top left in the figure. The Placeholder operation retrieves a batch of input samples. The Parameter operation loads a tensor parameter of the model. Then the matrix product of the two tensors is computed and its element sum is computed as the loss. Starting with an empty distributed program, assume that we find the following matching rule: $V e \in E, e = \text{Placeholder}()$

whose precondition is met (as it has no properties). We append the instruction $\text{Placeholder-Shard}(0)$ to the empty program and obtain program 1. Suppose there is no other rule with an empty precondition; 1 is now the only element in the priority queue. For brevity, we only consider partitioning e_1 on the first dimension (dimension 0) and e_2 on its second dimension (dimension 1), and do not include communication optimizations in this example. In the second loop, we retrieve 1 from the priority queue and append different instructions to it by enumerating T, leading to programs 2 and 3. In the third loop, we retrieve 2 from the priority queue and append a MatMul operation and obtain program 4. Note that we remove the properties regarding e_1 and e_2 as the two tensors will no longer be used in the rest of the program. We will introduce details of this optimization in Sec. 4.5. Then in the fourth loop, we find 5 and 6 based on 3. In the fifth loop, we obtain program 7 which is a complete program as it has property $\text{loss} \mid \text{All-Reduce}$. Since its cost is no higher than the scores of 5 and 6 (the two programs in the priority queue), the search terminates and returns 7 as the optimal program.

4.4 Communication Optimization

With our program synthesis approach, we can readily incorporate the two communication optimization techniques (Sec. 2.5) into the distributed program search, to jointly optimize communication on heterogeneous clusters with the sharding strategy.

As discussed in Sec. 2.5.1, there can be two implementations of All-Gather on a heterogeneous cluster, which exhibit different performance under different sharding ratios. To automatically decide the better implementation under a given sharding ratio B, we can add the following rule during program search:

$$\forall e \in E, \forall d \in \text{dims}(e)$$

$$\{e \mid \text{All-Gather}(d)\} \text{ Grouped-Broadcast}(e, d) \{e \mid \text{Identity}\}$$

The rule has the same precondition and postcondition as the All-Gather instruction in Fig. 9 (which refers to the padded All-Gather implementation), but indicates using multiple Broadcast operations to implement All-Gather. Whenever a partial program meets the precondition, our A* search will attempt both instructions and retain only the one with better estimated performance, using lines 9 to 14 in Fig. 10.

To support sufficient factor broadcasting (Fig. 5(c)), we only need to add the following rule in additional to those in Fig. 9:

$$\forall e_1, e_2, e_3 \in E, e_1 = \text{MatMul}(e_1, e_2)$$

$$\{e_1 \mid \text{Identity}, e_2 \mid \text{Identity} \} \text{ MatMul}(e_1, e_2) \{e_3 \mid \text{Identity}\}$$

which denotes that all devices duplicate the same computation with identical input data. By applying this rule and the fifth rule in Fig. 9 to the single-device program in Fig. 5(a), which is inside the search space of our A* algorithm, we can generate the program depicted in Fig. 5(c). By adding similar rules to common operators in DNNs, HAP’s program synthesis process can automatically explore other possible applications of SFB.

4.5 Search Time Optimization

As the number of operations increases, the execution time of our A* algorithm may still be substantial. We further propose three heuristics to balance the search time and performance of the obtained sharding strategy.

Our first optimization involves fusing Hoare triples that have empty preconditions with their consumers. For instance, for a Placeholder operation in the single-device graph that produces reference tensor e, we may create a Hoare triple $\{\emptyset\} \text{ Placeholder} \{e \mid \text{Identity}\}$. Since it has an empty precondition, the code may appear at any position in the program before the first consumer of e, and our search algorithm would explore all possible positions of such instructions during the search. To reduce the overhead, we fuse those Hoare triples with their consumers to generate new Hoare triples with two consecutive instructions. Specifically, for two Hoare triples $\{\text{Pre}_1\} \text{ Inst}_1 \{\text{Post}_1\}$ and $\{\text{Pre}_2\} \text{ Inst}_2 \{\text{Post}_2\}$, if $\text{Pre}_1 = \emptyset$ and $\text{Post}_1 \subseteq \text{Pre}_2$, we remove the first triple from T and insert a new Hoare triple $\{\text{Pre}_2 \setminus \text{Post}_1\} \text{ Inst}_1 \cup \text{Inst}_2 \{\text{Post}_1 \cup \text{Post}_2\}$. This ensures that all instructions with empty preconditions occur directly before their first consumers and eliminates the enumeration of their positions in the program.

Our second optimization is to disallow repeated communications of the same reference tensor. We also disallow communication of tensors produced by Placeholder and Parameter, which can directly produce sharded tensors with specialized instructions, Placeholder-Shard and Parameter-Shard. Without this optimization, HAP attempts
5.1 A Base Case

We first consider a basic case where the same sharding ratios across the devices are used for each tensor in the DNN model. As a collective communication operation involves all devices and is bottlenecked by the slowest participant, the communication time in the i-th stage (Sec. 3.2), $\text{comm}^{(i)}(B)$, is decided by the largest communication time of a tensor shard, i.e., $\text{comm}^{(i)}(B)$ is a linear function of $\max_{j \in [m]}(B_j)$. Since we synchronize all devices at the beginning of each stage and the collective communication operations take the same time across devices (Fig. 6), the computation time of the i-th stage is the maximum computation time among the devices, i.e., $\max_{j \in [m]}(B_j)$. We then solve the following problem to obtain B:

$$
\min \sum_{i \in \text{stages}(Q)} (\text{comm}^{(i)}(B) + \max_{j \in [m]}(B_j)) \\
\text{subject to:} \sum_{j=1}^{m} B_j = 1, \quad B_j \geq 0, \quad \forall j \in [m]
$$

The objective function is the sum of the communication time and computation time of all stages, which is the per-iteration training time that we are minimizing. The constraints state that sharding ratios are non-negative and sum to 1. In HAP, the functions $\text{comm}^{(i)}$ and $\text{comp}^{(i)}$ are modeled as linear functions on bandwidth and flops (Sec. 3.2). Therefore, the optimization problem is a linear program and can be solved efficiently with off-the-shelf solvers.

After obtaining the optimal fractional solutions, we round the sharded sizes of each tensor to integers and ensure they add up to the total length of the dimension that is sharded on. We first set the sharded sizes to their nearest integers. If the sum is larger or smaller than the original size, we repeatedly reduce/increase the size by one for a shard that introduces smallest rounding errors, until the sizes of the sharded tensors sum to the original tensor.

5.2 Different Sharding Ratios across the Model

If the DNN model contains many layers and the computation-communication ratio differs across layers, using the same sharding ratios throughout the model may not be ideal. Due to the large number of tensors in a model, computing a different set of sharding ratios for each tensor may incur high computation overhead. Instead, we partition the tensors in the model, E, into g segments, denoted by $E_k, 1 \leq k \leq g$, and identify the sharding ratios for each model segment.
The segment division can be either specified by the user (such as using the layers of the model) or determined using a partition algorithm such as METIS [20] (which minimizes the tensor size on the cuts while balancing the size of partitions). The sharding ratios \(B \) subsequently become a \(g \times m \) matrix, where \(B_{k,j} \) represents the sharding ratio for tensors in the \(k \)-th model segment on the \(j \)-th device.

For a tensor in the \(k \)-th segment that is produced by tensors from other segments (whose sharding ratios may not be \(B_k \)), an All-To-All operation is inserted to coordinate between the sharding ratios. To simplify implementation, we always insert All-To-All operations at the boundaries of segments, regardless of whether the sharding ratios are the same or not between the two segments. As a result, there are synchronization points at segment boundaries, and each stage is entirely within a model segment. In this way, for each segment, we can solve the optimization problem in (3) independently to determine the optimal sharding ratios for tensors in that segment.

6 Implementation

HAP is implemented on PyTorch 1.13.1 [33] with 2789 lines of Rust code for the program synthesizer, 69 lines of Rust code for the load balancer, and 362 lines of Python code for the profiler, collective operations, and the user API. Fig. 12 shows the modules we implemented in HAP. The single-device program is represented as a PyTorch fx [37] graph. The cluster specification contains the information of the virtual devices (GPUs and machines), including the profiled flops-per-second of the devices and the latency and bandwidth of each collective primitives on this cluster. The program synthesizer (Sec. 4) and the load balancer (Sec. 5) are run on CPU to identify the optimal distributed program \(Q \) and sharding ratio \(B \). We use CBC [13] to solve the sharding ratio optimization problem.

At the beginning of model training, HAP broadcasts \(Q \) and \(B \) to all workers (virtual devices), which run them on the PyTorch runtime. Each worker first initializes the original single-device model in CPU using the same seed. For each \(\text{Parameter-Shard}(d) \) operation in \(Q \), the \(j \)-th worker shards the corresponding parameter along its \(d \) dimension and only keeps the slice corresponding to the portion of \(\sum_{x=1}^{j-1} B_x \) to \(\sum_{x=1}^{j} B_x \). The shards are loaded to GPU for training.

In each training iteration, the workers each load a minibatch of input data according to their sharding ratios. Then they execute \(Q \) and synchronize with each other when executing collective communications. After running \(Q \), each worker applies the gradient to its own parameter shards. The collective communication operations are implemented using PyTorch’s API with the NCCL [18] backend.

When HAP is run on a single virtual device which represents a machine, program \(Q \) sent to the machine is replicated to all GPUs in the machine. Regular data-parallel training is carried out among GPUs in the machine. Each collective operation in \(Q \) is replaced by a three-step communication operation: the tensors for communication are first aggregated from all GPUs to GPU 0 using Gather or Reduce; GPU 0 participates in the global collective communication using the aggregated tensor; and then GPU 0 broadcasts the result to other GPUs in the machine using Scatter or Broadcast.

The user API of HAP is analogous to the built-in DDP module of PyTorch: the user calls \(\text{hap} \).\text{function with a single-device PyTorch model and a Python Dict of device specification, and the function returns a distributed model that can run on the cluster with PyTorch's torch.distributed module. We plan to open-source HAP to the community.

7 Evaluation

7.1 Experimental Setup

Testbed. We conduct experiments on 8 machines in a public cloud with 64 GPUs in total. Two machines are each equipped with 8 NVIDIA V100 GPUs and NVLink. The others are each equipped with 8 NVIDIA P100 GPUs. Inter-machine bandwidth is about 10.4Gbps, as measured with iperf3 [12]. The cluster provides network isolation and stable bandwidths.

Benchmarks. We train 4 representative DNN models as listed in Table 1. VGG19 [42] is a convolutional neural network (CNN) for image classification. ViT[10] is a Transformer-based neural network for image classification. BERT-Base [9] is a Transformer-based model for language modeling. Bert-MoE adds MoE layers to the BERT-Base model by replacing a feed-forward module every two layers in a similar way as in GShard [22]. We follow the convention of scaling MoE models with the number of devices, thus the model size...
depends on the number of devices \(m \). We adopt weak scaling and set the global batch size proportional to the number of devices, with per-device batch size 32 for BERT-MoE and 64 for other models.

Baselines. We compare \(\text{HAP} \) with four relevant designs: (1) \(\text{DP-EV} \) is data parallelism with even sharding ratios. (2) \(\text{DP-CP} \) is data parallelism with sharding ratios proportional to the computation speed of the devices. We use PyTorch’s DDP module [24] to implement DP-EV and DP-CP. (3) \(\text{DeepSpeed} \) [36] supports ZeRO-based [35] data parallelism and implements intra-op model parallelism for MoE layers. (4) \(\text{TAG} \) [56] is a heterogeneity-aware DNN training system. \(\text{TAG} \) supports data parallelism and inter-op model parallelism. It optimizes communication by selecting parameter-server [23] or All-Reduce for gradient synchronization and automatically applying sufficient factor broadcasting.

\(\text{HAP} \), \(\text{DP-EV}, \text{DP-CP} \), and \(\text{DeepSpeed} \) are based on PyTorch and use the same implementation of the benchmark models. \(\text{TAG} \) is implemented on TensorFlow [1]. We were only able to train VGG19 and BERT-Base with \(\text{TAG} \). Due to replicating the whole model on all devices, \(\text{DP-CP} \) and \(\text{DP-EV} \) causes out-of-memory errors when training BERT-MoE.

7.2 Training Speed-up on Heterogeneous Clusters

We first evaluate \(\text{HAP} \) and the baselines on the heterogeneous cluster with 8 machines. As shown in Fig. 13, \(\text{HAP} \) significantly outperforms the DP baselines when training VGG19. VGG19 comprises layers of different computation-to-communication ratios. In particular, the fully-connected layers in VGG19 is very communication-intensive as compared to the convolution layers. \(\text{HAP} \) adopts model parallelism to reduce the communication time and achieves up to 2.41x speedup in the case of 32 GPUs. \(\text{TAG} \) puts these layers exclusively on one device in the case of 8 GPUs to eliminate communication. However, this method does not work with more GPUs. \(\text{HAP} \) achieves similar performance to \(\text{DP-CP} \) when training ViT while consistently outperforming the baselines when training BERT-Base, with a 28% speedup in the case of 64 GPUs. When training BERT-MoE, \(\text{HAP} \) finds a strategy that performs similarly to the expert-designed MoE sharding strategy implemented in \(\text{DeepSpeed} \).

7.3 Training Speed-up on Homogeneous Clusters

In this experiment, we assess the performance of \(\text{HAP} \) and baselines on a homogeneous subset of our testbed consisting of 4 machines, each equipped with 8 P100 GPUs. Since all devices have the same computational power, \(\text{DP-CP} \) is equivalent to \(\text{DP-EV} \) and therefore is not included in this experiment. As demonstrated in Fig. 14, \(\text{HAP} \) still outperforms all baselines across all models, achieving up to 217%, 19%, 22%, and 13% speedup when training VGG19, ViT, BERT-Base, and BERT-MoE, respectively, compared to the best baselines.
7.4 Ablation Study

We examine the efficacy of various components of HAP by comparing the throughput of benchmark models achieved through the utilization of different parts of our designs. In Fig. 15, DP-EV represents the throughput achieved without any of our designs. “Q” denotes the additional throughput obtained by employing HAP’s program synthesizer. “B” represents the throughput contributed by our load balancer, and “C” is the speedup provided by communication optimization. The findings indicate that the program synthesizer has the greatest impact on the performance of HAP, whereas the communication optimization does not yield noticeable speedup in this experimental setup. This can be attributed to the relatively small disparity in computational power between the GPUs. As discussed in Sec. 2.5, the communication optimization is mostly effective when there is a significant difference in sharding ratios between devices.

7.5 Case Study: Training Multiple Models

Hardware heterogeneity presents inherent challenges for distributed DNN training. Even with the optimizations of HAP, it is anticipated that there will be reduced hardware utilization on heterogeneous clusters. We estimate this overhead by simultaneously training multiple models on homogeneous subsets of the cluster and use the total throughput as an estimation of the potential throughput achievable if the cluster were homogeneous. Specifically, in this experiment, we train one model using two V100 machines while simultaneously training another model using six P100 machines. We refer to this approach as concurrent. We then compare the total throughput achieved using concurrent with that of HAP, as shown in Fig. 16. We normalize the throughput of different models by comparing them to the total throughput achieved by concurrent. Our results show that HAP achieves 64% to 96% throughputs compared to concurrent for the benchmark models. The VGG19 model exhibits suboptimal utilization of GPU resources when scaled to accommodate a higher number of devices due to its relatively small convolution layers. As we scale the MoE model with the number of devices, the BERT-MoE model trained with HAP is larger than the two models trained using the concurrent method. The results show that HAP facilitates the training of larger models that may exceed the capacity of homogeneous subsets while maintaining satisfactory throughput on heterogeneous clusters. Given the current trend of large models, there is a growing demand for the ability to utilize all available resources to train models of maximum size. Moreover, HAP enables the prioritization of time-sensitive training tasks by fully leveraging all resources for their execution. For instance, with HAP, users can employ the entire cluster to train a production model before lower-priority research jobs. On the other hand, concurrent limits the training of the production model to a homogeneous sub-cluster, leading to increased latency.

7.6 Case Study: Uneven Placement of Experts

Expert parallelism, which partitions MoE layers on the expert dimension, is the dominating training strategy for MoE models. Current training systems that adopt expert parallelism allocate the same number of experts to all devices [14, 22, 34]. If the number of devices does not even divide the number of experts, the related tensors must be first padded, resulting in inefficient use of computation power. With uneven partitioning, HAP naturally supports sharding MoE models with any number of experts onto a cluster with any number of devices, as long as the total memory capacity is sufficient.

To demonstrate the effectiveness of HAP, we conduct an experiment using two machines, one with 2 NVIDIA A100 GPUs and the other with 2 NVIDIA P100 GPUs. We train BERT-MoE with varying numbers of experts using HAP and DeepSpeed. To maintain the same load of each expert, we keep the number of tokens proportional to the number of experts. The per-iteration training time is plotted in Figure 17. DeepSpeed has to pad the number of experts to a multiplier of 4, the number of available devices, while HAP can provide a smooth performance curve. Further, HAP places more experts onto A100 GPUs to maximumly exploiting its computation power, bringing up to 64% speedup.

7.7 Cost Model Accuracy

HAP employs a cost model (Sec. 3.2) to evaluate distributed program Q and sharding ratios B during the optimization loop. The accuracy of the cost model is critical in obtaining the optimal distributed programs. In this experiment, we alter the configurations (the number of layers, hidden width, and sequence length) of the BERT-Base model to create different variants and compare the cost estimated by our cost model and the actual profiled per-iteration training time. As shown in Fig. 18, the cost model tends to under-estimate the training
Therefore, we assess the overhead of HAP of experts. Figure 17. BERT-MoE performance with uneven placement of experts.

Figure 18. Cost model accuracy.

Figure 19. Program synthesis time.

time, but the estimated time is mostly linear to the actual time, with a Pearson correlation coefficient of 0.970.

7.8 Overhead of HAP

HAP adopts SPMD parallelism and exhibits constant search and compiling time with respect to the number of devices. Therefore, we assess the overhead of HAP by varying model scales. We adjust the number of layers of the ViT model and generate a distributed model with HAP. The sharding ratio optimization takes less than 1ms and the majority of overhead is attributed to the program synthesis process. As shown in Fig. 19, the program synthesis time increases superlinearly as the number of layers increases. Nevertheless, for a model with 24 layers, HAP only takes a few seconds to synthesize the distributed program, which is negligible compared to the hours or even days of model training time.

8 Related Work

Inter-Operator Parallelism. Placing different parts of the DNN model on different devices allows distributed training on heterogeneous clusters [2, 27, 59]. Pure inter-operator parallelism falls short when a single operator in a model exceeds the memory capacity of a single device, like in the increasingly common MoE models. Inter-operator parallelism may not scale well as each device is treated individually and the decision space grows with the number of devices.

Unevenly-split Data Parallelism. VirtualFlow [31] splits a mini-batch into virtual nodes and assigns multiple virtual nodes to a single device. HeteroG [53] uses graph neural networks and reinforcement learning to find the placement and communication strategy for each operator in a heterogeneous cluster, supporting both inter-operator parallelism and unevenly-split data parallelism. Data parallelism does not support large operations that do not fit in a single device.

Asynchronous Data-Parallel Training. HetPipe [32] divides the heterogeneous cluster into k virtual workers; each virtual worker employs pipeline parallelism internally, while asynchronous data parallel training is carried out among virtual workers using a parameter-server architecture. Prague [25] adopts partial all-reduce with only a subset of workers participating in parameter synchronization of each training iteration. Devices with different speeds synchronize with other devices at different paces. HAP focuses synchronous training which achieves the same model convergence as single-device training.

Heterogeneous SPMD Systems. AccPar [43] uses dynamic programming to decide tensor partitioning among heterogeneous devices, but only considers three types of partitioning for operators in CNN models. Pathways [5] places model components on different TPU pods and uses gang scheduling for asynchronously execution of these components. HAP systematically explores more sharding strategies with program synthesis.

Collective Communication on Heterogeneous Clusters. TACCL [39] models communication as an mixed integer linear programming problem and finds routing and scheduling of each data chunk to minimize communication. BlueConnect [8] decomposes All-Reduce to fit into heterogeneous network hierarchy. HAP uses NCCL as the communication library and automatically chooses communication primitives during program synthesis. HAP may be used together with the heterogeneity-aware communication optimizations to further accelerate training on heterogeneous clusters.

9 Conclusion

This paper introduces HAP, an automated system for SPMD-parallel training of large neural networks on heterogeneous clusters. HAP novelly synthesizes a distributed program on a distributed instruction set that emulates the single-device program, and identifies the best sharding strategy and communication methods in the distributed program. Tensor sharding ratios are optimally set to balance the work-load across devices, through iterative optimization with the distributed program synthesis. We implement HAP using PyTorch and demonstrate that it achieves up to 2.41x faster training compared to existing methods on heterogeneous clusters and can automatically find feasible SPMD strategies to train large models.

Acknowledgments

This work was supported in part by Alibaba Group through Alibaba Innovative Research (AIR) Program and grants from Hong Kong RGC under the contracts HKU 17208920 and C7004-22G (CRF).
References

[57] Hanyu Zhao, Zhenhua Han, Zhi Yang, Quanlu Zhang, Fan Yang, Lidong Zhou, Mao Yang, Francis CM Lau, Yuqi Wang, Yifan Xiong, et al. 2020. (HveD): Sharing a {GPU} cluster for deep learning with guarantees. In *14th USENIX symposium on operating systems design and implementation (OSDI)*. 515–532.

A Artifact Appendix

A.1 Abstract

HAP is implemented as a Python module that automatically transforms a single-device tensor program into a distributed program that can efficiently run on heterogeneous clusters. The artifacts include the source code of HAP and a Docker container that bundles all dependencies.

A.2 Description & Requirements

A.2.1 How to access. The source code of HAP is provided at https://github.com/ylxdzsw/hap. The "ae" branch contains the version for artifact evaluation. A docker container with all dependencies pre-installed is available at https://hub.docker.com/r/ylxdzsw/hap.

A.2.2 Hardware dependencies. At least two GPUs are required to run HAP. As HAP is designed for heterogeneous clusters, multiple machines with different GPU models are needed to fully show HAP’s capabilities. The minimum GPU memory should be at least 12GB. We recommend a similar setting as used in our experiments (Sec. 7.1), i.e., 2 machines each equipped with 8 NVIDIA V100 GPUs and 6 machines each equipped with 8 NVIDIA P100 GPUs. The inter-machine bandwidth is about 10.4Gbps.

A.2.3 Software dependencies. HAP is implemented on PyTorch 1.13.1. All machines should use the same versions of CUDA and NVIDIA drivers that are compatible with PyTorch 1.13.1. Rust 1.70.0-nightly and Coin CBC 2.9.9 are required to build HAP from source. To reproduce the results of the baselines, DeepSpeed 0.9.4 is also used.

All software dependencies are included and pre-compiled in the Docker image. However, NVIDIA driver 515.43.04 needs to be separately installed on the host machines.

A.2.4 Benchmarks. The benchmark models and datasets are included in the source code repository and Docker image.

A.3 Set-up

This set-up instruction uses the Docker image. To build HAP from source, we refer to the "readme" file in the source code repository.

First, ensure that NVIDIA driver 515.43.04 or higher has been installed on the host machines. The installation can be verified with the nvidia-smi command. All machines should use the exact same version of NVIDIA driver. The driver can be installed by following https://docs.nvidia.com/datacenter/tesla/tesla-installation-notes/index.html.

Next, install Docker engine by following https://docs.docker.com/engine/install. Then install nvidia-container-toolkit (e.g., with apt-get install) and restart the docker daemon (systemctl restart docker). After that, download the Docker image of HAP using docker pull ylxdzsw/hap:ae. The image is about 20GB. When finished, start a container instance with docker run -d --name hap --gpus all -network host -it ylxdzsw/hap:ae /bin/bash. To access the container on the host machine, run docker exec -it hap bash. Inside the container, run /usr/sbin/sshd to start an ssh instance on port 3922 which will later be used for communication between the containers.

Running HAP involves running the same script on all machines in the cluster. To automate this process, we provide a helper script /root/hap/run_all. Running this script on one of the machines starts the same script on all machines. By default it assumes 8 machines with host names v1, v2, ..., v8. The IP addresses of the machines are set in /root/.ssh/config. Before using the script, first enter v1 and run ssh from the v1 to all machines (including v1 itself) with ssh -p 3922 root@vx and save the ssh fingerprints.

Finally, check the set-up by running ./run_all worker.py 1 on the v1. It should run 100 iterations of training and reports the average per-iteration time.

A.4 Evaluation workflow

A.4.1 Major Claims.

- (C1): HAP outperforms the baselines in heterogeneous clusters in terms of the per-iteration training time when training the benchmark models. This is proven in Sec. 7.2 and the results are shown in Fig. 13.
- (C2): HAP outperforms the baselines in homogeneous clusters in terms of the per-iteration training time when training the benchmark models. This is proven in Sec. 7.3 and the results are shown in Fig. 14.
- (C3): HAP can generate distributed models within seconds for the benchmark models, as shown in Sec. 7.8 and Fig. 19.

A.4.2 Experiments. Experiment (E1): [Heterogeneous Cluster] [30 human-minutes + 4 compute-hours]: Train the benchmark models on a heterogeneous cluster and compare the per-iteration training time of HAP and the baseline systems.

[Preparation]

Assuming that HAP has been set up on a heterogeneous cluster following Sec. A.3, this experiments involves modifying config.py and running HAP and the baselines.

First, we need to collect profiling data. The device flops can be profiled by running python profiler.py. Execute this command for each type of GPU and replace device_flops in worker.py with the actual profiling data. device_flops is an array of the flops for all devices. For example, when using 2

Submission, reviewing and badging methodology followed for the evaluation of this artifact can be found at https://sysartifacts.github.io/eurosys2024/.
V100 GPUs and 6 P100 GPUs, it should be set to an array of 8 elements, with the first two elements being the profiled flops of the V100 GPU and the last 6 elements being the profiled flops of the P100 GPU. The collective communication can be profiled by running `./run_all profiler.py 8`, which automatically runs different collective operators across all machines using 8 GPUs (the second argument to the script) on each machine. Fill the profiling data in `worker.py`.

Next, modify `config.py` and run `./run_all worker.py k` to obtain the per-iteration training time of HAP, where k is the number of GPUs to use on each machine. In `config.py`, `model_name` is the benchmark model, where Vvgg, Vtransformer, Rtransformer and Rmoe correspond to the VGG19, ViT, BERT-Base, and BERT-MoE models. `world_size` is the total number of GPUs. `master_addr` should be set to the ip address of one of the machines. `cards_per_node` is only used by the DeepSpeed baseline and should be set to the number of GPUs to use on each machine (same as k). Other fields should be kept unchanged to reproduce the results reported in the paper.

To run the DP-EV baseline, change the `unscaled_sharding_lengths` in `ddp.py` to an array of 1 (simulating the same device flops on each device regardless of their actual types) and run `./run_all ddp.py k` similar to running HAP. To run the DP-CP baseline, fill `unscaled_sharding_lengths` with the actual profiling data of each GPU type in the same way as device_flops in `worker.py`.

To run the DeepSpeed baseline, use `./run_all_deepspeed` instead of `./run_all`.

[Execution]

To collect the data for Fig. 13, vary k and the related fields in `config.py (model_name, world_size, and cards_per_node)`, then run HAP and the baselines for each configuration.

[Results]

The experiment scripts print the average per-iteration time and the standard deviation on screen. As the standard deviation is relatively small in our experiments, we only report the average per-iteration time in Fig. 12. The experiment script also records the timeline in `trace.json.gz`, which can be load into Chrome Trace Profiling Tool for further inspection. The results should confirm the claim C1.

Experiment (E2): [Homogeneous Cluster] [30 human-minutes + 4 compute-hours]: Train the benchmark models on a homogeneous cluster and compare the per-iteration training time of HAP and the baseline systems.

[Preparation]

The preparation is same as in E1, except for that we now use a homogeneous cluster.

[Execution]

Same as in E1.

A.5 Notes on Reusability

HAP can be extended to support new operators and custom semantic rules. To add support for a new operator, one need to edit the file `hap.rs` and add a new handler in the function `initialize_parsing_handlers` following the same structure of the existing handlers. To add new rules for generating Hoare triples, edit the `analyze_rgraph` function in `hap.rs`. The existing rules in the code can be used as examples.