Fast Training of Deep Learning Models over Multiple
GPUs

Xiaodong Yi
The University of Hong Kong
xdyi@cs.hku.hk

Ziyue Luo
The University of Hong Kong
zyluo@cs.hku.hk

Chen Meng
Alibaba Group
mengchen.cas@foxmail.com

Mengdi Wang Guoping Long Chuan Wu
Alibaba Group Alibaba Group The University of Hong Kong
didou.wmd@alibaba-inc.com guopinglong.lgp@alibaba-inc.com cwu@cs.hku.hk
Jun Yang Wei Lin
Alibaba Group Alibaba Group

muzhuo.yj@alibaba-inc.com

Abstract

This paper proposes FastT, a transparent module to work
with the TensorFlow framework for automatically identify-
ing a satisfying deployment and execution order of oper-
ations in DNN models over multiple GPUs, for expedited
model training. We propose white-box algorithms to com-
pute the strategies with small computing resource consump-
tion in a short time. Recently, similar studies have been done
to optimize device placement using reinforcement learning.
Compared to those works which learn to optimize device
placement of operations in several hours using large amounts
of computing resources, our approach can find excellent de-
vice placement and execution order within minutes using
the same computing node as for training. We design a list
of scheduling algorithms to compute the device placement
and execution order for each operation and also design an
algorithm to split operations in the critical path to support
fine-grained (mixed) data and model parallelism to further
improve the training speed in each iteration. We compare
FastT with representative strategies and obtain insights on
the best strategies for training different types of DNN models
based on extensive testbed experiments.

CCS Concepts: - Computing methodologies — Machine

learning; - Computer systems organization — Distributed

architectures.

Keywords: Distributed training, data parallel, model parallel

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

Middleware °20, December 7-11, 2020, Delft, Netherlands

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8153-6/20/12...$15.00
https://doi.org/10.1145/3423211.3425675

weilin.lw@alibaba-inc.com

ACM Reference Format:

Xiaodong Yi, Ziyue Luo, Chen Meng, Mengdi Wang, Guoping Long,
Chuan Wu, Jun Yang, and Wei Lin. 2020. Fast Training of Deep
Learning Models over Multiple GPUs. In 21st International Mid-
dleware Conference (Middleware *20), December 7-11, 2020, Delft,
Netherlands. ACM, New York, NY, USA, 14 pages. https://doi.org/
10.1145/3423211.3425675

1 Introduction

Deep Learning (DL) has become increasingly popular over
the past years in various application domains such as com-
puter vision, speech recognition and robotics. With increas-
ingly complicated models and larger datasets, training of a
deep neural network (DNN) model becomes an extremely
time consuming job. Parallelizing the training using workers
equipped with multiple GPUs or in a distributed environment
is popular with current machine learning (ML) frameworks
[2, 6,9, 13].

Three of the most common parallelization strategies are
data parallelism, model parallelism and pipeline parallelism.
Data parallelism places a replica of the entire neural network
(NN) on each device (e.g. , a GPU card) so that each device
processes a subset of the training data and synchronizes
model parameters in different replicas at the end of each
training iteration. Model parallelism handles models with a
large number of parameters, which cannot fit into the device
memory, by assigning disjoint partitions of an NN each to a
different device. Pipeline parallelism divides a DNN model
into stages and places stages on multiple devices; it further di-
vides each mini-batch into microbatches, so different devices
can process different microbatches simultaneously.

To date, it is still not clear that given multiple GPUs, what
the best strategy is to deploy a specific model onto the de-
vices. Commonly, a practitioner may use data parallelism
and replicate the model onto each GPU, but is this really
always the best strategy even when a single GPU can hold
the entire model? And how about large models that cannot
be entirely replicated to a single GPU?


https://doi.org/10.1145/3423211.3425675
https://doi.org/10.1145/3423211.3425675
https://doi.org/10.1145/3423211.3425675

Middleware ’20, December 7-11, 2020, Delft, Netherlands

In this paper, we show that a mixture of fine-grained data
and model parallelism combined with some heuristics is able
to find a satisfying device placement in a fast manner with
little resource consumption. We also seek to develop a soft-
ware module to enable automatic model deployment without
requiring model developers’ code modification, which can
seamlessly work with existing frameworks such as Tensor-
Flow. For a small model which can be deployed in a single
GPU, it should find a strategy achieving faster training than
normal data parallelism, if there is one; for a large model
which cannot be deployed entirely in a single GPU, it pro-
vides a good deployment across multiple GPUs.

We propose FastT, a transparent module that automatically
finds and activates a satisfying deployment and execution
order of operations for different kinds of models in a multi-
GPU environment. Our contributions are summarized as
follows:
> We propose new heuristics that find deployment and
execution orders in a few minutes, which are better
than or as good as previous strategies that require hours
to be computed. The main reasons lie in that we extend the
solution space by considering operation split and execution
ordering, and we use efficient white-box heuristics rather
than search or learning-based methods to reduce strategy
calculating time. FastT is efficient enough to be executed
on one node (the same as a single worker used for model
training), removing the need for an additional cluster for
strategy search.
> We build adaptive cost models to facilitate our algo-
rithms. To minimize profiling overhead while obtaining
accurate operation execution time on each device and inter-
device communication time, we use data parallelism as the
starting strategy (as long as it is feasible), try out different
placements and apply linear regression to obtain the com-
munication cost model.
> We consider a larger solution space than previous
approaches by considering both execution order and
fine-grained parallelism within operations. We observed
significant performance variation under the same device as-
signment with different operation execution orders. FastT de-
cides execution order and achieves fine-grained parallelism
by splitting some operations on the critical path to fur-
ther improve the processing speed. Experiments show that
FastT achieves up to 59.4% speedup compared with pure data
parallelism with the larger solution space.
> We provide an open-source implementation of our
method that transparently works with TensorFlow: de-
velopers do not have to modify their ML model to lever-
age our solution. FastT is useful for various models, and
able to automatically calculate and activate placement and
execution without involving the ML developer. We have built
FastT based on TensorFlow: once the FastT module is turned
on, developers can transparently use it with their existing

Xiaodong Yi and Ziyue Luo, et al.

models implemented with all kinds of TensorFlow’s Python
APIs without modifying a single line of their code.

2 Background and Motivation
2.1 DNN Training and Parallelism

Training a DNN is an iterative process which uses a large
amount of data to tune model parameters for minimizing
a loss function. In current training frameworks [2, 6, 9, 13],
different kinds of computation are implemented by different
operations (such as Conv2D, MatMul), and input and output
of these operations are called tensors. The computing process
can typically be represented by a DAG (Directed Acyclic
Graph), whose nodes are operations and edges are tensors.
Data Parallelism. The input data are partitioned to differ-
ent devices. Each device shares the same model parame-
ters. Gradients from all devices are applied to update the
global model. Data parallelism can be applied in a single
worker/machine with multiple GPUs [19, 26, 27], and among
multiple machines [37].

Model Parallelism. The input data are sent to all devices
without partition; each device is responsible for tuning a
different part of the model parameters. Model parallelism is
typically used for models with a large parameter size [26, 34,
45].

Pipeline Parallelism. Pipelining has been proposed to ac-
celerate DNN training with multiple accelerators [12, 14, 22].
Many DNN models stack layers sequentially; naive model
parallelism may result in only one active accelerator any-
time during training. With pipeline parallelism, similar to
model parallelism, different layers are deployed on differ-
ent accelerators; a mini-batch is further divided into several
micro-batches and these micro-batches can be processed at
different layers at the same time to fully utilize all accelera-
tors.

2.2 Fine-grained device placement

Operation-level device placement. With model parallelism,
a model is typically partitioned in the layer level. A layer
consists of multiple operations. To expand the solution space,
some operation-level approaches are proposed [19] to decide
device placement of each operation separately.
Parallelism within operations. To further extend the so-
lution space, some studies [11, 16] investigate potential par-
allelism within individual operations. For example, for a
Conv2D operation, it can be further parallelized by being
partitioned on the batch size dimension or the channel di-
mension [27]. Such an approach can be regraded as fine-grain
mixture of data parallelism and model parallelism according
to different parallelizable dimensions of different operations.

2.3 Limitations and Challenges

Previous research [28, 46] has proposed strategies to man-
ually optimize parallelism based on human experts’ domain



Fast Training of Deep Learning Models over Multiple GPUs

knowledge and intuitions. For example, Krizhevsky [28] uses
data parallelism for convolutional and pooling layers and
switches to model parallelism for fully-connected layers to
accelerate the training of convolutional NNs (CNNs). In ad-
dition, some automated frameworks [19, 23, 27, 32] are pro-
posed for finding efficient parallelism strategies in a lim-
ited search space. REINFORCE [32] uses a reinforcement
learning method to learn efficient operation assignments
on multiple GPUs. TicTac [23] explores the impact of the
order of send/recv operations in distributed training. Al-
lowing fine-grained parallelism within a single operation,
FlexFlow [27] builds a new training architecture to explore
the SOAP (Sample-Operation-Attribute-Parameter) search
space considering parallelism within and across operations.
Some other frameworks focus on specific types of networks
such as CNN and RNN (Recurrent Neural Network), and pro-
vide APIs for developers to split operations by themselves
such as TensorFlow mesh [7] and tofu [44].

The existing proposals have the following limitations:

First, the purpose to find optimal device placement is to
save time and computing resource for a training job, and
the finding process itself should not be time and resource
consuming. Some existing approaches require a large amount
of resources and spend a long time to obtain the strategy.
For example, REINFORCE [32] and GDP [48] use another
big cluster consisting of tens of workers and spend hours on
learning the device placement policy.

Second, existing approaches may not be generic enough
for different kinds of models or not compatible with popular
training frameworks. For example, OptCNN [26] is designed
for CNNss. FlexFlow implements the training framework it-
self, and does not support representative frameworks such
as Tensorflow or MXNet.

Third, the solution space can be particularly large. Most
existing studies only consider device assignment of opera-
tions, but not the execution order of operations. For example,
FlexFlow defines a fine-grained search space beyond data
and model parallelism, and schedules operations in the ready
queue with a simple FIFO strategy.

We seek to address the following challenges in this paper:
> We consider not only device placement of operations, but
also partitions of operations and their execution orders; the
solution space becomes much larger than what the existing
studies tackle. Finding a satisfying solution in a timely man-
ner with small computation resource consumption is critical
for solution adoption in a production environment.
> It is easier to design strategies for a specific type of models.
However, a generic approach needs to analyze the structure
(DAGsS) of different models and builds the respective cost
models.

Middleware 20, December 7-11, 2020, Delft, Netherlands

> Since ML developers may use various APIs to implement
their models (even when they are using the same ML frame-
work such as TensorFlow), it is hard to design a unified soft-
ware module to transparently support their existing models
without modification.

A practical model deployment and execution module must
be fast, light-weight, generic and compatible with existing
training architectures at the same time.

3 Problem Definition

We first formally define the problem we intend to solve. The
objective is to find a good device placement and execution or-
der to achieve parallelism across operations in a DNN model,
and also identify potential operations which can be parti-
tioned into several sub-operations to achieve fine-grained
parallelism within individual operations.

The input of the problem includes: (a) the DAG computing
graph, (b) the set of devices (GPUs) and memory limitation
of each device, and (c) the cost models for computation and
communication. The computation cost model provides com-
puting time of a given operation on a specific device, and the
communication cost model gives inter-device tensor com-
munication time of adjacent operations running on different
devices.

The output solution consists of three parts: (i) a partition
list of operations which should be partitioned (each item
in the list has three elements, the operation’s name, parti-
tion dimension, and the number of partitions); (ii) device
placement of each non-partitioned operation and each sub-
operation (due to splitting operations in the partition list);
and (iii) execution order of operations and sub-operations.

It should be noted that we focus on NN whose computing
graph is a DAG. Some networks can be implemented as a
graph with cycles in TensorFlow, e.g. a dynamic RNN which
includes a while loop, and whether to exit from the loop
is decided during runtime. For such a model, we optimize
exection of the DAG within each of its loops.

The problem of deciding execution order and placement
of a DAG with unit operation execution time is known as
the single execution time scheduling problem, which is NP-
complete [42]. Our problem poses even greater challenge as
we assume heterogeneous operation execution time. There-
fore, we propose efficient heuristic algorithms in Sec. 5 to
find a good solution of our problem.

4 System Design

FastT is built based on TensorFlow, addressing parallelism
both within and across operations in a DNN model. It cal-
culates both device placement and execution order for each
operation in the computation graph, with operations poten-
tially further partitioned.

Fig. 1 illustrates how FastT fits into the architecture of
TensorFlow, and colored blocks represent components we



Middleware ’20, December 7-11, 2020, Delft, Netherlands

[ Training libraries ] [Inferencelibraries]

[ Python client ] [ C++ client ]

( CAPI ]

[ Distributed master M Dataflow executor

[ Kernel implementations

(rec J{RomA | .. || (cPu] (GPu] ..

Networking layer Device layer

Xiaodong Yi and Ziyue Luo, et al.

[ Training libraries ] [Inferencelibraries]

Python client

Device placer

Strategy calculator
Cost models

( CAPI )

[/ )

C++ client

Dataflow executor
Distributed master

Order enforcement

[ Kernel implementations ]

(cpu) (epu] ..

Device layer /

(rec ) (ROMA ] ..

Qetworking layer

Figure 1. Architecture of TensorFlow (left) and FastT(right)

implement for FastT. The strategy calculator computes de-
vice placement and execution order for the current model
using the algorithm to be introduced in 5.2. The device placer
assigns different devices to run different (sub-)operations
according to the strategy computed by the strategy calcula-
tor. In the dataflow executor, order enforcement is responsi-
ble for organizing the execution order of (sub-)operations.
The cost models component records the execution time of
(sub-)operations executed on different devices and the data
transmission time when adjacent operations are handled on
different devices.

The workflow of FastT is as follows: Initially, FastT re-
quires several pre-training steps to bootstrap the cost models,
which uses different placement strategies to run the DNN
model to update its cost models. To activate a new strategy
computed with the updated cost models, the training session
does checkpoints of current model parameters, and restarts
to create a new graph based on the operation partition lists;
then the device placer activates the device placement and
the order enforcement module enforces the execution or-
der of (sub-)operations. The training session then restarts
with restored parameters from the checkpoints. After a new
strategy is activated, FastT records the per-iteration model
training time; if it finds that the per-iteration execution time
with the new strategy is even longer than the previous one,
it rolls back the strategy to the previous one. When the cost
models become stable (the average time of the same (sub-
)operation(s) on the same device(s) does not vary much), we
finish the pre-training stage. Afterwards, the model is trained
normally using placement and execution order strategies
computed by the strategy calculator, and the cost models
are updated only when the execution times have changed
significantly based on our periodical profiling.

Currently, we use checkpointing and restart the model for
activating a new strategy, since commonly adopted Tensor-
Flow versions do not allow modification of a graph structure
when the session has already run the graph. After the normal
training stage starts, the cost models are not updated often.
Cost Models. The computation cost model provides the ex-
ecution time of a (sub-)operation on a device, using the oper-
ation’s name and device as the key. The communication cost
model provides the tensor transfer time between adjacent
operations assigned to two different devices, according to
tensor size and device pair. Different from simulation-based
measurement of such time [27], we profile the training pro-
cess and record real execution/transmission time, based on
the RunMetadata [5] generated by the TensorFlow profiler.

During the pre-training stage, FastT first uses its algo-
rithm (DPOS in Sec. 5) to compute device placement and
execution order strategies (a default data or model parallel
strategy is used when cost models are empty), trains the
DNN model with these strategies for several iterations (aka
steps), and profiles the training process to update the cost
models. Especially, when our algorithm finds a cost that it
needs (e.g. , execution time of an operation on a device) is
not in the cost model, it sets the cost to 0, so that the algo-
rithm prefers to explore the placement, and then the profiler
can obtain the real cost of this placement in the following
training steps. It typically only takes several iterations to
obtain the complete computation cost model, considering
that we use data parallelism as the starting strategy (as long
as the model can be fit into a GPU) by which each operation
is replicated to different GPUs and their execution time on
different devices is learned. For a large model that cannot
be fit into a GPU, we use model parallelism, try different
placements on multiple GPUs, and obtain the cost models.



Fast Training of Deep Learning Models over Multiple GPUs

To build the communication cost model, we gather tensors
across the same source-destination device pairs into one
group. For each group, we use linear regression to obtain a
linear model: tensor size vs. transfer time. In each update of
the cost model, newly collected data are fed and parameters
of the linear model are re-computed. The models capture
available bandwidth and potential congestion along each
device-device path.

Strategy Calculator. It is the key component to carry out
the algorithms that we will discuss in Sec. 5. During the pre-
training stage, it calculates device placement, execution order
and operation partition lists, and obtains the cost models.
During the normal training stage, it periodically activates
the profiler, updates the cost models, and recalculates new
strategies. If the estimated per-iteration training time with
the new strategies (among output of our DPOS algorithm) is
smaller than that of previous strategies, the new strategies
are activated.

Device placer. Device placer is responsible for assigning
each operation onto a device (GPU) according to the strategy
computed by the strategy calculator.

Order Enforcement. After obtaining execution order of
(sub-)operations from the strategy calculator, the enforce-
ment module sets the indices of (sub-)operations in the order
list as their priorities, and enforces the execution order in
TensorFlow’s executors.

5 Operation Placement and Ordering
Heuristics
5.1 Listing Scheduling

We design a listing scheduling method to compute the device
placement and execution order of operations, inspired by
algorithms handling DAG task scheduling over multipro-
cessors [20, 41]. With listing scheduling, the whole solution
space is reduced in two phases: (i) operation prioritization
for deciding device placement sequence of all operations,
and (ii) device selection which chooses the operation in the
order of their priorities and assigns the best device to each
selected operation, to minimize the operation’s finish time.
Operation Prioritization. The priority decides the device
placement sequence, which is slightly different from the
execution order of operations. We exploit a critical-path
[41] based heuristic for computing a rank rank, for each
operation o; in the DAG:

rank,(o;) = w; + max (c;; + rank,(o;))

ojesucc(o;)
where w; is the maximal execution time of operation o; (over
different devices that it could be assigned to run), succ(o;) is
the set of immediate successor operations of 0;, and c; ; is the
maximal transmission time of the tensor from operation o; to
operation o; (over different device pairs that they can be lo-
cated on). rank,(0;) represents the length of the critical path

Middleware 20, December 7-11, 2020, Delft, Netherlands

from operation o; to the exit operation, and can be computed
recursively by traversing the computation graph, starting
from the exit operation. The rank of the exit operation is:
ranky(0exir) = Wexit-

We use rank,(0;) as o;’s priority, such that the next op-

eration to be placed is always the entry operation in the
new critical path of the current sub-graph, excluding the
operations that has already been considered.
Device Selection & Execution Order. We use EST(o0;, d;)
and EFT(o;, d;) to represent the earliest execution start time
and the earliest execution finish time of operation o; on
device d}, respectively. For the entry operation 0¢,¢ry of the
DAG, we have

EST(0entry.d;j) =0 ford; € set of devices

For other operations, EFT and EST can be computed start-
ing from the entry operation as follows:
EST(0;,d;) = max{avail[j], max (EFT(o;,)+ éii Bl
om€Epred(o;) >

EFT(Oi, d]) =w;jt+ EST(Oi, d])

Here, avail[j] is the earliest available time of device d;; pred(o;)
is the set of immediate predecessor operations of o;; é:{’i is
the actual tensor transmission time between o0;’s immediate
predecessor 0, and o;, if 0; is assigned to device d;. Note that
avail[j] is not the time when d; completes the execution of
its last assigned operation: it is possible for our algorithm to
insert an operation into an earliest idle time slot between two
already-scheduled operations on a device; the length of the
idle time slot should be sufficient to execute this operation,
and inserting the operation into this idle time slot should
preserve precedence constraints; avail[j] is the start time
of such a timeslot. We use ST(0;) and FT(o;) to represent
the actual execution start time and execution finish time of
operation o;.

Our algorithm aims to minimize the overall actual execu-
tion time of operations on the computation graph’s critical
path (based on their placement), which is the lower bound
of the end-to-end execution time of the DAG (there could
be gap time between operation executions). To compute the
critical path, the entry operation is selected, and then we
recursively select the operation with the largest rank among
the successors of the previous operation.

We consider operations in the DAG according to the order
computed. If the operation is on the critical path, assign it
to a critical-path device. We choose a critical-path device as
follows: for each available device, we simulate placing as
many remaining operations on the critical path as possible
onto the device (within its memory capacity), and compute
the average execution time of the operations on the device
using values from the computation cost model; we choose
the device with the smallest average time as a critical-path
device. If an operation is not on the critical path, we assign it



Middleware ’20, December 7-11, 2020, Delft, Netherlands

Algorithm 1 Device Placement and Operation Sequencing
(DPOS)

1: Input: Graph G(O,E); Device Set D; Computation Cost
Model C¢omp; Communication Cost Model Cepmmu;

2: Output: New Device Placement Strategy Sy..; Exe-
cution Order List A[]; Finish Time of Exit Operation
FT(Oexit)-

3: Set w; to be the max execution time of operationiand c; ;
to be the max communication time between operations
iandj.

4: Compute rank,, critical path SETcp.

5: Select a device set dcp to place operations in critical
path based on average computation time and memory
capacity.

6: Create priority queue L for operations by decreasing
order of rank, values.

7: while L is not empty do

8:  0; « L.dequeue()

9: if 0; € SETcp then

10: Snewloil = dcp(0;)

11:  else

12: for dinD do

13: if memory need of 0; exceeds capacity of d then

14: EFT(0;,d) « +0

15: else

16: Compute EFT(o;, d)

17: end if

18: end for

19: Snewl0i] = arg min EFT(0;,d)
deD

20: FT(OI) = EST(O,', Snew[oi])

21:  endif

22: end while

23: Compute Execution list A by sorting operations in as-
cending order of ST(o;)

24: Compute FT(0exit)=EFT(0¢xit » SnewlOexit])

25: Return: Sy, A, FT(0¢xiz)

to another device with sufficient memory which minimizes
the EFT of the operation. During operation-device assign-
ment, when a critical-path device’s memory is full, we find
another critical-path device and assign as many critical-path
operations to it as possible.

Our Device Placement and Operation Sequencing (DPOS)
algorithm is given in Alg. 1. We identify the following prop-
erties of DPOS. We use wppos to represent the end-to-end
processing time of the DAG. The time intervals in [0, wppos]
can be categorized into two exclusive sets A and B: A includes
all time intervals when all the devices are busy, and B in-
cludes intervals when at least one device is idle. If B = &,
DPOS is obviously optimal. Thus, we focus on the case
where B # &. We assume B is the union of N intervals:

B=[blbrTu (bl bi]U. ..U [bh, bL ] with b! < b7 < bl <

Xiaodong Yi and Ziyue Luo, et al.

-++ < b};. We use O to represent the set of all operations in
the DAG.

Lemma 1 There exists a chain X : 0;,, = 0;,, , = ... =
0;, in O that covers B, if the memory capacity of devices
is sufficient to host operations assigned. That is, the total
execution time plus maximal overall data transmission time

along chain X is no less than the total duration of B: g (bl —
M M-1 "
D) S X Wip + X Cipprigar-
m=1 m=1

Theorem 1 The end-to-end processing time of the DAG,
®ppos, satisfies: ®ppos < 20opt + Crmax, Where wop; is the
optimal DAG execution time in an ideal system without
tensor transmission time, and Cy, 4, is the maximal overall
data transmission time along any chain in O.

The detailed proofs are given in the Appendix.

5.2 Operation Splitting

The DAG execution time may be further reduced by splitting
operations on the critical path into sub-operations, for fur-
ther parallelism to reduce the overall execution time of the
critical path. Different types of operations have different di-
mensions to be split. For example, Conv2D can be partitioned
on the batch size dimension for fine-grained data parallelism
within the operation, and also on the channel dimension to
achieve fine-grained model parallelism. Splitting operations
does not change training semantics through graph modifica-
tion, hence resulting in no model accuracy loss. We propose
our second heuristic OS-DPOS (Operation Splitting Device
Placement and Operation Sequence) to perform operation
splitting based on DPOS.

The input graph to Alg. 2 is decided as follows: if the model
is too large to be fit into a single device, we input the DAG
of the model; otherwise, we construct a data parallel graph
based on the model DAG as the input, where the model is
replicated as many times as the number of devices (i.e., we
adopt data parallelism as our start deployment strategy in
order for the algorithm to identify a better strategy beyond
pure data parallelism). In the algorithm, a function Split-
Operation is invoked to generate the updated graph when
an operation is split on a specific dimension with a certain
split number. As an example, here we only show one split
method which is suitable for some types of operations (e.g. ,
suitable for Conv2D and not for BatchNorm). Different split
methods are available for splitting other types of operations
[7, 26, 27].

The algorithm first invokes Alg. 1 to compute an initial
device placement and execution order. Then it calculates the
new critical path based on the placement strategy and splits
the operations along the critical path in descending order
of their computing time. For a specific operation, Alg. 1 is
called to compute the corresponding critical path, device
placement and execution order after splitting it on each



Fast Training of Deep Learning Models over Multiple GPUs

Algorithm 2 OS-DPOS

1: Input: Graph G(O, E); Device Set D; Computation Cost
Model C¢omp; Communication Cost Model Cepmu;

2: Output: Operation Split List SP[]; New Device Place-
ment Strategy S; Execution Order List A;

3. Compute Spew; All; FToia(0exir) using DPOS(G,D,

Ccompaccmmu)-

: Compute Critical path (CP) based on S, and G.

: sort CP by descending order of computation time.

. Initialize SP « [];Ginit < G(O, E);S < Snew

: for operation op in CP do

With different d € parallelizable dimensions and

ne # of GPUs(D), call DPOS(SplitOperation(Gipi;,

op,d,n), D,Ccomp,Cemmu,S) and record the smallest

FT(0exir) and corresponding dimension d, split num

n, Spew and Apeqy.

9: if FT(0exit) < FTo14(0cxir) then

10: Update: FTo1d(0exit) < FThew(nexit)s Ginir

Grew: S Snew, SP — SP U (0p,d, n), A — Apery
11:  else

[T = S

12: break
13:  endif
14: end for

15: Return: SP, S, A.

16: function SplitOperation (Graph:G(O,E), Operation:op,
Dimension:d, Split num:n)

17 fori <« 1,2,...,ndo

18: Create new sub-operation s;

19:  end for

20:  for operation pre € predecessors(op) do

21: add a split node sp and connect it to the n par-
titions split from edge (pre,op) on dimension d:
p17p27 ~~-7pn~

22: connect p; to s;.

23:  end for
24:  for operation suc € successors(op) do

25: add a concatenate node con that concatenates
815,825 .45 Sp.
26: connect con to suc.

27. end for

28:  Remove operation op and edges connecting to it.
29:  Return: Updated graph Gy

30: end function

dimension and with each split number, and the best split
of the operation which achieves the smallest FT of the exit
operation in the DAG is identified. Only if this time with
the best split is smaller than before splitting, the algorithm
records the corresponding best split dimension and split
number, and adds the decisions to the split list; otherwise,
the algorithm stops the loop and no longer explores the
remaining operations on the critical path.

Middleware 20, December 7-11, 2020, Delft, Netherlands

It is noteworthy that FastT may not use all the input de-
vices, and can choose a subset which achieves better perfor-
mance than using all. Strategy calculator in FastT carries out
Alg. 1 to derive device placement and execution order of all
(sub-)operations.

6 Implementation and Evaluation
6.1 System Implementation

We implement FastT over TensorFlow 1.14.

Strategy Calculator is built in Python client of TensorFlow
(1660 LoC in Python). We add the control logic inside the
initialize function and run function of class BaseSession. It
is the entry point to invoke TensorFlow C++ core runtime
from Python, and most high-level Python APIs are based
on the BaseSession class. Therefore, model developers can
transparently use our module with their existing models.
The strategy calculator activates TensorFlow profiler for
updating the cost models and computes new strategies in
the run function of BaseSession using a single CPU core.
Device Placer is simple module implemented with 20 LOC
in Python. It first checks the co-location constraints of op-
erations and then uses built-in functions of TensorFlow to
implement the device placement. When the training is done
over multiple machines, we use in-graph [4] implementation
so that a single global computation graph can be placed on
these machines.

Cost Model. We extend TensorFlow internal tracer to fetch
the raw meta-data of each operation during the training
process (198 LOC in Python), for building the cost models.
Order Enforcement is implemented within the executors
in TensorFlow C++ runtime (107 LOC). By default, the run-
time scheduler executes the operations in the ready queue
following FIFO (First-In-First-Out). We set each operation
with a priority according to the execution order computed by
the strategy calculator, and schedule operations according to
their priorities. We used to directly add control dependency
to enforce execution order, which adds strong constraints in
the graph, loses the chance for further optimization (such
as the graph pruning by TensorFlow), and sometimes leads
to poor performance. We hence exploit the priority-based
method to provide the scheduler more flexibility, while satis-
fying control dependencies.

Since we directly modify the code in Tensorflow’s
Session.run function to take over the control of all fol-
lowing processing, the developers do not need to change a
single line of their model code, when using the TensorFlow
framework compiled with our modules.

6.2 Evaluation Methodology

Testbed setup. We deploy FastT-boosted TensorFlow frame-
work in physical machines, each equipped with 8 NVIDIA
Tesla V100 GPUs with NVLinks, where each GPU has 16GB



Middleware ’20, December 7-11, 2020, Delft, Netherlands

Xiaodong Yi and Ziyue Luo, et al.

Table 1. Training speed (samples/s) of models using different strategies with strong scaling. DP represents Data Parallel. The
last column shows the speed-up of FastT with the best baseline performance and the results corresponding to this speed-up

are bold.

Models(global batch | 1 GPU 2GPUs 4GPUs 8GPUs 8GPUs (2servers) | Speedup

size in samples) DP FastT DP FastT DP | FastT DP FastT
Inception_v3(64) 191.0 326.5 323.2 467.1 474.1 432.4 438.3 378.7 415.6 1.5%
VGG-19(64) 129.0 149.5 199.4 184.9 294.9 126.9 132.5 110.7 122.3 59.4%
ResNet200(32) 89.3 114.2 142.2 122.1 132.2 88.4 91.1 77.4 82.6 16.4%
LeNet(256) | 8827.5 | 14222.2 | 23272.7 | 17006.6 | 19692.3 | 17066.6 | 19692.3 | 13473.6 | 16000.0 36.3%
AlexNet(256) | 1630.5 1868.6 2752.6 2000.0 2534.6 1695.3 1729.7 1391.3 1542.1 37.6%
GNMT(4 layers)(128) 301.1 435.3 479.4 573.9 636.8 584.4 606.6 458.7 455.5 8.9%
RNNLM(64) 345.9 349.7 395.0 335.0 345.9 254.9 2735 132.5 131.1 12.9%
Transformer(4096) | 7613.3 | 11221.9 | 11346.2 | 13518.1 | 15515.1 5244.5 | 5258.0 | 4586.7 | 4807.5 14.7%
Bert-large(16) 84.2 115.9 132.2 124.0 152.3 101.2 117.6 82.9 98.7 22.8%

Table 2. Training speed (samples/s) of models using different strategies with weak scaling. The last column shows the speed-up

of FastT with the best baseline performance and the results corresponding to this speed-up are bold.

Models(batch size | 1 GPU 2GPUs 4GPUs 8GPUs 16GPUs (2servers) | Speedup
per GPU in samples) DP | FastT DP FastT DP | FastT DP FastT
Inception_v3(64) 195.1 375.3 375.3 695.6 695.6 1245.7 1340.3 2211.6 | 2316.7 4.7%
VGG-19(64) 130.3 240.6 255.4 475.8 504.9 707.1 819.2 1155.7 1378.2 19.2%
ResNet200(32) 90.6 175.8 178.7 3224 346.89 598.1 608.0 942.9 1001.9 6.2%
LeNet(256) | 9142.8 | 16516.1 | 18285.7 | 20897.9 | 24975.6 | 21557.8 | 23011.2 | 18533.9 | 22021.5 15.8%
AlexNet(256) | 1600.0 | 2508.9 | 2994.1 2708.9 31124 2756.3 | 2904.9 2848.4 2890.6 9.3%
GNMT(4 layers)(128) 308.4 571.4 606.6 1047.0 1101.0 1988.3 1980.6 3136.2 3292.6 4.9%
RNNLM(64) 353.5 592.5 695.6 898.2 930.9 964.2 1013.8 1109.4 1140.3 2.7%
Transformer(4096) | 7861.8 | 15142.3 | 15170.3 | 26815.0 | 28151.2 | 47976.5 | 50334.9 | 73388.6 | 73388.6 0%
Bert-large(16) 81.6 137.3 146.1 229.3 248.0 361.5 421.0 531.1 572.7 7.8%

memory, and 2 Intel(R) Xeon(R) Platinum 8163 CPUs, where
each CPU has 24 cores.

Benchmark models. We experiment with 5 CNN models
(VGG19 [39], ResNet200 [24], AlexNet [29], LeNet [1] and
Inception-v3 [40]) and 4 NMT models (Transformer [43],
Bert-large [17], GNMT [46] and RNNLM [47]).

Baseline strategies. We use data parallel (DP) strategies
and results of REINFORCE [32], GDP [48], FlexFlow [27]
and Post [18] as baselines. For data parallelism, we adopt
default data parallel implementation in TensorFlow slim [3],
and compare the performance under both strong scaling
(which retains the same global batch size when the number
of GPUs varies) and weak scaling (which retains a fixed
batch size at each GPU). For REINFORCE, GDP, FlexFlow
and Post, we compare the strong scaling performance with
results extracted from their papers (they all adopt strong
scaling): REINFORCE, GDP and Post need tens of servers to
compute their policies; the available source code of Flexflow
only includes the part of applying a given strategy but not
the code for running their search method to find the strategy,
and is hence not directly usable for experimental comparison.

We use training speed (samples/second) rather than the
per-iteration training time as the performance metric, be-
cause in weak scaling, the global batch size grows with the
number of GPUs, and as a result per-iteration times cannot
be directly compared. Since our method preserves the se-
mantics of model training, and does not change the number
of iterations to converge for each model, we do not show the
total iteration number in our evaluation. In strong scaling,
we choose the global batch size to fully utilize a single GPU
to ensure no out-of-memory (OOM) when using only one
GPU for training; in weak scaling, we choose the per-GPU
batch size to fully utilize a single GPU without incurring
OOM. All our results are averaged over 500 iterations after
a warm-up of 10 iterations.

6.3 Performance of FastT

Per-iteration speed-up. In Table 1, we see that with strong
scaling, FastT outperforms default data parallelism in most
cases, and achieves up to 59.4% speed-up when training VGG
using 4 GPUs. With more GPUs (e.g., 8), the performance




Fast Training of Deep Learning Models over Multiple GPUs

Table 3. Per-iteration training time (in seconds) when train-
ing Bert-large with DP and FastT. OOM is out of memory.

Models (global batch size) | Single GPU | 2GPUs

DP FastT
Bert-large(16) 0.192 0.138 | 0.121
Bert-large(32) OOM 0.233 | 0.219
Bert-large(40) OOM OOM | 0.287
Bert-large(48) OOM OOM | 0.316

of both strategies may degrade due to more communica-
tion overhead among model replicas and smaller batch size
per GPU which cannot achieve good GPU utilization, but
FastT still does better. In the case of 8 GPUs (2 servers), we
experiment in a distributed setting with 4 GPU cards each on
two servers, and include inter-server communication time
into our cost models. The improvement of FastT over the
default strategy is in general better in this distributed setting,
than with all 8 GPUs on the same server. This is because
the default strategy performs worse in a multi-server setting
than on the same server, while FastT can find better solutions
by capturing the communication overhead across servers
using the communication cost model.

With weak scaling, the performance of data parallelism
in Table 2 is similar to the performance reported in DAWN-
Bench [15] and NVIDIA Benchmark [8]. We see that FastT still
performs better than data parallelism, and a 19.2% speed-up
when training VGG in the case of 16 GPUs (2 servers). As
compared to the speed-up in Table 1, the improvement over
data parallelism is smaller, which is because the utilization
of each GPU with data parallelism is much higher than in
the strong scaling setting, leaving us a much smaller op-
timization space by moving operations around across the
devices.

We observe that the improvement with FastT is better with
Bert-large than Transformer. The Transformer model can be
fit into a single GPU with the standard batch size, so that data
parallelism performs pretty well already. When training Bert-
large, the batch size per GPU is much smaller, as otherwise
out-of-memory (OOM) errors occur; hence training Bert-
large with data parallelism may not do well due to the under-
utilization of GPU computation capacity with the small batch
size. On the other hand, FastT can find better solutions of
placing most operations in the model in one GPU, to better
utilize GPU computation capacity while minimizing inter-
GPU communication.

Unless otherwise stated, our following experiments are
based on strong scaling, and the global batch size used to
train a model is the same as indicated in Table 1.

Support larger batch size for very large models. For
bert-large, its model cannot be fit in a single GPU when
batch size is larger than 16. We set the maximal sequence
lengths in bert models to be 64. Table 3 shows that with FastT,

Middleware 20, December 7-11, 2020, Delft, Netherlands

0.40

0.354 Default
0.35 0:321 Order
0.30 "= enforce
w025 0823
]
0.20
S

= 0.15
0.10
0.05
0.00

Alexnet Vgg-19 Lenet Resnet

Figure 2. Performance gain of order enforcement.

Table 4. Time (in seconds) to run Alg. 2

Models(global batch size) | 2GPUs | 4GPUs | 8GPUs
Bert-large(32) 448.9 470.3 529.9
Inception_v3(64) 28.7 64.5 124.8
Vgg-19(64) 24.41 62.74 118.4
Resnet200(32) 201.2 481.9 792.5
Lenet(256) 3.54 8.71 11.28
Alexnet(256) 4.23 9.58 18.46
Transformer(4096) 783.0 1952.6 | 5775.2
GNMT(128) 122.31 | 259.43 | 522.85
RNNLM(64) 4895 | 9231 | 174.22

we can efficiently exploit 2 GPUs to train it with larger global
batch sizes (e.g. , 48), while data parallelism can only support
global batch size of 32. In addition, developers do not need
to worry about manual placement of such a large model
between devices.

Order Enforcement. We evaluate the performance gain
brought by operation execution ordering, and compare with
TensorFlow’s default execution order. In TensorFlow, the
executor chooses operations from a ready queue using FIFO.
In Fig. 2, each model is run using 2 GPUs. We see that per-
iteration time is reduced by up to 26.9% when order enforce-
ment is enabled.

Time for strategy calculation. Table 4 shows the time
needed to compute placement and execution order with
Alg. 2 in FastT, which is within several minutes for most
models. It takes more than 1 hour to compute the strategies
for deploying the Transformer model over 8 GPUs, due to
the very large number of operations in the model. Besides,
the strategies are computed through real model training,
such that the strategy search time includes profiling time
and system restart time (for activating changed strategies).
Still FastT can compute the strategies using much less time
and resources than existing approaches such as REINFORCE
and GDP.

6.4 Comparison with other strategies

We next compare the speed-up of FastT with REINFORCE,
GDP, FlexFlow and Post. We use strong-scaling data paral-
lelism as the baseline, and show each strategy’s processing
speed divided by that of the data parallel strategy in Fig. 3.



Middleware ’20, December 7-11, 2020, Delft, Netherlands

Inception V3 25 Resnet
8 2.5 REINFORCE 8 " | == Post
1 == GDP 1 == FlexFlow
‘%2.0 == Post 220 FastT
== FlexFlow
8 1.5 FastT 8 L5 /
= 210 3 08
< 1.0 s g .03
€ 050! €os
o o
Z0.0 . Z0.0
2 GPU 4 GPU 8 GPU 2 GPU 4 GPU 8 GPU
GNMT RNNLM
2.5 2.5
2 GDP 2 GDP
9] == Post 9] == Post
22.01 7 riow 22.01 2 riow
15 FastT 15 FastT
2 1.18 1.25 ® 1.21 1.22
N 1.06 N 1.08
=1.0 .09 =1.0 o
© ©
Eos €os
2 2
0.0 2 GPU 4 GPU 8 GPU 0.0 2 GPU 4 GPU 8 GPU

Figure 3. Performance comparison among FastT, REIN-
FORCE, GDP, FlexFlow and Post

The models being evaluated are those with results in the
respective papers as well. FastT outperforms REINFORCE,
GDP and Post in all respective cases, as REINFORCE, GDP
and Post do not consider data parallelism and operation
split, and hence their solution spaces are limited. FlexFlow
may find a better solution than FastT, due to its larger solu-
tion space and extensive search-based algorithm to find the
strategy. However, FastT’s performance is close; being com-
patible with TensorFlow, it is more generally usable. Further,
the time complexity of FastT is linear with the number of
operations and devices, while the search space in FlexFlow
increases exponentially with the increase of operations and
devices.

6.5 Analysis of result placements

Operation placement. Fig. 4 shows the number of opera-
tions assigned to each GPU with FastT. Different from pure
data parallelism that assigns model replica to each GPU,
FastT does not always allocate operations evenly among
GPUs. In the case of 4 GPUs, one GPU has many more op-
erations while the numbers on others are pretty even. Our
investigation shows that replicas of operations with large pa-
rameters are placed in one GPU rather than 4 GPUs, to avoid
inter-GPU aggregation of gradients of these parameters dur-
ing training. For other computation-intensive operations,
they are evenly placed onto 4 GPUs to reduce end-to-end
processing time, which implies that the computation time
saving due to data parallelism exceeds the cost for aggregat-
ing gradients across 4 GPUs for these operations.

Operation split. Table 5 shows the split decisions for some
representative operations in Vgg-19, as made by FastT, to-
gether with their execution time (before splitting) and param-
eter sizes. We can see that in Vgg-19, some conv operations
have longer execution time than others, so they are most
likely to be split. Fc operations with large parameter sizes

Xiaodong Yi and Ziyue Luo, et al.

2 GPUs
1487
" GPU 0
c 1400 == GPU 1
S 1200
S 1000
T 800
o 724
O 600534 -
S 400{ | 287 233
# 200
0

0 Alexnet Vgg-19 Lenet

Alexnet Vgg-19 Lenet

Figure 4. Number of operations in each GPU using FastT

Table 5. Split decision for representative operations in Vgg-

19.
Operation | Time(ms) | Weight(KB) | Split
Convl_1 1.847 1.792 False
Convl_2 11.14 36.928 True
Convl_2bp | 26.744 36.928 True
Relul_2 1.08 0 False
Pool1 0.737 0 False
Fco6 1.374 102764.544 | False

are not split, to avoid overhead of broadcasting parameters
to all replicas. Operations being split usually have longer
execution time and smaller parameter size, to strike a good
trade-off between computation performance gain and extra
communication overhead incurred by the split.

Table 6 compares model training performance when we
enable operation split in FastT and not. The experiments
are done under the settings achieving the best speedup as in
Table 1. We see that with CNN models such as Inception, Vgg
and ResNet, Conv2D and Conv2Dbp are the key operations
whose splits bring performance gain. However, for LeNet
and AlexNet, these operations are not split due to small input
tensor sizes to them (such that these operations’ computa-
tion time is small). Further, operations in LSTM-based NMT
models (GNMT and RNNLM) are not split because no com-
putation intensive operation is found. For attention-based
models (Transformer and Bert-large), MatMal operations are
split, which are the most computation-intensive operations
in these models.

Time Breakdown. We show the average computation time
and memory copy time (i.e., tensor transfer time) when train-
ing the models using pure data parallelism and FastT on 2
GPUs in Fig. 5. Due to overlap of computation and memcpy
(communication), the overall per-iteration training time is
usually not equal to the sum of computation and memcpy
time. We observe that even though the computation time
with FastT is increased, its memcpy time and per-iteration
time are reduced. Main reasons are as follows. With data
parallelism, operation replicas require gradients from other
replicas in each iteration, which involves memory copy since
the replicas are assigned to different GPUs. FastT can reduce



Fast Training of Deep Learning Models over Multiple GPUs

Table 6. Per-iteration training time (in seconds)
with/without operation split.
Models No split | Split | Speedup | Key split op
Inception_v3 | 0.161 0.154 | 454 % Conv2D,Conv2Dbp
Vgg-19 0356 | 0321 | 10.91% | Conv2D,Conv2Dbp
ResNet200 0.249 0.225 | 10.67 % | Conv2D,Conv2Dbp
LeNet 0.011 0.011 | 0% None
AlexNet 0.093 0.093 | 0% None
GNMT 0.201 0.201 | 0% None
RNNLM 0.162 0.162 | 0 % None
Transformer | 0.281 0.264 | 6.44 % MatMul
Bert-large 0.113 0.105 | 7.62 % MatMul
Vggl9 450 Resnet
700 Computation time 400 Computation time
__600 Memcpy tllme. 350 Memcpy gnme.
0 == Per-iteration time %) == Per-iteration time
g >0 428.4 300

28528
= 400 e
& 300269.46 2923 32148 v 500204:46 212352434
= £ 150
i= 2001 = 169. E1s0) gy ..
100 - < 00
0

0 Data parallel

FastT Data parallel FastT
Alexnet Lenet
200 Computation time 20 Computation time

Memcpy time Memcpy time

m 1;8 == Per-iteration time m == Per-iteration time
£ 127,92 g1
;1(2)3 87.3 T13af7 EIO 07 W W 18:22
E 75727 ' £
~ 50 50. 47.8 F 5
25 5.4
3.8
0 Data parallel FastT Data parallel FastT

Figure 5. Average computation and memcpy time per itera-
tion

memcpy cost by assigning some replicas of an operation
to the same GPU (as validated by its uneven operation as-
signment among all GPUs), which on the other hand may
increase GPU time due to processing more operations on
some GPU.

7 Related Work

Device Placement for Deep Learning Models. Researchers
have been seeking the best placement strategy to assign op-
erations in a DNN to different devices, to minimize execution
time of the computation graph. The Google team used rein-
forcement learning to tune a placement strategy [32]. Some
follow-up work propose more advanced algorithms to reduce
learning time for deriving the policy [19, 21, 30], enlarge the
solution space for better strategies [12, 26, 27, 44], optimize
the reward function and sampling methods [18, 19, 33], or
learn a more general model applicable to different computa-
tion graphs [10, 35, 36, 48]. For example, Placeto [10], GDP
[48] and REGAL [35] use GNNs to generalize their models
so that they can handle unseen computation graphs, and

Middleware 20, December 7-11, 2020, Delft, Netherlands

REGAL further considers the execution order of operations;
however, these proposals only consider model parallelism
of computation graphs, so the performance is limited. All
the above studies treat the placement problem as a black
box, and usually require hours of learning to obtain a sat-
isfying policy, using large amounts of computing resource
for policy training. Stanza [45] separates CONV layers and
fully-connected layers into different workers to reduce com-
munication overhead; it only optimizes these two types of
layers. DLPlacer [34] studies hybrid data and model paral-
lelism, but its device placement is based on a subgraph of
the model rather than the entire graph.

Fine-grained parallelism within operations. For neural
networks such as a CNN, the fully connected layer is much
larger than others; operations in that layer can be partitioned
into several small sub-operations, and sub-operations can
be assigned to different devices to reduce the execution time
along the critical path. Alex [28] uses data parallelism for
convolutional and pooling layers and switches to model par-
allelism for densely-connected layers to accelerate CNNs.
TensorFlow mesh [38] provides high-level APIs for develop-
ers to specify parallelizable dimensions for different kinds of
operations. They depend on developers to manually decide
the parallelism strategy, which requires lots of experience.
Tofu [44] utilizes a partition-n-reduce method to split a sin-
gle operation into fine-grained operations, and a dynamic
programming method to recursively optimize the partition.
It does not consider device placement of operations. OptCNN
[26] parallelizes CNN models by splitting operations along
batch and channel dimensions; it does not consider paral-
lelism across different operations.

Pipeline parallelism for DNN training. Chen et al. [14]
use a pipelining strategy to update models with delayed data
and allow to compute different layers concurrently. Wu et al.
[46] accelerate computation of RNN on GPUs in the pipeline
manner. PipeDream [22] introduces a pipeline approach to
reduce communication overhead for synchronized training
with the parameter server architecture [31]. GPipe [25] uses
pipelines to address the memory bottleneck for large NNs.
However, pipeline parallel training usually does not retain
the exact semantics of the original model: multiple versions
of parameters exist during training (similar to asynchronous
training), which may lead to prolonged model convergence,
or convergence to a different accuracy. FastT does not have
this problem when used for strong scaling. On the other
hand, these pipeline strategies can be complementary to
FastT. After FastT obtains operation placement and execution
order, it can further split a mini-batch into micro-batches and
allow pipelined training in the similar fashion as proposed
in Gpipe.

8 Concluding Discussions

This paper presents FastT, a transparent module on Ten-
sorFlow to automatically find satisfying operation splitting,



Middleware ’20, December 7-11, 2020, Delft, Netherlands

device deployment and execution order for DNN models
running over multiple GPUs. We carefully design the system
architecture and propose efficient heuristics with theoretical
performance bound. FastT achieves up to 63.6% speed-up
as compared with pure data parallelism, and outperforms
representative approaches as well in terms of per-iteration
training time, strategy computation time and resource con-
sumption, or generality. It is applicable to different types of
DNN models and requires no modification of the origin ML
code for developers using TensorFlow.

Looking forward, we have noticed that some new features
have been published in TensorFlow which allow cycles in
computation graphs, such as dynamic RNN layers. Currently,
FastT does not handle graphs with cycles. A potential solu-
tion is to break the cycles and reorganize the graph to be a
DAG. We leave this as future work. Further, we build most
parts of the framework on TensorFlow’s Python Client API,
so FastT currently supports developers who use Python to
build their models. We will migrate our modules to Tensor-
Flow kernel to support more APIs.

Acknowledgement

This work was supported by Alibaba Group through Alibaba
Innovative Research (AIR) Program, and grants from Hong
Kong RGC under the contracts HKU 17204619 and 17208920.

APPENDIX
Proof of Lemma 1

Proof. We first set the exit operation to be the last operation
in chain X, 0;, = 0exi;. There are three possibilities regarding
AST(o0;,):

1): AST(0;,) < bl

2): AST(0;,) € B.

3): AST(0;,) € Aand AST(o0;,) > b{.

For the first possibility, the operation o;, itself is the
chain X that covers B. Now, we only consider the second
and third possibilities, respectively. The idea is to extend
X by one operation in each iteration to further cover some
parts of B.

For the second possibility, there must exist such an inte-
ger n < N that b}, < AST(0;,) < b’,. In addition, there exists
a device, dg, that is idle during (AST(o;,) — €, AST(0;,)) for
some positive €. There are again three cases in the second
possibility:

> Case 1: There exists no such operation o that executes
on device d,, later than AST(o;,) — €.

In such case, no other operation prevents o;, from being
deployed at device d, in an earlier time. Thus, we must have
EST(04,,dy) > AST(04,). Let 0;, represent the immediate
predecessor of 0;, whose data will be transmitted to o;, at
EST(o0;,,dg) if 0;, was deployed onto d,. We have c;, ;, >
EST(o0;,,dy) — AFT(0;,) > AST(0;,) — AFT(0;,). This shows
that the maximal data transmission time between o;, and

Xiaodong Yi and Ziyue Luo, et al.

0;, covers the interval (AFT(o;,), AST(0;,)). Therefore, some
parts of B are covered as we add o;, to the chain.

> Case 2: There are operations that execute on device d,
later than AST(o;,) — €. But the ranks for all such operations
are strictly less than rank,(o;, ).

Because the ranks of all the later operations on d,, are
strictly less than rank,(o;, ), indicating that at the time when
0;, is scheduled, no task on d, blocks o;, to be deployed on
it. Therefore, we can always add another o;, to the chain as
we do in the first case.

> Case 3: There are operations that execute on device d,
later than AST (0;,)—€. And there exists at least one operation
with rank no less than rank,(o;,).

We denote the operation executing on d,, after AST(0;,) - €
with the largest rank as o,. If rank, (o,) > rank,(o;,), there
must exist one chain from o, to 0.y;; that completely covers
the current chain X. Thus, we first assign such chain from o,
to 0.ir as X. Since there exists some available time ahead of
AST(04), there must exist one immediate predecessor of o,
whose data will be transmitted to o, at AST(0,). Similarly
to case 1, we add this operation to X to further cover some
parts of B.

One special case is that rank,(o,) = rank,(o;,), The de-
cision order of o, and o;, is uncertain. If o,, is decided first,
we can substitute current X with one chain from o, to 0eyi;
and add one immediate predecessor of o, to X as above. If
0;, is decided first, this is exactly the same as case 2 and we
can extend X accordingly.

For the third possibility, there exist an integer h that
b, < AST(o0;) < biz+1 or h = N. We define a new set O =
{olo is a predecessor of 0;, with AST(0) > b} } Uo;,. And we
use o0, to denote one operation in O whose any immediate
predecessor o satisfying AST(0) < b;. We add the longest
chain from o, to o0;, to X first. We denote the immediate
predecessor of o, with the largest AFT as o_. Now, there are
two cases regarding the actual finish time of o_:

> Case 1: AFT(0-) > by

In this case, the execution time for o_ covers some part of
B. Moreover, we add o_ to X in order to further extend the
coverage of B.

> Case 2: AFT(0-) < b},

In case 2, there exists a device, dg, that is idle during
(b}, —€, b},) for some positive €. We further have two subcases:

o Subcase 1: The ranks for all operations executing on
dq later than b} are strictly less than rank,(o-).

In such subcase, no task on d, blocks o_ to be deployed
on it. Then, we can perform the same procedure as in case 2
of the second possibility to add an immediate predecessor of
o_ and o_ itself to X. This extension of X further shifts the
coverage of B left.

o Subcase 2: At least the rank for one of the operations
executing on d, later than b} are no less than rank,(o-).



Fast Training of Deep Learning Models over Multiple GPUs

We denote the operation executing on d,, after b; with the
largest rank as o,. Again, we encounter a situation similar to
case 3 of the second possibility. If rank,, (0,) > rank,(o;,), we
use the largest chain between o, and 0.y;; as the new chain
X. And, we add the immediate predecessor of 0, whose data
transmits to o, at AST(0,) to X. Now, X further covers some
parts of B. If rank, (0, ) = rank,(o;,), the same discussion in
case 3 of the third possibility can be applied here to extend
X.

For the newly added operation, there are again three pos-
sibilities as 0;, and we can apply the same technique above
to further extend the coverage of B using X. Eventually, we
can construct a chain X that covers B completely. O

Proof of Theorem 1

Proof. Based on Lemma 1, we construct a chain X : 0;,, —
0y, — ... — 0; covering B. w;qj, represents the total
idle interval of all the devices. By saying X covering B, we
indicates:

M M-1 M
idte < DI Wiy, + D Cippimer) < DI Wiy + Crmax)
m=1 m=1 m=1

By the definition of w,,;, we obtain:

M

Wi,, < Wopt and Z wi < |D|wopt
m=1 0;€0

Noting that overall execution time of all operations plus
idle time of all devices is | D| times the end-to-end processing
time, we conclude that:

1
©ppos = T (@le+ ), wi)
|D| 0;€0
1
< HODK@OP!‘ + Crmax) + |D|wopt) = 2wopt + Cmax
m]
References

[1] 2015. LeNet-5, convolutional neural networks. "http://yann.lecun.
com/exdb/lenet".

[2] 2016. A New Lightweight, Modular, and Scalable Deep Learning
Framework. "https://caffe2.ai".

[3] 2016. Tensorflow slim. "https://github.com/tensorflow/tensorflow/
tree/master/tensorflow/contrib/slim".

[4] 2017. Tensorflow in-graph implementation. "https://github.com/
tensorflow/examples/blob/master/community/en/docs/deploy/
distributed.md".

[5] 2017. Tensorflow RunMetadata. "https://www.tensorflow.org/api_
docs/python/tf/RunMetadata".

[6] 2017. Tensors and Dynamic neural networks in Python with strong
GPU acceleration. "https://pytorch.org".

[7] 2018. Tensorflow Mesh. https://github.com/tensorflow/mesh.

[8] 2019. GNMT v2 For TensorFlow. "https://github.com/NVIDIA/
DeepLearningExamples/tree/master/TensorFlow/Translation/
GNMT".

Middleware 20, December 7-11, 2020, Delft, Netherlands

[9] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. 2016. Tensorflow: a system for large-scale machine
learning.. In OSDL

[10] Ravichandra Addanki, Shaileshh Bojja Venkatakrishnan, Shreyan
Gupta, Hongzi Mao, and Mohammad Alizadeh. 2018. Placeto: Ef-
ficient Progressive Device Placement Optimization. In NIPS Machine
Learning for Systems Workshop.

[11] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural
machine translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473 (2014).

[12] Chi-Chung Chen, Chia-Lin Yang, and Hsiang-Yun Cheng. 2018. Effi-
cient and Robust Parallel DNN Training through Model Parallelism
on Multi-GPU Platform. arXiv preprint arXiv:1809.02839 (2018).

[13] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. Mxnet:
A flexible and efficient machine learning library for heterogeneous
distributed systems. arXiv preprint arXiv:1512.01274 (2015).

[14] Xie Chen, Adam Eversole, Gang Li, Dong Yu, and Frank Seide. 2012.
Pipelined back-propagation for context-dependent deep neural net-
works. In Thirteenth Annual Conference of the International Speech
Communication Association.

[15] Cody Coleman, Daniel Kang, Deepak Narayanan, Luigi Nardi, Tian
Zhao, Jian Zhang, Peter Bailis, Kunle Olukotun, Chris Ré, and Matei
Zaharia. 2019. Analysis of dawnbench, a time-to-accuracy machine
learning performance benchmark. ACM SIGOPS Operating Systems
Review (2019).

[16] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Mark Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al.
2012. Large scale distributed deep networks. In Advances in neural
information processing systems. 1223-1231.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2018. Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805 (2018).

[18] Yuanxiang Gao, Li Chen, and Baochun Li. 2018. Post: Device placement
with cross-entropy minimization and proximal policy optimization. In
Advances in Neural Information Processing Systems. 9971-9980.

[19] Yuanxiang Gao, Li Chen, and Baochun Li. 2018. Spotlight: Optimizing
device placement for training deep neural networks. In International
Conference on Machine Learning.

[20] Apostolos Gerasoulis and Tao Yang. 1992. A comparison of clustering
heuristics for scheduling directed acyclic graphs on multiprocessors.
J. Parallel and Distrib. Comput. (1992).

[21] Juncheng Gu, Mosharaf Chowdhury, Kang G Shin, Yibo Zhu, Myeong-
jae Jeon, Junjie Qian, Honggiang Liu, and Chuanxiong Guo. 2019.
Tiresias: A {GPU} Cluster Manager for Distributed Deep Learning. In
16th {USENIX} Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 19). 485-500.

[22] Aaron Harlap, Deepak Narayanan, Amar Phanishayee, Vivek Seshadri,
Nikhil Devanur, Greg Ganger, and Phil Gibbons. 2018. Pipedream:
Fast and efficient pipeline parallel dnn training. arXiv preprint
arXiv:1806.03377 (2018).

[23] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy H Campbell.
2018. TicTac: Accelerating Distributed Deep Learning with Communi-
cation Scheduling. arXiv preprint arXiv:1803.03288 (2018).

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In In proceedings of the IEEE
conference on computer vision and pattern recognition. 770-778.

[25] Yanping Huang, Yonglong Cheng, Dehao Chen, HyoukJoong Lee, Ji-
quan Ngiam, Quoc V Le, and Zhifeng Chen. 2018. Gpipe: Efficient
training of giant neural networks using pipeline parallelism. arXiv
preprint arXiv:1811.06965 (2018).

[26] Zhihao Jia, Sina Lin, Charles R Qi, and Alex Aiken. 2018. Exploring
Hidden Dimensions in Parallelizing Convolutional Neural Networks.


"http://yann.lecun.com/exdb/lenet"
"http://yann.lecun.com/exdb/lenet"
"https://caffe2.ai"
"https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim"
"https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim"
"https://github.com/tensorflow/examples/blob/master/community/en/docs/deploy/distributed.md"
"https://github.com/tensorflow/examples/blob/master/community/en/docs/deploy/distributed.md"
"https://github.com/tensorflow/examples/blob/master/community/en/docs/deploy/distributed.md"
"https://www.tensorflow.org/api_docs/python/tf/RunMetadata"
"https://www.tensorflow.org/api_docs/python/tf/RunMetadata"
"https://pytorch.org"
https://github.com/tensorflow/mesh
"https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Translation/GNMT"
"https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Translation/GNMT"
"https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Translation/GNMT"

Middleware ’20, December 7-11, 2020, Delft, Netherlands

[27

[28

[29

(30

[31

(32

(33

(34

(35

(36

(37

(38

(39

(41

(42

[43

]

—_ =

[t

]

—

—

[l

—

]

]

]

]

—

—

= =

In International Conference on Machine Learning. 2279-2288.

Zhihao Jia, Matei Zaharia, and Alex Aiken. 2018. Beyond data
and model parallelism for deep neural networks. arXiv preprint
arXiv:1807.05358 (2018).

Alex Krizhevsky. 2014. One weird trick for parallelizing convolutional
neural networks. arXiv preprint arXiv:1404.5997 (2014).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems. 1097-1105.

Mathias Lecuyer, Joshua Lockerman, Lamont Nelson, Siddhartha Sen,
Amit Sharma, and Aleksandrs Slivkins. 2017. Harvesting randomness
to optimize distributed systems. In In Proceedings of the 16th ACM
Workshop on Hot Topics in Networks.

Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr
Ahmed, Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing
Su. 2014. Scaling distributed machine learning with the parameter
server. In In proceedings of 11th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 14). 583-598.

Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus
Larsen, Yuefeng Zhou, Naveen Kumar, Mohammad Norouzi, Samy
Bengio, and Jeff Dean. 2017. Device placement optimization with rein-
forcement learning. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70. JMLR. org.

Khanh Nguyen, Hal Daumé III, and Jordan Boyd-Graber. 2017. Rein-
forcement learning for bandit neural machine translation with simu-
lated human feedback. arXiv preprint arXiv:1707.07402 (2017).
Saptadeep Pal, Eiman Ebrahimi, Arslan Zulfiqar, Yaosheng Fu, Vic-
tor Zhang, Szymon Migacz, David Nellans, and Puneet Gupta. 2019.
Optimizing Multi-GPU Parallelization Strategies for Deep Learning
Training. arXiv preprint arXiv:1907.13257 (2019).

Aditya Paliwal, Felix Gimeno, Vinod Nair, Yujia Li, Miles Lubin,
Pushmeet Kohli, and Oriol Vinyals. 2019. REGAL: Transfer Learn-
ing For Fast Optimization of Computation Graphs. arXiv preprint
arXiv:1905.02494 (2019).

Jay H Park, Sunghwan Kim, Jinwon Lee, Myeongjae Jeon, and Sam H
Noh. 2019. Accelerated Training for CNN Distributed Deep Learning
through Automatic Resource-Aware Layer Placement. arXiv preprint
arXiv:1901.05803 (2019).

Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong
Guo. 2018. Optimus: an efficient dynamic resource scheduler for deep
learning clusters. In Proceedings of the Thirteenth EuroSys Conference.
ACM, 3.

Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish
Vaswani, Penporn Koanantakool, Peter Hawkins, HyoukJoong Lee,
Mingsheng Hong, Cliff Young, et al. 2018. Mesh-tensorflow: Deep
learning for supercomputers. In Advances in Neural Information Pro-
cessing Systems.

Karen Simonyan and Andrew Zisserman. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556 (2014).

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. 2016. Rethinking the inception architecture for
computer vision. In In Proceedings of the IEEE conference on computer
vision and pattern recognition.

Haluk Topcuoglu, Salim Hariri, and Min-you Wu. 2002. Performance-
effective and low-complexity task scheduling for heterogeneous com-
puting. IEEE transactions on parallel and distributed systems (2002).
Jeffrey D. Ullman. 1975. NP-complete scheduling problems. Journal of
Computer and System sciences 10, 3 (1975), 384-393.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. In Advances in neural information processing
systems.

[44]

[45]

[46]

[47]

(48]

Xiaodong Yi and Ziyue Luo, et al.

Minjie Wang, Chien-chin Huang, and Jinyang Li. 2019. Supporting
very large models using automatic dataflow graph partitioning. In
Proceedings of the Fourteenth EuroSys Conference 2019. ACM, 26.
Xiaorui Wu, Hong Xu, Bo Li, and Yonggiang Xiong. 2018. Stanza: Dis-
tributed Deep Learning with Small Communication Footprint. arXiv
preprint arXiv:1812.10624 (2018).

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao,
Klaus Macherey, et al. 2016. Google’s neural machine translation
system: Bridging the gap between human and machine translation.
arXiv preprint arXiv:1609.08144 (2016).

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. 2014. Recurrent
neural network regularization. arXiv preprint arXiv:1409.2329 (2014).
Yanqi Zhou, Sudip Roy, Amirali Abdolrashidi, Daniel Wong, Peter C
Ma, Qiumin Xu, Ming Zhong, Hanxiao Liu, Anna Goldie, Azalia Mirho-
seini, et al. 2019. GDP: Generalized Device Placement for Dataflow
Graphs. arXiv preprint arXiv:1910.01578 (2019).



	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 DNN Training and Parallelism
	2.2 Fine-grained device placement
	2.3 Limitations and Challenges

	3 Problem Definition
	4 System Design
	5 Operation Placement and Ordering Heuristics
	5.1 Listing Scheduling
	5.2 Operation Splitting

	6 Implementation and Evaluation
	6.1 System Implementation
	6.2 Evaluation Methodology
	6.3 Performance of FastT
	6.4 Comparison with other strategies
	6.5 Analysis of result placements

	7 Related Work
	8 Concluding Discussions
	References

