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Abstract—Heterogeneous Graph Neural Networks (HGNNs)
have shown remarkable success in learning from real-world
graph data by capturing complex heterogeneous characteristics
like various semantic and relational information across different
node and edge types.

However, as graphs grow in size and complexity, existing
models struggle with scalability. Current graph transformers
are often constrained by sampling algorithms, limiting their
receptive fields and preventing them from fully leveraging the
transformer’s capability. Simply expanding the receptive field
(i.e., long-range dependencies) leads to quadratic computational
costs, resulting in time and memory constraints. In addition,
although some transformer architectures are trying to overcome
the quadratic computational complexity, few of them have con-
sidered the relational graph structure or heterogeneity.

To address these challenges, we proposed HEGformer, an
innovative integration of Graph Transformers and Heterogeneous
Graphs. We propose two techniques: Relational Local Sensitive
Hashing (R-LSH) and Relational-aware Enhanced Attention
(REA). R-LSH extends the traditional Local Sensitive Hashing
approach by incorporating relational information between dif-
ferent node types, significantly reducing the quadratic computa-
tional cost commonly associated with vanilla Graph Transformers
while maintaining relational integrity. REA leverages node-type
information to create global relational contexts, enhancing atten-
tion mechanisms to be more type-aware and computationally
efficient. Our methods demonstrate improved scalability and
competitive performance on graph-based tasks of various sizes,
offering a powerful model for future research in large-scale,
complex graph analytics.

Index Terms—Graph Transformer, Heterogeneous Graph Neu-
ral Networks, Graph Representation Learning

I. INTRODUCTION

Heterogeneous Graph Neural Networks (HGNNs) [2], [3],
[5], [6], [48], [49] address the complexity of diverse node and
edge types, reflecting intricate semantic relationships found in
real-world scenarios. A heterogeneous graph, also known as
a heterogeneous information network, is a graph that contains
different types of nodes and edges, each type representing
various entities and their interactions. This is in contrast
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to homogeneous graphs, where all nodes and edges are of
the same type. Heterogeneous graphs are important because
they more accurately represent complex systems, such as
social networks, biological networks, and knowledge graphs,
where multiple types of entities and relationships coexist.
HGNN models emphasize heterogeneous graph representa-
tion learning, offering a promising framework for embedding
nodes in lower-dimensional spaces while preserving their rich
structural attributes. By capturing the diversity of node and
edge types, HGNNs can model the complex and multi-faceted
relationships present in real-world data. However, HGNNs face
challenges in maintaining the information of heterogeneous
nodes and edges while ensuring efficient computation. This
balance is crucial for leveraging the full potential of HGNNs in
applications such as recommendation systems, fraud detection,
and drug discovery.

Traditional message-passing GNNs, in both homogeneous
and heterogeneous scenario, suffer from over-smoothing [32],
[33], where repeated aggregation of node features leads to in-
distinguishable node representations, and over-squashing [34],
where distant node information is inadequately propagated.
These issues are particularly pronounced in heterogeneous
graphs, where the diversity of node and edge types adds an-
other layer of complexity. The introduction of the Transformer
architecture into the graph domain could address these issues
by leveraging its global attention mechanism to better capture
intricate relationships and interactions between different types
of nodes and edges [30].

There are many works done in the Graph Transformer area,
but most of them focus on homogeneous cases rather than het-
erogeneous ones. Hence, the power of the Graph Transformer
in heterogeneity still has great potential, especially when
scaling to large graphs [17]. The computational and storage
demands, inherently quadratic with respect to the number of
nodes, pose significant barriers to practical applications [2],
[13], [17]. Efforts to introduce heterogeneous graph structures
within Transformers have made some progress but have not
yet fully capitalized on the unique characteristics of graph
data, often resulting in sub-optimal outcomes. For example,



the Heterogeneous Graph Transformer (HGT) [3] is often
regarded as a transformer-based model for HGNNs, but its
core mechanism primarily relies on message-passing. The
performance gains attributed to HGT are largely due to its
sampling method, HGSampling, rather than a comprehensive
utilization of the capabilities of the transformer architecture.

By combining HGNNs with Transformer models, we aim
to leverage the strengths of both approaches. HGNNs pro-
vide a robust framework for handling the diversity of node
and edge types, while Transformers offer powerful global
attention mechanisms to effectively capture complex relational
information. Recent advancements [2], [3], [21], [39]–[41] in
Graph Transformer models suggest a potential evolution from
traditional message-passing architectures, showing impressive
results across various graph tasks. Nevertheless, the interplay
between the Transformer’s complexities and the demands
of managing large-scale, heterogeneity-rich HGNNs remains
a significant challenge. This integrated approach holds the
potential to significantly advance the field of graph analytics
by addressing scalability and performance issues in heteroge-
neous graph settings. There are two major challenges need to
be overcome to realize this potential.

Firstly, deploying Graph Transformers in heterogeneous
graphs presents significant computational and scalability chal-
lenges. The diverse node and edge types in these graphs
amplify the complexity of capturing long-range dependencies
and intricate relational patterns. Traditional attention mech-
anisms in Graph Transformers, despite their power, suffer
from quadratic time complexity relative to the number of
nodes, making them impractical for large-scale heterogeneous
graphs. Some recent works, such as HINormer [2], claim to
address this issue, but they often rely on sampling methods
to constrain the receptive field to a constant size, which
can limit their ability to fully capture the rich and diverse
relationships in heterogeneous graphs. Hence, if we want
to expand the “vision” of the transformer, we need try to
reduce the quadratic computation overhead. Local Sensitive
Hashing (LSH), known for its efficiency in approximating
nearest-neighbor searches, which might provide a potential
solution to this complexity. However, applying LSH within
Graph Transformers is challenging. The primary concern is
ensuring the hashing mechanism preserves the rich relational
information inherent in heterogeneous graphs while reducing
computational overhead. Specifically, the challenge lies in
designing LSH functions that can effectively hash nodes with
diverse and complex feature representations without losing
crucial information about node types and inter-node relation-
ships. Addressing this issue is essential to fully harness the
potential of LSH in improving the scalability and efficiency
of heterogeneous Graph Transformers.

Secondly, while Graph Transformers is skilled in modeling
sequential data, their application to heterogeneous graphs
faces challenges, particularly in maintaining and enhancing
relational integrity across diverse node types. The conven-
tional attention mechanism tends to oversimplify the complex
relationships in heterogeneous graphs, often diluting critical

relational information. To address these limitations, we pro-
pose Relational-aware Enhanced Attention (REA). REA aims
to enrich the attention mechanism by incorporating node-
type-specific contexts, preserving and amplifying relational
integrity within heterogeneous graphs. The challenge lies in
designing attention heads that are not only aware of the
node types but also capable of dynamically adjusting their
focus based on type-specific relational contexts. This requires
an approach that ensures the enhanced attention mechanism
does not introduce prohibitive computational complexity while
significantly improving the model’s performance in capturing
rich, type-aware relational patterns inherent in heterogeneous
graphs.

To tackle these two challenges, we propose HEGformer,
an efficient Graph Transformer that utilizes Local Sensitive
Hashing (LSH) and Relational-aware Enhanced Attention
(REA) to improve the performance of GNNs in heterogeneous
settings. Specifically, we use LSH to approximate the nearest
“semantic” neighbor searches efficiently by hashing nodes into
buckets based on their feature representations. Nodes that are
hashed into the same bucket are considered neighbors, which
significantly reduces the computational complexity associated
with traditional attention mechanisms. By leveraging LSH, we
manage large-scale heterogeneous graphs more effectively, en-
suring that similar semantic neighbors are processed together,
thereby maintaining proximity and relational integrity essential
for effective graph analytics.

REA aims to enhance the attention mechanism in Graph
Transformers by incorporating node-type-specific contexts.
Unlike conventional attention mechanisms, which may over-
simplify complex relationships in heterogeneous graphs, REA
dynamically adjusts its focus based on the type-specific re-
lational contexts of nodes. This approach preserves and am-
plifies the intricate interactions between different node types,
ensuring that the model captures the rich relational informa-
tion crucial for understanding and leveraging heterogeneous
graphs.

In summary, our work addresses the significant challenges
posed by the scalability and computational complexity of
Graph Neural Networks (GNNs) when applied to heteroge-
neous graphs. By introducing Local Sensitive Hashing, we
significantly reduce the computational overhead of attention
mechanisms, enabling efficient handling of large-scale het-
erogeneous graph data. Additionally, our Relational-aware
Enhanced Attention mechanism ensures the preservation and
amplification of complex relational information by incorpo-
rating node-type-specific contexts into the attention process.
For the validation of our design, we perform substantial ex-
periments on several heterogeneous GNN benchmark datasets,
demonstrating the performance and efficiency of HEGformer
compared to other models.

II. RELATED WORKS

A. Heteogeneous Graph Neural Networks

Heterogeneous Graph Neural Networks (HGNNs) have
emerged as a powerful extension of Graph Neural Networks
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Fig. 1: Overview of HEGformer

(GNNs) to handle graphs with diverse types of nodes and
edges. Traditional GNNs, such as Graph Convolutional Net-
works (GCNs) [42] and Graph Attention Networks (GATs)
[43], primarily focus on homogeneous graphs where all nodes
and edges are of a single type. However, many real-world
graphs, such as bibliographic networks, social networks, and
knowledge graphs [44]–[46], are inherently heterogeneous.
This necessitates the development of specialized models capa-
ble of leveraging the rich semantic information embedded in
such structures.

A heterogeneous graph (or network) G is defined as G =
(V, E , T ,R), where V represents the set of nodes, E represents
the set of edges, T represents the set of node types, and R
represents the set of relation types (or edge types). Unlike
homogeneous graphs, where each node and edge are of the
same type, in a heterogeneous graph, nodes and edges can
belong to multiple types.

Heterogeneous Graph Neural Networks (HGNNs) extend
traditional GNNs to handle heterogeneous graphs. The primary
challenge for HGNNs is to encode information from various
types of nodes and edges while maintaining the graph’s
structural and semantic integrity.

Formally, given a node v in G, the objective of an HGNN
is to learn a function f : V → Rd, which maps each
node to a d-dimensional vector by aggregating information
from its neighbors and considering node and relation types.
The aggregation function is typically heterogeneity-aware,
taking into account both the structural information and type
information.

Many early works are focusing on HGNN [2], [3], [6], [21],
[48]. For example, Heterogeneous Graph Attention Networks
(HAN) [6], extends the attention mechanism to heterogeneous
graphs by introducing node-level and semantic-level attention

layers. HAN effectively captures the importance of different
types of neighbors and meta-paths, providing a significant
improvement in performance over traditional GNNs. Hetero-
geneous Graph Transformer (HGT) [3] incorporates type-
specific parameters for nodes and edges, enabling the model to
learn the complex interactions among various types of nodes
and edges. The use of multi-head attention in HGT further
enhances its ability to capture diverse relational patterns within
the graph.

Despite their advancements, these models often struggle
with scalability issues when applied to large-scale heteroge-
neous graphs. The computational cost of attention mechanisms
in HGNNs scales quadratically with the number of nodes,
posing significant challenges for real-world applications.

B. Graph Transformer

The Graph Transformer is a powerful model that extends the
Transformer architecture to graph-structured data. It leverages
the self-attention mechanism to capture the complex depen-
dencies between nodes in a graph. Unlike traditional graph
neural networks, which rely on fixed aggregation functions,
the Graph Transformer dynamically computes the importance
of neighboring nodes, allowing it to adaptively learn the
relationships in the graph.

The core component of the Graph Transformer is the
self-attention mechanism, which computes attention scores
between nodes to capture their dependencies. Given a set
of node feature vectors {h1,h2, . . . ,hN}, the self-attention
mechanism first projects these features into three different
spaces: queries (Q), keys (K), and values (V). This is
achieved using learned weight matrices WQ, WK , and WV :

Q = HWQ, K = HWK , V = HWV , (1)



where H ∈ RN×d is the matrix of input node features, and
WQ,WK ,WV ∈ Rd×dk are the weight matrices.

The attention scores between nodes are computed as the
scaled dot product of the queries and keys:

Attention(Q,K,V) = softmax
(
QKT

√
dk

)
V, (2)

where dk is the dimensionality of the queries and keys. The
softmax function ensures that the attention scores sum to one.

The multiplication of the query (Q) and key (K) matrices
results in a computational complexity of O(N2), where N is
the number of nodes in the graph. This quadratic complexity
poses significant challenges when scaling graph transformers
to large datasets, particularly in heterogeneous graphs where
the diversity of node and edge types adds another layer of
complexity.

Current approaches for applying graph transformers to het-
erogeneous graphs have not yet proposed effective methods
for making these models work efficiently on large datasets.
Most existing methods [2], [3] either rely heavily on sampling
techniques or introduce additional preprocessing steps that
limit their scalability. These approaches often fail to fully
leverage the potential of the transformer architecture, resulting
in unsatisfactory efficiency when dealing with large-scale het-
erogeneous graphs. Despite the advancements in graph neural
networks, there remains a substantial gap in effectively scaling
graph transformers to handle the rich relational information
and diverse interactions present in extensive heterogeneous
datasets.

III. PROPOSED METHOD: HEGFORMER

A. Overview of HEGformer

Fig. 1 provides an overview of the HEGformer architecture,
which is designed to efficiently process heterogeneous graphs
using a combination of Local Sensitive Hashing (LSH) and
Relational-aware Enhanced Attention (REA). The process
begins with type-aware feature generation, where each node
in the heterogeneous graph is encoded with its type and rela-
tional information from its neighbors. These features are then
organized into an input sequence for the Transformer model.
Within the Transformer layers, LSH approximates nearest
neighbor searches by hashing nodes into buckets based on
their aggregated features, which include their own features and
structural information from their neighbors. This bucketing
process ensures that similar nodes are grouped together, reduc-
ing the computational complexity of the attention mechanism.
A Global Nodes Generator component aggregates information
across different types, maintaining relational integrity and
enhancing the attention mechanism.

Algorithm 1 Relational Local Sensitive Hashing (R-LSH)
Input: Graph G = (V,E) with node features X , number of

hash functions k, hash function family H
Output: Buckets B containing grouped nodes

1 Initialize an empty list of buckets B
2 for each node v ∈ V do
3 Step 1: Compute Aggregated Features
4 Aggregate features of node v and its neighbors:
5 x′

v = Aggregate({xu : u ∈ N (v)} ∪ {xv})
6 Step 2: Compute Hash Key
7 Compute hash key h(v) = (h1(x

′
v), h2(x

′
v), . . . , hk(x

′
v)),

where hi ∈ H
8 Step 3: Assign to Buckets
9 if bucket Bh(v) does not exist then

10 Create bucket Bh(v)

11 end
12 Assign node v to bucket Bh(v)

13 end
14 return Buckets B containing grouped nodes

B. Local Sensitive Hashing

Local Sensitive Hashing (LSH) is a technique used to ap-
proximate nearest neighbor search in high-dimensional spaces
by hashing input items into buckets such that similar items
are more likely to be in the same bucket [1]. The primary
idea behind LSH is to use a family of hash functions to map
similar data points to the same buckets with high probability,
thereby reducing the search space for nearest neighbors and
significantly lowering computational complexity compared to
exhaustive searches.

In the context of Graph Neural Networks (GNNs), LSH
can enhance the efficiency of the attention mechanism, which
traditionally suffers from quadratic time complexity relative
to the number of nodes, making it impractical for large-scale
graphs. By employing LSH, we limit attention calculations
to a subset of nodes that are likely to be similar, referred
to as “semantic neighbors.” This method ensures that nodes
with similar features and structural contexts are processed
together, thereby reducing computational complexity while
preserving the quality of the attention mechanism. Empiri-
cal evidence supports the effectiveness of LSH in reducing
computational complexity while maintaining performance. For
example, Sketch-GNN [35] demonstrated that hashing could
improve the quality of selecting similiar neighbors used for
efficient convolution-based GNN training, showing scalabil-
ity and competitive performance on large-graph benchmarks,
which illustrates how hash algorithm can be applied to reduce
computational overhead while maintaining high performance
in graph-based tasks.

Hence, the use of LSH in this paper is motivated by the
need to address the scalability issues associated with applying
Transformer models to large and heterogeneous graphs. Het-
erogeneous graphs, with their diverse node and edge types,
amplify the complexity of capturing long-range dependencies
and intricate relational patterns. Integrating LSH allows for



more effective management of large-scale graphs by ensuring
that similar nodes are processed together, thus maintaining
proximity and relational integrity essential for effective graph
analytics. In our method, we call it R-LSH.

After R-LSH operation, nodes are assigned to buckets
based on their hash signatures. By integrating type-aware node
features, the R-LSH method can better preserve the semantic
relationships in heterogeneous graphs, ensuring that similar
and related nodes are more likely to be hashed into the same
bucket. The details of R-LSH is shown in Algorithm 1.

R-LSH can reduce the complexity of the original attention
computation from O(N2) to O(N logN). Within each bucket,
the algorithm computes a global node representation by aggre-
gating the features of all nodes in the bucket. This global node
provides a type-specific context that complements the local
interactions within the bucket. For each node in the bucket,
the attention scores are calculated for its neighbors and the
global node. The node’s feature representation is then updated
based on these attention scores, incorporating both local and
global contextual information.

By leveraging R-LSH to manage computational complex-
ity and REA to preserve and enhance relational informa-
tion, HEGformer is well-suited for large-scale heterogeneous
graphs.

In summary, this process significantly reduces the compu-
tational complexity of subsequent operations, such as atten-
tion mechanisms, by focusing calculations on smaller, more
relevant subsets of nodes, thereby improving efficiency and
scalability in heterogeneous graph analytics.

C. Relational-aware Enhanced Attention

Building upon the foundation of Relational Local Sensitive
Hashing (R-LSH), which efficiently groups similar nodes
by leveraging both their features and structural context, we
introduce the Relational-aware Enhanced Attention (REA)
mechanism. R-LSH ensures that nodes with similar features
and relational contexts are hashed into the same buckets,
facilitating efficient and accurate neighbor searches. However,
while R-LSH significantly reduces the computational overhead
by focusing on smaller subsets of similar nodes, it does not
fully address the complexity of capturing the intricate relation-
ships and rich semantic information inherent in heterogeneous
graphs.

To bridge this gap, the REA mechanism is essential as
it enhances the model’s ability to comprehend and utilize
the diverse types of interactions within the graph. Traditional
attention mechanisms often fail to capture the broader context
and complex dependencies that exist between different types of
nodes and edges in heterogeneous graphs. REA addresses this
by integrating both local and global contextual information
into the attention process. This dual integration is crucial
for preserving the relational integrity and ensuring that the
attention mechanism can dynamically adjust to the varying
significance of different node types and relationships.

The REA mechanism addresses this need by integrating
both local and global context into the attention computa-

tion. In heterogeneous graphs, nodes and edges belong to
various types, each contributing unique semantic information.
Traditional attention mechanisms focus primarily on pairwise
interactions between nodes, often missing the broader context
provided by the heterogeneous structure. REA enhances the
standard attention mechanism by incorporating type-specific
global nodes, which aggregate the features of selected nodes
of a particular type. This dual attention mechanism ensures
that the updated feature representation of each node captures
both its immediate neighborhood and the broader type-specific
characteristics, thus preserving the rich relational context.

Given a heterogeneous graph G = (V,E) with a node set
V and an edge set E, each node v ∈ V is associated with
a node type tv from a set of node types Tv . We propose to
group nodes by their types and represent each group with a
global node that captures the collective characteristics of that
type.

Let Vt ⊆ V be the set of nodes of type t. We define a global
node gt for each node type t, which serves as the representative
of its respective group.

The core of REA lies in its attention mechanism, which
not only considers the pairwise attention between individual
nodes but also integrates the global context provided by the
type-specific global nodes.

For each global node gt, we compute its representation as
an aggregation of the features of selected nodes of the same
type:

xgt = Aggregate({x∗
v : v ∈ Vt}) (3)

The attention scores are computed not only based on the
pairwise interactions between nodes but also considering the
global nodes. For a node v of type tv , its updated representa-
tion x′

v is computed as:

x′
v =

∑
u∈LSH(v)

αuvWxu +
∑
t∈Tv

βvtWxgt (4)

where:
• αuv is the attention score between nodes u and v in R-

LSH setting.
• βvt is the relational-aware attention score between node

v and global node gt, reflecting the importance of the
global context of type t to node v.

The relational-aware attention scores βvt are computed as:

βvt = softmax
(
(xvWq)(xgtvWk)

T

√
dk

)
(5)

where Wq and Wk are learnable weight matrices for query
and key transformations, respectively, and dk is the scaling
factor. Given that the number of global nodes is much smaller
than the nodes in the original graph, computing βvt won’t
harm the efficiency of the whole model.

The REA mechanism, by integrating type-specific global
nodes, allows for a more comprehensive representation of
each node. The global nodes act as aggregators of type-
specific features, capturing the broader context that traditional



pairwise attention mechanisms often miss. This inclusion of
global context is crucial for heterogeneous graphs where
different node types contribute unique and significant semantic
information.

The process begins with the aggregation of node features
within each type group to form the global nodes. These global
nodes then participate in the attention mechanism, providing
a type-specific context that complements the local, pairwise
interactions. This dual-level attention, combining local neigh-
borhood information with type-specific global context, ensures
that the feature representations of nodes are both detailed and
contextually enriched.

By incorporating these enhancements, REA not only ad-
dresses the limitations of traditional attention mechanisms but
also ensures that the computational complexity remains man-
ageable. The integration of LSH reduces the number of nodes
involved in the attention computation, while REA ensures
that the nodes’ feature representations are both accurate and
contextually relevant. This combined approach of LSH and
REA significantly advances the capability of Graph Trans-
formers to handle large-scale heterogeneous graphs, preserving
both computational efficiency and the rich relational context
inherent in such graphs.

TABLE I: Dataset Overview

Name # Nodes # Node Types # Edges # Edge Types Target # Classes
DBLP 26,128 4 239,566 6 Author 4
IMDB 21,420 4 86,642 6 Movie 5

Freebase 43,854 4 151,034 6 Movie 3
AMiner 55,783 3 153,676 4 Paper 4

DBLP IMDB Freebase AMiner
Datasets

0

1

2

3

4

5

6

7

Ti
m

e

Training Time Comparison of GNN Models
Ours
Transformer
HGT

Fig. 2: Efficiency Comparison

IV. EXPERIMENT

A. Baselines

To evaluate the performance of our proposed model, we
compare it against several state-of-the-art methods for het-
erogeneous graph neural networks. The following selected
baselines are applied in our experiments:

• RGCN [5]: RGCN extends the Graph Convolutional
Network (GCN) to handle multi-relational data by in-
corporating different types of relations into the model’s
layers. This method effectively captures the structural
information present in heterogeneous graphs.

• HGT [3]: HGT adapts the Transformer architecture to
heterogeneous graphs by introducing type-specific trans-
formation matrices and attention mechanisms. It effec-
tively models the diverse relationships in heterogeneous
graphs through its attention-based architecture.

• Simple-HGN [26]: Simple-HGN simplifies the heteroge-
neous graph neural network by using a single GNN layer
for each node type, followed by a fusion layer to combine
the information from different types. This model aims to
reduce complexity while maintaining high performance.

B. Environment Setup

To evaluate the performance of our proposed Heterogeneous
Graph Neural Network (HGNN) with Relational Local Sensi-
tive Hashing (Relational LSH) and Relational-aware Enhanced
Attention (REA), we conducted experiments on several bench-
mark datasets shown in Table I.

In terms of computational resources, the experiments
were executed on a state-of-the-art system with AWS EC2
g4dn.metal, providing ample power to handle the demanding
computational requirements of large-scale graph processing.
We pitted our proposed model against leading models in the
graph neural network space, measuring performance using
accuracy as the key metric for the node classification task.
This benchmarking was instrumental in evaluating the pro-
posed model’s capability to accurately infer node labels while
effectively capturing the complex interplay of heterogeneous
relationships within each dataset. The experimental findings
are expected to offer insights into the scalability and precision
of graph neural networks, particularly in diverse and expansive
graph-based applications. The result is shown in Table II. Note
that we have utilized the baseline results reported in [26] and
[2].

C. Performance Analysis

HEGformer’s ability to maintain competitive performance
across diverse datasets, including DBLP, IMDB, Freebase, and
AMiner, highlights its robustness and adaptability. The R-LSH
mechanism effectively reduces computational complexity by
grouping similar nodes based on their features and structural
context, enabling efficient and accurate neighbor searches.
This efficiency is particularly beneficial in large-scale graph
scenarios, where traditional methods may struggle with scala-
bility. Specifically, we found that only several (less than 5)
hashings provided a substantial boost in accuracy and ro-
bustness. However, further increasing the number of hashings
beyond three did not yield any significant improvements and,
in some cases, even led to a decrease in performance.

Furthermore, the REA mechanism enhances the attention
computation by integrating both local and global contexts. By
incorporating type-specific global nodes, REA ensures that the
updated feature representation of each node captures both its
immediate neighborhood and the broader type-specific char-
acteristics. This dual attention mechanism preserves the rich
relational context inherent in heterogeneous graphs, leading to
more accurate and meaningful node embeddings.



TABLE II: Overall Performance Evaluation

Methods DBLP IMDB Freebase AMiner
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

GCN 91.47 ± 0.34 90.84 ± 0.32 64.82 ± 0.64 57.88 ± 1.18 68.34 ± 1.58 59.81 ± 3.04 85.75 ± 0.41 75.74 ± 1.10
GAT 93.39 ± 0.30 93.83 ± 0.27 64.86 ± 0.43 58.94 ± 1.35 69.04 ± 0.58 59.28 ± 2.56 84.92 ± 0.68 74.32 ± 0.95

RGCN 92.07 ± 0.50 91.52 ± 0.50 62.95 ± 0.15 58.85 ± 0.26 60.82 ± 1.23 59.08 ± 1.44 81.58 ± 1.44 62.53 ± 2.31
HetGNN 92.33 ± 0.41 91.76 ± 0.43 51.16 ± 0.65 48.25 ± 0.67 62.99 ± 2.31 58.44 ± 1.99 72.34 ± 1.42 55.42 ± 1.45
HAN 92.05 ± 0.62 91.67 ± 0.49 64.63 ± 0.58 57.74 ± 0.96 61.42 ± 3.56 57.05 ± 2.06 81.90 ± 1.51 64.67 ± 2.21
MAGNN 93.76 ± 0.45 93.28 ± 0.51 64.67 ± 1.67 56.49 ± 3.20 64.43 ± 0.73 58.18 ± 3.87 82.64 ± 1.59 68.60 ± 2.04

HGT 93.49 ± 0.25 93.01 ± 0.23 67.20 ± 0.57 63.00 ± 1.19 66.43 ± 1.88 60.03 ± 2.21 85.74 ± 1.24 74.98 ± 1.61
SimpleHGN 94.46 ± 0.22 94.01 ± 0.24 67.36 ± 0.57 63.53 ± 1.36 67.49 ± 0.97 62.49 ± 1.69 86.44 ± 0.48 75.73 ± 0.97

HEGformer 94.10 ± 0.56 93.88 ± 0.45 66.33 ± 1.76 62.88 ± 1.92 67.82 ± 1.77 61.01 ± 1.85 85.44 ± 1.23 72.95 ± 1.56

Overall, the consistent competitive performance of HEG-
former across multiple datasets underscores its potential as a
powerful tool for heterogeneous graph analytics. Its innovative
mechanisms not only improve computational efficiency but
also ensure the preservation and enhancement of relational
information, making it a significant advancement in the field
of Graph Neural Networks.

D. Efficiency Analysis

The efficiency of our proposed model was evaluated against
HGT and Transformer on several benchmark datasets. Our
model not only demonstrated the performance in terms of
accuracy but also showed significant improvements in com-
putational efficiency.

Our proposed HEGformer architecture demonstrates sig-
nificantly faster computational performance compared to the
Heterogeneous Graph Transformer (HGT), primarily due to
the integration of Relational Local Sensitive Hashing (R-LSH)
and Relational-aware Enhanced Attention (REA) mechanisms.
HGT, while effective in capturing heterogeneous relationships,
relies heavily on customized meta paths and extensive at-
tention computations across all nodes and edges, resulting
in high computational overhead. The attention mechanism in
HGT scales quadratically with the number of nodes, making
it computationally expensive and less feasible for large-scale
graphs.

In contrast, HEGformer employs R-LSH to efficiently par-
tition the graph into buckets of similar nodes, drastically
reducing the number of nodes involved in the attention cal-
culation. By focusing the attention mechanism on smaller,
semantically similar subsets of nodes, HEGformer reduces the
computational complexity from O(N2) to O(N logN). This
reduction is achieved because LSH ensures that only nodes
with a high probability of being similar are grouped together,
thus limiting the attention computations to within these smaller
groups.

Additionally, the REA mechanism enhances the efficiency
by integrating both local and global context into the attention
computation, ensuring that the attention scores are computed
more effectively and accurately without the need for extensive
pairwise comparisons. This dual-level attention mechanism not

only preserves the rich relational context but also maintains
computational efficiency.

V. CONCLUSION

In conclusion, the experiments conducted in this study
have demonstrated that our proposed graph transformer model
achieves competitive performance on various node classifi-
cation tasks while significantly improving the computational
efficiency of processing large-scale graph data. The efficiency
test results highlight our model’s faster speed across diverse
datasets, a critical advantage for practical applications in
graph analytics. Our model’s ability to swiftly navigate the
intricate web of heterogeneous relationships within graphs
while maintaining high accuracy attests to its robustness and
the effectiveness of the underlying architecture. These qualities
make it an excellent candidate for real-time graph processing
tasks, which are becoming increasingly prevalent in today’s
data-driven landscape. Future work will focus on further
optimizing the model’s architecture for even greater speed and
scalability, exploring its applicability in other graph-related
domains, and extending its reach into more challenging graph-
analytic scenarios.
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