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ABSTRACT
This paper proposes HeteroG, an automatic module to accelerate

deep neural network training in heterogeneous GPU clusters. To

train a deep learning model with large amounts of data, distributed

training using data or model parallelism has been widely adopted,

mostly over homogeneous devices (GPUs, network bandwidth). Het-

erogeneous training environments may often exist in shared clus-

ters with GPUs of different models purchased in different batches

and network connections of different bandwidth availability (e.g.,

due to contention). Classic data parallelism does not work well in a

heterogeneous cluster, while model-parallel training is hard to plan.

HeteroG enables highly-efficient distributed training over heteroge-

neous devices, by automatically converting a single-GPU training

model to a distributed one according to the deep learning graph

and available resources. HeteroG embraces operation-level hybrid

parallelism, communication architecture selection and execution

scheduling, based on a carefully designed strategy framework ex-

ploiting both GNN-based learning and combinatorial optimization.

We compare HeteroG with existing parallelism schemes and show

that it achieves up-to 222% training speed-up. HeteroG also enables

efficient training of largemodels over a set of heterogeneous devices

where simple parallelism is infeasible.

CCS CONCEPTS
• Computer systems organization → Neural networks; Het-
erogeneous (hybrid) systems;

KEYWORDS
Distributed training, heterogeneous environment, deep learning

1 INTRODUCTION
Deep Learning (DL) models have become increasingly complicated

and large over the past years. Training of a deep neural network

(DNN) is extremely time consuming. Parallelizing training using
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multiple workers in a distributed environment is adopted with

current machine learning (ML) frameworks [1, 5, 44].

Two most common parallelization strategies are data parallelism

(DP) and model parallelism (MP) [9, 40, 59]. With data parallelism,

a replica of the entire neural network is placed on each device (e.g.,

a GPU card); each device processes a subset of the training data and

synchronizes model parameter updates among different replicas.

For models with large parameter sizes that cannot be fit entirely

into a single device’s memory, model-parallel training is adopted

by assigning disjoint partitions of the DNN to different devices; no

gradient aggregation is needed, but intermediate activations should

be transferred across devices. Performance of model parallelism

highly depends on the model-to-device assignment decisions made

by ML developers.

To optimize distributed training, Krizhevsky et al. [30] and Wu

et al. [60] manually optimize parallelism based on human experts’

domain knowledge. Some automated frameworks [13, 39] were

proposed for finding efficient model parallelism strategies. GDP

[64] and Placeto [2] use Graph Neural networks (GNN) to learn

operation-to-device assignment strategies. Parallax [28] utilizes

hybrid PS and AllReduce communication methods in data-parallel

training. All of them focus on training over homogeneous devices.

Instead, we focus on DNN training expedition in heterogeneous

environments. In shared ML clusters containing GPUs of different

models and many DL jobs, a new-arrival training job often faces the

following situation: GPUs of its desired type are not available at its

required number, while there are available GPUs of other models.

With standard data parallelism, the job may have to wait for its

required number of GPUs of the same model become available,

or make do with the fewer number of GPUs available. The job

cannot exploit available GPUs of different models due to the poor

performance of data-parallel training over heterogeneous devices:

the processing speed is imbalanced over different devices, and the

devices and communication channels (network links across servers

and internal links among multiple GPUs within a single server) are

less efficiently used with synchronous training (due to waiting).

In data-parallel training, parameter server (PS) architecture [31]

and AllReduce methods [36, 45] are widely used for parameter

synchronization. In homogeneous environments, AllReduce usually

performs better than PS [28, 31] by fully utilizing the links among

all devices; in a PS architecture, the links to parameter servers may

become the bottlenecks. In a heterogeneous environment, a single

PS or AllReduce operation at the end of each training iteration for

aggregating all parameter updates may be less efficient: parameter

synchronization (aka communication) now takes longer time due to

imbalanced computation speeds among devices, and low utilization

of the communication channel results.

https://doi.org/10.1145/3386367.3432728
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We advocate fine-grained, hybrid parallelism and parameter

synchronization methods among operations in a DNN model, for

training acceleration in heterogeneous ML clusters. We propose

HeteroG, an automated module that converts a single-GPU training

model to a distributed one, achieving optimized training speeds.

HeteroG generates detailed parallelism strategy, device placement,

gradient communication method, and execution order for each

operation in a DNN model. A novel strategy framework is de-

signed incorporating a GNN for deciding operation parallelism,

placements and communication schemes, and a combinatorial opti-

mization problem to generate execution order of operations. Main

contributions of this paper are summarized as follows:

▷Wepropose an automatedmodule to generate hybrid, operation-

level parallelism schemes for expedited distributed DNN training

in heterogeneous environments.

▷We design a novel strategy framework including a GNN-based

policy network and a combinatorial optimization problem, with

synergy to comprehensively produce the large set of strategies

enabling highly-efficient distributed training.

▷ To provide generality, a carefully designed GNN is used to

learn structural information from different DNN graphs, and pro-

duce good deployment strategies for a broad range of DNN models.

It decides the replication number of each operation and the de-

vice placement of these replicas to fully utilize different devices

and communication channels. For replicas where gradient aggrega-

tion is needed, it also decides the communication methods (PS or

AllReduce), enabling different communication modes for different

gradient aggregation operations in a DNN model.

▷ An efficient heuristic is designed to solve the combinatorial

optimization problem on operation execution ordering. It ensures

high resource utilization (GPU devices, network links) and maximal

computation-communication overlap, with proven performance

bound to optimal schedule.

▷ HeteroG is implemented as a python module in Tensorflow.

Developers only need to implement single-GPU models and invoke

HeteroG’s simple API.HeteroG automatically generates a distributed

training model with the strategies it finds, and deploys it in the

heterogeneous cluster.

▷We carry out extensive experiments in a heterogeneous cluster.

HeteroG is carefully compared with existing parallelism schemes: it

achieves up-to 222% training speed-up as compared to data paral-

lelism and existing hybrid parallelism designs; it can enable efficient

training of large models over heterogeneous devices where simple

parallelism is infeasible. We observe that a fine-grained hybrid of

parallelism strategies and gradient aggregation methods for differ-

ent operations, as well as variable replica numbers across hetero-

geneous devices, contribute to the good performance of HeteroG,
based on very efficient utilization of available computation and

communication resources.

2 BACKGROUND AND MOTIVATION
2.1 DNN Training and Parallelism
Training a DNN is an iterative process that uses a large number of

samples to tune model parameters for minimizing a loss function.

In current training frameworks [1, 5, 44], different kinds of compu-

tation are implemented by different operations (such as Conv2D,

MatMul), and input and output of these operations are called tensors
(e.g., gradients, activations). The computing process can typically

be represented by a DAG (Directed Acyclic Graph), whose nodes

are operations and edges represent tensors.

Forward and Backward Computation. In each training itera-

tion, one batch of samples is fed into the DNN model. Operations

in forward propagation (FP) takes output of precedent operations

as input and generates output based on parameters. A loss is pro-

duced based on outputs at the end of FP. After FP, gradients of

model parameters are computed from back to front, i.e., backward

propagation (BP). The gradients are then applied to the parame-

ters using some optimization algorithm, e.g., Stochastic Gradient

Descent (SGD).

Model Parallelism (MP).Operations in the DNNmodel are placed

on different devices [9, 40, 59]. Each device maintains part of the

parameters of the model.

Data Parallelism (DP).The dataset is partitioned intomini-batches

for training at each device. Each device maintains a replica of DNN

model and carries out FP and BP, and gradients from different

devices need to be aggregated before applied to update parameters.

PS and AllReduce. They are two popular architectures for param-

eter synchronization in data-parallel training [31, 36, 45]. In a PS

architecture, parameters are stored in centralized parameter servers;

each worker computes its gradients based on its local dataset and

parameters, pushes the gradients to PSs and pulls updated global

parameters from PSs. In an AllReduce architecture, each worker

computes gradients and aggregates gradients from other workers

for parameter updates using an AllReduce algorithm [36, 45].

Communication in MP and DP.With model parallelism, when

two adjacent operations are placed on different devices, the output

of precedent operation needs to be transferred to successor opera-

tion; if the two devices are in different physical servers, network

communication is involved. With data parallelism, communication

occurs during gradient aggregation/parameter synchronization.

2.2 Potential Training Expedition Methods in
Heterogeneous Clusters

PS could be better than AllReduce. Fig. 1 shows that a single

AllReduce architecture for data-parallel training may perform well

in a homogeneous cluster (GPU0, GPU1, GPU2 have the same com-

putation power), but not in a heterogeneous environment (GPU0

is slower than GPU1 and GPU2 with computation power ratio of

1:2:2). Three adjacent operations in BP are considered, where GA

represents gradient aggregation (following each BP operation). In

case of imbalanced computation power of GPUs, the communica-

tion channel is not fully utilized, gradient synchronization takes

longer time, and the training time is prolonged.

In the heterogeneous setting, we can use the PS architecture

for parameter synchronization and let the slowest GPU run both a

worker and the PS functionalities. In this way, as shown in Fig. 2(a),

communication for synchronizing parameters with the slowest

worker is eliminated, and training is expedited. Note that in case

of PS-based parameter synchronization, GA operation includes

parameter push and pull to/from the PS; in this example, the GA
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Figure 1: Prolonged training time in a heterogeneous cluster using AllReduce.
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Figure 2: Potential training expedition approaches in a het-
erogeneous cluster.

operation at GPU0 (serving as the PS) starts when gradients are

received from other devices. In a PS architecture, each worker can

independently send their gradients to the PS. GA1 happens at GPU1

and GPU2 once they have finished their respective BP1, when their

gradients are sent to GPU0; GA1 at GPU0 indicates receipt of these

gradients from GPU1 and GPU2 (since GPU0 serves as the PS),

which can start when the gradients are received and does not need

to wait for the completion of BP1 in GPU0 itself.

Placing more replicas to faster devices. Balancing workload

among different devices can potentially lead to better utilization

of computation power and communication channel. We can place

more operation replicas in faster devices to achieve the balance. An

operation can be replicated by dividing the input along the batch

size dimension, i.e., each replica processes an even partition of the

origin operation’s input and its execution time is shorter than the

original operation’s. In Fig. 2(a), 3 replicas of each BP operation are

processed on 3 GPUs; in Fig. 2(b), we make 5 replicas of each BP

operation, and place a number of replicas in 3 GPUs in proportion to

their computation power. In this way, we can still use AllReduce for

gradient aggregation, as the GA operations are largely synchronized

without long waiting time, like in a homogeneous environment.

Using MP to eliminate gradient communication. With DP,

communication occurs due to gradient aggregation among multiple

replicas. We can place some operations on a single device without

replication (model parallelism), to reduce some communication

overhead. In Fig. 2(c), BP2 and BP3 are only placed on GPU1, such

that parameters in these operations are only maintained on GPU1

and no gradient aggregation (of these parameters) is needed from

other devices. The small yellow rectangle denotes activation trans-

fer time to send/receive output of BP1 from other devices to GPU1.

AllReduce is used for gradient synchronization among replicas of

BP1 in this example.

2.3 Challenges
Exploring the above opportunities comes with challenges.

PS may not be the one-for-all communication architecture
in a heterogeneous cluster. In PS architecture for gradient ag-

gregation, the links to parameter servers may become bottlenecks.



CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Xiaodong Yi and Shiwei Zhang et al.

Vgg-19

ResN
et2

00

Incep
tion

_V3

MobileN
et_

V2

Tra
nsfo

rm
er

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Pe
r-i

te
ra

tio
n 

Ti
m

e(
s) Even replica allocation

Proportional replica allocation

(a) Execution time with even
and proportional replica al-
location.

Conv2D
MatM

ul

Conv1D

Conv2DBpFilt
er

Conv2DBpInput0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

No
rm

al
ize

d 
Ti

m
e Tesla V100

GTX1080Ti

(b) Normalized average execu-
tion time of representative op-
erations.

Figure 3: Performance of proportional distribution ofwhole-
model replicas.

Hybrid communication methods could provide a satisfying solu-

tion: use the PS architecture for aggregating gradients of opera-

tions where link bandwidth is not the bottleneck, while exploiting

AllReduce for operations whose replicas’ computation is relatively

balanced. However, it is difficult to judge which conditions the

operations satisfy, which is closely related to placement of their

replicas.

Proportional distribution of whole-model replicas may not
be sufficient.We train VGG19 [49], ResNet [19], Inception-v3 [50],

MobileNet_v2 [46] and Transformer [52] models respectively using

DP on 4 GPUs (two Tesla V100 GPUs and two GTX 1080Ti GPUs),

and compare result per-iteration training time of placing one model

replica on each GPU vs. placing two model replicas on each Tesla

V100 GPU and one replica on eachGTX 1080Ti GPU (computation

power of the two types of GPU is roughly at the ratio of 2:1). Fig. 3(a)

shows that the speed-up with proportional workload allocation is

small, about 9 ∼ 27%.We further investigate execution time of some

representative operations in VGG19 and Transformer, when each

is run on a Tesla V100 GPU and a GTX 1080Ti GPU, respectively.

Fig. 3(b) shows normalized operation execution time by dividing the

real time by that of running on the V100 GPU. The average speed-

up when using the V100 GPU varies significantly from 1.1 to 1.9;

even for the same type of operations, the speed-up variance is also

quite high, due to different input sizes. The large variation across

operations implies that uniform proportional model replication

among devices may not be efficient for training expedition; fine-

grained replica allocation at individual operation level could bring

more efficient computation power usage for most expedited end-

to-end model training.

Tradeoff in communication and computation overhead be-
tween DP and MP. Though using model parallelism for some

operations eliminates communication of their gradients, there ex-

ists data transfer for sending input into operations and dispatching

output to other operations. Besides, completion time of the opera-

tions is longer, as compared to their parallel execution over multiple

devices. It is difficult to decide whether to use DP or MP for an

operation, which depends on the amount of data or gradient for

transfer, computation power of devices to place the operations, etc.

User Code

Client API

Graph Analyzer

Scheduler Simulator

Execution Engine

ProfilerStrategy Maker

Order Enforcement

Graph Compiler

HeteroG

Agent

Figure 4: Overall architecture of HeteroG.

Tackling these challenges, we carefully design a strategy frame-

work to produce operation-level parallelism, placement, communi-

cation and scheduling strategies.

3 SYSTEM DESIGN
3.1 HeteroG Overview
HeteroG is designed as a middleware between the client API and

core processing engine in a state-of-the-art training framework

(e.g., TensorFlow [1], MXNet [5]), to produce the best distributed

training scheme for a given DNNmodel over a set of heterogeneous

devices. HeteroG takes as input the DAG of the DNN and the device

set, and produces a distributed execution graph with operations’

device placements, gradient aggregation methods and execution

order.

Fig. 4 shows the overall architecture of HeteroG. The Graph Ana-
lyzer analyzes the DNN’s computation graph. The Strategy Maker
runs our strategy framework to generate optimized strategies for

operation placement, tensor communication and execution sched-

ule. Then, the Graph Compiler applies the strategies to produce the

distributed training DAG and enforces execution orders with the

execution engine.

To facilitate strategy making with Agent and Scheduler, the pro-
filer runs different models in the given environment to profile exe-

cution time of each operation and transfer time of tensors across

different devices; the Simulator exploits profiled information to

estimate per-iteration training time under different strategies, for

Agent’s policy learning.

3.2 Graph Analyzer
Graph Analyzer analyzes the original computation DAG, i.e., ob-

tains the graphdef of the DNN model, which is a low-level repre-

sentation of the computation graph regardless of which API is used

to build the DAG (e.g., Estimator, Keras, etc.), in case the TensorFlow

framework is used.
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3.3 Strategy Maker
Our complete set of distributed training strategies includes the

following.

(i) Parallelism (DP or MP) and placement for each operation:

for DP, an operation is replicated into multiple replicas which are

deployed onto multiple devices, with input data evenly divided

among the replicas; with MP, the operation is not replicated and

deployed onto one single device.

(ii) Gradient communication methods (PS or AllReduce) for gra-

dient aggregation operations.

(iii) Execution order of operations based on placements.

The goal is to minimize per-iteration training time of the DNN,

i.e., end-to-end execution time of the respective DAG. The complete

problem is very hard in nature: even the subproblem of deciding the

execution order of operations within a restricted solution space (i.e.,

not considering operation replication and communication methods)

is already NP-hard, which can be reduced to the DAG task schedul-

ing problem [32] or the job-shop problem [3]. Given the significant

hardness of solving the complete problem using a combinatorial

optimization approach, we design a novel strategy framework join-

ing both combinatorial optimization and graph neural network

(GNN)-based learning to tackle the large strategy space.

We divide the strategy set into two parts and tackle each using a

different methodology based on output from each other:

Part-I includes decisions (i) and (ii) which modify the single-GPU

computation DAG into a distributed graph;

Part-II includes decisions (iii) for setting the execution order of

operations in the distributed training graph.

We adopt a GNN to produce Part-I strategies; we design an effi-

cient heuristic to solve the remaining Part-II problem (which is still

NP hard though with a smaller decision space), given Part-I deci-

sions; we compute DAG execution time based on all the decisions

and use it as the reward for GNN policy learning. The rationale

behind is to pursue an optimization problem (for Part-II decisions)

that is close to a known one, with efficient approximation algo-

rithms in place, while using the GNN to produce decisions for

harder components of the complete problem.

The Strategy Maker consists of the following components for

strategy making:

Agent. The agent runs the GNN, using input feature vector created
base on profiling data, and generates Part-I decisions. Details of the

GNN design will be introduced in Sec. 4.1.

Scheduler. The scheduler runs the heuristic (Sec. 4.2) to compute

execution order of all operations, based on decisions made by the

Agent.

Two auxiliary modules are used for building the Agent:

Profiler. It profiles the given DNN model to obtain execution time

of each operation on different devices under different batch sizes,

the size of the tensor transferred between operations, and the link

bandwidth between each pair of devices. We run the given DNN

model on each device with different representative batch sizes, if

the model can be fit into the device memory. For a large model

that cannot be fit into a GPU, we use model parallelism, and try

different placements on multiple devices. These allow us to mea-

sure computation time of each operation on different devices with

different input sizes, so that we can build a linear regression model

to predict computation time of a specific operation at other batch

sizes, according to the type of operation, the shape of its input, the

device that runs the operation, and other attributes of the operation

such as the dilation of a Conv2D node. For models that can be fit into

a single device’s memory, it takes less than 10 minutes to complete

the profiling; for larger models that cannot be fit into a GPU, the

profiling typically takes less than half an hour. We transfer data

with different sizes between each pair of devices, record the transfer

time and build a linear regression model for transfer time prediction

over each link based on the size of tensor for transfer.

Simulator. The simulator is used for training the GNN in theAgent.
It simulates training according to the strategies produced by the

Agent and the Scheduler, using profiled data from the Profiler. It
estimates the per-iteration training time for setting rewards for

GNN training, and also tracks memory usage on each device, to set

bad rewards for strategies leading to memory overflow.

3.4 Graph Compiler
The Graph Compiler receives strategies produced by the Strategy
Maker and generates a distributed training model which can be

directly run in the heterogeneous environment.

Operation replication. For operations that use DP, Graph Com-

piler creates replicas of the operation and places them onto the

devices (i.e., by setting the ‘device’ attribute of the node as in Ten-

sorFlow). The number of replicas placed on each device is decided

by the Agent.

Gradient Aggregation. When the PS architecture is chosen for

parameter synchronization among replicas of an operation, one

device (where a replica of the operation is deployed) performs as

the PS as well (to reduce some gradient communication overhead),

storing the parameters; gradients from other replicas are sent to

the PS. The PS device is chosen as one that minimizes completion

time of gradient aggregation.

When AllReduce is selected, gradients are synchronized among

all replicas of the operation using an Allreduce algorithm: ring-

based AllReduce [36, 45], or a hierarchical AllReduce structure that

aggregates gradients among GPUs on the same physical server first

and then across servers. We always use the better structure among

the two by estimating the communication time of the two based on

the given network topology.

We adopt synchronous SGD for DNN training in HeteroG: after
gradient aggregation, updated parameters are applied to all replicas.

Consequently, parameters are consistent among all model replicas,

and the accuracy of the trainedDNNmodel is not affected regardless

of the model transformation.

Order Enforcement. Each operation in the distributed training

graph is assigned with a priority according to the execution order

computed by the Scheduler, for the execution engine to schedule

the operations accordingly.

3.5 Client API
HeteroG provides a simple programming interface get_runner for

developers to call after they build the single-GPU graph. As shown

in Fig. 5, get_runner accepts as arguments a single-GPU graph

(generated by model_func), input dataset (input_func), device in-
formation (device_info) including IP addresses (or hostnames)
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 1 import heterog
 2 
 3 def model_func():
 4    #create single GPU model
 5    loss = ...
 6    train_op = ...
 7    return train_op
 8
 9 def input_func():
10    #create input dataset
11    dataset = ...
12    return dataset
13
14 dist_runner = heterog.get_runner(
15    model_func,
16    input_func,
17    device_info,
18    heterog_config)
19
20 dist_runner.run(steps)

Figure 5: HeteroG programming interface.

of machines and GPU IDs, and an optional HeteroG configuration

object (heterog_config) containing extra arguments if needed

(e.g., a file path to save trained variables, whether to use default

execution order or our order scheduling algorithm). A developer

can first define a single-GPU computation model (lines 3-7) and

input dataset (lines 9-12), and then invoke get_runner (lines 14-

18). The API computes deployment strategies and produces the

distributed training model; the returned dist_runner object con-
tains the modified graph and its run function executes the modified

training model according to the execution order, with a maximum

number of training steps specified by the developer (line 20).

4 STRATEGY FRAMEWORK
An illustration of our strategy framework is given in Fig. 6.

4.1 GNN-based Policy Learning
We adopt a GNN for Part-I strategy making due to close relation

of our decisions with the structure of the DNN graph: embeddings

produced by a GNN encode features of the DAG and have been

shown effective in facilitating graph-related decision making [2,

64]. We do not use a GNN to produce all strategies as execution

order decisions are hard to be described as GNN output (because

execution order decisions are for operations on distributed graph

rather than original single-GPU graph) and the action space would

be too large to learn.

4.1.1 Model Feature Encoding
Different DNN models have different numbers of operations. A

GNN is used for creating a flat feature vector for each DNN model,

by encoding the graph information into a set of embeddings.

Per-node embeddings. We employ a graph attention neural net-

work (GAT) [53], which achieves better performance than GCN

[11, 55, 57] when handling graph-based problems, by aggregating

features among neighbors based on correlation coefficient between

each pair of feature vectors and using multi-head mechanism to en-

hance aggregation performance. The GAT takes as input the DAG

of DNN model, in the form of: (1) a node feature matrix, where

each row contains the operation’s attributes (e.g., execution time

when running on different devices, the input and output sizes, the

average tensor transfer time between each pair of devices);
1
(2)

an adjacency matrix describing data dependencies. It generates a

per-node embedding vector eo , by encoding attributes of immediate

neighbors of o using multi-head attention layers:

eo = ∥Kk=1σ (
∑
j ∈No

αkojW
ke
′

j )

Here K is the number of heads of multi-head attention layer, ∥

denotes concatenation of the output of each head, σ is non-linear

transformation, No is the set of neighbors of o including o itself,

αoj is the correlation coefficient between feature vectors of node

o and node j,W is the weight vector to be learned, and e
′

j is the

output embedding of node j from the previous attention layer.

Per-group embeddings. A DNN model typically contains thousands

of operations. Making decisions for each of them results in a very

large action space, and hence significant challenge in finding good

strategies. We therefore further gather multiple nodes into groups,

and learn a set of strategies for nodes in the same group, signif-

icantly reducing the action space. We design a nearest-neighbor

method to decide the groups: If the number of operations exceeds

the maximal group numberN , we choose the top-N operations with

longest average execution time (these operations contribute more

to the per-iteration execution time). We group each of the other

operations with one of the N operations with the least number

of hops in-between (we want nearby operations to have similar

strategies to reduce communication overhead and extra split/concat

operations). A per-group embedding gi is computed by encoding

information from all nodes in this group:

gn = σ (
∑
o∈Gn

W eo )

where Gn contains all the nodes in group n.

4.1.2 Strategy Network
Embeddings of node groups are concatenated into a feature vec-

tor, further fed into a strategy network for making Part-I decisions

on operation replication/device placement and gradient aggrega-

tion method. We employ a Transformer-XL network [8], which

has been shown excellent in handling long embeddings (e.g., for

language translation).

We encode Part-I decisions as output of the strategy network. An

N × (M + 4)-dimensional action space is designed, whereM is the

number of GPUs. In the (M + 4)-dimensional vector for each group,

each of the firstM elements represents placing operations in this

group to the corresponding device using model parallelism (i.e., no

replication on the other devices). The last 4 elements correspond to

different data parallelism schemes: the four combinations between

two replication decisions (replicating the group onto each of the

M devices with one replica per device and proportionally placing

1
We encode the communication cost between each pair of operations into the input

feature vector of the GNN. If the bandwidth changes, the input to the GNN changes

and the output strategy changes correspondingly.
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Figure 6: The strategy framework:O is the # of operations in a DNN;W is the dimension of an operation’s feature vector; and
h is the dimension of the hidden layer output; N is the # of groups;M is the # of GPUs.

a number of replicas of the group onto each device according to

computation power) and two communication methods ( PS or AllRe-

duce for gradient aggregation in the group). A softmax function is

used to produce an action for each group, out of the M+4 strategies.

4.1.3 GNN Training
The graph embedding GAT and strategy network are trained

end-to-end together through reinforcement learning (RL) [27]. In

each round, a set of DNN graphs, G, are sampled as input to the

GAT. For each graph, deployment strategies are produced from the

strategy network and a reward is computed by the simulator based

on simulated training of the respective DNN using the deployment

strategies and execution order (produced by the heurisitc algorithm

in Sec. 4.2). The reward is the additive inverse of the square root

of the per-iteration execution time of the DNN graph, R = −
√
T ,

if there is no out of memory (OOM) error; otherwise, we multiply

the computed reward by 10, to lower the chance of producing the

respective strategy.

The objective of RL is to maximize the overall reward over the

|G | input graphs: J (θ ) = 1

|G |
∑
G
ED∼πθ (G)[RG ,D ]+λH (πθ ), where θ

is the set of weights in the GAT and strategy network to learn, and

πθ is the policy distribution to produce actions. The regularization

termH (πθ ) [17] allows πθ to have a high entropy, i.e., high diversity

in the decisions, for sufficient exploration of the action space. λ
balances exploration and exploitation. With each reward, weights

are updated by policy gradients [58]:

θ ← θ + α
1

|G |

|G |∑
д
∇θ logπθ (aд)(rд − Rд) + λ∇θH (πθ )

where α is the learning rate, aд is the action for graph д, rд is the

reward of aд , and Rд is moving average of the rewards.

4.2 Execution Order Scheduling
Even though the computation operations are already partially or-

dered based on the data-flow dependency of DAG, there still exist

situations that multiple operations placed on the same device are

ready to run at the same time, and different orders to execute them

may lead to different training time. The scheduler decides the global

execution order of all operations (including concat and split) based

on the modified training graph after applying the Part-I decisions.

Here, we further treat a link between two GPUs as a device. We

regard parameter synchronization among a operation’s replicas as

a communication operation, and deem that it is placed on a link if

the respective PS or AllReduce-based parameter synchronization

makes use of the link. Our order scheduling algorithm ensures

that every GPU processes at most one computation operation at a

time, and every link sends tensor for at most one communication

operation at a time.

Our execution order scheduling to minimize per-iteration train-

ing time is a combinatorial optimization problem, similar to but

simpler than classical task scheduling problems with inter-task

dependencies [3] (as the placement of each operation is given).

Nonetheless, our problem is still NP-hard, as it is a generaliza-

tion of the job-shop problem [14]: the job-shop problem schedules

tasks with chain-like precedence constraints given their machine

placement, while our problem allows arbitrary precedence rela-

tions among operations. List scheduling algorithms are commonly

used for solving dependency-based task scheduling problems ap-

proximately [32]. The core idea of list scheduling algorithms, e.g.,

HEFT [22], is to assign priorities to tasks, and then assign tasks to

the best devices and schedule them on the respective devices in

order of their priorities.

We adapt the idea for our execution scheduling. We compute a

rank for each operation:

rank(oi ) = pi + max

oj ∈succ(oi )
{rank

(
oj
)
}

where pi is the computation or communication time of operation oi ,
and succ(oi ) is the set of all successors of oi . Given device placement

of the operations, on each device, we order operation execution

according to their ranks, and run an operation with a higher rank

when it is ready (i.e., its dependencies have all been done), before

moving on to the next operation. Multiple devices can execute

their respective ready operations concurrently; since we consider

inter-GPU links as devices, this maximally allows computation and

communication overlap.

We can prove a (tight) performance bound of our order schedule

heuristic. Let TLS and T ∗ be the per-iteration execution time using

our heuristic and the ideal optimal schedule, respectively. Recall

M is the number of GPUs, andM2
is the maximal number of links.

Detailed proof is in the Appendix.

Theorem 1. TLS is no larger than (M +M2)T ∗.

Theorem 2. There exists an instance of our execution order sched-
uling problem where TLS

T ∗ ≈ M +M2.

5 IMPLEMENTATION
HeteroG is implemented on Tensorflow 1.14 as a python module

that developers can readily import into their Tensorflow code. Core
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design of HeteroG is generally applicable and can be implemented

in other ML frameworks as well.

Graph Analyzer is built in Python with 480 LoC.

Strategy Maker. The Agent is implemented in Python with 2156

LoC.We use 12 multi-head attention layers in the GAT, with 8 heads

in each layer. The maximum number of groups, N , is 2000. There

are 8 layers in the Transformer-XL strategy network.

The Simulator and the Scheduler are built in Rust with 1862 LoC.

The simulator simulates training process of the converted DAG. It

maintains a ready queue for each device, consisting of operations

assigned to the device in computed execution order, whose depen-

dencies have been cleared. It keeps removing an available operation

from the head of each ready queue, calculating completion time

of the operation according to completion time of its dependencies

and the device it is placed on, and adding its child nodes into the

ready queue if their dependencies are all cleared. The simulator

also simulates memory allocation and releasing when executing an

operation (using reference counting), and records the peak memory

usage on each of the device. The simulator records the link band-

width utilization between each pair of devices. When more data

are transferred using a specific link, the estimated communication

time becomes longer accordingly.

The profiler is implemented based on TensorFlow’s built-in pro-

filer by setting the running configuration option trace_level to
be FULL_TRACE. An operation may consist of multiple GPU kernels,

the profiler aggregates the execution time of related kernels to ob-

tain an accurate estimation of execution time for each operation.

It records the start time of send operator and the end time of the

corresponding receive operator, and estimates tensor transmission

time as the difference (server clocks are synchronized using NTP).

Graph Compiler generates an executable distributed training

model, implemented in Rust with 1051 LoC.

Operation replication. We traverse the nodes, making copies and

specifying their ‘device’ attribute, and then connect them to corre-

sponding copies of inputs. The replica numbers of adjacent nodes

(e.g., oi → oj ) can be different. For predecessor nodes whose output

tensor has the batch size dimension (e.g.,a tensor of dimension

B ×W where B is the batch size, we add a Concat operation to

collect outputs from replicas of oi and a Split node to split it as

inputs to replicas of oj . For other operations whose output does not
have the batch size dimension, we do not replicate them.

Gradient Aggregation. For PS-based gradient synchronization,

we add a gradient aggregation operation, before an apply gradi-

ent operation. For AllReduce, we add collective NCCL primitive

operations [23] into the training graph. These NCCL operations

receive gradients from operation replicas and handle details of the

AllReduce procedure.

An illustration of the original DNN model and converted graph

are given in Fig. 7. Operations c, e, h and j adopt DP with extra split

and concat operations added; gradient aggregation operations are

also added in training graph.

Order enforcement module activates the schedule computed by

Scheduler, which is implemented in C++ with 213 LoC. By default,

TensorFlow execution engine executes the operations in a ready

queue following FIFO (First-In-First-Out). We set each operation
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Figure 7: Original and converted DAGs: an example.

with a priority according to the order computed by the Scheduler,

such that they will be scheduled by execution engine accordingly.

6 EVALUATION
6.1 Evaluation Methodology
Testbed. We deploy HeteroG-boosted TensorFlow framework in 5

physical machines (12 GPUs): one equipped with 4 NVIDIA 16GB

Tesla V100GPUs, two 10-core Intel Xeon processor E5-2630 v4 CPUs

and one 100GbE Mellanox RDMA card; two equipped with two

11GB NVIDIA GTX 1080 Ti GPUs, one 8-core Intel Xeon E5-1660 v4

CPU and one 50GbE Mellanox RDMA card; and two equipped with

two 12GB NVIDIA Tesla P100 GPUs, one 8-core Intel Xeon E5-1660

v4 CPU and one 50GbE Mellanox RDMA card. The machines are

connected through a 100Gbps switch.

Benchmark models. The GNN is trained with 5 types of CNN

models (VGG19 [49], ResNet [19], Inception-v3 [50], MobileNet_v2

[46] and NasNet [65]) and 3 types of large NLPmodels (Transformer

[52], Bert-large [9] and Xlnet-large [62]). To evaluate produced

strategies, we run real-world distributed training of each DNN

model on our testbed according to the strategies.

GNN training process. We profile these benchmark models, gen-

erate the adjacency matrix and the feature matrix for each graph as

input to the GNN and train the GNN using two Tesla V100 GPUs

using data parallelism, which takes around 4 hours to converge.

With the trained GNN, HeteroG can produce strategies for these

models. The GNN model is updated when a new model is provided.

We conduct experiments to evaluate the generality of HeteroG for

unseen graphs in Sec. 6.5, presenting the time taken to update the

GNN on a new graph.

Baseline strategies. We compare HeteroG with the following

baselines. (1) EV-PS: data parallelism with one complete model

replica per device and PS architecture for gradient synchronization;

(2) EV-AR: same as EV-PS except for using AllReduce for gradient

synchronization; (3) CP-PS: data parallelism with the number of

model replicas per device proportional to device computation power

and using PS for gradient synchronization; (4) CP-AR: same as CP-

PS except for using AllReduce for gradient synchronization. We

also compare performance of HeteroG with 4 existing studies on

training model deployment: HetPipe [43], FlexFlow [26], Horovod

[47] and Post [12].
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Table 1: Per-iteration training time (in seconds) of DNN models: HeteroG strategies vs. different DP strategies (8 GPUs).

Model (batch size) HeteroG EV-PS/Speedup EV-AR/Speedup CP-PS/Speedup CP-AR/Speedup

VGG-19 (192) 0.462 0.907 / 96.3 % 0.653 / 41.3 % 0.853 / 84.6 % 0.591 / 27.9%

ResNet200 (192) 0.693 1.431 / 106.4 % 0.955 / 37.8 % 1.273 / 83.7 % 0.897 / 29.4%

Inception_v3 (192) 0.528 0.933 / 76.7 % 0.701 / 32.8% 0.911 / 72.5 % 0.659 / 24.8%

MobileNet_v2 (192) 0.232 0.413 / 78.0% 0.368 / 58.6% 0.394 / 69.8% 0.325 / 40.0 %

NasNet (192) 0.862 1.244 / 44.3 % 1.028 / 19.2% 1.203 / 39.6 % 1.116 /29.5 %

Transformer (6 layers)(720) 0.298 0.961 / 222.4 % 0.496 / 66.4 % 0.931 / 212.4 % 0.361 / 21.1%

Bert-large (24 layers)(48) 0.451 0.612 / 35.7 % 1.064 / 135.9% 0.795 / 76.2% 1.049 / 132.6 %

XlNet-large (24 layers)(48) 0.851 1.232 / 44.8 % 1.551 / 82.2 % 1.283 / 50.8% 1.566 / 84.0 %

ResNet200 (384) 2.285 OOM/- OOM/- OOM/- OOM/-

Transformer (24 layers)(120) 1.147 OOM/- OOM/- OOM/- OOM/-

Bert-large (24 layers)(96) 2.241 OOM/- OOM/- OOM/- OOM/-

XlNet-large (24 layers)(96) 4.254 OOM/- OOM/- OOM/- OOM/-

Bert-large (48 layers)(24) 1.892 OOM/- OOM/- OOM/- OOM/-

XlNet-large (48 layers)(24) 3.468 OOM/- OOM/- OOM/- OOM/-

Table 2: Percentage of operations using different parallelism strategies with HeteroG (Gx means placing the operation in the
x-th GPU without replication. G0, G1: Tesla V100; G2-G5: GTX 1080Ti; G6, G7: Tesla P100.

Model (batch size) G0 G1 G2 G3 G4 G5 G6 G7 EV-PS EV-AR CP-PS CP-AR

VGG-19 (192) 2.1% 0 0 0 0 0 0 0 11.7% 28.5% 7.6% 50.1%

ResNet200 (192) 4.2% 0 0 0 0 0 0 0 25.7% 29.2% 8.1% 32.8%

Inception_v3 (192) 1.8% 0 0 0 0 0 0 0 18.4% 21.5% 21.7% 36.6%

MobileNet_v2 (192) 3.7% 0 0 0 0 0 0 0 31.7% 41.2% 9.5% 13.9%

NasNet (192) 3.6% 0 0 0 0 0 0 0 8.8% 66.5% 10.4% 10.7%

Transformer (6 layers)(720) 3.8% 0 0 0 0 0 0 0 12.2% 21.1% 18.2% 44.7%

Bert-large (24 layers)(48) 5.3% 0 0 0 0 0 0 0 41.4% 23.9% 11.1% 18.3%

Xlnet-large (24 layers)(48) 6.8% 5.4% 0 0 0 0 0 0 33.5% 28.1% 11.6% 14.6%

We adopt strong scaling in all experiments with fixed global batch

size in case of DP. All results are averaged over 500 iterations.

6.2 Per-iteration Training Speed-up
We first compare the per-iteration time of different models when

trained on 8 GPUs (2 Tesla V100, 4 GTX 1080Ti, 2 Tesla P100), using

strategies produced by HeteroG and four DP baselines. In Table 1,

the speed-up is computed by dividing the difference between the

two strategies’ time by that of HeteroG. HeteroG outperforms all

DP baselines with speed-ups ranging from 19.2% to 222.4%. Het-
eroG achieves 222.4% and 212.4% speed-up over Transformer (6

layers) EV-PS and CP-PS, as communication is heavy when train-

ing Transformer and using PS only is less efficient. For NasNet

EV-AR where HeteroG achieves only 19.2% speed-up, we see in

Table 2 that EV-AR is the parallelism strategy of 66.5% operations

in NasNet, as selected by HeteroG, implying that EV-AR is already a

good strategy for NasNet. Besides, when the batch size or a model

size become larger, DP becomes infeasible for training large models

(out-of-memory), while HeteroG can still find feasible solutions.

We record the percentage of operations in each DNN adopting

different parallelism strategies, as decided by HeteroG, in Table 2.

EV-PS, EV-AR, CP-PS and CP-AR represent the DP strategies used

by individual operations. We have the following observations.

Hybrid of PS and AllReduce for parameter synchronization.
We see that a mixture of PS and AllReduce methods are used for

aggregating gradients in each DNN model. Due to NCCL’s limi-

tation, AllReduce for different operations cannot be launched si-

multaneously; with hybrid, PS-based gradient aggregation of some

operations can start when a parameter synchronization process

using AllReduce is in waiting stage (for receiving gradients from

other devices). The communication channel can be better utilized,

while GPUs are running computation operations, leading to a better

overlap between communication and computation.

Different device distribution of replicas. Table 2 also shows

that among operations which use DP, the percentages of having

the same number of replicas per device or a proportional num-

ber of replicas according to device computation power, are quite

comparable. As shown in Sec. 2.3, effectiveness of replicating ac-

cording to device computation power is different for different types

of operations and for the same operation with different input sizes.

Consistently here, a hybrid of even replication and proportional

replication are chosen for operations within each DNN model.

Eliminating large gradient aggregation. For each DNN model,

a small percentage of operations are placed in GPU0 (or GPU1)

without replication (i.e., using MP instead of DP). A close inspection

reveals that those are mostly operations with a large number of

parameters (e.g., operations in the last fully connected layer in

VGG-19 and ResNet200, word embedding layer in Bert-large and

Xlnet-large and the operations to compute their gradients). When

those operations are placed in a single GPU, their gradients do not

need to be aggregated and applied to multiple GPUs, so the related

communication overhead is eliminated.

Deployment of LargeModels.Table 1 has shown thatHeteroG can

find customized strategies to successfully run largemodels (ResNet200,

Bert-large and Xlnet-large with larger batch sizes, Transformer,
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Table 3: Percentage of operations using different parallelism strategies with HeteroG: large models (Gx means placing the
operation in the x-th GPU without replication).

Model (batch size) G0 G1 G2 G3 G4 G5 G6 G7 EV-PS EV-AR CP-PS CP-AR

ResNet200 (384) 28.7% 21.5% 14.7% 12.8% 6.5% 7.8% 0 0 2.8% 5.2% 0 0

Transformer (48 layers)(120) 33.6% 29.8% 7.2% 6.1% 4.4% 5.6% 2.1% 3.5% 1.7% 1.4% 2.2% 2.4%

Bert-large (24 layers)(96) 20.6% 17.7% 11.5% 10.8% 12.3% 8.2% 5.4% 3.6% 3.3% 2.8% 1.2% 2.6%

Xlnet-large (24 layers)(96) 22.3% 19.4% 9.8% 8.4% 10.3% 8.1% 5.2% 5.8% 2.3% 3.5% 3.3% 1.6%

Bert-large (48 layers)(24) 22.8% 21.6% 8.4% 7.2% 8.7% 7.9% 6.4% 4.3% 2.8% 3.5% 2.7% 3.7%

Xlnet-large (48 layers)(24) 28.6% 24.7% 5.4% 7.5% 6.3% 5.9% 3.3% 3.7% 2.9% 4.1% 2.7% 4.9%

Table 4: Per-iteration training time (in seconds) of DNN models: HeteroG strategies vs. different DP strategies (12 GPUs).

Model (batch size) HeteroG EV-PS/Speedup EV-AR/Speedup CP-PS/Speedup CP-AR/Speedup

VGG-19 (288) 0.503 0.911 / 81.1% 0.682 / 35.6% 0.896 / 78.1% 0.633 / 25.8%

ResNet200 (288) 0.745 1.522 / 104.3% 1.085 / 45.6% 1.298 / 74.2% 0.966 / 29.7%

Inception_v3 (288) 0.641 0.987 / 53.9% 0.806 / 25.8% 0.954 / 48.8% 0.791 / 23.4%

MobileNet_v2 (288) 0.255 0.421 / 65.1% 0.411 / 61.2% 0.403 / 58.1% 0.337 / 32.1%

NasNet (288) 0.915 1.385 / 51.3% 1.123 / 22.7% 1.275 / 39.3% 1.348 /47.3%

Transformer (6 layers)(1080) 0.419 1.133 / 170.4% 0.605 / 44.3% 1.112 / 165.3% 0.547 / 30.5%

Bert-large (24 layers)(72) 0.538 0.825 / 53.3% 1.234 / 129.3% 0.821 / 52.6% 1.218 / 126.4%

XlNet-large (24 layers)(72) 0.972 1.447 / 48.8% 1.681 / 72.9% 1.485 /52.8% 1.832 / 88.5%

ResNet200 (576) 3.031 OOM/- OOM/- OOM/- OOM/-

Transformer (24 layers)(180) 1.544 OOM/- OOM/- OOM/- OOM/-

Bert-large (24 layers)(144) 2.611 OOM/- OOM/- OOM/- OOM/-

XlNet-large (24 layers)(144) 5.043 OOM/- OOM/- OOM/- OOM/-

Bert-large (48 layers)(36) 2.367 OOM/- OOM/- OOM/- OOM/-

XlNet-large (48 layers)(36) 3.812 OOM/- OOM/- OOM/- OOM/-

Table 5: End-to-end training time (in minutes) of DNN models: HeteroG strategies vs. different DP strategies.

Models

8GPUs (batch size=192) 12GPUs (batch size=288)

HeteroG CP-PS/Speedup CP-AR/Speedup HeteroG CP-PS/Speedup CP-AR/Speedup

VGG-19 513.1 930.2/81.3% 660.9/28.8% 369.8 667.1/80.4% 457.1/23.6%

ResNet200 633.1 1137.1/79.6% 807.8/27.6% 423.8 726.7/71.8% 533.1/25.8%

Inception_v3 834.6 1463.9/75.4% 1047.5/25.5% 643.6 980.8/52.4% 783.9/21.8%

MobileNet_v2 221.4 369.5/66.9% 319.5/44.3% 169.8 264.5/55.8% 229.7/35.3%

NasNet 1191.3 1683.3/41.3% 1537.9/29.1% 863.9 1179.2/36.5% 1134.3/31.3%

Bert-large and Xlnet-large with more layers), of which pure DP

training incurs OOM errors. We further inspect operation-level

parallelism decisions made by HeteroG for these models in Table 3.

Different from results in Table 2 where most operations of the

smaller DNN models use DP, most operations in large models in

Table 3 are deployed in a single device without replication. This can

be explained by the large memory demand of operations in large

models, because both more layers and increased batch size lead to

increased memory usage.

6.3 Per-iteration Training Speed-up with More
GPUs

We next evaluate the per-iteration time when training the DNNs

with all 12 GPUs using HeteroG. We conduct the same experiments

as described in Sec. 6.2. Table 4 shows that HeteroG also performs

well when scaling to more GPUs. We observe that the speed-up

differs compared to using 8 GPUs in Table 1 (e.g., higher speed-up

is achieved with NasNet, Bert-large, XLnet, and lower speed-up

results with VGG-19, ResNet200, Transformer). With 12 GPUs, the

communication time takes a larger portion in the per-iteration

training time with DP baselines, especially for models like Bert-

large, in which the percentage of computation intensive operators

(e.g. Conv2D) is small.HeteroG finds optimized strategies to alleviate

increased communication in the training time, resulting in higher

speed-up as compared to DP baselines. Note that the per-iteration

training time in Table 4 is larger than in Table 1, as the global batch

size is increased in this set of experiments with more GPUs.

6.4 End-to-End Performance
The end-to-end model training time of the DNN models, for

the training to converge to the respective target Top-5 accuracy

as reported in the state-of-art benchmarks [7, 49, 51], is given in

Table 5. HeteroG achieves most expedited training completion as

compared to baselines and the speedup is similar to the speedup of

per-iteration training time given in Table 1 and 4. This is because

in HeteroG, our modification of a DNN graph does not change the

training semantics of the DNN model, as we only change the num-

ber of replicas of operations, their device placement and execution

order. The modified DNN training graph is mathematically equiv-

alent to the original DNN model, i.e., the same input leads to the

same output [25]. Further, we always adopt the same global batch
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Table 6: The time (in minutes) for training GNN to find the
best strategy for unseen graph.

Models

From scratch On pre-trained Ratio

(8GPU/12GPU) model (8GPU/12GPU) (8GPU/12GPU)

VGG-19 82.5/113.4 21.2/25.3 25.7%/22.4%

ResNet200 174.7/201.3 27.3/30.7 15.6% /15.3%

Inception_v3 112.6/141.5 25.1/29.4 22.9%/20.1%

MobileNet_v2 105.2/144.6 26.5/29.8 25.2%/20.6%

NasNet 154.9/191.4 33.4/40.7 21.6%/21.3%

Transformer 143.2/178.8 36.9/41.4 25.8%/23.2%

Bert-large 196.1/243.9 45.1/48.7 22.9%/19.9%

Xlnet-large 211.7/245.3 41.4/46.5 19.5%/18.9%

Table 7: Per-iteration training time (in seconds)
with/without HeteroG order scheduling (8 GPUs).

Models (batch size)

HeteroG FIFO

Speed-up

Schedule Schedule

VGG-19 (192) 0.462 0.512 10.8%

ResNet200 (192) 0.693 0.761 9.8%

Inception_v3 (192) 0.528 0.602 14.1%

MobileNet_v2 (192) 0.232 0.269 15.9%

NasNet (192) 0.862 0.989 14.8%

Transformer (6 layers)(720) 0.298 0.322 11.4%

Bert-large (24 layers)(48) 0.451 0.514 13.9%

Xlnet-large (24 layers)(48) 0.851 1.005 18.1%

size to train a DNN using our modified training graph as when

training the DNN using the baselines. As a result, the total number

of training iterations needed for model convergence is not changed

[48], as compared to using the baselines.

6.5 Generalization to Unseen Graphs
We next evaluate generality of the GNN model in the Agent of

Strategy Maker in HeteroG. In this set of experiments, we train the

Agent using the 8 DNN graphs excluding one graph (which is the

unseen graph). In standard GNN-based predictions, only one node

in a graph needs to be classified to different classes [10, 63]; given

the small action space, prediction based on unseen graphs can be

directly done using pre-trained model without further fine-tuning.

In our system, the graph structure of different DNNs varies signif-

icantly and every node needs to be classified, resulting in a very

large action space. In such cases, further GNN fine-tuning is neces-

sary on unseen graphs, as also reported in [2, 20, 64]. Especially, we

consider a graph as new/unseen, if the graph’s structure is different

from graphs that have been used for training.

We experiment with training the GNN from scratch using a

single graph, and record the time taken for GNN policy to converge.

We also record the time needed for continuing training the pre-

trained model on the unseen graph until it converges to the same

best strategy found by training from scratch. Table 6 shows that

training an unseen graph based on the pre-trained GNNmodel takes

much shorter time than training from the scratch. It indicates that

the pre-trained GNN model has indeed learned useful structures

from other graphs, and can generalize pretty well to unseen graphs

with a small amount of fine-tuning, i.e., the GNN does not need

to be re-trained from scratch for an unseen graph. Further, with

more GPUs, the fine-tuning time only increases slightly based on

the pre-trained model.
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Figure 8: Computation time and communication time per-
iteration (8-GPU training).
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Figure 9: Comparison with existing schemes (12 GPUs).

6.6 Effects of Order Scheduling
We evaluate the effectiveness of our execution order scheduling

heuristic (Sec. 4.2), by running model training with our scheduling

heuristic in place and with TensorFlow’s default FIFO execution

schedule. Table 7 shows that our scheduling heuristic accelerates

training by about 10∼20%.

6.7 Time Breakdown
Fig. 8 shows the average per-iteration training time, computation

time and communication time using DP baselines and HeteroG. Due
to overlap of computation and communication, overall per-iteration

training time is usually smaller than the sum of computation and

communication time. With HeteroG, computation time is smaller

than pure DP, due to HeteroG’s careful selection of per-operation

parallelism and placement strategies; communication time is also

reduced because PS or AllReduce is carefully selected and some

operations use MP without replication, eliminating gradient aggre-

gation overhead. When training VGG19, the ratio of the sum of

computation and communication time over per-iteration training

time is 1.31 with CP-AR and 1.47 with HeteroG. For Bert-large, the
ratio is 1.21 with CP-PS and 1.56 with HeteroG. They show that Het-
eroG achieves better overlap of computation and communication.

6.8 Comparison with Existing Studies
Existing works HetPipe [43], FlexFlow [26], Horovod [47] and Post

[12] are most relevant to ours. We implemented FlexFlow and

Horovod using their open-sourced code and did our best to re-

implement Hetpipe and Post according to the algorithms proposed

in their papers. We compare the training speed of HeteroG with

these schemes, when each DNN model is trained on 12 GPUs. Fig. 9

shows the normalized training speeds, computed by dividing the

training speed (samples/second) of each scheme by that of Horovod.

We observe that the training speed with HeteroG is the highest,
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outperforming other schemes by 16.4% ∼ 391.8%. Post only con-

siders operation-to-device placement but not operation-level data

parallelism. HetPipe uses heuristics to divide GPUs into multiple

virtual workers, utilizes layer-level pipeline parallelism within each

virtual worker and data parallelism across different virtual work-

ers, but does not consider operation-level optimization, limiting

the solution space. None of the four existing schemes investigate

different gradient aggregation methods and execution order of op-

erations. HeteroG systematically addresses a large strategy space

and achieves better performance.

7 RELATEDWORK
Hybrid Gradient AggregationMethods in DP. Parallax [28] ad-
vocates different gradient aggregation methods for different types

of parameters in models with large word embedding: PS for sparse

parameters and AllReduce for dense parameters. BlueConnect [6],

Blink [54] and Plink [33] optimize AllReduce architectures in hetero-

geneous network environments. They do not address computation

power heterogeneity among computing devices.

Device Placement of Deep Learning Models. The Google team
uses RL to generate device placement policies for groups of opera-

tions in DNNmodels, with manual operation-to-group assignments

[39]; they later propose HDP [38] that jointly learns two NNs for

assigning operations to groups and placing groups to devices, re-

spectively. POST [12] integrates an online RL algorithm and a batch

learning algorithm, to learn a policy for device placement of DNN

operations. Follow-up work have exploited GNNs to learn more

general policy networks applicable to different computation graphs

[2, 41, 42, 64]. For example, GDP [64] trains a GNN to produce

operation-to-device placement for each operation; the action space

is much smaller than ours, without deciding operation replication

or gradient aggregation methods.

Hybrid Parallelism. Stanza [59], DLPlacer [40] and Alex [30]

adopt DP for training convolutional layers in CNN models and

MP for other layers. OptCNN [24] parallelizes CNN model train-

ing by splitting operations along batch and channel dimensions;

training over homogeneous devices is considered. Tofu [56] uti-

lizes a partition-n-reduce method to split a single operation into

sub-operations, and a dynamic programming approach to recur-

sively optimize the partition; no device placement of operations is

considered. FlexFlow [26] explores the SOAP (Sample-Operation-

Attribute-Parameter) search space addressing parallelism within

and across operations, and does not consider gradient aggregation

methods or execution order of operations.

Pipeline Parallelism. Pipelining has been studied to accelerate

DNN training: different DNN layers are deployed on different de-

vices; a mini-batch is divided into micro-batches and the micro-

batches can be processed at different devices concurrently [18, 60].

GPipe [21] uses pipelining to address memory bottlenecks for train-

ing large NNs. PipeDream [18] introduces a pipelining approach to

overlap communication and computation for asynchronous train-

ing. HetPipe [43] integrates pipeline parallelism with DP in hetero-

geneous environments, making layer-based parallelism decisions

but not operation-level without considering execution ordering.

With pipeline parallelism, semantics of the original model train-

ing is often not retained: pipelining results in multiple versions

of parameters during training (similar to asynchronous training),

which may lead to more training steps for the model to converge to

an acceptable accuracy, or convergence to a different accuracy. Het-
eroG accelerates training while retaining exactly the same seman-

tics as single-GPU model training, through ensuring synchronized

parameter updates at all operations. If retaining model training

semantics was not a concern, HeteroG can be readily integrated

with a pipelining design: after producing the distributed training

graph, we can further split a mini-batch into micro-batches, carry

out pipelined training across operations deployed on different de-

vices, and augment our execution order scheduling algorithm to

handle such micro-batches.

Deep Learning inHeterogeneous Environment.Kim et al. [29]
propose a hierarchical aggregation method based on data paral-

lelism in a heterogeneous GPU cluster: AllReduce architecture for

GPUs within the same server and PS architecture among different

servers. It does not consider fine-grained operation-level hybrid

data and model parallelism. Prague [34] proposes a novel commu-

nication primitive, Partial AllReduce, to accelerate asynchronous

training in heterogeneous environments. HeteroG focuses on syn-

chronous training with ensured model accuracy.

Multi-job Scheduling inDeep LearningClusters.Gandiva [61]
is a cluster scheduling framework that utilizes domain-specific

knowledge to improve latency and efficiency of training models

in a GPU cluster; it exploits intra-job predictability to time-slice

GPUs efficiently across multiple jobs. Gandivaf air [4] and Themis

[35] propose schedulers that balance conflicting goals of efficiency

and fairness in GPU clusters. Tiresias [16] schedules DL jobs to

reduce their job completion time. Some works study algorithms for

multi-dimensional resource packing for multi-job scheduling [15,

35, 37]. These studies focus on multi-job scheduling/placement in a

cluster, which is orthogonal toHeteroG, asHeteroG focuses on single

training job acceleration. For multi-job scheduling, HeteroG can

be used as a blackbox, feeding in resource provisioning to a job

and obtaining the training speed of the job based on produced

strategies; then we can balance resource allocation to different

jobs, to achieve targeted global objectives such as fairness, maximal

resource utilization or job completion time minimization.

8 CONCLUSION
We presentHeteroG, an automatedmodule to incorporate with exist-

ing machine learning frameworks for DNN training acceleration in

heterogeneous GPU clusters. HeteroG advocates operation-level hy-

brid parallelism, communication architecture selection and execu-

tion scheduling, based on a carefully designed strategy framework

exploiting both GNN policy learning and combinatorial optimiza-

tion. It achieves up-to 222% training speed-up as compared with

various existing data-parallel and hybrid parallel training schemes.

HeteroG also enables efficient training of large models over a set of

heterogeneous devices where simple data parallelism is infeasible.

We show that a hybrid of DP and MP, variable device distribution

of replicas, mix of PS and AllReduce for parameter synchroniza-

tion and a close-to-optimal execution schedule together are critical

for excellent distributed training performance in heterogeneous

clusters.
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Figure 1: Worst-case instance scheduled by LS.
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APPENDIX
Upper Bound of Order Scheduling Algorithm
We define the total per-iteration time using the algorithm as TLS
and the optimal per-iteration time as T ∗.

Theorem 1. TLS is no larger than (M +M2)T ∗

Proof. We use O to denote the set of all computation and com-

munication operations. We have:

TLS ≤
∑
oi ∈O

pi ≤ (M +M2)T ∗

The first inequality is due to that TLS is no larger than the total

amount of the data transmission and execution time of all opera-

tions. The second inequality is because that T ∗ is greater than the

total operation execution/transmission time on any device, making

T ∗ ≥

∑
oi ∈O

pi

M+M2
.

□

Furthermore, we craft a worst-case DAG instance in the follow-

ing Theorem 2.

Theorem 2. There is an instance for which TLS
T ∗ ≈ M +M2.

Proof. For ease of representation, we let H equal to M + M2
.

Let us consider the following instance in Fig. 3, where p and e are
the corresponding operation execution or transmission time with e
close to 0. Ignoring the dummy root and sink operation, the DAG

is mainly composed of H − 1 chains and k individual p operation.

Each chain contains kH operations with (n ∗ H + h)th operations

placed on device h, h ∈ [H ]. The k individual p operations are all

placed on device H . We assume k ≫ H .

We assume the execution time for the root and sink operation

to be 0. Since the rank for the first operation of each chain is larger

than the k operations, the chains are to be executed first.

Let us first consider the firstH operations of each chain, denoted

as the first batch of operations. We denote the ith operation of

chain j as oi , j . Since all rank(o1, j ), j ∈ [H − 1] are the same, we let

the execution order on device 1 to be from o1,H−1 to o1,1. On the

second device, the rank for all operations are also the same, and we

let the execution order on device 2 to be from o2,1 to o2,H−1. For
operations with the same rank on all other devices, we ensure the

execution order is from chain 1 to the last chain. Consequently, we

shall execute all (H − 1) × H operations but the last operations in

chain 1 to H − 2 in (H − 1)p + (2H − 3)e . The execution time for

the last operations in chain 1 to H − 2 can be overlapped by the

execution of next batch of operations, i.e., the second H operations

of each chain.

Similarly, the second batch of operations to the second last batch

of operations require (H − 1)p + (2H − 3)e to execute respectively.

The last batch of operations along with thek p individual operations
are executed using (H − 1)e + kp. Therefore, the total per-iteration
time for this case is:

TLS = (k − 1)((H − 1)p + (2H − 3)e) + (H − 1)e + kp

= ((k − 1)H + 1)p + ((k − 1)(2H − 3) + H − 1)e
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However, the optimal execution time is:

T ∗ = k (p + (H − 1)e) + (H − 2)e

Ensuring e → 0 and k to be large enough, we have:

TLS
T ∗
=
((k − 1)H + 1)p + ((k − 1)(2H − 3) + H − 1)e

k (p + (H − 1)e) + (H − 2)e
≈ H = M +M2

We illustrate the case of scheduling the DAG instance on four

devices by LS in Fig 1, and the optimal schedule in Fig 2, where the

three chains are colored with purple, red and yellow. We ignore the

dummy root and sink operations in the illustration.

□
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