
1

Online Placement and Scaling of Geo-distributed Machine
Learning Jobs via Volume-discounting Brokerage

Xiaotong Li, Ruiting Zhou∗, Member, IEEE, Lei Jiao, Member, IEEE,
Chuan Wu, Senior Member, IEEE , Yuhang Deng and Zongpeng Li, Senior Member, IEEE

Abstract—Geo-distributed machine learning (ML) often uses large geo-dispersed data collections produced over time to train global
models, without consolidating the data to a central site. In the parameter server architecture, “workers” and “parameter servers” for a
geo-distributed ML job should be strategically deployed and adjusted on the fly, to allow easy access to the datasets and fast exchange
of the model parameters at any time. Despite many cloud platforms now provide volume discounts to encourage the usage of their ML
resources, different geo-distributed ML jobs that run in the clouds often rent cloud resources separately and respectively, thus rarely
enjoying the benefit of discounts. We study an ML broker service that aggregates geo-distributed ML jobs into cloud data centers for
volume discounts via dynamic online placement and scaling of workers and parameter servers in individual jobs for long-term cost
minimization. To decide the number and the placement of workers and parameter servers, we propose an efficient online algorithm
which firstly decomposes the online problem into a series of one-shot optimization problems solvable at each individual time slot by the
technique of regularization, and afterwards round the fractional decisions to the integer ones via a carefully-designed dependent
rounding method. We prove a parameterized-constant competitive ratio for our online algorithm as the theoretical performance
analysis, and also conduct extensive simulation studies to exhibit its close-to-offline-optimum practical performance in realistic settings.

Index Terms—Geo-distributed Machine Learning; Online Placement; Volume Discount Brokerage

F

1 INTRODUCTION

G EO-distributed machine learning (ML) derives useful
insights from large data collections continuously pro-

duced at dispersed locations with potentially time-varying
volumes, without moving them to a central site. For ex-
ample, e-commerce sites, including Amazon and Taobao,
recommend products that are of particular interests to users
by learning the user preference from the click-through data
continuously collected all over the world [1], using ML tech-
niques such as logistic regression; CometCloudCare (C3) [2]
is a platform for training ML models with geo-distributed
sensitive datasets, subject to location restrictions, privacy
requirements, and data use agreement (DUA) guarantees.

The parameter server architecture [3][4] is widely used in
distributed ML, where “workers” send parameter updates
to one or multiple “parameter servers” (PSs), and the PSs
maintain a global copy of the model and send the updated
global parameters back to the workers. In a geo-distributed
ML job, workers and PSs often reside at different geographic

• X. Li, Y. Deng and Z. Li are with School of Computer Science,
Wuhan University, Wuhan, China (e-mail: {xtlee, dyhshengji, zong-
peng}@whu.edu.cn).

• R. Zhou is with the Key Laboratory of Aerospace Information Secu-
rity and Trusted Computing, Ministry of Education, School of Cyber
Science and Engineering, Wuhan University, Wuhan, China (e-mail:
ruitingzhou@whu.edu.cn).

• L. Jiao is with the Department of Computer and Information Science,
University of Oregon, Eugene, OR, USA (e-mail: jiao@cs.uoregon.edu).

• C. Wu is with the University of Hong Kong, Kowloon, Hong Kong, China
(e-mail: cwu@cs.hku.hk).

* Corresponding Author
This work was supported in part by the NSFC Grants (61502504), the
Technological Innovation Major Projects of Hubei Province (2017AAA125),
the Science and Technology Program of Wuhan City (2018010401011288),
WHU-Xiaomi AI Lab, Hong Kong RGC GRF HKU 17204715, 17225516,
17204619, C7036-15G (CRF) and C5026-18G (CRF).

locations, e.g., cloud data centers. To exploit data that are
continuously produced for training, incremental learning is
customarily employed [5][6][7], where new data are con-
secutively fed to the corresponding workers respectively, in
order to extend the existing model’s knowledge dynami-
cally. As data volumes fluctuate across the spatial-temporal
spectrum, the number of workers and their geographic
placement in the ML job should be adjusted on the fly.

In practice, the owners of such ML jobs typically rent
resources (e.g., virtual machines or containers equipped with
GPUs) from cloud data centers to run workers and PSs, and
pay the cloud providers for the resources used. Many cloud
platforms now provide “volume discounts” to encourage
the usage of their (ML) resources: the more the resources are
used and the longer the resources are used for, the lower the
unit resource price becomes. For example, Rackspace offers
a two-tier volume discount policy [8]; Amazon [9] and the
Telecoms cloud [10] adopt a three-tier pricing strategy. For
the ML job owner, it is commonly hard to decide for how
long a ML job will run before completion (e.g., till the model
convergence); with time-varying training data generation,
it is even more challenging to estimate the future resource
consumption. In general, it is difficult to reserve or expect
sufficient cloud resource usage for individual ML jobs to
leverage the volume discount offers.

This paper proposes an ML broker service to aggregate
resource demands from multiple geo-distributed ML jobs,
and rent cloud resources on their behalf for volume dis-
counts. The potential of such a broker service is eminent,
in reducing the overall cost of running ML jobs and hence
lowering each individual job’s expenditure: (i) different
cloud providers offer diverse prices and volume discounts
for different resources across geo-locations, and lower price
opportunities materialize only when individual jobs aggre-

2

gate into sets; (ii) ML jobs are typically resource-intensive,
time-consuming, and costly, and a small reduction in unit
resource price may lead to large economic savings for the
ML job owners. Note that, while cloud brokerage has been
an existing proliferating business, with approximately $4.5
billion revenue in 2017 and $9.52 billion expected by 2021
[11], the ML broker service is new, which differs from cloud
brokers due to the ML jobs’ unique requirements for large-
volume data analysis and high interconnection bandwidth
(to support repeated parameter exchanges), possessing great
potential for accommodating the explosive growth of the
ML-driven applications in the near future.

ML broker

Job 1 Job 2

DC1

DC2

DC3

Job 1s PS

Job 1s worker

Job 1s data

Job 2s PS

Job 2s worker

Job 2s data

‘

‘
‘

‘
‘

‘

Fig. 1: Geo-distributed ML with the broker service.

To effectively operate an ML broker service, a funda-
mental problem is, given the many ML jobs with time-varying
volumes of training data at different geo-locations, how the broker
should efficiently decide the number of workers and PSs to place at
each location for each job at each time, such that the overall cost of
running these jobs is minimized while the training data for each
job are moved/distributed and processed.

At the beginning of each time slot, the ML broker
aggregates resource demands from all the newly arrived
geo-distributed machine learning jobs, and observes the
volumes of data generated at each data center. By taking
the combination of resource demands, data distribution and
volume discount of each type of resource into consideration,
ML broker makes decisions on how to transfer training data
and how to deploy workers and parameter servers at each
location. An indicative illustration of our target system is
shown in Fig. 1, where, through the ML broker, job 1’s
workers and PS are placed at data center 1, and job 2’s
workers are placed at data centers 2 and 3, with job 1’s
training data that are generated at data center 2 moved to
data center 1. Note that we focus on the common parameter
server architecture, and the specific instantiation of different
machine learning models within this architecture is out of
the scope of this paper.

We model and formulate the ML broker service’s dy-
namic worker/PS placement problem as a mixed integer
linear program (MILP). The MILP includes a complex set of
variables indicating the decisions on the worker/PS place-
ment, the amount of data to be copied into each data center
for the worker’s processing, and the number of inter-data-
center worker-PS connections, all contributing to the cost of
the ML jobs. To compute the decisions on the fly for the
long-term cost minimization with guaranteed performance,
we propose an efficient online algorithm based on regular-
ization and dependent rounding techniques. We summarize
our technical contributions as follows.

First, we analyze the detailed cost structure for running
geo-distributed ML jobs and capture it in the broker’s cost
minimization problem. Particularly, via an auxiliary variable
technique, we convert our original cost minimization prob-
lem with the non-linear, or in other words, the piecewise
linear, volume-discounting price functions, which is hard to
optimize, into an equivalent reformulation with only easier
linear objective functions and additional constraints. To
“reuse” existing workers/PSs over time as much as possible
and to avoid re-deploying them repeatedly, we model the
deployment cost as the Rectified Linear Unit [12] function
of the deployment decisions in successive time slots.

Second, we relax the broker’s MILP problem and design
an online algorithm to compute the fractional decisions at
each individual time slot by exploiting a regularization-
based method. To overcome the challenge of the time-
coupling deployment decisions, our algorithm decouples
the relaxed problem into a series of convex sub-problems
solvable at each corresponding time slot via substituting the
deployment cost in the objective function by a carefully-
designed, dedicated, convex term, and uses the solutions to
this series of sub-problems as the solution to our original
problem. Our approach achieves a provable parameterized
competitive ratio, compared against the offline optimal so-
lution that knows all the dynamic, online inputs in advance.

Third, we design a rounding algorithm to recover the
integer decisions at each time slot from the fractional ones
that are produced by our online algorithm. Our rounding
algorithm repeatedly chooses a pair of fractional decisions
and attempts to round them up and down, respectively, in
a compensative manner in order to ensure that the sum
of them remains largely the same as before so that the
related constraints are not violated after rounding. After-
wards, taking the rounded integer decisions back into the
problem and fixing them, we compute and update the rest
of the variables. Our rounding approach achieves a provable
integrality gap, compared against the fractional decisions
before rounding. Joining our fractional online algorithm
and dependent rounding algorithm, our complete online
algorithm, which we name mlBroker, guarantees a small
overall competitive ratio even in the worst cases.

Last, we conduct simulation studies to compare our
online algorithm to offline optimal solutions and other rep-
resentative alternatives under realistic settings, and reveal
its close-to-offline-optimal performance in practice. Our on-
line fractional algorithm achieves an empirical competitive
ratio of less than 1.25, compared to the fractional offline
optimum; our dependent rounding algorithm achieves a
multiplicative integrality loss of less than 2.5×, and behaves
consistently better than other baseline rounding algorithms.
We find that, overall, our mlBroker algorithm produces
a competitive ratio of up to 3, and results in 20%− 50%
less total cost than a state-of-the-art algorithm and multiple
well-adopted ML job placement/scaling benchmark meth-
ods. We also show mlBroker’s good performance in real
experiments. Even with much smaller scale of data volume
and fewer DCs due to economic constraints, our algorithm
still obtains minimal cost, compared to other algorithms.

The rest of this paper is structured as follows. We review
the related literature in Sec. 2. We define all our models and
problem formulations in Sec. 3. We present the design and

3

the analysis of our online fractional algorithm in Sec. 4, as
well as the design and the analysis of our dependent round-
ing algorithm in Sec. 5. Afterwards, Sec. 6 conducts both
the simulations and real experiments to verify mlBroker’s
good performance, and Sec. 7 concludes the paper.

2 RELATED WORK

Distributed ML Systems. Cano et al. [13] propose a geo-
distributed machine learning model to cope with the scarce
and costly cross-DSs bandwidth and privacy constraints
on user data. Gaia [14] is a geo-distributed ML system
that eliminates insignificant communication between data
centers while ensuring convergence of ML algorithms.
Vulimiri et al. [15] propose a solution to deal with Wide-
Area Big Data problem and conduct queries and analytics
on geo-distributed data. Konecny et al. [16] design online
algorithms for federated learning. A centralized model is
trained with training data remains distributed among large
numbers of users. Different from the above literature, we
do not focus on the optimization in distributed ML al-
gorithms to improve training speed, we aim to cost min-
imization problem which focuses on geo-distributed ML
job placement. Wang et al. [17] focus on gradient-descent
based distributed learning, and propose a control algorithm
to determine the best trade-off between local update and
global parameter aggregation, to minimize the loss function
under a given resource budget. Chen et al. [18] propose
a Bi-layered Parallel Training (BPT-CNN) architecture in
distributed computing environments, which consists of two
layers to address data partitions, communications and train-
ing speed acceleration separately. A Parallel Random Forest
(PRF) algorithm is proposed in [19] for big data on the
Apache Spark platform based on data parallel and task
parallel optimization. They utilize vertical data-partitioning
and data-multiplexing method to reduce data volume and
communication cost. They also carry out a dual parallel ap-
proach and invoke different task scheduler according to task
Directed Acyclic Graph to realize task parallel optimization.
Chen et al. [20] propose a Distributed Intelligent Video
Surveillance (DIVS) system in an edge computing environ-
ment to address the problems of parallel training, model
synchronization and workload balancing. They design a
model parameter updating method and a dynamic data
migration approach to realize task parallel and model paral-
lel in a distributed EC environment. SpGEMM kernels [21]
are designed to realize high speed parallel computations. A
multi-level parallelism design, optimization strategies and
a performance-aware model for SpGEMM are combined
together to meet the challenge of the high-speed computing
of large-scale data sets on the Sunway. Xu et al. [22] mainly
focus on how to properly implement joint request mapping
and response routing to improve the performance of the
entire distributed cloud platform, including delay, band-
width and power consumption. They propose a general
distributed algorithm based on ADMM to solve the large
scale data optimization problem. Different from the above
literature, we do not focus on the optimization in distributed
ML algorithms to improve training speed, we aim to cost
minimization problem which focuses on geo-distributed ML
job placement.

ML job scheduling and placement. Existing efforts have
been focusing on individual jobs or jobs in one data center.
Xu et al. [23] focus on the cost minimization problem of
big data analytics on geo-distributed data centers, and pro-
pose a Reinforcement Learning (RL) based job scheduling
algorithm by combining RL with neural network (NN).
They also leverage similar idea in [24] and propose a ro-
bust blockchain-based decentralized resource management
framework to deal with the energy-aware resource man-
agement problem in cloud. The authors in [25] introduce
many solutions to deal with the optimization in DCNs
when considering the deployment of geo-distributed data
centers and data-intensive applications. Dolphin [26] is an
elastic ML framework which identifies the optimal number
of works for each ML job. Mirhoseini et al. [27] propose an
adaptive method to optimize device placement for Tensor-
Flow graphs on different types of devices such as GPUs and
CPUs. Gao et al. [28] model placement of a deep neural net-
work on devices as a Markov decision process, and propose
a reinforcement learning algorithm to minimize the time of
training. Bao et al. [4] study online job scheduling in one ML
cluster. Peng et al. [29] develop a job scheduler, Optimus, for
deep learning clusters. Different from the above literature,
our model assumes a fixed execution window without con-
sidering the scheduling dimension, but adjust the placement
in each time slot to minimize the cost. Thus we can say
we are the first to design a cost-minimization algorithm
for ML brokers to optimize geo-distributed job placement.
Moreover, our model also consider how to aggregate ML
jobs to take advantage of volume-discounting pricing policy
to reduce the resource renting cost.

In addition, we consider incremental learning jobs, in
which newly generated data is continuously used to further
train the model during each period. It does not require
access to historical data used to train the existing model,
and preserves previously acquired knowledge without the
effect of catastrophic forgetting [5], [6] and [7].
Volume Discount and Cloud Brokerage Services. Volume-
discounting based service is widely used by many cloud
resource providers such as Rackspace [8], Amazon [9] and
Telecoms cloud [10]. Zheng et al. [30] consider aggregating
jobs to take the advantage of volume discount based on
duration. Since ML jobs’ running time can not be accurately
predicted in prior, it is hard to adopt duration-based volume
discount, but we can use usage-based discount strategy to
explore better performance. Wang et.al [31] used a tiered
usage-based discount policy for different kinds of VMs to
attract cloud users to rent resources as a coalition formation
game. Wang et al. [11] propose an offline resource scaling
policy based on usage-based volume discount. However,
due to the property of incremental learning, all the jobs
come on the fly and the proposed offline strategy is not
practical, thus we propose an online brokerage to take the
best advantage of usage-based volume discount for ML jobs.

Hu et al. [32] study online cost-effective cloud resource
allocation under price discounts. Wu et al. [33] design a
storage service which span among multiple DCs and min-
imize the cost by exploiting different prices in each DC.
They also trade off geo-distributed replications to achieve
better overall performance. Shastri et al. [34] exploit the spot
markets, always allocate the cheapest instance for tasks, and

4

migrate tasks from more expensive instances to cheaper
ones when spot market prices fluctuate. The above schemes
cannot be directly applied to ML systems, since they do not
consider training data migration and the communication
between workers and PSs.
Regularization in Algorithm Design. The regularization
technique was first proposed by Buchbinder et al. [35]. A
number of studies have applied regularization in different
problems. Zhang et al. [36] apply it to geo-distributed cloud
CDNs, and Jiao et al. [37, 38] leverage it for online resource
allocation in cloud and edge computing networks. Jia et
al. [39] investigate the cost minimization problem for dy-
namic placement of VNF service chains. These studies are
not tailored for ML brokerage services. Consequently, their
regularization algorithms cannot handle data migration and
volume discount functions. Further, in one-shot algorithm
design, they only consider one set of integer variables while
we jointly round two sets of integer variables.

3 MODELS AND FORMULATION

3.1 Broker Service Model and Notations
We consider an ML broker who accepts distributed ML job
requests from users, and rents cloud resources from R geo-
distributed data centers (DCs) for running the jobs. Assume
I users submit jobs to the broker over a large time span
T . In each ML job i, the training data are continuously
generated at different geographic locations. Without loss of
generality, we assume that the original copy of the training
data is collected and stored into the nearest data center. The
owners of ML jobs need to offer specific ML training models,
training datasets and resource demands. Specifically, the
model needs to be provided is a Docker image, and the k8s
can automatically download and deploy training models.
Resource demands includes the number of PSs and workers,
and their configurations.

The ML jobs use the parameter server (PS) architecture
[3] for distributed training. We consider incremental learn-
ing of the continuously produced data in each job [5][6]: the
new data are aggregated in each time slot, and the dataset
collected in t− 1 is used for training the ML model in t. Let
Dr

i (t) denote the size of the input training dataset in job i
at t from data center r, which was aggregated in r in t − 1.
The training data in t are divided into equal-sized chunks
trained by different workers. Each data chunk is further
divided into equal-sized mini-batches. A worker trains a
mini-batch, pushes computed model parameter updates to
the PS, pulls global parameter computed from the PS, and
then moves on to the next minibatch. When all mini-batches
in the data chunk are trained for once, a training epoch
is completed; the worker typically trains the data chunk
for multiple epochs for model convergence. When training
ResNet-152 model on ImageNet dataset [40][41], it takes
about one second to train a mini-batch, while training a data
chunk takes less than one minute [4].

Each ML job is modeled as follows. User i submits its ML
job request at ti, which consists of: (i) desired resource com-
position for each worker (each PS) to run the job, denoted
by ni,k (mi,k), the amount of type-k resource demanded by
each worker (PS), ∀k ∈ [K]; (ii) processing capacity of each
worker in job i, Pi, in terms of the maximum input data

size that it can train for the desired number of epochs for
its incremental learning in each time slot; (iii) data size for
parameter update exchange between each pair of worker
and parameter server in job i in a time slot,Bi.Bi is decided
by the number of parameters in the ML model being trained,
and the number of inter-worker-PS parameter exchanges
in a time slot (decided by the job’s minibatch size and
computation speed of its worker/PS). We assume that there
is only one PS in each job in our problem model, which in
practice can represent a number of PS instances located in
the same data center.

DC 3

DC 1

DC 2DC 3

DC 1

DC 2

With mlBrokerWithout mlBroker

PS

Data
Worker

Fig. 2: mlBroker Model.

The broker rents cloud resources and schedules ML job
placement in a time slotted fashion. At the beginning of each
time slot t, it decides placement of workers and PSs in jobs
newly submitted in t− 1, together with deployment adjust-
ment of workers/PSs in existing jobs submitted earlier, in
order to minimize the overall cost of cloud resource rental.
For example, in Fig. 2, we use blue and yellow icons to
represent job 1 and job 2’s workers and PSs respectively.
mlBroker is responsible for scaling these two jobs. As can
be seen from the figure, the new training data is cumulated
during last time slot, then the deployment of workers and
PSs need to be rearranged accordingly. After the scheduling
of mlBroker, the training data and computing nodes are
all selectively rescheduled. The amount of training data in
each job,

∑
r∈[R]D

r
i (t), may vary from one time slot to

another; the total number of workers in job i is recomputed
by d

∑
r∈[R] D

r
i (t)

Pi
e in t. The length of a time slot is potentially

much larger than the duration of a training epoch, for
repeated training of the input dataset in each time slot. For
example, one time slot can be half a day or longer, which
is sufficient for all the incremental jobs in this period to be
trained to convergence.

The decisions made at the broker in t include: (i) yri (t),
the number of workers of job i to run in data center r
in t, ∀i ∈ It, r ∈ [R] (we use [X] to denote the integer
set {1, 2, ..., X} in the paper); (ii) sri (t), a binary variable
indicating whether job i’s PS is placed in data center r in t,
or not; (iii) qrr

′

i (t), the amount of training data in job i in t,
transferred from data center r to r′. Here It is the set of ML
jobs to schedule in t, including both new and existing jobs.

To maximize the chances for volume discounts, data
collected in data center r in t − 1 may not necessarily be
processed in r in t, but moved to another data center r′ for
processing, if more abundant workers are deployed there.
Let drr

′
denote the cost of transferring a unit amount of

data from r to r′ (drr
′

= 0 if r′ = r).

5

Our scheduling algorithm keeps track of the total
amount of all resources and their usage. If a job arrives and
is successfully deployed, our scheduling system records the
type and amount of resources used by the job. When the job
is completed, the corresponding resources are released and
the scheduling system recalculates the amount of available
resources.

TABLE 1: Notation

I # of jobs R # of DCs
K # of resource types T # of time slots
ti job i’s arrival time It job set in t
X integer set {1, 2, ...X}

Dri (t) input data size in job i in t from DC r
Pi processing capability of each worker of job i
ni,k amount of type-k resource required by job i’s worker
mi,k amount of type-k resource required by job i’s PS
yri (t) # of allocated workers for job i in DC r at t
sri (t) whether job i’s parameter server is placed in DC r at t
drr
′

unit data transmission cost from r to r′
ci deployment cost for job i

vri (t) whether job i’s worker(s) or PS is deployed in r in t
zri (t) whether deployment cost occurs for job i in r at t
F rk (h) volume discount function of type-k resource in DC r

qrr
′

i (t) amount of training data in job i transferred
from r to r′ at t

Bi parameter size exchanged between each worker
and the PS in job i per time slot

grr
′

i (t) # of worker-PS connections in job i, from worker(s)
in DC r to the PS in DC r′ in t

3.2 Cost Structure
In each time slot, the broker is subject to four categories of
costs for running user jobs.

1) Data transfer costs for copying training datasets from
origin data centers to other data centers for processing. The
overall data transfer cost in t is computed as:

C1(t) =
∑
i∈It

∑
r∈[R]

∑
r′∈[R]

drr
′
qrr
′

i (t) (1)

2) Resource costs for renting computing resources in the
data centers to run workers and PSs.

The data centers are owned by a common cloud provider
or different providers. Each data center provides K types
of resources (e.g., different types of virtual machines or
containers, storage, etc.). Each data center adopts a pricing
scheme F with volume discount, as follows:

F rk (h) =

{
ark · h h ∈ [0, lrk],

brk · h+ erk h > lrk.
(2)

Here F r
k (h) is the per-unit-time price function of data center

r for type-k resource, where h is the amount of type-k
resource rented. As shown in Fig. 3, lrk is the threshold of
type-k resource usage in data center r for applying volume
discount, decided by the respective cloud provider. akr and
brk are the price per unit of type-k resource in data center
r, respectively, and brk < ark: when the consumption of type-
k resource is smaller than lkr , akr is applied; otherwise, the
lower unit price brk is used, and erk = arkl

r
k − brklrk. The price

function is a non-decreasing, concave piecewise function,
representing those volume-discount schemes in practice [8].

The overall computing resource cost in t is:

y

x

without volume
 discount

with volume discount

0 lk
r

Fig. 3: Volume-discount based price function.

C2(t) =
∑
r∈[R]

∑
k∈[K]

F rk

(∑
i∈It

(
ni,ky

r
i (t) +mi,ks

r
i (t)

))
(3)

3) Deployment costs for placing workers/PSs in data
centers where the respective jobs were not deployed in the
previous time slot. If there is no worker (PS) of job i running
in data center r in t − 1 (i.e., yri (t − 1) + sri (t − 1) = 0) and
one or more workers (or the PS) are to be placed in r in t,
a cost ci occurs for copying job i’s ML model and training
program from the broker to data center r and launching the
respective program.1 If job i has deployed worker(s) (PS) in
data center r at t− 1, then any new instance of worker (PS)
of the job in r in t can copy the image from an existing one,
and we ignore deployment cost in this case.2 We also ignore
the cost for removing a worker (PS) from a data center, when
the number of workers (PS) in t is reduced from that in t−1.

Let constant U denote the upper bound of yri (t − 1) +

sri (t − 1), and binary variable vri (t) indicate whether any
worker or the PS of job i is deployed in data center r in t.
We have U · vri (t) ≥ yri (t − 1) + sri (t − 1); vri (t) = 0 only if
the right-hand side (RHS) is zero, and vri (t) = 1, otherwise.
Using the Rectified Linear Unit [12] function, we let binary
variable zri (t) represent the deployment cost for job i in data
center r in t:

zri (t) = max{vri (t)− vri (t− 1), 0}. (4)

The overall deployment cost for all jobs in t is:

C3(t) =
∑
i∈It

∑
r∈[R]

ciz
r
i (t) (5)

4) Communication cost for transmitting model parame-
ters between workers and PSs across data centers in each
training iteration. Let grr

′

i (t) denote the number of worker-
PS connections in job i, from worker(s) in data centers r to
the PS in data center r′ in t. There is one connection between
each worker and the PS in each job, which both pulls and
pushes traffic of parameters traverses. The overall commu-
nication cost for parameter exchange can be formulated as:

1. We suppose the ML model and training programs for both PS and
worker are copied to a new data center no matter when a new worker
or the PS is to be deployed there. A newly launched worker pulls latest
parameters from the PS, whose bandwidth cost is counted into cost 4);
a new PS copies the model parameters from its previous deployment.

2. We suppose PS migration only occurs when all workers have
pulled the latest parameters from it; hence, a new PS in a data center
can copy latest global model parameters from a worker already running
in the datacenter.

6

C4(t) =
∑
i∈It

∑
r∈[R]

∑
r′∈[R]

drr
′
Big

rr′
i (t) (6)

3.3 Cost Minimization Problem

1) Reformulation of piecewise function.
We can formulate the worker/PS placement problem

faced by the broker into an optimization program, with the
objective of minimizing the sum of costs in (1)(3)(5)(6). We
note piecewise functions F r

k (h) in C3 in Eqn. (5) can be
reformulated as

F rk

(∑
i∈It

(
ni,ky

r
i (t) +mi,ks

r
i (t)

))
= min

{
ark
∑
i∈It

(
ni,ky

r
i (t) +mi,ks

r
i (t)

)
,

brk
∑
i∈It

(
ni,ky

r
i (t) +mi,ks

r
i (t)

)
+ erk

}
.

Define an auxiliary variable xrk(t) and let xrk(t) = F rk (·). Min-
imizing C2(t) is equivalent to the following mixed integer
linear program (MILP):

minimize
∑
r∈[R]

∑
k∈[K]

xrk(t) (7)

subject to:

xrk(t) ≥ ark
∑
i∈It

(ni,ky
r
i (t) +mi,ks

r
i (t))−M · u1

k,r(t),∀r, k,

xrk(t) ≥ brk
∑
i∈It

(ni,ky
r
i (t) +mi,ks

r
i (t)) + erk −M · u2

k,r(t),∀r, k,

u1
k,r(t) + u2

k,r(t) = 1, ∀r, k,
u1
k,r(t), u

2
k,r(t) ∈ {0, 1}.

Here M is a constant and is an upper bound of
|brk
∑
i∈It(ni,ky

r
i (t) + mi,ks

r
i (t)) + erk − ark

∑
i∈It(ni,ky

r
i (t) +

mi,ks
r
i (t))|,∀r ∈ [R], k ∈ [K], t ∈ [T]. u1k,r(t) and u2k,r(t)

are two new binary variables, one and only one of which
is 1 at any time. The minimum of the MILP occurs when
xrk(t) equals the minimum of the two segments of the piece-
wise function. Hence, we have min

∑
r∈[R]

∑
k∈[K] x

r
k(t)=

min
∑
r∈[R]

∑
k∈[K] F

r
k

(∑
i∈It

(
ni,ky

r
i (t) + mi,ks

r
i (t)

))
. Let

C∗2 (t) denote the new form of the renting cost:

C∗2 (t) =
∑
r∈[R]

∑
k∈[K]

xrk(t)

2) Cost minimization problem.
The broker’s cost minimization problem in all T time

slots can be formulated as follows: We assume that these
costs are in proportion to each other, while we can also
compute their weighted sum. The notation of all variables
can be found in Table 1.

P : minimize
∑
t∈[T]

(
C1(t) + C∗2(t) + C3(t) + C4(t)

)
(8)

subject to:

Piy
r′
i (t) ≥

∑
r∈[R]

qrr
′

i (t),∀i, r′, t, (8a)

∑
r′∈[R]

qrr
′

i (t) = Dr
i (t),∀i, r, t, (8b)

xrk(t) ≥ ark
∑
i∈It

(ni,ky
r
i (t) +mi,ks

r
i (t))−M · u1

k,r(t),

∀r, k, t, (8c)

xrk(t) ≥ brk
∑
i∈It

(ni,ky
r
i (t) +mi,ks

r
i (t)) + erk −M · u2

k,r(t),

∀r, k, t, (8d)

u1
k,r(t) + u2

k,r(t) = 1,∀r, k, t, (8e)∑
r∈[R]

sri (t) = 1,∀i, t, (8f)

U · vri (t) ≥ yri (t) + sri (t),∀i, r, t, (8g)
zri (t) ≥ vri (t)− vri (t− 1),∀i, r, t, (8h)∑

r′∈[R]

grr
′

i (t) = yri (t),∀i, r, t, (8i)

∑
r∈[R]

grr
′

i (t) ≥ sr
′
i (t)d

∑
r̄∈[R] D

r̄
i (t)

Pi
e,∀i, r′, t, (8j)

yri (t), grr
′

i (t) ∈ {0, 1, 2, ...}, u1
k,r(t), u

2
k,r(t), s

r
i (t) ∈ {0, 1},

vri (t), zri (t) ∈ {0, 1}, xrk(t), qrr
′

i (t) ≥ 0,∀i, r, r′, k, t. (8k)

where ∀i, r, r′, k, t denote ∀i ∈ It, r ∈ [R], r′ ∈ [R], k ∈
[K], t ∈ [T]. Constraint (8a) guarantees that job i’s work-
ers’ processing capability in data center r′ is sufficient for
processing all the job’s data received from all data centers.
(8b) ensures that all the data collected in data center r are
processed (by workers potentially in different data centers)
in each time slot. Constraints (8c), (8d) and (8e) are from
the reformulation of the piecewise price functions in (7).
Constraint (8f) ensures that there is one PS in each ML job.
(8g) and (8h) are based on discussions in formulating C3(t)
and Eqn. (4). (8i) describes that the number of worker-PS
connections of job i from workers in r to PS placed in the
same or another data center equals the number of workers
in r. (8j) indicates that in each job i, the number of worker-
PS connections from workers in different data centers to
the PS placed in data center r′ is no smaller than the total
number of workers in t. We do not consider overall resource
capacity constraints in the DCs, as a cloud typically provides
sufficient resources for serving a large number of customers,
while the broker is only one.

Theorem 1. The cost minimization problem in (8) is an NP-hard
problem.

Proof. The switching cost functions in our problem are
discrete and non-convex, and can be higher-degree poly-
nomials, collectively hard to optimize. Even in the offline
setting and even without the switching cost, our problem
is a more complex version of the “0-1 integer programming
problem (ILP)”. The 0-1 ILP, in which unknowns are binary,
and only the restrictions must be satisfied, is one of Karp’s
21 NP-complete problems [42]. As for (8), when we only
consider sri (t) and (8f) and let all other variables be zero,
the problem can be transferred to a special case, which is a
0-1 ILP. Therefore, the 0-1 ILP can be reduced in polynomial
time to our problem, and then our problem is an NP-hard
problem.

7

3.4 Algorithmic Idea

In order to efficiently solve the cost minimization problem
in (8), we design a novel online algorithm mlBroker, leverag-
ing the regularization and dependent rounding techniques, to
tackle the aforementioned difficulties. As shown in Fig. 4,
the basic idea of our online algorithm design is divided into
two steps.
• Step 1: In Sec. 4, we first relax the integrality con-

straints of (8k) in P to allow real solutions. Then
by leveraging the regularization technique [35], we
substitute the time-coherent deployment costs with
carefully-designed logarithmic forms. We transfer the
relaxed problem Pf into a more solvable problem
P̃f , which can be easily decoupled into a series
of time-independent convex subproblems {P̃ft, ∀t},
based on the previous and current system information.
Afractional computes the optimal fractional solution for
each {P̃ft, ∀t}, utilizing the interior point method.

• Step 2: In Sec. 5, by taking the integral constraints
into consideration, we round the fractional solutions
of {y(t), s(t), g(t),v(t),u(t)} generated by {P̃ft, ∀t} back
into integral ones with a feasible dependent rounding
algorithm Around. Note that

∑
tOPT (P̃ft) = OPT (P̃f).

Afractional(Pf) is the the overall cost in (9) generated
by Afractional, and mlBroker(P) is the the overall
cost in (8) generated by our complete online algorithm
mlBroker. Finally, the competitive ratio of our com-
plete algorithm mlBroker is r1r2.

probability
analysis

interior
method

1
r1r2

E(P)

1
r1

P

KKT analysismap

P
dual

degrade

round

decouple

relax

regularize

Pf
Df

Pf

Pft

t

t,

,

!"#!"$ "!"#!"" !"#!$% "

!"#

()

()PmlBroker

!"#! !"$% !%!#"

!"#!"$% "%!#"

!"#$%&'()$* Pf

Fig. 4: Basic idea of our online algorithm mlBroker and main
route of our performance analysis.

In the following, we will discuss our complete online
algorithm mlBroker in details, consisting of an one-shot
regularization-based fractional algorithm Afractional (see
Sec. 4) and a dependent rounding algorithm Around (see
Sec. 5).

4 AN ONLINE FRACTIONAL ALGORITHM

4.1 Decomposing to One-shot Problems

The offline cost minimization problem (8) is an MILP. Even
the complete system information in the whole life span [T]
is known, solving such an MILP is non-trivial and NP-hard
[43], (see Theorem 1). Toward the design of an efficient
online algorithm, we first relax the integrality constraints
in (8k). Let Pf denote the relaxed LP:

Pf : minimize
∑
t∈[T]

(
C1(t) + C∗2(t) + C3(t) + C4(t)

)
(9)

subject to:

(8a)−(8j), ∀t

yri (t), grr
′

i (t),u1
k,r(t), u

2
k,r(t), s

r
i (t), v

r
i (t), zri (t),

xrk(t), qrr
′

i (t) ≥ 0,∀i, r, r′, k, t. (9k)

The main difficulty in solving (9) in an online manner lies
in constraint (8h) (related to deployment cost C3(t)) which
couples every two consecutive time slots. The job placement
decisions made at one time slot influence the deployment
cost in the next time slot. Without knowing future input (i.e.,
data volume and geo-distribution), we seek to guarantee
that the total cost of our online algorithm over the whole
time span does not exceed a small number times that of the
offline optimal algorithm which knows all input in [T] a
priori, i.e., a bounded competitive ratio.

To design the online algorithm, we utilize the regu-
larization method [35], which is achieved by adding a
smooth convex function to a given objective function and
then greedily solving the new online problem, in order to
obtain good competitive bound and stable performance.
We then decompose (9) into sub problems, independently
solvable one at a time. We remove constraint (8h) and
the non-negativity constraint zri (t) ≥ 0, and rewrite C3(t)
as
∑
r∈[R]

∑
i∈It ci max{vri (t) − vri (t − 1), 0} in the objective.

This objective term is non-convex; we further substitute
max{vri (t)−vri (t−1), 0}with a carefully-designed regularized
convex function. The non-convex term can be approximately
interpreted as the L1-distance, as the non-negative change
between the two variables vri (t) and vri (t − 1). The rel-
ative entropy function is known as an efficient regular-
izer for L1 − distance in online learning literature [35]:
vri (t) ln

vri (t)

vri (t−1)
+ vri (t− 1)− vri (t).

In order to ensure the feasibility when vri (t − 1) = 0,
we add a small constant term ε on both the denominator
and the nominator of the fraction within the ln operator.
Moreover, we define a factor σ = ln(1 + 1

ε
) and multiply

the improved relative entropy function by 1
σ

, in order to
scale down the deployment cost, since we add the constant
term ε. The regularization function is strictly increasing with
vri (t), convex, and differentiable.

Then, C3(t) is reformulated as follows:

C3(t) =
∑
i∈It

∑
r∈[R]

ci
σ

(
(vri (t)+ε) ln

vri (t) + ε

vri (t− 1) + ε
+vri (t−1)−vri (t)

)
With the above trade off between movement cost and

relative entropy plus a linear term, the coupling between
time slot t − 1 and t in the contraints can be removed;
the resulting new relaxed offline problem P̃f can be readily
decomposed into a series of sub-problems P̃f =

∑
t∈[T] P̃ft,

each to be solved in a single time slot. The sub problem,
P̃ft, to be solved in time slot t, is as follows, where values
of the previous decisions, vri (t− 1)’s, are given as inputs:

minimize C1(t) + C∗2 (t) + C4(t)

+
∑
i∈It

∑
r∈[R]

ci
σ

((vri (t) + ε) ln
vri (t) + ε

vri (t− 1) + ε
− vri (t)) (10)

subject to:
(8a)− (8g), (8i), (8j), (9k), without ∀t ∈ [T]

8

Note that in the objective, we further omit the plus term
vri (t − 1) in the part corresponding to C3(t), which does
not affect the optimal solutions of vri (t)’s derived by solving
P̃ft.

4.2 Competitive Ratio Analysis

Algorithm 1 An Online Regularization-Based Fractional
Algorithm Afractional

Input: R,K, ε, {ti, Pi, {ni,k,mi,k}k∈[K], Bi}∀i∈[I],d, c, F

Output: q(t),x(t), s̃(t), ṽ(t), ỹ(t), g̃(t), ũ1(t), ũ2(t)

1: Initialization: xrk(t) = 0, yri (t) = 0, sri (t) = 0, qrr
′

i (t) =
0, grr

′

i (t) = 0, vri (t) = 0, u1k,r(t) = 0, u2k,r(t) = 0 ∀i ∈
[I], r, r′ ∈ [R], t ∈ [T];

2: for t ∈ [T] do
3: Observe values of Dr

i (t), vri (t− 1),∀i ∈ It, r ∈ [R];
4: Use the interior point method to solve P̃ft in (10);
5: return the fractional solutions x(t), q(t), ỹ(t), s̃(t),

g̃(t), ṽ(t), ũ1(t), ũ2(t)
6: end for

Each subproblem P̃ft is a convex program; we can use
many mature algorithms to solve it in polynomial time,
such as interior point methods [35]. Our online fractional
algorithm Afractional is presented in Alg. 1, which produces
fractional solution (x(t), q(t), ỹ(t), s̃(t), g̃(t), ṽ(t), ũ1(t),
ũ2(t)) by solving P̃ft at each time slot t, with the knowledge
of previous and current system information.

Theorem 2. The online fractional algorithm Afractinoal pro-
duces a feasible solution of Pf in polynomial time.

Proof. The main body in mlBroker is using the interior
point method [35] to solve P̃ft in (10), which is a method
to solve convex problem in polynomial time, thus Theorem
2 holds.

Theorem 3. The competitive ratio of Afractinoal is r1 = 2+(1+

ε) ln(1 + 1
ε
), which is an upper-bound of the ratio of the overall

cost in (9) generated by Afractional to the cost produced by the
offline optimal solution of Pf .

Proof. We formulate the dual of the relax LP. Let αr
′
i (t), βri (t),

θrk(t), ρrk(t), ξrk(t), γi(t), φri (t), µr
i (t), ψr

i (t) and ηr
′

i (t) denote
the Lagrangian dual variables associated with (8a) - (8j),
respectively. Then the dual program Df of Pf is as follows:

maximize∑
t∈[T]

(∑
i∈[I]

∑
r∈[R]

Dr
i (t)β

r
i (t) +

∑
k∈[K]

∑
r∈[R]

erkρ
r
k(t) +

∑
i∈[I]

γi(t)
)

(11)

subject to:

θrk(t) + ρrk(t) ≤ 1,∀r, k, t, (11a)

−αr
′
i (t) + βri (t) ≤ drr

′
,∀i, r, r′, t, (11b)

Piα
r
i (t)− arkni,kθrk(t)− brkni,kρrk(t)− φri (t)− ψri (t) ≤ 0,

∀i, r,k, t, (11c)
−arkmi,kθ

r
k(t)− brkmi,kρ

r
k(t) + γi(t)− φri (t)

−d
∑
r∈[R] D

r
i (t)

Pi
eηri (t) ≤ 0,∀i, r, k, t, (11d)

ψri (t) + ηr
′
i (t) ≤ drr

′
Bi,∀i, r, r′, t, (11e)

Uφri (t)− µri (t) + µri (t+ 1)+ ≤ 0,∀i, r, t, (11f)
µri (t) ≤ ci,∀i, r, t, (11g)

Mθrk(t) + ξrk(t) ≤ 0,∀r, k, t, (11h)
Mρrk(t) + ξrk(t) ≤ 0,∀r, k, t, (11i)

αr
′
i (t), θrk(t), ρrk(t), φrk(t), µrk(t), ηri (t) ≥ 0, ∀i, r, r′, k, t. (11j)

Let P ∗f and D∗f denote the optimum of Pf and Df

respectively. We use Pf andDf to denote the objective value
of a feasible solution of Pf and Df , respectively. Note we
already have Df ≤ D∗f = P ∗f due to the strong duality. Pf

can be obtained by ORFA. If we can further find a feasible
dual solution of (11) and prove Pf ≤ r1Df for a certain
constant r1, then this r1 is the competitive ratio.

Therefore, the key point is to find a feasible dual solution
of (11). Our goal is to assign values of a set of dual vari-
ables within the feasible region defined by the constraints.
Now, we define D̃f as the dual problem of the regularized
problem P̃f . Let τrk (t), νri (t), ϕri (t), πrr

′
i (t), ςrr

′
i (t), ιrk(t), κri (t),

δ1
k,r(t), δ2

k,r(t) denote dual variables associated with xrk(t),
yri (t), sri (t), qrr

′
i (t), grr

′
i (t), vri (t), u1

k,r(t), u2
k,r(t). We write

the following Karush-Kuhn-Tucker (KKT) conditions that
characterize the optimal solution of P̃t and D̃t in Table. 2,
where ∀i, r, k, t mean ∀i ∈ [I], r ∈ [R], k ∈ [K], t ∈ [T],
respectively.

Following from the KKT conditions (K1)-(K19), a feasible
solution of the regularized dual problem can be derived as
follows: α̃r′i (t) = αr

′
i (t), β̃ri (t) = βri (t), θ̃rk(t) = θrk(t), ρ̃rk(t) =

ρrk(t), γ̃i(t) = γi(t), φ̃ri (t) = φri (t), ψ̃ri (t) = ψri (t), η̃ri (t) = ηri (t),
ξ̃r
′
i (t) = ξr

′
i (t) and µ̃ri (t) = ci

σ
ln 1+σ

ṽri (t−1)
. In order to verify

that it satisfies the constraints (11a)-(11i), we take (11g) as
an example. We rewrite the left-hand side, then we have the
following:

− µ̃ri (t) + µ̃ri (t+ 1) + Uφ̃ri (t)

=− ci
σ

ln
1 + σ

ṽri (t− 1)
+
ci
σ

ln
1 + σ

ṽri (t)
+ Uφ̃ri (t)

=
ci
σ

ln
ṽri (t) + ε

ṽri (t− 1) + ε
+ Uφ̃ri (t) ≤ 0,

which indicates (11g) is feasible. All the rest constraints can
be proved feasible analogously.

Step 1: We bound the static costs, i.e.,
∑
t∈[T] C1(t) +

C∗2 (t) + C4(t):∑
t∈[T]

C1(t) + C∗2 (t) + C4(t) (12)

9

TABLE 2: K.K.T Optimality Conditions

1− θrk(t)− ρ
r
k(t)− τ

r
k (t) = 0, ∀i, r, k (K1)

Piα
r
i (t)− arkni,kθ

r
k(t)− b

r
kni,kρ

r
k(t)− φ

r
i (t)

−ψri (t) + νr
′
i (t) = 0, ∀i, r, k (K2)

−arkmi,kθ
r
k(t)− b

r
kmi,kρ

r
k(t) + γi(t)− φri (t)

−d
∑

r∈[R]D
r
i (t)

Pi
eηri (t) + ϕri (t) = 0, ∀i, r, k (K3)

−αri (t) + βri (t)− drr
′
+ πrr

′
i (t) = 0, ∀i, r, r′ (K4)

ηri (t) + ψri (t)− drr
′
Bi + ςrr

′
i (t) = 0, ∀i, r, r′ (K5)

−µri (t) + µri (t+ 1) + Uφri (t) + ιrk(t) = 0, ∀r, k (K6)
Mθrk(t) + ξrk(t) + δ1

k,r(t) = 0 (K7)
Mρrk(t) + ξrk(t) + δ2

k,r = 0 (K8)

αr
′
i (t)(Piy

r′
i (t)−

∑
r∈[R] q

rr′
i (t)) = 0, ∀i, r, r′ (K9)

βri (t)(
∑
r′∈[R] q

rr′
i (t)−Dri (t)) = 0,∀i, r, r′ (K10)

θrk(t)a
r
k

∑
i∈[It]

(
ni,ky

r
i (t) +mi,ks

r
i (t)

)
−θrk(t)x

r
k(t)− θ

r
k(t)Mu1

k,r = 0, ∀r, k (K11)
ρrk(t)b

r
k

∑
i∈[It]

(
ni,ky

r
i (t) +mi,ks

r
i (t)

)
+ρrk(t)e

r
k − ρ

r
k(t)x

r
k(t)− ρ

r
k(t)Mu2

k,r = 0, ∀r, k (K12)
γi(t)(

∑
r∈[R] s

r
i (t)− 1) = 0,∀i (K13)

ξtk,r(1− u
1
r,k − u

2
k,r(t)) (k14)

φri (t)(U · vri (t)− yri (t)− sri (t)) = 0, ∀i, r (K15)
ψri (t)(

∑
r′∈[R] g

rr′
i (t)− yri (t)) = 0,∀i, r, r′ (K16)

ηr
′
i (t)(

∑
r∈[R] g

rr′
i (t)− sr′i (t)d

∑
r∈[R]D

r
i (t)

Pi
e) = 0, ∀i, r, r′ (K17)

yri (t)ν
r
i (t) = 0,∀i, r (K18)

grr
′

i (t)ςrr
′

i (t) = 0, ∀i, r, r′ (K19)
qrr
′

i (t)πrr
′

i (t) = 0,∀i, r, r′ (K20)
sri (t)ϕ

r
i (t) = 0, ∀i, r (K21)

xrk(t)τ
r
k (t) = 0, ∀i, r (K22)

τrk (t), ν
r
i (t), ϕ

r
i (t), π

rr′
i (t), ςrr

′
i (t), ιrk(t), δ

1
k,r(t), η

r
i (t)

δ2
k,r(t), κ

r
i (t), α

r
i (t), θ

r
k(t), ρ

r
k(t), µ

r
i (t), φ

r
i (t) ≥ 0,∀i, r, r′, k

=
∑
t∈[T]

(∑
i∈[I]

∑
r∈[R]

∑
r′∈[R]

drr
′
qrr
′

i (t) +
∑
r∈[R]

∑
k∈[K]

xrk(t)

+
∑
i∈[I]

∑
r∈[R]

∑
r′∈[R]

drr
′
Big

rr′
i (t)

)
(12a)

≤
∑
t∈[T]

(∑
i∈[I]

∑
r∈[R]

∑
r′∈[R]

(βri (t)− αri (t))qrr
′

i (t)

+
∑
r∈[R]

∑
k∈[K]

(brk
∑
i∈It

(ni,ky
r
i (t) +mi,ks

r
i (t)) + erk)(θ

r
k(t) + ρrk(t))

+
∑
i∈[I]

∑
r∈[R]

∑
r′∈[R]

(ηri (t) + φri (t))g
rr′
i (t)

)
(12b)

≤
∑
t∈[T]

(∑
i∈[I]

∑
r∈[R]

Dri (t)β
r
i (t)−

∑
i∈[I]

∑
r∈[R]

Dri (t)α
r
i (t)

+
∑
i∈[I]

∑
r∈[R]

(Piα
r
i (t) +

Pi

Dri (t)
γi(t))d

∑
r∈[R] D

r
i (t)

Pi
e

+
∑
r∈[R]

∑
k∈[K]

erkρ
r
k(t) + P ri (t)α

r
i (t) + γi(t) + erkθ

r
k(t)

)
(12c)

≤ 2
∑
t∈[T]

(∑
i∈[I]

∑
r∈[R]

Dri (t)β
r
i (t) +

∑
i∈[I]

γi(t) +
∑
r∈[R]

∑
k∈[K]

erkρ
r
k(t)

)
(12d)

= 2D.

(12a) holds due to the definition of these costs. (12b) follows
from (K1), (K4), (K5), (K12) and (K20). (12c) follows from (K1),
(K2), (K3), (K10) and (K17). (12d) follows from K ·R ≤ I and
some basic reformulations.

Step 2: We then bound the reconfiguration cost, C3:∑
t∈[T]

C3(t) (13)

=
∑
t∈[T]

∑
i∈It

∑
r∈[R]

cri z
r
i (t) (13a)

=
∑
t∈[T]

∑
i∈It

∑
r∈[R]

cri (v
r
i (t)− vri (t− 1)) (13b)

≤
∑
t∈[T]

∑
i∈It

∑
r∈[R]

σ(vri (t) + ε)
cri
σ

ln
vri (t) + ε

vri (t− 1) + ε
(13c)

≤
∑
t∈[T]

∑
i∈It

∑
r∈[R]

σ(vri (t) + ε)(−Uφri (t)) (13d)

≤σ(1 + ε)
∑
t∈[T]

∑
i∈It

∑
r∈[R]

Dri (t)β
r
i (t) (13e)

≤(1 + ε) ln(1 +
1

ε
)D. (13f)

(13a) and (13b) holds due to the definition of reconfigura-
tion. (13c) holds due to the fact a− b ≤ alna

b
, ∀a, b > 0. (13d)

follows from (K6) and (13e) is supported by (K4) and the fact
that −Uφri (t) ≤ 0 ≤ αri (t) ≤ βri (t) ≤ Dr

i (t)β
r
i (t). (13f) holds

since σ = ln(1 + 1
σ

) and
∑
t∈[T]

∑
i∈[I]

∑
r∈[R] D

r
i (t)β

r
i (t) ≤ D,

which is intuitively less than D. According to Steps 1 and 2,
Theorem 3 holds.

5 A RANDOMIZED DEPENDENT ROUNDING ALGO-
RITHM

The algorithm Afractional computes fractional solutions
for the relaxed primal program. However, the number of
workers and parameter servers should be integers, so do
the number of communication links and binary states that
indicate whether migration occurs and which segment to
choose in the volume discount piecewise function. We need
to round the fractional solutions ỹ(t), s̃(t), g̃(t), ṽ(t), ũ1(t),
ũ2(t) into integer solutions to satisfy constraint (8k), as well
as other constraints where they appear. Due to those cou-
pling constraints, the variables are dependent on each other,
and the traditional independent rounding scheme, by which
each variable is rounded up or down independently, does
not apply (which may well lead to constraint violation). We
therefore design a novel randomized dependent rounding
algorithm to explore the inherent dependence among the
variables.

5.1 Algorithm Design
Our algorithm consists of three steps: first, we round ỹ
according to constraints (8a), (8c) and (8d); next, we round
s̃ into {0, 1} according to constraints (8f); then, given the
rounded values of y and s, we minimize (10) to derive the
integer solutions of ū1, ū2, ḡ, v̄ and the real-valued solutions
of q and x under constraints (8a)-(8e), (8g), (8i)–(8k). The
algorithm, Around, is given in Alg. 2.
Step 1: The key idea of rounding ỹ is to compensate the
round-down variables with the round-up ones to ensure
that the values of

∑
i∈[It] ni,ky

r
i (t) and

∑
r∈[R] Piy

r
i (t) re-

main similar as before rounding, in order to ensure con-
straints (8a)–(8d) can still be satisfied. We first round ỹ to
ensure

∑
i∈[It] ni,ky

r
i (t) or

∑
r∈[R] Piy

r
i (t) remains similar

as before, respectively (lines 1-3 and line 4, Alg. 2); then
for each ỹri (t), we pick the largest value among its K + 1
rounded values, and use that as the integer solution ȳri (t)
(line 5, Alg. 2).

In Round1 y, we use {ni,k}∀i∈[It] as the input value of
argument ω and we maintain a set of jobs for each data

10

Algorithm 2 The Dependent Rounding Algorithm in t,
Around

Input: ỹ(t), s̃(t),D, {ti, Pi, {ni,k,mi,k}k∈[K], Bi}∀i∈[I]

Output: s̄(t), ū1(t), ū2(t), ȳ(t), v̄(t), ḡ(t), q(t), x(t)

1: for each resource k ∈ [K] do
2: ȳ1

k(t)= Round1 y
(
ỹ(t), nk

)
;

3: end for
4: ȳ2(t)= Round2 y

(
ỹ(t)

)
;

5: Set ȳri (t) = max{{ȳ1r
ki (t)}∀k∈[K], ȳ

2r
i (t)},∀i ∈ It, r ∈ [R];

6: for i ∈ It do
7: Select ri ∈ [R] randomly using s̃ri (t),∀r ∈ [R], as the

probability distribution;
8: Set s̄rii (t) = 1; Set s̄ri (t) = 0 for all r 6= ri;
9: end for

10: Compute ū1(t), ū2(t), v̄(t), ḡ(t), q(t), x(t) which mini-
mizes Prt under constraints (8a)-(8e), (8g), (8i)–(8k), and
the rounded solutions of ȳ(t) and s̄(t);

11: return ȳ, s̄, ū1, ū2, v̄, ḡ, q, x

center r, Y r
R (t) , {i|yri (t) /∈ Z, i ∈ It}, which contains all

jobs whose number of workers deployed in data center r
in t is not an integer (lines 2-7, Alg. 3). A probability pi(t)
is associated with each job in this set, initialized to be the
fractional part of ỹri (t), i.e., ỹri (t) − bỹri (t)c. We repeatedly
randomly pick two jobs from the set, and compute two
weights Ψ1 and Ψ2 for the two jobs according to their
corresponding pi(t) and ωi values (lines 9-11). Then we use
probabilities decided by Ψ1 and Ψ2 to update pi(t)’s for the
two jobs (lines 12-15). After this, if a job i’s pi(t) becomes an
integer (0 or 1), we round ỹri (t) up if pi(t) is 1 and down if
pi(t) equals 0, and remove the job from set Y r

R (t) (lines 16-
21). When there is a single job left in the set, we just round
its ỹri (t) up (lines 23-25).

With carefully designed update rules, pi(t)’s are always
within [0, 1] and will eventually become 0 or 1 (i.e., the while
loop will terminate). For example, if 1 − pi1(t) ≤ ωi2

ωi1
pi2(t),

then Ψ1 = 1 − pi1(t) and pi1(t) = pi1(t) + 1 − pi1(t) = 1,
i.e., pi1(t) becomes 1 and Y r

R (t) = Y r
R (t) − 1. Meanwhile,

pi2(t) ≥ ωi1

ωi2
Ψ1, so 0 ≤ pi2(t) = pi2(t) − ωi2

ωi1
Ψi1(t) ≤ 1, i.e.,

pi2(t) is still within [0, 1]. In Alg. 3, line 13 and line 15 are
executed randomly; if one between pi1(t) and pi2(t) goes
up, the other must go down, and the sum of ωi1,r ỹ

r
i1(t) +

ωi2,r ỹ
r
i2(t) remains the same (proved in Lemma 1).

Round2 y is almost the same with Round1 y (hence
omitted due to space limit), except for the following: (i)
We maintain a set of data centers for each job i, Y i

R(t) ,
{r|yri (t) /∈ Z, r ∈ [R]}, which contains all data centers
in which the number of job i’s workers deployed in t is
not an integer. Y r

R (t) in Alg. 3 is replaced with Y i
R(t) and

we exchange line 1 with line 3. (ii) We just input all frac-
tional solutions ỹ(t) to Round2 y, since Pi is the same for
r ∈ [R] when considering job i. In Round2 y, we can ensure∑

r∈R Piy
r
i (t) remains at similar values after rounding.

We round worker number of the last remaining job in
set Y r

R (t) (Y i
R(t)) up in Round1 y (Round2 y) and set ȳri (t)

to be the largest among the K + 1 rounded values of ỹri (t)
(in Around), in order to ensure deploying sufficient workers
to process the datasets at each time t (i.e., feasibility of
constraints (8a)(8b)).

Algorithm 3 Randomized Algorithm for Rounding ỹ in t,
Round1 y

Input: ỹ(t), ω
Output: ȳ(t)

1: for each r ∈ [R] do
2: Set Y rR (t) = ∅;
3: for i ∈ It do
4: if yri (t) 6= byri (t)c then
5: Y rR (t) = Y rR (t) ∪ {i}, pi(t) , ỹri (t)− bỹri (t)c;
6: end if
7: end for
8: while |Y rR (t)| > 1 do
9: Randomly select two jobs i1, i2 from Y rR (t);

10: Define Ψ1 , min{1− pi1(t),
ωi2
ωi1

pi2(t)};
11: Define Ψ2 , min{pi1(t),

ωi2
ωi1

(1− pi2(t))};
12: With probability Ψ2

Ψ1+Ψ2
, set

13: pi1(t) = pi1(t) + Ψ1, pi2(t) = pi2(t)− ωi1
ωi2

Ψ1;

14: With probability Ψ1
Ψ1+Ψ2

, set
15: pi1(t) = pi1(t)−Ψ2, pi2(t) = pi2(t) +

ωi1
ωi2

Ψ2;
16: if pi1(t) = 0 or pi1(t) = 1 then
17: Set ȳri (t) = pi1(t) + bỹri (t)c, Y rR (t) = Y rR (t) \ {i1};
18: end if
19: if pi2(t) = 0 or pi2(t) = 1 then
20: Set ȳri (t) = pi2(t) + bỹri (t)c, Y rR (t) = Y rR (t) \ {i2};
21: end if
22: end while
23: if |Y rR (t)| = 1 then
24: Set ȳri (t) = dỹri (t)e for the only i ∈ Y rR (t);
25: end if
26: end for
27: return ȳ(t)

Step 2: Since
∑
i∈[R] s̃

r
i = 1 (constraint (8f)), we use s̃ri ,∀r ∈

[R] as a probability distribution, and select one ri ∈ [R]
accordingly. We set s̄rii (t) = 1 and s̄ri (t) = 0 if r 6= ri (lines
6-9), for each job i ∈ It.
Step 3: Given the rounded values of y and s, we compute
values of the other integer and real variables as follows (line
10), to minimize Prt (Prt is almost the same with (10) except
that the values of y(t) and s(t) are known).

– We compute real-valued q(t) by minimizing C1(t)
under constraints (8a) and (8b), which is a linear program.

– We compute real-valued x(t) and integers
ũ1(t), ũ2(t) under constraints (8c)-(8e), to minimize
C∗2 (t) =

∑
r∈[R]

∑
k∈[K] x

r
k(t). The minimal xrk(t) is

min{ark
∑
i∈It(ni,ky

r
i (t) + mi,ks

r
i (t)), b

r
k

∑
i∈It(ni,ky

r
i (t) +

mi,ks
r
i (t))+erk}; u1

k,r(t) = 1, u2
k,r(t) = 0, if ark

∑
i∈It(ni,ky

r
i (t)+

mi,ks
r
i (t)) > brk

∑
i∈It(ni,ky

r
i (t) + mi,ks

r
i (t)) + erk, and

u1
k,r(t) = 0, u2

k,r(t) = 1, otherwise.
– v̄(t) is decided as the smallest binary values satisfying

constraint (8g), to minimize the regularization function in
(10).

– Integers ḡ are computed according to grr
′

i (t) = yri (t) ×
sr
′
i (t), which satisfy constraints (8i) and (8j).

5.2 Integrality Gap Analysis

Next we first prove the rationality of the obtained integer
solutions, and then prove the performance ratio of our
online algorithm mlBroker.

11

Lemma 1. The solution of (ȳ, s̄, ū1, ū2, v̄, ḡ, q, x) is feasible to
problem (8).

Proof. As ỹ(t) exists, ȳ(t) always exists since it is a feasi-
ble solution of executing Round1 y and Round2 y. Dur-
ing each iteration in Round1 y (Alg. 3), no matter how
line 13 and line 15 are executed, the sum of ωi1,r ỹri1(t) +

ωi2,r ỹ
r
i2

(t) maintains the same. For example, in the case
of Line 13, we have ωi1,r(ỹ

r
i1

(t) + Ψ1) + ωi2,r(ỹ
r
i2

(t) −
ωi1,r

ωi2,r
Ψ1) = ωi1,r ỹ

r
i1

(t) + ωi2,r ỹ
r
i2

(t), which means that we
have

∑
i∈It\Y r

R (t) ωi,r ȳ
r
i (t) =

∑
i∈It\Y r

R (t) ωi,r ỹ
r
i (t) after the

loop of Lines 8-22. We can also get
∑
i∈It ωi,r ȳ

r
i (t) =∑

i∈It\Y r
R (t) ωi,r ȳ

r
i (t) +

∑
i∈Y r

R (t) ωi,r ȳ
r
i (t) ≥

∑
i∈It ωi,r ỹ

r
i (t) af-

ter executing Lines 23-25. In Round2 y, we can similarly get∑
r∈[R](ỹ

r1
i (t) + ỹr2i (t)) ≥

∑
r∈[R](ȳ

r1
i (t) + ȳr2i (t)).

Since all the round-down yri (t) can be compensated with
round-up ones, the total processing capacity of all workers
of job i in t,

∑
r∈[R] Piy

r
i (t), is still no smaller than the

total amount of data to be processed in t to guarantee
the feasible of constraint (8a) and (8b). Therefore, feasible
values of qrr

′

i (t)’s satisfying constraints (8a) and (8b) can
be found. Also, since s̃(t) exists, s̄(t) always exits since it
is a feasible solution of executing Alg. 2. We then calculate
the rest of variables according to ỹ(t) and s̃(t). Given the
value of ȳ(t) and s̄(t), the minimum of the two segments
in piecewise functions is determined. For example, if the
value of the first segment is smaller than the second one
for specific k, r and t, then we set ū1

k,r(t) = 0, ū2
k,r(t) = 1

and xrk(t) = ark
∑
i∈It(ni,ky

r
i (t) + mi,ks

r
i (t)), and the con-

straints (8b)-(8d) are satisfied. The solution of v̄(t) can be
determined with the value of ȳ(t) and s̄(t). Since the value
of grr

′

i (t) can be determined by grr
′

i (t) = yri (t) ∗ sr
′
i (t),

the constraints (8i) and (8j) are satisfied. Therefore, all the
constraints remain feasible for each time slot T . The lemma
is proved.

We next give the approximation ratio of Around, an
upper bound of the ratio of the objective value of Pf in t
computed by solutions produced by Around to the objec-
tive value of Pf in t computed by solutions returned by
Afractional (i.e., we use solutions derived by solving P̃ft to
compute values of the original objective function in Pf).

Theorem 4. The approximation ratio of Around is r2 = %1 +

%2 + %3 + %4, where
%1 = max

r′∈[R],r∈[R]
(1 + λ)drr

′
,

%2 = min{ max
t∈[T],i∈It,r∈[R],k∈[K]

ark((1 + λ)ni,k +
mi,k

$it
)

Pi
,

max
t∈[T],i∈It,r∈[R],k∈[K]

(brk + erk)((1 + λ)ni,k +
mi,k

$it
)

Pi
},

%3 = max
t∈[T],i∈It,

(2 + λ)ci
Pi$it

, %4 = (1 + λ) max
i∈[I]

Bi
Pi
.

where λ = maxt∈[T],i∈It λit, λit = Pi(|R|+1)
minr∈[R]D

r
i (t)

, ∀t ∈ [T], i ∈ It,

and $it = d
∑

r∈[R]D
r
i (t)

Pi
e, ∀t ∈ [T], i ∈ It.

Proof. We need to mention two important properties
achieved by the Round y here, which will be utilized in
the approximation ratio analysis. Let p̄i,r(t) ∈ {0, 1} be
a binary random variable indicating the rounded value of
pi,r(t) produced by Roundy .

(P1) Marginal Distribution Property. The probability pi,r(t)
of each element i ∈ Y rR (t) satisfies Pr[p̄i,r(t) = 1] =

pi,r(t), ∀r ∈ [R], t ∈ [T].
(P2) Weight Preservation Property. The rounded probabil-
ity p̄i,r(t) and the corresponding weight ωi of each element
i ∈ Y rR (t), ∀r ∈ [R], t ∈ [T] satisfy

∑
i∈Y r

R (t) ωipi,r(t) =∑
i∈Y r

R (t) ωirp̄i,r(t), ωi = Pi for constraint (8a) and ωi = ni,k
for constraint (8c).

The connection between the values of
∑

r∈[R] Piy
r
i (t)

before and after rounding ỹri (t)’s, are given as follows. For
ȳri (t) and ŷri (t), ∀i ∈ It, r ∈ [R], t ∈ [T], produced by
invoking Around and Round2 y respectively, with ỹ(t) as
arguments, we have∑

r∈[R]

Piȳ
r
i (t) ≤

∑
r∈[R]

Pi(ŷ
r
i (t) + 1)

=
∑

r∈[R]\Y i
R (t)

Piŷ
r
i (t) +

∑
r∈Y i

R (t)

Piŷ
r
i (t) +

∑
r∈[R]

Pi

≤
∑

r∈[R]\Y i
R (t)

Piỹri (t) +
∑
r∈[R]

Pibỹri (t)c

+
∑
r∈[R]

Pidp̃i,r(t)e+
∑
r∈[R]

Pi

≤
∑
r∈[R]

Piỹri (t) + max
r∈[R]

Pi(|R|+ 1)

=
∑
r∈[R]

Piỹri (t) + λit min
r∈[R]

Dr
i (t)

=
∑
r∈[R]

Piỹri (t) + λit min
r∈[R]

∑
r′∈[R]

qrr
′

i (t)

≤
∑
r∈[R]

Piỹri (t) + λitPiỹri (t)

≤(1 + λ)
∑
r∈[R]

Piỹri (t) (14)

where λ = maxt∈[T],i∈It λit, and λit = Pi(|R|+1)
minr∈[R]D

r
i (t)

, ∀t ∈
[T], i ∈ It. When substituting Pi with ni,r through the
same derivation process, we can get

∑
i∈It ni,r ȳ

r
i (t) ≤ (1 +

λ)
∑
i∈It ni,r ỹ

r
i (t).

We bound all the costs, which are computed by the
final integral solution (s̄, M̄ , ȳ, v̄, ḡ), based on the above
properties. Let P̃ (mlBroker) denote the objective value of
(10) by its fractional solution. Let E[C1], E[C2], E[C3] and
E[C4] denote the expectation of four types of cost with
integral solutions respectively.

E[C1] =
∑
t∈[T]

∑
i∈[I]

∑
r∈[R]

∑
r′∈[R]

drr
′

i qrr
′

i (t) (15)

≤
∑
t∈[T]

∑
i∈[I]

∑
r′∈[R]

max
r∈[R]

drr
′

i Piȳ
r′
i (t) (15a)

≤(1 + λ)
∑
t∈[T]

∑
r′∈[R]

∑
i∈It

max
r∈[R]

drr
′

i Piỹr
′
i (t) (15b)

≤%1

∑
t∈[T]

∑
r′∈[R]

∑
i∈It

Piỹr
′
i (t) (15c)

where %1 = maxr∈[R],r′∈[R],i∈[I](1 + λ)drr
′

i . (15a) holds due to
constraint (8a) and (15b) follows from (14).

E(C2)

= E
[∑
t∈[T]

∑
r∈[R]

∑
k∈[K]

F rk
(∑
i∈It

(
ni,kȳ

r
i (t) +mi,ks̄

r
i (t)

))]
(16)

12

=
∑
t∈[T]

∑
r∈[R]

∑
k∈[K]

F rk

(∑
i∈It

(E[ni,kȳ
r
i (t)] +mi,kE[s̄ri (t)])

)
(16a)

≤
∑
t∈[T]

∑
r∈[R]

∑
k∈[K]

F rk

(∑
i∈It

(
(1 + λ)ni,kỹri (t) +mi,ks̃ri (t)

))
(16b)

≤min{
∑
t∈[T]

∑
r∈[R]

∑
k∈[K]

∑
i∈It

ark((1 + λ)ni,k +
mi,k

wi
)

Pi
Piỹri (t),

∑
t∈[T]

∑
r∈[R]

∑
k∈[K]

∑
i∈It

(brk + erk)
(
(1 + λ)ni,k +

mi,k

wi

)
Pi

Piỹri (t)}

(16c)

≤%2P̃ (mlBroker) (16d)

where %2 = min{maxt∈[T],r∈[R],k∈[K],i∈It
ark((1+λ)ni,k+

mi,k
wi

)

Pi

maxt∈[T],r∈[R],k∈[K],i∈It
(brk+erk)((1+λ)ni,k+

mi,k
wi

)

Pi
} and

wi = d
∑

r∈[R]D
r
i (t)

Pi
e. (16a) follows from the property

of expectation. (16b) follows from (14) and the
definition of the probability of s̄ri (t). (16c) holds since
F rk
(∑

i∈It

(
ni,ky

r
i (t)+mi,ks

r
i (t)

))
=min{ark

∑
i∈It(ni,ky

r
i (t) +

mi,ks
r
i (t)), brk

∑
i∈It

(
ni,ky

r
i (t)+mi,ks

r
i (t)

)
+ erk} and

sri (t) ≤
yri (t)

d
∑

r∈[R] D
r
i (t)

Pi
e
. We assume that for each time

slot t, there always exits a job placing its worker or PS in the
rth data center, which is feasible if the number of jobs is very
large per time slot, thus erk ≤ erk(

∑
i∈It ni,ky

r
i (t) +mi,ks

r
i (t)).

The reason for (16d) is the same for (15c).

E[C3] = E
[∑
t∈[T]

∑
r∈[R]

∑
i∈It

ciz̄
r
i (t)

]
(17)

=E
[∑
t∈[T]

∑
r∈[R]

∑
i∈It

ci(v̄
r
i (t)− v̄ri (t− 1))

]
(17a)

≤E
[∑
t∈[T]

∑
r∈[R]

∑
i∈It

civ̄
r
i (t)

]
(17b)

=E
[∑
t∈[T]

∑
r∈[R]

∑
i∈It

(ciȳ
r
i (t) + cis̄

r
i (t))

]
(17c)

≤
∑
t∈[T]

∑
r∈[R]

∑
i∈It

(2 + λ)ci
Piwi

Piỹri (t) (17d)

≤%3P̃ (mlBroker) (17e)

where %3 = maxt∈[T],i∈[I]
(2+λ)ci
Piwi

and wi = d
∑

r∈[R]D
r
i (t)

Pi
e.

(17a), (17b) and (17c) holds due to the definition of zri (t)
and vri (t). The reasons for (17d) and (17e) are similar with
(16c) and (16d).

E[C4] = E
[∑
t∈[T]

∑
i∈[I]

∑
r∈[R]

∑
r′∈[R]

drr
′

i Biḡ
rr′
i (t)

]
(18)

≤E
[∑
t∈[T]

∑
i∈[I]

∑
r∈[R]

Bi
Pi
Piȳ

r
i (t)

]
(18a)

≤%4E[C1] (18b)

≤%4P̃ (mlBroker) (18c)

where %4 = (1 + λ) maxi∈[I]
Bi
Pi

. (18a) holds due to the
constraint (8i) and the reasons for (18b) and (18c) are similar
to the former ones.

5.3 Analysis for Our Complete Algorithm
We now show the competitive ratio of our complete on-
line algorithm, referred to as mlBroker, which carries out
Afractional and then Around in each time slot t. The compet-
itive raio is an upper-bound ratio of the objective value of
(8) achieved by solutions produced by the online algorithm,
to the offline optimum of (8).

Lemma 2. The running time of Round1 y and Round2 y is
O(ItR).

Proof. Within each For loop in the outermost layer: Line 2
takes constant step to initialize a set Y r

R (t). Lines 3-7 take It
steps to finish the assignment tasks. The While loop (lines
8-22) take at most O(

|Y r
R (t)|(|Y r

R (t)|−1)

2
) steps to terminate.

Lines 23-25 can be done in constant steps. In summary, the
running time of Round1 y and Round2 y is O(ItR).

Theorem 5. Our complete online algorithm mlBroker runs in
polynomial time in each time slot, and achieves the competitive
ratio

r = r1 · r2 =
(
2 + (1 + ε) ln(1 + 1

ε
)
)
·
(
%1 + %2 + %3 + %4

)
.

Proof. The main body in Afractional uses the interior point
method [35] to solve P̃ft in (10), which runs in polynomial
time. According to Lemma 2, the running time of Round1 y
andRound2 y isO(ItR). InAround, lines 1-5 can be finished
in O((K+1)ItR) steps to set ȳ. Lines 6-9 take O(It) steps to
choose where to place parameter servers. Line 10 involves
solving a linear program, which can be solved by interior
point method in polynomial time [35]. Hence the algorithm
runs in polynomial time in each t.

We have objective value of (8) mlBroker achieves
offline optimum of (8) ≤ r1 ×

r2 =
objective value of Pf computed by Afractional’s solution

offline optimum of relaxed Pf
×

objective value of Pf computed by Around’s solution
objective value of Pf computed by Afractional’s solution ,
since the objective functions in Pf and in (8) achieve the
same values under the same set of solutions, and the offline
optimum of (8) is no smaller than the offline optimum of
relaxed Pf . Hence, r1 × r2 is an upper bound of the ratio
of the objective value of (8) achieved by mlBroker to the
offline optimum of (8), and thus a competitive ratio of
mlBroker. By Theorem 3 and Theorem 4, the competitive
ratio r holds.

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our online
algorithms through simulation studies (in Sec. 6.1- Sec. 6.3)
and real experiments (in Sec. 6.4).

6.1 Simulation Settings
We simulate a geo-distributed ML system running for
T ∈ [50, 100] time slots (T = 50 by default); each time slot
is half day long, which can be set to 2−3 hours according to
realistic demands. The default number of data centers in this
system is 15. Following similar settings in [4], [44] and [3],
we set the resource demand of each worker as follows: 0−4
GPUs, 1−10 vCPUs, 2−32 GB memory and 5−10 GB storage;
we also set the resource demand of each parameter server
as 1−10 vCPUs, 2−32 GB memory and 5−10 GB storage. We

13

5 10 15 20 25 30

Number of DCs

1

1.1

1.2

1.3
P

e
rf

o
rm

a
n
c
e
 R

a
ti
o
 o

f
A

fr
a

c
ti
o

n
a

l

ǫ=0,1

ǫ=0,4

ǫ=0,7

ǫ=1

Fig. 5: Performance ratio of Afractional

under different numbers of DCs and ε.

[0,100] [100,200][200,300][300,400][400,500]

Data size per job per time slot (GB)

0

0.5

1

1.5

2

2.5

P
e
rf

o
rm

a
n
c
e
 R

a
ti
o
 o

f
A

ro
u
n
d

P
i
∈ (52,64]

P
i
∈ (40,52]

P
i
∈ (28,40]

P
i
∈ (16,28]

Fig. 6: Performance ratio of Around un-
der different Pi and data sizes.

5 10 15 20 25

Number of DCs

0

0.5

1

1.5

2

2.5

3

P
e
rf

o
rm

a
n
c
e
 R

a
ti
o

A
round

IR

GR

Fig. 7: Comparison of Around, IR and
GR.

100 200 300 400 500 600 700

Total data size per job (GB)

0.5

1

1.5

2

2.5

3

3.5

4

O
ve

ra
ll

C
o
st

106

Ours
Cen
Lo
OASiS

Fig. 8: Overall cost comparison under
different data sizes per job per time slot.

50 60 70 80 90 100

Number of time slots

0

1

2

3

4

5

P
e
rf

o
rm

a
n
ce

 r
a
tio

mlBroker
Local
Central
OASiS

Fig. 9: Performance ratio under different
time slots.

1 6 11 16 21 26

Number of jobs per time slot

0

1

2

3

4

5

P
e

rf
o

rm
a

n
ce

 r
a

tio

mlBroker
Local
Central
OASiS

Fig. 10: Performance ratio with different
numbers of jobs per slot.

100 200 300 400 500 600 700

Total data size per job (GB)

0

2

4

6

8

10

12

14

C
os

t 1

105

Ours
Cen
Lo
OASiS

Fig. 11: Cost1 under different
data sizes per job per time slot.

100 200 300 400 500 600 700

Total data size per job (GB)

0.5

1

1.5

2

2.5

3

3.5

C
o

st
 2

106

Ours
Cen
Lo
OASiS

Fig. 12: Cost2 under different
data sizes per job per time slot.

100 200 300 400 500 600 700

Total data size per job (GB)

50

100

150

200

250

300

350

400

C
os

t 3

Ours
Cen
Lo
OASiS

Fig. 13: Cost3 under different
data sizes per job per time slot.

100 200 300 400 500 600 700

Total data size per job (GB)

0

1000

2000

3000

4000

5000

6000

7000

8000

C
o
st

 4

Ours
Cen
Lo
OASiS

Fig. 14: Cost4 under different
data sizes per job per time slot.

set job arrival patterns according to the Google cluster data
[45]. For each job, the processing capacity of a worker ranges
in 16−66 GB (according to the training speed for ResNet-152
shown in the performance benchmarks of TensorFlow [46]).
The size of the total training data accumulated during each
time slot in a job is in [100, 700] GB (500 GB by default)
(according to size of pictures uploaded at Instagram per
minute [47]). We set the transmission data size between each
pair of worker and PS in [30, 575] MB [48], thus the overall
transmission size per time slot, Bi, is set in [4.32, 82.8] GB.
The unit data transmission cost is in [0.01, 0.02] USD per

GB [49]. The deployment cost for each job is set in [0.05, 0.1]
USD per GB. The unit prices of resources in different data
centers before volume discount, ark, are set in [1.2, 9.6],
[0.13, 0.24], [0.01, 0.1], [0.01, 0.1] USD per day, respectively
[49]. The discounted unit prices, brk, are within [70%, 80%]
of the respective price before discount [8]. The thresholds,
lrk, are set within [500, 600], [800, 1000], [1000, 1050], and
[1000, 1050] for the respective resource types [8].

6.2 Performance of Afractional and Around

We first study the performance ratio of Afractional, which is
the ratio of the overall cost of Pf generated by Afractional to
the cost produced by the optimal solution of Pf (we do not
refer to it as the competitive ratio, as the later is derived
under the worst case). Fig. 5 illustrates that Afractional

performs well with a small performance ratio (< 1.25).
The results confirm that there is only a small loss in the
performance when we decompose the online problem into
a series of one-shot problems. Furthermore, the number of
DCs and ε have little impact on the performance. Although
Theorem 3 indicates that the worst case ratio is larger with
smaller ε. The average-case value, as we observed in our
simulation, shows that its impact is not obvious.

We next examine the performance ratio of our one-
shot rounding algorithm Around, which is the ratio of the
objective value of Pf computed by solutions of Around to
that computed by solutions of Afractional (we do not refer
to it as approximation ratio as the latter is evaluated under
worst case). Fig 6 shows that the ratio decreases with the
increase of data size and the decrease of worker’s processing
capacity. This can be explained as follows: as proved in
Theorem 3, Pi appears in the numerator and Dr

i (t) appears

14

in the denominator of parameter λ. Therefore, a low ratio
comes with a smaller Pi and a larger Dr

i (t).
We further compare our algorithm with two other

rounding algorithms: i) Independent Rounding (IR), which
rounds each yri (t) to the nearest integer (e.g., 2.6 to 3, 2.1
to 2) and rounds sri (t) in the same way as in Around;
ii) Greedy Rounding (GR), which rounds up yri (t) (e.g., 2.2
to 3) and assigns sr

∗
i (t) = 1, r∗ = arg maxr∈[R] s

r
i (t). Fig.7

demonstrates that our algorithm consistently outperforms
the two algorithms under different numbers of data centers.

6.3 Performance of our complete online algorithm

Algorithms for comparison. We compare our complete
online algorithm mlBroker with four job placement algo-
rithms. i) OASiS (OA) [4]: given unit resource prices, each
job selects the best placement scheme which minimizes its
payment cost. ii) Local (Lo): dataset is processed locally in
the data center where it is collected, with workers deployed
in the data center, and the PS is randomly placed in one of
the data centers. Therefore,C1(t) = 0. iii) Central (Cen): Each
job’s PS and workers are placed into one data center which
incurs the lowest cost, and all data are aggregated into that
data center for processing. iv) Optimum (Opt), which is the
minimum cost obtained by solving Pf .

Fig. 8 shows the total cost generated by different algo-
rithms, when we vary the size of each job’s per-time-slot
training data. We can observe that when the dataset is large,
it is better to train it locally to avoid high data transfer costs;
on the other hand, centralized training is preferred with
small datasets. Nevertheless, our algorithm always gener-
ates a lower cost, compared to other algorithms. Fig. 11,
Fig. 12, Fig. 13 and Fig. 14 show each component of the over-
all cost under different algorithms. As can be seen in Fig. 11,
with the increment data size per time slot, data transfer cost
increases, especially for Central and OASiS. This shows the
weakness of centralization when meeting geo-distributed
training datasets. Our algorithm mlBroker selectively trans-
fers datasets, leading to a better performance. Resource cost
accounts for a large part of the overall cost. In Fig. 12, we can
see that when the data size is small, training in a centralized
method leads to a lower payment. However, when the data
size gets larger, our method performs better than Local and
Central since we balance between these two methods. OASiS
shows the best performance with the lowest overall cost. As
shown in Fig. 13, the deployment cost keeps stable for each
algorithm even when the data size varies. The difference
between them is small compared to the total cost. In Fig. 14,
our algorithm also shows a good performance with a lower
communication cost compared with Local and OASiS. This
is due to our efficient worker/PS placement decisions.

Fig. 9 and Fig. 10 show the performance ratio of
mlBroker with large size of training datasets, which is
the ratio of the overall cost in (8) generated by mlBroker
to the cost produced by optimal solution of (8). In Fig. 9,
we can observe that the ratios become slightly large when
the number of time slots increases. This is mainly due to
the performance loss incurred when we decouple decisions
over the time slots and make decisions in each slot, and
the more time slots there is, the more loss results. Fig. 10
shows that the ratio of mlBroker remains stable when the

number of jobs per slot grows. In addition, we still observe
the better performance of our online algorithm. However,
our algorithm performs the best in all cases.

6.4 Real Experiment

In this section, we evaluate the performance of our on-
line algorithms on geo-distributed GPU clusters which are
managed by kubernets 1.7. We choose parameter severs in
MXNet as the distributed training framework. We created
three clusters in three different availability zones on the
Amazon cloud. Each cluster is interconnected with high-
bandwidth, low-latency networking, dedicated metro fiber.
The unit data transmission cost between the cluster is about
0.02 USD per GB. We use p3.2xlarge instances for each
cluster. Each node is equipped with 8-core vCPUs, 61GB
RAM, 40GB SSD storage space and a Nvidia Tesla V100
GPU with 16GB RAM. The network bandwidth across nodes
is 10Gbps. The instance price before the discount is 3.06
USD per hour. Due to resource and economic constraints,
we only conducted small-scale verification experiments and
it is difficult for us to reach the amount that triggers the
Amazon discount price, so we set the discounted prices and
thresholds by ourselves. The final cost is calculated based
on the running time of each instance and data transmission
volume.

TABLE 3: Deep learning jobs for experiments

Model Params Dataset Batch size

AlexNet 61.1M ImageNet-12 128

VGG-16 138M ImageNet-12 64

VGG-19 143M ImageNet-12 64

Inception-V3 27M ImageNet-12 128

ResNet-152 60.2M ImageNet-12 128

Workload. We set total time slots to 10 and job arrives
randomly at each time slot. Upon an arrival event, we
randomly choose the job among the example in Table 3
and set the duration of the job to 3−8 time slots. We use
ImageNet as the dataset for all jobs, which contains about
1.28 million training images. During the duration of the job,
we randomly send part of the ImageNet dataset to three
clusters at every time slot. The number of workers and
PSs required by the job is determined by the amount of
data generated and the job type at current time slot. The
scheduling algorithm determines data transfer and deploy-
ment decisions of workers and PSs.

TABLE 4: Detailed costs under different algorithms

Algorithm Cost1 Cost2 Cost3 Cost4 Overall Cost

mlBroker 2.8 1018.3 14.5 34.5 1070.1

Local 0 1253.8 13.2 119.1 1386.1

Central 3.9 1083.5 12.4 0 1099.8

OASiS 3.2 1129.3 17.8 50.7 1201.0

Table 4 shows each component of the overall cost under
different algorithms in our real experiments. As we can see,
resource cost accounts for the largest part of the overall cost

15

mlBroker Local Central OASiS
Algorithm

800

900

1000

1100

1200

1300

1400

1500

1600

Co
st

cost1
cost2
cost3
cost4

Fig. 15: Cost for different Algorithm.

and transfer cost is the smallest cost. The main reason is
that due to the resource and economic constraints, the size
of each job’s total training data and the number of DCs in
our verification experiments is very small, compared to the
simulation settings. This leads to a small amount of data
transfer between data centers. As shown in Fig. 15, the
performance of our algorithm is better than others, and this
proves the effectiveness of our algorithm, even with small
scale of input.

TABLE 5: Components of Resource Cost (Cost2).

Algorithm mlBroker Local Central OASiS
Running Time 392.2 417.7 388.6 396.7
Discount Rate 0.85 0.98 0.91 0.93
Resource Cost 1018.3 1253.8 1083.5 1129.3

(= time × price)

Table. 5 shows the total running time of all instances
and the total discount rate under different algorithms, which
are related to resource costs (resource cost = total running
time × price with discount). As can be seen from Table. 5,
Fig. 16 and Fig. 17, Central has the minimal running time
while our algorithm mlBroker triggers the largest overall
discount. The reason why Central has the minimal running
time is that all the instances are centralized, thus the time
spent on waiting for communications between workers and
PSs is minimized. Moreover, we compute the ratio of total
resource payment with discount to total payment without
discount. Our algorithm shows the best performance by
taking running time and discounts together into conditions,
which leads to the smallest resource cost under these small-
scale verification experiments. When the size of datasets
increases, mlBroker always obtains minimal total cost (see
Fig. 8).

mlBroker Local Central OASiS
Algorithm

350
360
370
380
390
400
410
420
430

Ru
nn

in
g

Ti
m

e

392.2

417.7

388.6

396.7

Fig. 16: Total running time of
each algorithm.

mlBroker Local Central OASiS
Algorithm

0.800
0.825
0.850
0.875
0.900
0.925
0.950
0.975
1.000

To
ta

l D
is

co
un

t R
at

e

0.85

0.98

0.91

0.93

Fig. 17: Discount rate of each
algorithm.

7 CONCLUDING REMARKS

This paper proposes a machine learning broker service
which strategically rents resources from different data cen-
ters to serve users’ requests for geo-distributed machine
learning. We propose an efficient online algorithm for the
broker to deploy new jobs and adjust existing jobs’ place-
ment over time, to maximally exploit volume based dis-
counts for overall cost minimization. The online algorithm
mlBroker consists of two main components: (i) an online
regularization algorithm that coverts the online deployment
problem into a sequence of one-shot optimization prob-
lems, and each can be solved to a set of fractional solu-
tions directly; (ii) a dependent rounding algorithm which
rounds the fractional solutions to feasible integer solutions.
Through extensive theoretical analysis and simulation stud-
ies, we verify our online algorithm’s good performance as
compared to both the offline optimum and representative
alternatives.

Note that our algorithmic framework can be readily
adapted to handle additional constraints in geo-distributed
job placement, e.g., locally generated data cannot be trans-
ferred out of a region due to security constraints [14]. In ad-
dition, we focus on broker scheduling strategy in this paper,
which can readily work with any detailed design of broker
pricing strategy to charge the users [50][51][52]. Especially,
our cost minimization exploiting volume discounts easily
guarantees that the prices the broker charges the users are
no higher than what the users need to pay, if they directly
rent resources from the cloud providers. We can assume
that the broker charges each user just at the middle of the
discounted price and the non-discounted price, which can
cover all the costs and is profitable for the ML broker. There
are already many pricing models proposed for brokers,
which has been well studied in [50], [51] and [52]. We will
continue to study this topic in our future work.

REFERENCES

[1] M. J. Pazzani and D. Billsus, “Content-based recommen-
dation systems,” in The adaptive web. Springer, 2007, pp.
325–341.

[2] V. Potluru, J. Diaz-Montes, A. D. Sarwate, S. M. Plis,
V. D. Calhoun, B. Pearlmutter, and M. Parashar, “Comet-
cloudcare (c3): distributed machine learning platform-as-
a-service with privacy preservation,” in Proc. of NIPS, 2014.

[3] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su, “Scaling
distributed machine learning with the parameter server,”
in Proc. of OSDI, 2014.

[4] Y. Bao, Y. Peng, C. Wu, and Z. Li, “Online job scheduling
in distributed machine learning clusters,” in Proc. of IEEE
INFOCOM, 2018.

[5] R. Polikar, J. Byorick, S. Krause, A. Marino, and M. More-
ton, “Learn++: A classifier independent incremental learn-
ing algorithm for supervised neural networks,” in Proc. of
IEEE IJCNN, 2002.

[6] K. Shmelkov, C. Schmid, and K. Alahari, “Incremental
learning of object detectors without catastrophic forget-
ting,” in Proc. of IEEE ICCV, 2017.

[7] S. S. Sarwar, A. Ankit, and K. Roy, “Incremental learning in
deep convolutional neural networks using partial network
sharing,” arXiv preprint arXiv:1712.02719, 2017.

[8] Rackspace, http://alturl.com/bakec.
[9] Amazon EC2, http://alturl.com/y5vch.

16

[10] Telecoms Cloud, https://www.telecomscloud.com/volume-
discounts/.

[11] N. Wang and J. Wu, “Optimal cloud instance acquisition
via iaas cloud brokerage with volume discount,” in Proc.
of IEEE/ACM IWQOS, 2018.

[12] V. Nair and G. E. Hinton, “Rectified linear units improve
restricted boltzmann machines,” in Proc. of ICML, 2010.

[13] I. Cano, M. Weimer, D. Mahajan, C. Curino, and G. M.
Fumarola, “Towards geo-distributed machine learning,”
arXiv preprint arXiv:1603.09035, 2016.

[14] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R.
Ganger, P. B. Gibbons, and O. Mutlu, “Gaia: Geo-
distributed machine learning approaching lan speeds.” in
Proc. of NSDI, 2017.

[15] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, J. Pad-
hye, and G. Varghese, “Global analytics in the face of band-
width and regulatory constraints,” in Proc. of {USENIX},
2015.

[16] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T.
Suresh, and D. Bacon, “Federated learning: Strategies
for improving communication efficiency,” arXiv preprint
arXiv:1610.05492, 2016.

[17] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya,
T. He, and K. Chan, “When edge meets learning: Adap-
tive control for resource-constrained distributed machine
learning,” in Proc. of IEEE INFOCOM, 2018.

[18] J. Chen, K. Li, K. Bilal, K. Li, S. Y. Philip et al., “A bi-
layered parallel training architecture for large-scale con-
volutional neural networks,” IEEE transactions on parallel
and distributed systems, vol. 30, no. 5, pp. 965–976, 2018.

[19] J. Chen, K. Li, Z. Tang, K. Bilal, S. Yu, C. Weng, and
K. Li, “A parallel random forest algorithm for big data in
a spark cloud computing environment,” IEEE Transactions
on Parallel and Distributed Systems, vol. 28, no. 4, pp. 919–
933, 2016.

[20] J. Chen, K. Li, Q. Deng, K. Li, and S. Y. Philip, “Distributed
deep learning model for intelligent video surveillance sys-
tems with edge computing,” IEEE Transactions on Industrial
Informatics, 2019.

[21] Y. Chen, K. Li, W. Yang, G. Xiao, X. Xie, and T. Li,
“Performance-aware model for sparse matrix-matrix mul-
tiplication on the sunway taihulight supercomputer,” IEEE
transactions on parallel and distributed systems, vol. 30, no. 4,
pp. 923–938, 2018.

[22] H. Xu and B. Li, “Joint request mapping and response
routing for geo-distributed cloud services,” in Proc. of IEEE
INFOCOM, 2013.

[23] C. Xu, K. Wang, P. Li, R. Xia, S. Guo, and M. Guo, “Renew-
able energy-aware big data analytics in geo-distributed
data centers with reinforcement learning,” IEEE Transac-
tions on Network Science and Engineering, 2018.

[24] C. Xu, K. Wang, and M. Guo, “Intelligent resource manage-
ment in blockchain-based cloud datacenters,” IEEE Cloud
Computing, vol. 4, no. 6, pp. 50–59, 2017.

[25] K. Wang, Q. Zhou, S. Guo, and J. Luo, “Cluster frame-
works for efficient scheduling and resource allocation in
data center networks: A survey,” IEEE Communications
Surveys & Tutorials, vol. 20, no. 4, pp. 3560–3580, 2018.

[26] Y. S. L. Lee, M. Weimer, Y. Yang, and G.-I. Yu, “Dolphin:
Runtime optimization for distributed machine learning,”
in Proc. of ICML ML Systems Workshop, 2016.

[27] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen,
Y. Zhou, N. Kumar, M. Norouzi, S. Bengio, and J. Dean,
“Device placement optimization with reinforcement learn-
ing,” in Proc. of ICML, 2017.

[28] Y. Gao, L. Chen, and B. Li, “Spotlight: Optimizing device
placement for training deep neural networks,” in Proc. of
ICML, 2018.

[29] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus:
An efficient dynamic resource scheduler for deep learning

clusters,” in Proc. of EuroSys, 2018.
[30] L. Zheng, C. Joe-Wong, C. G. Brinton, C. W. Tan, S. Ha,

and M. Chiang, “On the viability of a cloud virtual service
provider,” in Proc. of ACM SIGMETRICS, 2016.

[31] J. Wang, X. Xiao, J. Wang, K. Lu, X. Deng, and A. A.
Gumaste, “When group-buying meets cloud computing,”
in Proc. of IEEE INFOCOM, 2016.

[32] X. Hu, A. Ludwig, A. Richa, and S. Schmid, “Compet-
itive strategies for online cloud resource allocation with
discounts: The 2-dimensional parking permit problem,” in
Proc. of IEEE ICDCS, 2015.

[33] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett,
and H. V. Madhyastha, “Spanstore: Cost-effective geo-
replicated storage spanning multiple cloud services,” in
Proc. of ACM SOSP, 2013.

[34] S. Shastri and D. Irwin, “Hotspot: automated server hop-
ping in cloud spot markets,” in Proc. of SOCC, 2017.

[35] N. Buchbinder, S. Chen, and J. S. Naor, “Competitive
Analysis Via Regularization,” in Proc. of ACM SODA, 2014.

[36] X. Zhang, C. Wu, Z. Li, and F. C. Lau, “Online cost
minimization for operating geo-distributed cloud cdns,”
in Proc. of IEEE/ACM IWQOS, 2015.

[37] L. Jiao, A. M. Tulino, J. Llorca, Y. Jin, and A. Sala,
“Smoothed online resource allocation in multi-tier dis-
tributed cloud networks,” IEEE/ACM Transactions on Net-
working, vol. 25, no. 4, pp. 2556–2570, 2017.

[38] L. Jiao, L. Pu, L. Wang, X. Lin, and J. Li, “Multiple
granularity online control of cloudlet networks for edge
computing,” in Proc. of IEEE SECON, 2018.

[39] Y. Jia, C. Wu, Z. Li, F. Le, and A. Liu, “Online scaling
of nfv service chains across geo-distributed datacenters,”
IEEE/ACM Transactions on Networking (TON), vol. 26, no. 2,
pp. 699–710, 2018.

[40] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“Imagenet: A large-scale hierarchical image database,” in
Proc. of IEEE CVPR, 2009.

[41] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proc. of IEEE CPVR,
2016.

[42] Karp’s 21 NP-complete problems,
https://tinyurl.com/y64mwkrm.

[43] G. Gens and E. Levner, “Complexity of Approximation
Algorithms for Combinatorial Problems:A Survey,” ACM
SIGACT News, vol. 12, no. 3, pp. 52–65, 1980.

[44] P. Sun, Y. Wen, N. B. D. Ta, and S. Yan, “Towards
distributed machine learning in shared clusters: A
dynamically-partitioned approach,” in Proc. of IEEE SC,
2017.

[45] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A.
Kozuch, “Heterogeneity and dynamicity of clouds at scale:
Google trace analysis,” in Proc. of ACM SOCC, 2012.

[46] TensorFlow, http://alturl.com/fyp3h.
[47] Data created on the Internet, http://alturl.com/jahpw.
[48] F. N. Iandola, M. W. Moskewicz, K. Ashraf, and K. Keutzer,

“Firecaffe: Near-linear acceleration of deep neural network
training on compute clusters,” in Proc. of IEEE CVPR, 2016.

[49] Amazon pricing for data transfer,
https://aws.amazon.com/ec2/pricing/on-
demand/?nc1=h ls.

[50] O. Rogers and D. Cliff, “A financial brokerage model for
cloud computing,” Journal of Cloud Computing Advances
Systems and Applications, vol. 1, no. 1, p. 2, 2012.

[51] C. Qiu, H. Shen, and L. Chen, “Towards green cloud
computing: Demand allocation and pricing policies for
cloud service brokerage,” in Proc. of IEEE ICBD, 2015.

[52] G. Saha and R. Pasumarthy, “Maximizing profit of cloud
brokers under quantized billing cycles: a dynamic pricing
strategy based on ski-rental problem,” Computer Science,
2015.

17

Xiaotong Li received a B.E. degree in
Aerospace Information Security and Trusted
Computing from Wuhan University, China, in
2017. She is now a master student in School
of Computer Science in Wuhan University. Her
research interests is in the areas of mobile cloud
computing, network optimization, and online
scheduling.

Ruiting Zhou has been an Associate Profes-
sor in the School of Cyber Science and Engi-
neering at Wuhan University since June 2018.
She received a M.S. degree in telecommunica-
tions from Hong Kong University of Science and
Technology, Hong Kong, in 2008, a M.S. degree
in computer science from University of Calgary,
Canada, in 2012 and her Ph.D. degree in 2018
from the Department of Computer Science, Uni-
versity of Calgary, Canada. Her research inter-
ests include cloud computing, machine learning

and mobile network optimization. She has published research papers in
top-tier computer science conferences and journals, including IEEE IN-
FOCOM, IEEE/ACM TON, IEEE JSAC, IEEE TMC. She also serves as a
reviewer for journals and international conferences such us IEEE JSAC,
IEEE TMC, IEEE TCC, IEEE TWC, IEEE Transactions on Smart Grid
and IEEE/ACM IWQOS. She held NSERC Canada Graduate Schol-
arship, Alberta Innovates Technology Futures (AITF) Doctoral Scholar-
ship, and Queen Elizabeth ll Graduate Scholarship from 2015 to 2018.

Lei Jiao is an assistant professor at the De-
partment of Computer and Information Science,
University of Oregon, USA. He received the
Ph.D. degree in computer science from Uni-
versity of Göttingen, Germany in 2014. He
worked as a member of technical staff at Alcatel-
Lucent/Nokia Bell Labs in Dublin, Ireland from
2014 through 2016, and also as a researcher
at IBM Research in Beijing, China in 2010. He
is broadly interested in exploring optimization,
control, learning, mechanism design, and game

theory to manage and orchestrate large-scale distributed computing
and communication infrastructures and services. His research has been
published in journals such as TON, JSAC, and TMC, and in conferences
such as SIGMETRICS, MOBIHOC, INFOCOM, ICNP, SECON, IPDPS,
and ICDCS. He is a guest editor for IEEE JSAC Series on Network
Softwarization and Enablers and an associate editor of IEEE Access.
He has served as a TPC member of a number of conferences such as
MOBIHOC, INFOCOM (Distinguished Member), ICDCS, IWQoS, and
ICC. He is also a recipient of the Best Paper Awards of IEEE CNS 2019
and IEEE LANMAN 2013, and the 2016 Alcatel-Lucent Bell Labs UK
and Ireland Recognition Award.

Chuan Wu received her B.Engr. and M.Engr.
degrees in 2000 and 2002 from the Depart-
ment of Computer Science and Technology, Ts-
inghua University, China, and her Ph.D. degree
in 2008 from the Department of Electrical and
Computer Engineering, University of Toronto,
Canada. Since September 2008, Chuan Wu has
been with the Department of Computer Science
at the University of Hong Kong, where she is
currently an Associate Professor and serves as
an Associate Head on curriculum and develop-

ment matters. Her current research is in the areas of cloud computing,
distributed machine learning/big data analytics systems, network func-
tion virtualization, and data center networking. She is a senior member
of IEEE, a member of ACM, and served as the Chair of the Interest
Group on Multimedia services and applications over Emerging Networks
(MEN) of the IEEE Multimedia Communication Technical Committee
(MMTC) from 2012 to 2014. She is an associate editor of IEEE Transac-
tions on Cloud Computing, IEEE Transactions on Multimedia and ACM
Transactions on Modeling and Performance Evaluation of Computing
Systems. She has also served as TPC members and reviewers for
various international conferences and journals. She was the co-recipient
of the best paper awards of HotPOST 2012 and ACM e-Energy 2016.

Yuhang Deng received a B.E. degree in College
of Life Sciences from Wuhan University and a
second B.E. degree in School of Computer Sci-
ence & Technology from Huazhong University of
Science and Technology, China, in 2018. He is
now a master student in School of Computer Sci-
ence in Wuhan University. His research interests
include distributed machine learning and natural
language processing.

Zongpeng Li received his B.E. degree in Com-
puter Science from Tsinghua University in 1999,
and his Ph.D. degree from University of Toronto
in 2005. He has been with the University of Cal-
gary and then Wuhan University. His research
interests are in computer networks and cloud
computing. Zongpeng was named an Edward
S. Rogers Sr. Scholar in 2004, won the Alberta
Ingenuity New Faculty Award in 2007, and was
nominated for the Alfred P. Sloan Research Fel-
low in 2007. Zongpeng co-authored papers that

received Best Paper Awards at the following conferences: PAM 2008,
HotPOST 2012, and ACM e-Energy 2016. Zongpeng received the De-
partment Excellence Award from the Department of Computer Science,
University of Calgary, the Outstanding Young Computer Science Re-
searcher Prize from the Canadian Association of Computer Science,
and the Research Excellence Award from the Faculty of Science, Uni-
versity of Calgary.

