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Abstract—It is common for cloud users to require clusters
of inter-connected virtual machines (VMs) in a geo-distributed
IaaS cloud, to run their services. Compared to isolated VMs,
key challenges on dynamic virtual cluster (VC) provisioning
(computation + communication resources) lie in two folds: (1)
optimal placement of VCs and inter-VM traffic routing involve
NP-hard problems, which are non-trivial to solve offline, not to
mention if an online efficient algorithm is sought; (2) an efficient
pricing mechanism is missing, which charges a market-driven
price for each VC as a whole upon request, while maximizing
system efficiency or provider revenue over the entire span. This
paper proposes efficient online auction mechanisms to address
the above challenges. We first design SWMOA, a novel online
algorithm for dynamic VC provisioning and pricing, achieving
truthfulness, individual rationality, computation efficiency, and
(1+2 log µ)-competitiveness in social welfare, where µ is related
to the problem size. Next, applying a randomized reduction tech-
nique, we convert the social welfare maximizing auction into a
revenue maximizing online auction, PRMOA, achieving O(log µ)-
competitiveness in provider revenue, as well as truthfulness,
individual rationality and computation efficiency. We validate
the efficacy of the mechanisms through solid theoretical analysis
and trace-driven simulations.

I. INTRODUCTION

With the proliferation of cloud computing, more and more
individuals and businesses are resorting to cloud platforms
for deploying services and running jobs. Besides purchasing
individual virtual machines (VMs), significant demands arise
on renting a collection of VMs and the network in-between,
to create a virtual cluster (VC) with an inter-connecting
virtual private network. Prominent examples include cloud
CDNs built on top of virtual clusters across geo-distributed
cloud data centers. Enabling technologies such as network
virtualization have been studied in the past years [1][2][3][4].
Virtual cluster/network services have been provided by IaaS
providers (e.g., Amazon Virtual Cluster [5]), where a user
defines a VC containing several VMs and the bandwidth
demand among them, and the cloud provider provisions the
cluster with exclusive resources and bandwidth guarantee.

The provisioning of a virtual cluster involves VM placemen-
t, i.e., assigning each VM to a location (e.g., a data center),
and inter-VM traffic routing, i.e., finding path(s) with available
bandwidth to send the traffic from one VM to another. There
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is not yet an efficient resource allocation algorithm for VC
provisioning even in the offline case with all user VC requests
known, due to the NP hard nature of the underlying problem.
In practice, user requests arrive dynamically over time; an
efficient online algorithm is in need, which allocates resources
for VC provisioning on the spot, while guaranteeing long-
term optimality in resource utilization and user satisfaction.
The focus of recent studies on VC provisioning (a.k.a. virtual
network embedding in some literature) has been on heuristic
offline or online algorithm design to approximate the optimal
solutions, with no analytical performance guarantee. We pro-
vide a detailed summary of the existing work in Sec. II.

Moreover, an efficient pricing mechanism is missing, to
charge users for the VCs on the go. The current practice is
to charge an aggregate price of VMs and bandwidth usage
in a virtual cluster, based on the fixed unit prices of the
computation and communication resources [5]. Such a pricing
method lacks market agility to adapt to supply-and-demand
changes, risking the provider’s revenue as well as social wel-
fare. As a representative market-driven mechanism, auctions
have been studied in cloud computing. Compared with fixed
pricing, an auction mechanism enables appropriate prices that
take real-time demand and supply into consideration, avoiding
overpricing or underpricing and achieving revenue or social
welfare maximization. The existing cloud auctions focus on
allocation of separate VMs [6], or VM bundles which demand
computational resources (CPU, RAM, storage) only (but not
inter-VM bandwidths) [7]. It is in fact common to send
traffic between VMs in a VC, e.g., large replication traffic
between VMs in a distributed cloud storage system, requesting
bandwidths to be allocated between the VMs as well.

To the best of our knowledge, online auction of an entire
virtual cluster, including VMs and the network in-between,
has not been studied. The difficulty mainly lies in the NP-hard
nature of the resource allocation problem for VC provisioning,
which hinders exact solutions as typically needed in designing
truthful and social welfare maximizing auction mechanisms,
even in the offline case. The challenge escalates when we
practically target an online auction requiring timely allocation
and pricing decisions on the go, while maximizing social
welfare or provider revenue over the entire system span.

This paper designs efficient and competitive online auctions
for on-demand provisioning and pricing of VCs deployed over
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geo-distributed cloud data centers. Users arrive dynamically,
specifying potential VCs to deploy with tailor-made VMs
in different data centers, as well as the traffic in between,
at different willingness-to-pay prices. Two online auction
mechanisms are designed for social welfare maximization and
provider revenue maximization, respectively. The mechanisms
are designed based on an online auction framework which
dynamically maintains a cost for each type of resources in
each data center. Based on which payments of potential VCs
are computed, the best VM placement scheme for each user
is selected, and acceptance/rejection decisions are made. Our
detailed contributions are summarized as follows.

First, in the design of the social welfare maximizing auction,
SWMOA, we set a dynamic unit cost for each type of com-
putation and communication resources at and across the data
centers, which increases with the depletion of the correspond-
ing type of resource. We find the best VC provisioning scheme
for each user among the schemes indicated in his bid, which
maximizes his utility, by formulating a VC provisioning linear
program (LP). The LP can be reduced to a minimum cost
multicommodity flow problem, which is efficiently solvable
using existing algorithms. We then compute the overall cost
of the obtained VC provisioning scheme and compare the
cost with the willingness-to-pay from the user. A user is
accepted if the VC acquired provides positive utility. We
show that SWMOA achieves truthfulness, individual rationality,
computation efficiency, and (1 + 2 log µ)-competitiveness in
social welfare, where µ is related to the problem size.

Second, the revenue maximizing online auction, PRMOA,
is built on the basis of SWMOA. We use SWMOA to first
obtain a tentative VC allocation and a payment for each user,
and then re-examine each tentatively accepted bid with a ran-
domized boosted payment to improve provider revenue. The
randomized payment is carefully designed to be still below
the user’s corresponding true valuation with high probability,
without the knowledge of the actual true valuation. In this
way, the provider is able to extract almost the largest possible
revenue with high probability. PRMOA achieves O(logµ)-
competitiveness in provider revenue, as well as truthfulness,
individual rationality and computation efficiency.

In the rest of the paper, we discuss related work in Sec. II
and present the system model in Sec. III. Sec. IV presents the
social welfare maximizing online auction, SWMOA. Sec. V
presents the revenue maximizing online auction, PRMOA.
Sec. VI presents the trace-driven simulation studies and
Sec. VII concludes the paper.

II. RELATED WORK

The virtual cluster provisioning (a.k.a. virtual network em-
bedding/mapping) problem has attracted substantial research
interest in recent years. Li et al. [8] formulate the VM
placement problem and consider the traffic cost and physical
machine utilization cost. Zhang et al. [9] study how to map
VMs to servers to minimize the failure probability of the user’s
virtual data center (i.e., maximize the reliability). Heuristic
algorithms are proposed to calculate the failure probability and

minimize it efficiently. Ballani et al. [10] propose a pricing
mechanism for VMs based on a user’s bottleneck resource
consumption in VM placement. Esposito et al. [11] solve the
VC mapping problem using primal and dual decomposition.
Chowdhury et al. [12] reduce VC mapping to link mapping
which is formulated as an integer programming (IP) program,
and solve the latter whenever a VC request arrives using LP
relaxation and deterministic/randomized rounding. All these
work on offline solutions of VC provisioning.

For handling online VC provisioning, Grandl et al. [13]
present a scheduling algorithm to assign tasks to machines,
which is essentially a multidimensional bin packing algorithm.
Even et al. [14] study the online multicommodity-flow routing
problem and the online VC mapping algorithm. Allowing
violation of capacity constraints, a near-optimal online algo-
rithm is proposed. [15] propose a quadratic IP formulation for
the VC provisioning problem. Compared to these work, we
propose the pricing rule to stimulate users to report their real
valuation, and we use solid theoretical analysis to guarantee
the performance of our algorithms in the worst case.

Auction mechanisms have been widely applied for resource
allocation in various networking systems. To design a truthful
auction with an NP-hard underlying allocation problem, a
useful technique is to first design an approximation algorithm,
and then use the critical bid rule to decide an appropriate price
[16], which is an extension of the classic VCG technique [17].
Sun et al. [18] adopt this technique and design a dynamic
spectrum auction. Wang et al. [6] apply the same method, and
derive a collusion-resistant mechanism for cloud computing.
Another approach is to resort to the LP decomposition tech-
nique [19]. Zhang et al. [20] and Shi et al. [7] design truthful
auctions for dynamic VM provisioning using this method. In
addition, Zhang et al. [21][22] design VM auctions following
different approaches, the MIDR algorithm and the primal-
dual framework. Fu et al. None of the existing cloud auctions
consider the allocation of both VM computational resources
and inter-VM communication resources simultaneously, which
is necessary when users request VCs. In VC auctions, the
underlying resource allocation problem is significantly more
difficult, involving both VM placement and traffic routing
decisions, calling for novel online algorithm design.

III. PROBLEM MODEL

A. Online VC Auction

Consider an IaaS cloud with P geo-distributed data centers
(DCs). Let [X] denote the integer set {1, 2, . . . , X}. Data
center p ∈ [P ] has Âp,r units of type-r computational
resources (like CPU, RAM and disk), ∀r ∈ [R], where R is the
number of computational resource types. The data centers are
inter-connected through S gateway routers, each of which is
located with one data center, and hence S = P . An illustration
of the network is given in Fig. 1. Let E be the set of links
connecting gateway routers and data centers. The bandwidth
capacity of link (w1, w2) ∈ E is d̂w1,w2 , where w1 and w2 can
be either a router in [S] or a data center in [P ]. Practically we
assume the bandwidth on the link connecting a data center and
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Fig. 1. An example of virtual cluster provisioning.

its collocated gateway router is enough (e.g., the link from DC
1 to Router 1 in Fig. 1) is not a bottleneck in our problem.

N users arrive on the fly, and request for virtual clusters
(VCs). User n ∈ [N ] arrives at time T s

n, submits a bid to
demand a VC immediately, and releases the VC at time T f

n .
Let Tn = T f

n − T s
n be the usage duration of user n’s VC, and

T = maxn∈[N ]{Tn} denote the largest usage duration among
all users. The VC required by user n includes Vn tailor-made
VMs, and VM v in the VC consumes anv,r units of type-r
computational resource, ∀r ∈ [R]. The bandwidth demand to
send traffic from VM v1 to VM v2 in user n’s VC is Γn

v1,v2
,

which occupies inter-datacenter bandwidth when VM v1 and
VM v2 are located in different data centers. User n can specify
several VM placement schemes with different preferences. Let
Bn be his set of VM placement schemes. Each scheme β ∈ Bn

specifies the placement of VMs in his VC, represented by
zn,βv,p ∈ {0, 1}, indicating that VM v is placed in data center p
if zn,βv,p = 1 and not if zn,βv,p = 0. Together with each scheme,
the user submits a valuation bn,β , which is his willingness-to-
pay if his VC bid is successful the VMs are allocated in the
data centers specified in scheme β. Different values of bn,β’s
indicate his preferences among the schemes, decided by the
need of his workload or services. For example, if the user is
running MapReduce workloads, he may specify to place all
his VMs in a selected datacenter; if the user is operating an
online video service, his VMs are preferred to be located close
to large population of the service users.

In summary, the bid of user n can be expressed as
(T s

n, T
f
n , {a

n
v,r}v∈[Vn],r∈[R], {Γ

n
v1,v2

}v1,v2∈[Vn],
{zn,βv,p }β∈Bn,v∈[Vn],p∈[P ], {bn,β}β∈Bn

). Fig. 1 shows an exam-
ple of a user requesting a VC of 4 VMs and plots one VM
placement scheme.

The cloud provider acts as the auctioneer. Upon arrival of a
user’s bid, the provider immediately responds with whether to
serve this user, which VM placement scheme to be adopted,
and what price to charge this user for. The decision variables
include the following: (i) yn,β ∈ {0, 1}, ∀n ∈ [N ],β ∈ Bn,
indicating whether user n’s request is accepted according to his
placement scheme β (yn,β = 1) and not otherwise (yn,β = 0).
At most one VM placement scheme can be accepted for each
bid. (ii) b̃n, ∀n ∈ [N ], payment of user n if his bid is accepted.
(iii) fn

v1,v2,w1,w2
, ∀n ∈ [N ], v1, v2 ∈ [Vn], (w1, w2) ∈ E,

indicating the routing traffic on each link, which will be
illustrated in detail in Sec. III-B.

B. Goals of Mechanism Design

Our online auction design targets the following properties.
(i) Truthfulness and individual rationality: The auction mech-
anism is truthful if for any user n, bidding a different valuation
other than bn,β does not increase his utility, which is the

difference between his valuation and his payment bn,β − b̃n.
Truthfulness ensures that selfish buyers are stimulated to reveal
their true valuations of the VCs they demand, simplifying the
bidding strategy and the auction design. Individual rationality
requires that any user’s utility is non-negative. (ii) Compu-

tation efficiency: The mechanism should run in polynomial
time, in order to be practically applied in an online fashion.
(iii) Competitive in social welfare or provider revenue: The
provider’s revenue equals the total payment from all users in
the online auction,

∑
n∈[N ] b̃n. Since the provider’s revenue

and the users’ payment part in the aggregate user utility
(
∑

n∈[N ],β∈Bn
bn,βyn,β −

∑
n∈[N ] b̃n) cancel each other, the

social welfare is the total valuation of accepted users, i.e.,∑
n∈[N ],β∈Bn

bn,βyn,β . Let Sonline denote the social welfare
achieved under an online mechanism, and Sopt be the offline
optimum social welfare. An online mechanism is c-competitive
in social welfare if the ratio of Sopt/Sonline is upper-bounded
by c for any input instance. On the other hand, Let Ronline be
the total provider revenue obtained under the online auction.
An online auction is c-competitive in provider revenue if
the ratio between the offline optimal social welfare and the
provider revenue achieved by the online auction, Sopt/Ronline,
is upper-bounded by c for any input instance. Here comparing
to Sopt instead of the offline revenue in computing the com-
petitive ratio in revenue is a general practice, since the optimal
truthful auction generating largest revenue cannot be identified
[23]. We also note that in fact no truthful auction can achieve a
revenue at the amount of Sopt, which is only achievable when
the users bid true valuations and the provider always charges
users according to their bid prices. However, the latter leads
to untruthful bidding, and hence a contradiction.

We next formulate the offline VC provisioning and winner
determination problem, supposing all bids within system span
are known and truthful bidding is guaranteed. The objective in
(1) indicates social welfare maximization, whose optimal value
is Sopt. It can be easily changed to revenue maximization by
replacing the social welfare with the provider’s revenue.

Here znv,p is an auxiliary variable defined in the first
constraint (1a), representing if data center p is selected to
host VM v in user n’s VC, which is 1 if user n’s bid is
accepted, one VM placement scheme is picked, and v is placed
in p according to this scheme, and 0 otherwise. fn

v1,v2,w1,w2

represents the allocated bandwidth on link (w1, w2) for the
traffic flow from VM v1 to VM v2 in user n’s VC. Let Nt

be the set of active users at time t, whose VCs are in use at
t: Nt = {n|t ∈ [T s

n, T
f
n ]}. Constraint (1b) guarantees that

at most one scheme is accepted for each user. Constraint
(1c) requires that at any time the allocated computational



resources at each data center do not exceed their respective
capacity. Constraints (1d) (1e) and (1f) model routing of user
n’s traffic flow from VM v1 to VM v2. We allow multi-path
routing of each inter-VM flow. An illustration of two paths
taken by the flow from VM 3 to VM 4 is given in Fig. 1.
Constraints (1d) specifies that at the data center p where v1
of user n is placed (znv1,p

= 1), the total out-bound bandwidth
from data center p allocated for user n’s flow from v1 to v2
(LHS of (1d)) should equal his specified bandwidth demand
(Γn

v1,v2
). Similarly, constraint (1e) specifies the total in-bound

bandwidth at data center p equal to the bandwidth demand
Γn
v1,v2

if v2 is placed at data center p. Constraint (1f) is the flow
conservation constraint at each router for user n’s flow from
v1 to v2. Since routers are intermediate nodes, in-bound and
out-bound flow rates should be equal. Constraint (1g) requires
that the aggregated bandwidth allocated on each link in E does
not exceed the link capacity.

maximize
∑

n∈[N]

∑

β∈Bn

bn,βyn,β (1)

s.t. z
n
v,p =

∑

β∈Bn

yn,βz
n,β
v,p ∀n ∈ [N ], v ∈ [Vn], p ∈ [P ] (1a)

∑

β∈Bn

yn,β ≤ 1 ∀n ∈ [N ] (1b)

∑

n∈Nt

∑

v∈[Vn]

z
n
v,pa

n
v,r ≤ Âp,r ∀p ∈ [P ], r ∈ [R], t ∈ [T ] (1c)

∑

w:(p,w)∈E

f
n
v1,v2,p,w = Γn

v1,v2
z
n
v1,p ∀p ∈ [P ], n ∈ [N ], v1, v2 ∈ [Vn] (1d)

∑

w:(w,p)∈E

f
n
v1,v2,w,p = Γn

v1,v2
z
n
v2,p ∀p ∈ [P ], n ∈ [N ], v1, v2 ∈ [Vn] (1e)

∑

w:(w,ν)∈E

f
n
v1,v2,w,ν =

∑

w:(ν,w)∈E

f
n
v1,v2,ν,w

∀n ∈ [N ], v1, v2 ∈ [Vn], ν ∈ [S] (1f)
∑

n∈Nt

∑

v1,v2∈[Vn]

f
n
v1,v2,w1,w2

≤ d̂w1,w2 ∀(w1, w2) ∈ E, t ∈ [T ] (1g)

yn,β ∈ {0, 1} ∀n ∈ [N ], β ∈ Bn (1h)

f
n
v1,v2,w1,w2

≥ 0 ∀n ∈ [N ], v1, v2 ∈ [Vn], (w1, w2) ∈ E (1i)

The offline optimization problem in (1) is a mixed integer
linear program and can be proven NP-hard by a reduction to
the knapsack problem. The proof is given in Appendix A.

Theorem 1. The offline optimization problem (1) is NP-hard.

Hence, it is very challenging even to solve the VC provisioning
problem in an offline fashion, with all information known.

C. Preliminaries for Online Mechanism Design

To design an efficient online auction, we introduce a few
concepts which will be useful later. We regard each compu-
tational resource at each data center and the bandwidth on
each link as different resources. Thus there are M = PR+E
types of resources in total (here E = |E|), i.e., PR types
of computational resources at different data centers and E
bandwidth resources on different links. We use r(n,m, t) to
denote the amount of type m resource consumed by user n
at time t, which is a value depending on VM placement and
traffic routing decisions made for the user’s bid. For example,
let m correspond to computational resource r at data center
p. If the bid is accepted and one or more VMs are allocated

in data center p, then the amount of resource m consumed by
user n in a t ∈ Tn is: r(n,m, t) =

∑
v∈[Vn]

znv,pa
n
v,r. If m

denotes the bandwidth resource on link (w1, w2) ∈ E, then
the bandwidth consumed on the link by the user during Tn is:
r(n,m, t) =

∑
v1,v2∈[Vn]

fn
v1,v2,w1,w2

.

For ease of presentation, we normalize the scale of the
capacity of each type of resource, so that the total capacity
of resource m at each time t is equal to 1, i.e.,, Âp,r =
1, d̂w1,w2 = 1, ∀p ∈ [P ], r ∈ [R], (w1, w2) ∈ E. We then

divide all the demands of resource by Âp,r or d̂w1,w2 , respec-
tively. Then the resource constraints (1c) and (1g) require that∑

n∈[N ] r(n,m, t) ≤ 1, for all m ∈ [M ] and t in [T ]. For
example, if a user needs 2 VMs on one DC, and each VM
uses 4 CPUs, then the amount of CPU resource consumed by
this user on this DC is 8. And if there are totally 320 CPUs
in that DC, then r(n,m, t) = 1/40 after normalization.

We make two assumptions. First, a user’s valuation is
approximately proportional to the amount of resources his
VC requires, i.e., the per unit per time slot valuation is

bounded: 1 ≤ bn,β

Mr(n,m,t)Tn
≤ F , where F is a constant,

∀n,m, t and r(n,m, t) ̸= 0. We also assume that the ra-
tio between the highest and lowest valuations is bounded:
maxn∈[N],β∈Bn{bn,β}
minn∈[N],β∈Bn{bn,β}

≤ F . Second, there is an upper bound

on the amount of resources required by each VC in each time
slot at each data center or link, i.e., r(n,m, t) ≤ 1

log µ where
µ = 2MTF + 1, which implies that the resource demand of
each individual user is small as compared to the total capacity
of each data center. Here µ (related to F ) is an important
parameter to appear in our competitive ratios. We summarize
important notation in Table I, for ease of reference.

TABLE I
KEY NOTATION

N # of users [X] integer set {1, . . . , X}
P # of data centers b̃n user n’s payment
M M = PR+ |E| Tn duration of user n’s VC

R # of computational resource types
T s
n arriving time of user n

T f
n departure time of user n
T maxn{Tn}

bn,β user n’s valuation if scheme β is accepted
Bn user n’s set of VM placement schemes

r(n,m, t) demand of resource m at t by user n
λm(t, n) load factor of resource m at t before user n

F constant related to valuation variation
µ 2MTF + 1

cm(t, n) cost of resource m at t before user n
C(n,β) total cost for scheme β of user n

Vn # of VMs in user n’s VC
an
v,r amount of resource r required by VM v of

user n
Γn
v,v′ traffic from VM v to VM v′ of user n
yn,β scheme β of user n is accepted or not

zn,β
v,p VM v is assigned to data center p or not in β

of user n
E set of links

d̂w1,w2 bandwidth capacity of link (w1, w2)
Âp,r capacity of type r resource at DC p

fn
v1,v2,w1,w2

traffic from v1 to v2 of user n on link (w1, w2)
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Fig. 2. An example of the virtual unit cost function cm(t, n), where µ = 5.

IV. SOCIAL WELFARE MAXIMIZING ONLINE AUCTION

We now design a social welfare maximizing online mecha-
nism, SWMOA.

Main Idea. At a high level, our strategy of finding a compet-
itive VC allocation solution for problem (1) is to maintain a
dynamic virtual unit cost cm(t, n) for each type of resource
m at each time slot t ∈ [T ] (containing future time slots with
resource reservation), before user n arrives. For any VM place-
ment scheme β of the user, we calculate a total virtual cost
C(n,β) based on the unit costs and the amount of resources
the scheme consumes. Scheme β is a candidate to be accepted
if its cost is smaller than its valuation: C(n,β) ≤ bn,β .

The virtual unit cost cm(t, n) is designed to increase when
the remaining available amount of resource m at time t
depletes. Thus a higher virtual cost indicates that type of
resource is scarce. As a result, the cost of a VC is higher
if it consumes resources in shortage, reducing the likelihood
that it is chosen by the online algorithm. On the other hand, by
comparing the total cost with the valuation of VC, the online
mechanism can pick users with higher valuation compared
with the amount of resources consumed.

We define the load factor (before user n arrives) of resource
m for each time t ∈ [T ] to be the amount of already allocated
(reserved) resources in the respective time slot before user n
arrives: λm(t, n) =

∑
n′<n,n′∈[N ] r(n

′,m, t), where n′ < n
indicates that user n′ arrives earlier than user n. We define
the virtual unit cost of resource m at time t, computed before
user n arrives (i.e., before counting in resource consumption
of user n in each time slot), as follows:

cm(t, n) = µλm(t,n) − 1, ∀t ∈ [T ], n ∈ [N ],m ∈ [M ]. (2)

cm(t, n) is designed to increase exponentially with the increase
of consumed resources. This allows the user to consume
resources freely when resources are abundant, since the cost
is close to 0 when λm(t, n) is small. However when the load
factor is close to 1, the cost increases fast to a very large
value, so that the user is almost forbidden to use the resource
in shortage. The idea of the unit cost formula comes from the
study of packing/covering LPs [24]. We show an example of
the virtual unit cost function in Fig. 2.

We define the total cost that user n incurs if his scheme β
is accepted as the sum of the costs of all resources consumed:

C(n,β) =
∑

m∈[M ]

∑

t∈Tn

cm(t, n)r(n,m, t), ∀n ∈ [N ],β ∈ Bn. (3)

The mechanism accepts a user if there exists a scheme
β with cost less than its valuation. If there are more than
one schemes satisfying the condition, we choose the one with
the largest user utility: bn,β − C(n,β), which is the scheme
maximizing user’s utility under truthful bidding when we set
the payment to be b̃n = C(n,β).
Cost Computation. The total cost C(n,β) for each VM
placement scheme β includes the cost of computation re-
sources and the cost of bandwidth consumption. Suppose
cr,p(t, n) denote the virtual unit cost for resource r in data
center p at time t. The total cost of computational resource is∑

t∈Tn

∑
r∈[R]

∑
p∈[P ]

∑
v∈[Vn]

cr,p(t, n)av,rznv,p. The band-
width cost differs depending on the routing plan of flows
among VMs in user n’s VC. We find the best traffic routing
plan for VM placement scheme β, that minimizes the total
bandwidth cost, by solving the LP (4).

The LP identifies the best routing paths and bandwidth
allocation for flows among VMs in user n’s VC (decided
by fn

v1,v2,w1,w2
’s), when the VMs are placed in data centers

according to scheme β. Here cw1,w2(t, n) represents the virtual
unit cost for bandwidth on link (w1, w2) at time t, before
user n submits his bid.

∑
v1,v2∈[Vn]

fn
v1,v2,w1,w2

is the overall

bandwidth consumed on link (w1, w2) by flows among user
n’s VMs. pv1 and pv2 represent the assigned data center for
VM v1 and VM v2, respectively. Constraints (4a) and (4b)
ensure that the total out-bound/in-bound traffic from pv1 /to pv2

equals the traffic demand from v1 to v2. Constraint (4c) is the
flow conservation constraint. Solving (4) gives us the optimal
routing as well as the minimum total bandwidth cost under
scheme β. In fact, (4) is a minimum cost multi-commodity
flow problem which allows fractional flows, and can be solved
using efficient algorithms [25] in O((E + V 2

n )P ) time.

minimize
∑

(w1,w2)∈E

∑

t∈Tn

(cw1,w2 (t, n)
∑

v1,v2∈[Vn]

f
n
v1,v2,w1,w2

) (4)

∑

w:(pv1 ,w)∈E

f
n
v1,v2,pv1 ,w = Γn

v1,v2
∀v1, v2 ∈ [Vn] (4a)

∑

w:(w,pv2 )∈E

f
n
v1,v2,w,pv2

= Γn
v1,v2

∀v1, v2 ∈ [Vn] (4b)

∑

w:(w,ν)∈E

f
n
v1,v2,w,ν =

∑

w:(ν,w)∈E

f
n
v1,v2,ν,w ∀v1, v2 ∈ [Vn], ν ∈ [S] (4c)

f
n
v1,v2,w1,w2

≥ 0 ∀(w1, w2) ∈ E, v1, v2 ∈ [Vn] (4d)

Online Auction. The social welfare maximizing auction is
summarized in Alg. 1. Upon receiving a new user’s bid, we
calculate the minimum total cost for each β by solving (4). We
choose the scheme β∗ with largest user utility and accept the
user if his utility is positive. Then we upgrade the virtual unit
costs. We present properties achieved by SWMOA in Thm. 2,
with proof given in Appendix B. The payment of each winning
user is computed based on virtual unit costs before counting in
resources required by the user. Such independence of payments
from the bids guarantees truthfulness of the mechanism.

Theorem 2. The online auction mechanism SWMOA (Al-

g. 1) is truthful and individually rational, never violates the

resource constraints, runs in O((E + V 2
n )PB) time in each

round, and achieves a (1+2 logµ)-competitive ratio in social



welfare, where B = maxn∈[N ] |Bn| is the largest number of

schemes submitted by any user.

Algorithm 1 Social Welfare Maximization Online Auction
SWMOA

1: if user n ∈ [N ] arrives then
2: for all schemes β ∈ B do
3: Solve the minimum cost multi-commodity flow

problem (4) and find optimal routing
4: Compute the total cost C(n,β)
5: Calculate the utility bn,β − C(n,β) of scheme β
6: end for
7: Let β∗ be the scheme with maximal utility
8: if C(n,β∗) ≤ bn,β∗ then
9: Accept user n with scheme β∗, i.e., set yn,β∗ = 1,

yn,β = 0, ∀β ̸= β∗

10: Charge user n the payment b̃n = C(n,β∗)
11: Update unit costs cm(t, n+ 1) according to (2)
12: else
13: Reject user n, i.e., set yn,β = 0, ∀β ∈ Bn

14: end if
15: end if

V. REVENUE MAXIMIZING ONLINE AUCTION

We next design a revenue maximizing online auction
PRMOA, inspired by a randomized reduction technique [23].

Main Idea. We use SWMOA to obtain a tentative VC alloca-
tion and a payment for each user, and then re-examine each
tentatively accepted bid with a randomized boosted payment to
improve revenue. The boosted payment is carefully designed
to be still below the user’s corresponding true valuation with
high probability, without the knowledge of the true valuation.

Obviously, the ideal payment which maximizes the revenue
is a value just below the user’s true valuation. However, a
straightforward payment rule, e.g., 90% of the user’s bid price,
breaks the truthfulness of the mechanism, since users can gain
more from under-reporting their valuation. The payment has to
be independent of the users’ bids in order to guarantee truth-
fulness. So the principle of designing a revenue maximization
auction is to set the payment close to the valuation but without
knowing the valuation in the decision process.

Recall the payment decision process of SWMOA: We cal-
culate the cost for a scheme C(β, n), accept and charge the
user b̃n = C(n,β) if his valuation for this scheme is larger.
We use the original threshold C(n,β) as a foundation, and
add a randomized value δ on it: b̃n = C(β, n) + δ. Setting
δ is the key in achieving revenue competitiveness. If δ is too
small, not enough revenue is extracted. On the other hand, if
δ is too large, the payment may exceed the valuation, forcing
our auction mechanism to reject the user, which brings great
loss to the revenue. In order to upper-bound the occurrence
probability of either cases, we let δ = 0 with probability 1/2,
which means that our algorithm will be exactly the same as
SWMOA, both in allocation and payment, with probability 1/2.
With the other half probability, we try to set the payment as
close to the valuation as possible, using a power-of-2 rule: Let

δ = 2ibmin with probability 1
2 logF , for i = 1, 2, . . . , logF ,

where bmin = minn∈[N ],β∈[Bn] bn,β is the minimal valuation
among all users. This guarantees that with probability 1

2 logF ,
the payment is at least half of the valuation but still less than
the valuation: bn,β/2 ≤ b̃n ≤ bn,β , which is the ideal payment
we want – this will be verified in our proof of Thm. 3.

Another point worth noting is, since we increase the pay-
ment b̃n, some users will be rejected in PRMOA, while
accepted in SWMOA. In those cases, we still update the virtual
unit costs as if these users were accepted. That is, the virtual
unit costs are updated just like running SWMOA, no matter
whether a user is actually accepted by PRMOA or not. In
this way, we guarantee that the costs of the user schemes are
always the same as in SWMOA, which is needed to show the
competitiveness of our mechanism.
Online Auction. The online auction is summarized in Alg. 2,
with properties given in Thm. 3. and the proof is given in
Appendix C.

Algorithm 2 Provider Revenue Maximization Online Auction
PRMOA

1: if user n ∈ [N ] arrives then
2: Set δ = 0 with probability 1/2, and δ = 2ibmin with

probability 1
2 logF , for i = 1, 2, . . . , logF

3: for all schemes β ∈ B do
4: Solve the minimum cost multi-commodity flow

problem (4) and find optimal routing
5: Compute the total cost C(n,β)
6: Calculate the utility bn,β − C(n,β)
7: end for
8: Let scheme β∗ be the scheme with maximal utility
9: if C(n,β∗) ≤ bn,β∗ then

10: Update unit costs cm(t, n + 1) according to (2),
supposing user n is accepted

11: end if
12: Set payment b̃n = C(n,β∗) + δ
13: if b̃n ≤ bn,β∗ then
14: Accept user n with scheme β∗. Charge the pay-

ment b̃n.
15: else
16: Reject user n
17: end if
18: end if

Theorem 3. The online auction mechanism PRMOA (Alg. 2)

is truthful and individually rational, never violates the re-

source constraints, and achieves a O(logµ)-competitive ratio

in provider revenue in expectation in polynomial time.

VI. PERFORMANCE EVALUATION

We evaluate our online auction mechanisms using data
collected on the Google cluster [26]. We translate each job
containing multiple tasks, each demanding different amounts
of resources, in the Google cluster data into a VC request with
VMs of different resource compositions. There are R = 3
types of computational resources (CPU, RAM and disk),
and P = 12 data centers connected following the topology



of Google data center network [27]. For each user, Vn is
randomly chosen within [2, 30]. We generate 5 to 10 schemes
for each user, placing VMs at randomly chosen data centers
in each scheme. The default system span is T = 100.
Users arrive following a Poisson distribution with parameter
λ = 50, and their VC usage durations are randomly chosen
within [5, 10]. The amount of resources consumed by a VM
anv,r is set according to the resource demand of each task
in Google cluster data. The traffic between VMs Γn

v,v′ is
randomly generated within a range [0, 1]. The overall resource
capacities, Â, d̂, is set to be approximately [0.2, 0.5] fraction
of the respective overall user resource demand, and randomly
distributed onto data centers and links. The valuation bn,β
is uniformly randomly chosen within the interval decided by
the constant F , whose default value is 10. We repeat each
experiment for 50 times to obtain the average results.

A. Evaluation of SWMOA

We first compare our online algorithm SWMOA, Alg. 1,
with the offline optimum. We calculate the offline optimal
social welfare by solving (1) exactly, and divide it by the
social welfare achieved by SWMOA to obtain the ratio, under
different numbers of users and different values of F . Recall
that the parameter µ in our theoretical competitive ratio is
related to F , i.e., µ = 2MTF + 1. Fig. 3 shows the ratio
is smaller for a larger number of users N . This is because
the more users in the system, the less impact a bad decision
for a previous user has on later users. In contrast, less users
make it more difficult to achieve optimal allocation since
each decision involves more resources. We can also see that
for larger values of F , the performance ratio is larger. The
theoretical competitive ratio, O(MTF ), implies such a result.
Larger F represents a larger range of user valuation. In online
resource allocation, serving one user means that we may need
to reject some user in the future, whose valuation may be much
higher when F is larger, leading to low competitiveness of the
online mechanism. Fig. 4 shows that the ratio is larger when
the number of data centers P is larger, which is consistent with
our theoretical competitive ratio as well, since M = PR+|E|.
Intuitively, more data centers make the allocation harder since
more different types of resources need to be considered.

Next we compare SWMOA with a heuristic adaptive algo-
rithm TV-VNE in [28], by comparing the social welfare ratio
they each achieve when comparing to the offline optimum.
We cannot find any auction algorithms designed for DC
provisioning. We can only find TV-VNE with a similar model.
The design idea of TV-VNE is to provision VCs according
to the amount of consumed resources and always try to find
a load-balancing allocation. The core technique used by TV-
VNE is a heuristic weighted function which achieves a tradeoff
between the computational resource usage and the bandwidth
usage. When a new user request arrives, TV-VNE chooses an
allocation and routing plan which maximizes this function,
which intends to balance the usage of all data centers and
link bandwidths. This idea is similar to our online algorithm
in some sense, but in a heuristic way. Fig. 5 shows that our

algorithm consistently outperforms TV-VNE. We further ob-
serve that the performance of TV-VNE does not improve much
for larger N , reflecting that its heuristic allocation cannot
efficiently adjust resource utilization with the increase of users.
In contrast, SWMOA performs better when the number of user
is large, which makes it more suitable for cloud systems at
a large scale. In Fig. 6, we prepare two special scenarios:
computation intensive (CI-Case) and bandwidth intensive (BI-
Case). In the computation intensive case, computation resource
demands of VCs are 2 times larger than the default setting.
In the bandwidth intensive scenario, bandwidth demands are 2
times larger than the default. We see that SWMOA outperforms
TV-VNE in all cases. The advantages in the special cases
are larger, implying that our algorithm better handles extreme
scenarios by dynamically adjusting to user demands.

B. Evaluation of PRMOA

We first compare PRMOA in Alg. 2 with the offline op-
timum. We divide the offline optimal social welfare by the
revenue achieved with PRMOA to calculate the performance
ratio. Fig. 7 and Fig. 8 show the performance of PRMOA

under different values of F and P . The trends are similar
with those for SWMOA: larger N , smaller F and smaller P
bring better performance. This is not a coincidence because
PRMOA uses SWMOA as its foundation, and in half of the time
adopts the same payment and allocation. In the other half of
the time, the success of the attempt to “guess” user’s valuation
is independent of other parameters.

Next we compare the provider revenue achieved by PRMOA

and TV-VNE. However, TV-VNE is just a VC provisioning
algorithm without pricing. Fortunately, it is easy to design
a payment for it according to the “unit virtual cost” used
in the TV-VNE algorithm, which is the only payment rule
making the mechanism truthful. Fig. 9 and Fig. 10 show that
PRMOA performs better in all scenarios. The advantages are
even larger than what we show when comparing SWMOA

with TV-VNE. This validates the efficiency of our algorithm
specifically optimized for chasing high revenue.

VII. CONCLUSION

This paper presents efficient and competitive online auc-
tion mechanisms for on-demand provisioning and pricing
of virtual clusters, taking both computational resources and
communication resources into consideration. First, we design
an online social welfare maximizing auction, SWMOA, which
sets a carefully designed virtual unit cost for each type of
resources on the go, and decides winners and bid-independent
payments based on the total resource cost. Next, we design
a revenue maximizing online auction, PRMOA, which runs
SWMOA as a basis, and boosts payments following a carefully
designed random distribution, to pursue higher revenue. The
mechanisms are truthful, individually rational, time-efficient,
and guarantee a (2 logµ + 1) competitive ratio in social
welfare and a O(logµ) competitive ratio in provider revenue
in expectation, respectively. Our extensive simulation studies
validate our theoretical analysis, and show good performance
of our mechanisms in various scenarios.
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APPENDIX A
PROOF OF THEOREM 1

Proof. We prove NP-hardness by reduction to the 0-1 knap-
sack problem with capacity {Ap}, and items with weight
{an} and valuation {bn}. We design a VC allocation problem,
including datacenters’ capacities {Ap} and VMs consuming
{an} resources, with valuation {bn}. Then we can solve the
knapsack problem if we can solve the problem (1).

APPENDIX B
PROOF OF THEOREM 2

Proof. First we analyze the running time: solving the multi-
commodity problem needs O((E+V 2

n )P ) time, and we do this
for all users’ schemes. So the total time is O((E+V 2

n )PBN).
The auction mechanism is individual rational since the pay-
ment is always no larger than the valuation. Notice that the
unit cost of each types of resource is not affected by the
bidding valuation bn,β , and thus C(β, n) is not influenced by
users’ bidding valuation. The algorithm chooses the scheme
which maximizes bn,β − C(n,β). If a false bidding does not
change the chosen scheme β, the user’s utility is not changed
since the payment only depends on C(β, n). Otherwise, if a
false bidding causes a different scheme be picked β′. Then the
user’s utility under β′ cannot be larger, since the new utility is
bn,β′ − C(β′, n), no larger than the utility under the original
scheme β. So the mechanism is truthful.

In order to prove the competitive ratio, we prove 3 claims.
(1) ∀m, t, the resource constraints are never violated. Or,∑

n r(n,m, t) ≤ 1. If user n is rejected, we can assume
a virtual scheme with valuation, payment and resource con-
sumption all be 0, without affecting the proof. (2) Total
valuation achieved by the online algorithm is lower bound-
ed: 2 logµSonline ≥

∑
t,m cm(t,N + 1), where Sonline =∑

n∈[N ] bn,β is the social welfare achieved under the online
solution. (3) Let β∗ be the scheme chosen for the user in
offline optimal solution, and Sopt =

∑
n∈[N ] bn,β∗ be the

social welfare under the offline solution. Then Sopt is upper
bounded: Sopt ≤ Sonline +

∑
t,m cm(t,N + 1).

Proof of claim (1): Let user n be the first user break-
ing the constraint of resource m at time t with scheme
β. Then λm(t, n) > 1 − r(n,m, t). By assumption that
r(n,m, t) ≤ 1

log µ , we get: cm(t, n) ≥ µ/2 + 1 = MTF .

Therefore, by
bn,β

Mr(n,m,t)Tn
≤ F , we have cm(t, n)r(n,m, t) ≥

MTFr(n,m, t) ≥ bn,β , contradicting the assumption.

Proof of claim (2): By induction on N , for N = 0 the
claim is true. For a new user which is rejected, the value
of either side of the inequality is not changed. So we only
need to show that for any n, if he is accepted with β, then∑

t

∑
m(cm(t, n + 1) − cm(t, n)) ≤ 2 logµbn,β . For any m,

we have cm(t, n+1)−cm(t, n) = µλm(t,n)(2log µr(n,m,t)−1).
Because 2x − 1 ≤ x for x ∈ [0, 1], we have
cm(t, n + 1) − cm(t, n) ≤ logµ(cm(t, n)r(n,m, t) +
r(n,m, t)). Then

∑
t

∑
m(cm(t, n + 1) − cm(t, n)) ≤

logµ
∑

t

∑
m(cm(t, n)r(n,m, t) + r(n,m, t)) ≤

logµ(C(n,β) + TMr(n,m, t)) ≤ 2 logµbn,β .

Proof of claim (3): The fact that β∗ is not cho-
sen gives us: bn,β − C(n,β) ≥ bn,β∗ − C(n,β∗),
where β is the scheme chosen in the online solution. So∑

n bn,β∗ ≤
∑

n bn,β +
∑

n

∑
m,t cm(t, n)r(n,m, t). Notice

that cm(t, n) ≤ cm(t,N + 1), and
∑

n r(n,m, t) ≤ 1, ∀m, t.
We have Sopt ≤ Sonline +

∑
t,m cm(t,N + 1). Together with

claim (2), we prove that the competitive ratio is 2 logµ+ 1.

APPENDIX C
PROOF OF THEOREM 3

Proof. First we prove truthfulness. Since the scheme maximiz-
ing bn,β −C(β, n) is also the scheme maximizing user utility

bn,β − b̃n, the user cannot increase his utility by changing his
receiving scheme. The payment is independent of bn,β , so if
the user does not change the scheme β, his utility remains
the same. Individual rationality is guaranteed since we reject
users with bn,β < b̃n. Polynomial running time is guaranteed
just as in SWMOA.

We consider several categories of the users. Let A be the set
of users accepted by our algorithm. Let Q be the set of users
with C(β, n) ≤ bn,β , i.e., accepted by SWMOA. We further
divide Q into Q1 and Q2. Users in Q1 have bn,β ≥ bn,β∗/2,
and users in Q2 have bn,β < bn,β∗/2, where β∗ is the scheme
provided in the offline solution. Let P be the set of users ac-
cepted by the offline solution but not by SWMOA (C(β, n) >
bn,β). We need to show that the total revenue

∑
n∈A b̃n is com-

parable to the offline optimal social welfare, which is bounded
by

∑
n∈P bn,β∗ +

∑
n∈Q1

bn,β∗ +
∑

n∈Q2
bn,β∗ . We prove

3 claims: (1)
∑

n∈P bn,β∗ ≤ (4 logµ + 2)E[
∑

n∈A b̃n]. (2)
∑

n∈Q1
bn,β∗ ≤ (8 logF )E[

∑
n∈A b̃n]. (3)

∑
n∈Q2

bn,β∗ ≤

(8 logµ+ 4)E[
∑

n∈A b̃n].
Proof of claim (1): First we show

∑
n∈P bn,β∗ ≤ (2 logµ+

1)
∑

n∈Q C(n,β): This comes from the social welfare com-
petitiveness of SWMOA. Notice that

∑
n∈P bn,β∗ is a set of

feasible offline solutions. And if all users in Q bid C(n,β)
instead of bn,β , SWMOA will still choose the users in set
Q, exactly the same as if they bid bn,β . So according to the
social welfare competitiveness, a feasible solution is bounded
by (2 logµ + 1) times the online solution. Next we show∑

n∈Q C(n,β) ≤ 2E[
∑

n∈A b̃n]. Set Q does not depend on

our choose of δ. With 1/2 probability b̃n = C(β, n), so for
all n ∈ Q, it belongs to A. So the expected value of

∑
n∈A b̃n

is at least half of the value of
∑

n∈Q C(n,β).
Proof of claim (2): ∀n ∈ Q1, there is 1/2 logF probability

that bn,β ≥ b̃n ≥ bn,β/2 ≥ bn,β∗/4. So any n ∈ Q1

contributes at least bn,β∗/8 logF in b̃n.
Proof of claim (3): The fact that our algorithm choose

β instead of β∗ gives us: bn,β∗/2 ≥ bn,β − C(β, n) ≥
bn,β∗−C(β∗, n). So bn,β∗ ≤ 2C(β∗, n). This means, if we let
users in Q2 bidding β∗ with valuation bn,β∗/2, they will be re-
jected. Again according to the social welfare competitiveness,∑

n∈Q2
bn,β∗/2 ≤ (2 logµ+1)

∑
n∈Q C(n,β). Together with

∑
n∈Q C(n,β) ≤ 2E[

∑
n∈A b̃n], shown in the proof of claim

(1), we prove the claim. 3 claims together prove the theorem.


