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Abstract—Cloud-based content delivery networks (Cloud
CDN) cache and deliver contents from geo-distributed cloud data
centers to end users across the globe, exploiting “infinite” on-
demand cloud resources to address volatile user demands. It
is critically important to efficiently manage cloud resources in
different locations over time, for minimization of the operational
cost of the CDN provider, while delivering short response delay
to user requests. Although many have studied cost-aware replica
placement and request redirection in CDN systems, most are
restricted to an offline or one-time setting, or resort to greedy
heuristics for online operation. This work proposes an efficient
online algorithm for dynamic content replication and request
dispatching in cloud CDNs operating over a long time span,
targeting overall cost minimization with performance guarantees.
Our online algorithm consists of two main modules: (1) a regular-
ization method from the online learning literature to convert the
offline cost-minimization optimization problem into a sequence of
regularized problems, each to be efficiently solvable in one time
slot; (2) a randomized approach to convert the optimal fractional
solutions from the regularized problems to integer solutions of
the original problem, achieving a good competitive ratio. The
effectiveness of our online algorithm is validated through solid
theoretical analysis and trace-driven simulations.

I. INTRODUCTION

Content Delivery Networks (CDNs) [1] has been one of
the most important Internet-scale distributed systems in the
past decade, and is foreseen to continue its profound impact
in the next 20 years or so. Among the 28 [2] commercial
CDNs nowadays, leading systems (e.g., Akamai [3], Limelignt,
Cloudfare) deliver web contents, web and IP-based applica-
tions, downloads, and streaming media to a global audience
of end-users (i.e., clients). With the fast growing of contents
and surges of requests from users, CDN residing in a geo-
distributed cloud infrastructure (cloud CDN) [4] has been a
rising trend, together with the booming of cloud systems.
Spanning a collection of data centers in different geographical
locations, such cloud systems support CDN services with
“infinite” on-demand resources, catering to the volatile storage
and bandwidth demands of these services.

The delivery quality of cloud-based CDN services is sub-
ject to a trade-off with the CDN provider’s cost, due to
operating in a cloud platform. If the CDN service is widely
distributed into data centers almost in all the major geographic
areas and ISPs across the world, the proximity [3] between
the server and the clients guarantees low latency and low

package loss rate, yet possibly leading to huge operational
costs for resource rental in these data centers [5]. On the
other hand, if the CDN service is only deployed at large data
centers located in a handful of critical regions, the cost is
lower but higher delays could be experienced by the clients. It
is therefore practically important to jointly optimize the user
experience and minimize the total operational cost, especially
for cloud CDNs where resources are acquired in a pay-per-
use fashion. The challenge is pivotal: How to dynamically
decide content deployment in available data centers located
in different geographic locations on the go, striking a balance
between costs due to frequent replica migration and replica
maintenance in a data center, while guaranteeing acceptable
levels of user experience for the huge number of dynamically
arriving user requests?

Although a substantial body of work have studied cost-
aware replica placement and request redirection, most of them
are restricted to an offline or one-time setting (a detailed
discussion is given in Sec. II). The studies addressing online
operation largely resort to greedy heuristics without perfor-
mance guarantee, or assume predictable future information, or
ignore content migration cost during dynamic replication to
simplify the model.

Contribution. This work proposes a randomized online al-
gorithm for dynamic and optimal cost-effective replication of
heterogenous contents, to well balance the request traffic on
the fly, in a CDN residing in geo-distributed cloud data centers.

First, we formulate a practical online cost minimization
problem, enabling dynamic migration of each content from
the origin (e.g., storage servers [6] maintaining one copy of
each content for reliability, as in real CDNs such as Akamai
[3]) to different data centers and removal of the content from a
caching data center, as well as request mapping to data centers
on the fly. Heterogenous migration costs are considered to
differentiate the connection condition (e.g., bandwidth) from
the origin to each data center. Moreover, different storage and
bandwidth costs at different data centers are also considered,
as well as variant latencies for request mapping.

Second, we leverage a regularization method from the
field of online learning [7][8][9] to transform the relaxation
of the integer offline optimization problem into a sequence
of regularized sub-problems, each of which can be optimally
solved in each time slot, for timely replica management and
request dispatching. In particular, the regularization removes978-1-4673-7113-1/15/$31.00 ©2015 IEEE
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the time correlation among decisions in the offline problem
by lifting the precedence constraints relating to successive
time slots into the objective function. By solving each sub-
problem in each time slot, a feasible (fractional) solution to the
relaxed offline problem is obtained with polynomial running
time, achieving an upper-bounded overall cost as compared
to the optimal offline solution based on competitive analysis
using the KKT optimality conditions.

Third, we design a randomized algorithm for rounding the
fractional solution to a feasible integer solution to the original
problem. This randomized algorithm contains two parts: 1). a
rounding algorithm which treats each solved fractional solution
for replica placement as probability; 2). a greedy strategy for
request redirection. Such a simple redirection strategy turns
out to be efficient which observes the inner connection between
request mapping and replica management, i.e., once the replica
placement is determined in the current time slot, greedy
mapping for each area is the best solution to save cost. In this
way, the rounding well balances the minimization among three
parts of the overall cost, namely content storage cost, request
serving cost, and content migration cost. Without relying on
any future information, it together with the regulation method
yields a good competitive ratio which is irrelevant to the total
number of requests nor the time horizon, as compared to the
offline optimum.

Organization. We discuss related work in Sec. II and define
the system model in Sec. III. Sec. IV and Sec. V give the online
algorithm design. Sec. VI presents the trace-driven simulation
results and Sec. VII concludes the paper.

II. RELATED WORK

A sustainable body of existing work in the last
decade extensively studied cost-effective mechanisms of
replica placement problem in CDNs. However, most of
them [10][11][12][13][14][15][16] proposed static mechanisms
where requests are ideally assumed to be following historical
patterns or uniformly distributed among all areas. And the cost
considered in the models is apparently over-simplified since no
migration (or upload) cost is involved in static settings.

Dynamic replica deployment (in an online fashion) is intro-
duced to better meet the real-time demand. Bartolini et al. [17]
defined the replica placement model as a Markovian decision
process and proposed a corresponding dynamic approach.
Chen et al. [18] proposed a replica placement protocol to build
dissemination tree, a dynamic content distribution system on
top of a peer-to-peer location service while satisfying QoS
requirements. However, the proposed strategies in the afore-
mentioned work were only validated by simulations without
competitive analysis.

Chen et al. [19] advocated to deploy CDNs supported by
the Cloud paradigm to take advantage of the elastic resource
provisioning and to save the effort for deploying and provi-
sioning their own infrastructure. They investigated the joint
problem of dynamically building distribution paths and placing
web server replicas in cloud CDNs to minimize the cost
incurred while satisfying QoS requirements for user requests.
Unfortunately, both the offline and online algorithms were also
heuristics without performance guarantee in the worst case.

Some latest work further promoted the development of
the cost-effective mechanism design in CDNs. Liu et al. [20]
pioneered the systematic study in optimizing content mul-
tihoming where multiple CDNs cooperate to serve client
requests. Besides the restrictions on offline setting, content
migration and request redirection were not considered in their
formulation. However, our work conducts a more theoretical
approach to handle various costs for online replica deploy-
ment and migration as well as serving requests in an online
fashion. Mathew et al. [21] proposed an online algorithm
where CDN servers may be turned off and on upon low
loads, rendering a trade-off among CDN power consumption
and server on/off transition cost reduction, as well as the
service availability guarantee. Yet, they did not prove an upper-
bounded competitive ratio. Lin et al. [22] investigated the
problem of dynamically “right-sizing” data centers by turning
off servers by leveraging a “lazy”online algorithm. Moreover,
Wu et al. [23] proposed proactive algorithms for dynamic
scaling of a social media application in geo-distributed clouds.
Unlike their work where a lookahead window is assumed based
on prediction of limited future requests, our work aims to
design an online mechanism without any future information,
which is also the key challenge in online algorithm design with
good competitive ratio guarantee.

III. PROBLEM MODEL

A. The Cloud CDN System

We consider a cloud CDN hosted by a CDN service
provider in a number of geo-distributed data centers, each of
which contains two groups of interconnected and virtualized
servers [24]. Data files are stored in storage servers while
the virtual machines in each data center are running on
computing servers. Conventionally, we use [X] to denote the
set {1, 2, ..., X}. A data center i ∈ [I] may store a replica of
content k ∈ [K], which clients may download in the long time
interval T . Suppose there are J geographic areas. Requests for
downloading each type of content accumulated in each area
j ∈ [J ] can be dispatched to multiple data centers in or out
of the area. We handle requests on a time-slotted fashion, and
consider a chunk-based download model, where the download
of each chunk takes at most 1 time slot. Let nkjt denote the
number of requests for content k from the area j at time slot t,
which includes both newly arrived requests in t for the content
and requests for the content which arrived earlier but have not
completed the download.

One time slot after another, the CDN system timely
redirects the real-time requests to the “right” data centers and
manages the storage locations for each content. The goal is
to minimize the total cost incurred by the CDN in the T -slot
running span. Driven by this, replicas may be dynamically
deleted for reducing the storage cost and migrated from the
origin to data centers.Practically, bandwidth cost is incurred
when the replica is migrated from the origin servers and
uploaded to the target data center. Without loss of generality,
no cost is incurred when a replica is deleted from a data
center. To put it all together, the system dynamically handles
content replica placement and client request redirection on
the fly.
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Dynamic content replica placement. Let ckit denote the cost
to store a type-k replica in data center i during time slot t.
Let yit, a binary indicator, denote whether data center i stores
the replica at t (ykit = 1) or not (ykit = 0). Let wi denote the
migration cost from the origin to data center i and zkit be a
binary variable to indicate if migration of content k to data
center i occurs in t or not. Since the bandwidth on the links
of inter-datacenter networks is typically sufficient [25], we
further assume that the delay of the content migration can be
ignored.

Client request redirection. Let xkijt denote the proportion of
the nkjt requests to be dispatched to and served by data center
i. We use rkijt as a metric to characterize the cost and delay on
data center i in serving each type-k request from area j at time
slot t. Specifically, for each data center i and each time slot
t, suppose (i.) the outgoing bandwidth cost to serve a chunk
of content k is bkit, and therefore the total bandwidth cost for
serving xijtnjt requests is nkjtx

k
ijtb

k
it; (ii.) the computation cost

for renting one VM in data center i at time slot t is vit and the
number of type-k requests that each VM on data center i can
serve is Nk

i , and hence the computation cost of data center i

at t for serving area j is
nkjtxijtvit

Nki
; (iii.) the delay in serving

each type-k request from area j by data center i at time slot
t is dkijt. We use dkijt multiplied by a delay-cost translation
parameter α to describe the cost due to delay. In summary,
the service cost incurred in serving area j at time slot t by
data center i is

nkjtx
k
ijt × (bkit +

vit
Nk
it

+ α× dkijt) = nkjtx
k
ijtr

k
ijt

B. The Offline Content Replication and Request Dispatching
Problem

We first formulate the offline problem in (1) where only
one content is considered. The extension to K contents is
straightforward as given in Theorem 1. The objective function
(1) is designed to minimize the sum of the overall storage cost,
service cost and migration cost in T .

P : min
∑
t∈[T ]

∑
i∈[I]

cityit +
∑
t∈[T ]

∑
i∈[I]

∑
j∈[J]

njtxijtrijt

+
∑
t∈[T ]

∑
i∈[I]

wizit (1)

subject to:∑
i∈[I]

xijt ≥ 1, ∀j ∈ [J ], t ∈ [T ] (1a)

xijt ≤ yit, ∀j ∈ [J ], i ∈ [I], t ∈ [T ] (1b)

zit ≥ yit − yi(t−1), ∀i ∈ [I], t ∈ [T ] (1c)

xijt ∈ [0, 1], ∀i ∈ [I], j ∈ [J ], t ∈ [T ] (1d)

yit ∈ {0, 1}, ∀i ∈ [I], t ∈ [T ] (1e)

zit ∈ {0, 1}, ∀i ∈ [I], t ∈ [T ] (1f)

Constraint (1a) guarantees that at each time slot, requests from
each area will be dispatched to multiple data centers and

served completely. Constraint (1b) indicates that only when
data center i stores a replica at time slot t can it serve requests
for that replica at that time. Constraint (1c) illustrates that if
data center i stores a replica at t but not at t − 1, a content
migration occurs at t (i.e., zit = 1 ); otherwise, zit = 0.

Theorem 1. In a cloud CDN deployed in a pool of data centers
with ‘infinite’ resources, the minimal operational cost incurred
for K contents is equal to the summation of the minimal
operational cost incurred by each of the contents.

The proof is given in our technical report [26].

Toward the design of an efficient online algorithm, we first
relax the integrality constraint (1e) and (1f) to yit, zit ∈ [0, 1]
and let Pf denote the relaxed program as follows:

Pf : min
∑
t∈[T ]

∑
i∈[I]

cityit +
∑
t∈[T ]

∑
i∈[I]

∑
j∈[J]

njtxijtrijt

+
∑
t∈[T ]

∑
i∈[I]

wizit (2)

subject to: (1a)− (1d)

yit ∈ [0, 1], ∀i ∈ [I], t ∈ [T ] (2e)

zit ∈ [0, 1], ∀i ∈ [I], t ∈ [T ] (1f)

Let ajt, dijt, bit denote the Lagrangian dual variables
associated with (1a), (1b), and (1c) respectively. We next obtain
the dual program [27] of Pf as follows:

Df : max
∑
t∈[T ]

∑
j∈[J]

ajt (3)

subject to:

bit ≤ wi, ∀i ∈ [I], t ∈ [T ] (3a)∑
j∈[J]

dijt + bi(t+1) − bit ≤ cit, ∀i ∈ [I], t ∈ [T ] (3b)

ajt − dijt ≤ Rijt, ∀i ∈ [I], t ∈ [T ] (3c)

ajt, bit, dijt ≥ 0, ∀j ∈ [J ], i ∈ [I], t ∈ [T ] (3e)

In an online setting, in each time slot t ∈ [T ], all
the parameters, variables and constraints related to that time
index emerges gradually. Due to the two sets of precedence
constraints (1b) (1c) [9], decisions of one time slot are coupled
with those in another. We apply a novel regularization method
to remove the coupling and design an efficient online algorithm
in the next section.

IV. AN ONLINE FRACTIONAL ALGORITHM

A. Online Algorithm based on Regularization Method

The Regularization technique is adopted by adding a
smooth convex function to the original objective function and
subsequently deriving the optimal fractional solution to the
new problem. The basic idea of our online algorithm is to
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TABLE I: Summary of Key Notation

I # of data centers (DCs) in the cloud CDN
J # of areas where requests are generated
T # of time slots during the long time interval
cit storage cost of DC i for time slot t
njt # of requests from area j at time slot t
rijt service cost of DC i per request from area j
Rijt service cost of njt requests served by DC i
wi migration cost for copying a replica to DC i
xijt fraction of njt requests directed to DC i
yit binary indicator: whether DC i stores a replica

at t (yit = 1) or not (yit = 0)
zit binary indicator: whether a replica is copied to

DC i at t (zit = 1) or not (zit = 0)

lift the precedence constraint (1c) to the objective function in
order to remove the correlation between time slot t−1 and t. In
other words, we intend to decompose the offline optimization
problem into a set of simpler sub-problems for each time slot.
Then it fits the online setting where decisions are made in each
time slot.

Main idea. Let P̃f denote the new problem in which time
correlation is removed. Let P̃ft denote the sub-problem our
online algorithm is trying to solve in time slot t. We should
have (i.) the solution solved from P̃f should be feasible in
Pf ; (ii.) an online algorithm should be designed to produce
feasible solutions of P from that of Pf such that the ultimate
problem P can be solved; (iii.) P̃f is an approximation of Pf
which intuitively guarantees a good competitive ratio; and (iv.)

P̃f =
∑
t∈[T ]

P̃ft, (4)

where each P̃ft has no time correlation constraint (1c). Note
that (ii.) will be achieved in Section V and we focus on
(i.), (iii.) and (iv.) in this section.

We apply the idea of regularization in online learning to
achieve the approximation from P to P̃f . Observe that (1c)
can be rewritten as an equality constraint zit = max{0, yit −
yi(t−1)}, while zit in the third term of (1) can be substituted.
A commonly used regularizer Relative Entropy Function is as
follows:

∆(yt||y(t−1)) =
∑
i∈[I]

(yit ln
yit

yi(t−1)
+ yi(t−1) − yit) (5)

First, we regularize Pf to P̃f by using ∆(yt||y(t−1)) to
approximate max{0, yit− yi(t−1)}. Second, we define Rijt =
njtrij to denote the service cost of data center i for serving
area j at time slot t. Hence, njtrij can be replaced by Rijt.
Third, when (5) is applied as an approximation, we define
an approximation weight parameter η to be determined in
Sec. IV-B. Moreover, we add a constant term ε

I on both the
denominator and the nominator of the fraction within the ln
operator to ensure the feasibility when yi(t−1) = 0. Note that
yi(t−1) for all i are solved in P̃f(t−1) such that they are fixed
as constant in P̃ft. As a result, we have:

Algorithm 1: An Online Regularization-based Fractional
Algorithm ORFA

Input: I , J , w, ε
Output: x,y

1 INITIALIZE x = 0,y = 0;

2 while time slot t starts, do
3 Get ct, rt,nt,yt−1;
4 Adopt Interior Point Method to solve

P̃ft(I, J, ct, r,w,nt, ε), according to (6);
5 Return xt,yt.
6 end

P̃ft : min
∑
i∈[I]

cityit +
∑
i∈[I]

∑
j∈[J]

xijtRijt

+
∑
i∈[I]

1

η
wi

[
(yit +

ε

I
) ln(

yit + ε
I

yi(t−1) + ε
I

) + yi(t−1) − yit
]

(6)

subject to:∑
i∈[I]

xijt ≥ 1, ∀j ∈ [J ] (6a)

xijt ≤ yit, ∀j ∈ [J ], i ∈ [I] (6b)

xijt, yit ∈ [0, 1], ∀i ∈ [I], j ∈ [J ] (6f)

Algorithm Interpretation Our algorithm to solve P̃ft is given
in Alg. 1. Since P̃ft is a standard convex problem [27], it can
be optimally solved in polynomial time, e.g., by the interior
point method [27]. Let x̃?ft and ỹ?ft denote the optimal solution
of P̃ft. At each time slot t, the fractional solution (xt,yt) is
determined based on the solution independently of the rounds
prior to t− 1. In fact, such a fractional solution will be used
by the algorithm in Sec. V as the base of the final integer
solution.

Theorem 2. Our online algorithm ORFA obtains the optimal
solution of P̃ft in polynomial time.

Proof: Our online algorithm ORFA adopts Interior Point
Method [27] to solve the standard convex optimization P̃ft.

Theorem 3. A feasible solution of Pf is obtained by running
our online algorithm ORFA in each of the T time slots.

Proof: Let S̃ft and Sf denote the feasible region of P̃ft
and Pf respectively, each of which is a polyhedron defined by
the intersection of the constraints of themselves. Then we have
Sf = ∪t∈[T ](S̃ft ∩ (1c)). We also have that {x̃?ft, ỹ?ft} ∈ S̃ft
and each z̃?ft can be easily computed by (1c). Thus, taking
(x̃?ft, ỹ

?
ft, z̃

?
ft) for all t together is a feasible solution of Pf .

B. Competitive Analysis of ORFA via a Primal-dual Frame-
work

Intuition. Let P ?f and D?
f denote the minimum (optimum) of

Pf and maximum (optimum) of Df , respectively. We abuse
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TABLE II: KKT Optimality Conditions of P̃f and D̃f

∀ j ∈ [J ], t ∈ [T ] :
1−

∑
i∈[I] x̃

?
ijt ≤ 0, (7.1)

ã?jt(
∑
i∈[I] x̃

?
ijt − 1) = 0, (7.2)

∀ j ∈ [J ], i ∈ [I], t ∈ [T ] :
x̃?ijt − ỹ?it ≤ 0, (7.3)
d̃?ijt(ỹ

?
it − x̃?ijt) = 0, (7.4)

Rijt + d̃?ijt − ã?jt ≥ 0, (7.5)
x̃?ijt(Rijt + d̃?ijt − ã?jt) = 0, (7.6)
∀ i ∈ [I], t ∈ [T ] :

cit + wi
η ln(

ỹ?it+
ε
I

ỹ?
i(t−1)

+ ε
I

)−
∑
j∈[J] d̃

?
ijt ≥ 0, (7.7)

ỹ?it(cit + wi
η ln(

ỹ?it+
ε
I

ỹ?
i(t−1)

+ ε
I

)−
∑
j∈[J] d̃

?
ijt) = 0, (7.8)

Pf and Df to denote the objective value on a feasible solution
of Pf and Df , respectively. According to Theorem 3, Pf can
be obtained by ORFA. Given Pf , a.k.a. Pf (OFRA), in order
to obtain an upper bound of the ratio of Pf (OFRA) to P ?f ,
we still need a lower bound of P ?f . However, it is not easy
to solve the minimization problem (1) exactly. Since strong
duality [27] guarantees that P ?f = D?

f , we resort to the lower
bound of D?

f . Note that the dual fractional problem in (3) is
a maximization, thus, any feasible solution produces a lower
bound of P ?f , i.e., Df ≤ D?

f = P ?f . Therefore, the key point
is to seek a feasible dual solution of (3) as the lower bound
of the optimum of Pf , which will be proved in Theorem 4.

Looking into (3), our goal is to assign values of a set of dual
variables ajt, bit and dijt within the feasible region defined by
the constraints. Still, we explore the regularized problem P̃f .
Now we define D̃f , the dual problem of P̃f . Let ãjt (≥ 0) and
d̃ijt (≥ 0) be dual variables of D̃f associated with constraints
(6a) and (6b), respectively. Based on Theorem 2 and Theorem
3, ỹ?ft and x̃?ft satisfy the KKT Optimality Condition [27],
which is sufficient and necessary for optimality of a convex
optimization. We derive and present

KKT Optimality Conditions (7)

of P̃f and D̃f in Table II. Directed by the KKT Optimality
Condition, a feasible solution can be derived as follows:

a0jt = ã?jt, d0ijt = d̃?ijt b0it =
wi
η

ln(
1 + ε

I

ỹ?i(t−1) + ε
I

) (8)

In the following, to be clear, we use D0
f to denote the dual

problem constructed in (8).

Theorem 4.
∑
t∈[T ]

∑
j∈[J] ã

?
jt is a lower bound of P ?f .

Proof: According to (8), D0
f is obtained by plugging each

a0jt into the objective function of (3). In the following, we will
further show that (8) is feasible to (3). Given 0 ≤ ỹ?i(t−1) ≤ 1,

we choose η = ln(1 + n
ε ) and plug them into , we have

bit =
wi

ln(1 + I
ε )

ln(
1 + ε

I

ỹ?i(t−1) + ε
I

) (by )

0 ≤ bit ≤ wi. (by (1e))

which shows that (3a) and (3e) are feasible. We also plug into
(3b) and have∑

j∈[J]

d̃?ijt + bi(t+1) − bit

=
∑
j∈[J]

d̃?ijt −
wi
η

ln(
ỹ?it + ε

I

ỹ?i(t−1) + ε
I

) (by )

≤ cit (by (7.5))

which indicates (3b) is feasible. Feasibility of (3c) is naturally
guaranteed by (7.5). Then we have D0

f ≤ D?
f ≤ P ?f according

to weak duality [27]. Since
∑
t∈[T ]

∑
j∈[J] ã

?
jt is the objective

value of D0
f , which the theorem follows.

Based on Theorem 4, we then compare the total cost of
fractional dynamic replica placement and request redirection
problem using online algorithm ORFA with that of the offline
optimal algorithm. The total cost in (2) can be divided into
three parts: total storage cost, total service cost and total
migration cost. We compute the ratio of each of them to Df

respectively and then the competitive ratio can be bounded by
summing up the three sub-ratios. In the following, we simplify
φ̃? to φ where φ generally denotes all the variables.

Lemma 1. The storage cost of Pf (yit) is no larger than D0
f .

The proof is given in our technical report [26].

Lemma 2. The service cost of Pf (ỹ?it) is no larger than D0
f .

The proof is given in our technical report [26].

Lemma 3. The migration cost of Pf (x̃?it) is no larger than
(1 + ε) ln(1 + I

ε ) times of D0
f .

The proof is given in our technical report [26].

Theorem 5. Our online algorithm ORFA achieves a ((1 +
ε) ln(1 + I

ε ) + 2)-ratio compared to the offline optimum of the
original problem in (1).

Proof: Taking the sub-ratios in Lemma 1, 2, and 3
together, we have

Pf (OFRA)

P ?f
≤ (1+ε) ln(1+

I

ε
)+1+1 = (1+ε) ln(1+

I

ε
)+2, (9)

Since P ?f is the optimum of the relaxation of P star, we have
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Pf (OFRA)

≤
(

(1 + ε) ln(1 +
I

ε
) + 2

)
P ?f ≤

(
(1 + ε) ln(1 +

I

ε
) + 2

)
P ?.

(10)

V. AN ONLINE ALGORITHM FOR REPLICA PLACEMENT
AND REQUEST REDIRECTION

A. A Randomized Online Rounding Algorithm

In Sec. IV, our proposed OFRA obtains a fractional
solution of (2) which guarantees a ratio of ((1+ε) ln(1+n

ε )+2)
compared to (1), the original problem. In order to satisfy (1e),
the solution of y should be binary while x can be fractional
but may require adjustment due to the rounding of y. Let ŷit
denote the rounding solution of yit and x̂ijt denote the final
solution of xijt. The main ideas to determine ŷit and x̂it are
as follows.

Random, Dynamic Replica Placement. Looking into (2), the
value of yit is positively correlated with the tendency that data
center i stores a replica at time slot t. The basic idea to round
fractional yit to binary ŷit is to treat yit as the probability
Pr[ŷit = 1]. One of the state-of-the-art in random rounding
algorithm design for online set covering problem (e.g., [28])
sheds light on our design of the online algorithm with ran-
dom rounding, RORA. Unfortunately, directly applying their
method on the rounding of yit can not guarantee that all the
requests are served, i.e., with a small probability, none of the
data centers store a replica. To address this, we force a selected
data center i0 to store the replica in the long time interval.
However, it incurs extra storage cost and migration cost in
data center i0. To bound the total migration cost, we choose
the data center with the smallest wi as data center i0. The ratio
of storage cost is bounded by Ut and Lt.

Greedy Adaptive Request Redirection. Suppose data center
i is an available data center if and only if ŷit = 1. We further
define Dt to be the set of all available data centers at time slot
t. The efficacy of our proposed request redirection strategy is
presented in Proposition 1 as follows.

Proposition 1. Given Dt at any time slot t ∈ [T ], for each
j ∈ [J ], greedily redirecting all the requests from area j to
the available data center with the smallest rijt is the optimal
redirection strategy.

Proof:

Suppose ŷit for all i is given at time slot t, the storage cost
of time slot t (

∑
i∈[I] citŷit), is determined. Since ŷi(t−1) for

all i are known at time slot t − 1, the migration cost of time
slot t (

∑
i∈[I] wi max{0, ŷit − ŷi(t−1)}), can also be fixed. In

such sense, no matter what the solutions of each ŷit are, the
solutions of each x̂ijt can only influence the service cost at
time slot t (

∑
j∈[J]

∑
i∈[I]Rijtx̂ijt).

Combining the minimization goal with constraint (1a), we
have

∑
i∈[I] x̂ijt = 1. According to constraint (1b), only

for those available data centers i ∈ Dt, we could have
x̂ijt > 0 for any j ∈ [J ]. Hence,

∑
j∈[J]

∑
i∈[I]Rijtx̂ijt =

Algorithm 2: Randomized Online Rounding Algorithm
RORA

Input: I , J , w, ε
Output: x̂, ŷ, ẑ
Initialize: x = x̂ = 0,y = ŷ = 0, ẑ = 0,Dt = ∅, θ = 0

1 foreach i ∈ [I] do
2 Generate i.i.d. U(0, 1) random variables:

Y (i, 1), Y (i, 2), ..., Y (i, 3 lnJ);
3 Θi = min3 ln J

m=1 Y (i,m);
4 end
5 Search the data center i0 = argmini∈[I]wi;
6 while time slot t starts, do
7 Get ct, rt,nt,yt−1;
8 (xt,yt) = P̃ft(I, J, ct, rt,w,nt, ε,yt−1);
9 for i = 1, ..., I do

10 if Θi ≤ yit then
11 ŷit = 1;
12 Dt = Dt ∪ i;
13 else
14 yit = 0;
15 end
16 end
17 ŷi0t = 1;
18 for j = 1, ..., J do
19 i? = mini∈Dt∪{i0} rijt;
20 x̂i?jt = 1;
21 x̂ijt = 0, ∀i ∈ [I]/i?;
22 end
23 Return yt, ŷt, x̂t, ẑt;
24 end

∑
j∈[J]

∑
i∈Dt Rijtx̂ijt. Thus

∑
i∈Dt Rijtx̂ijt under any fea-

sible solution of {x̂ijt}i∈[Dt] is a convex combination of
{Rijt}i∈Dt . We know that all the convex combinations are
within the convex hull [27], a line segment constructed by
{Rijt}i∈Dt . Then the critical points [27] of such a convex hull
are end points of the line segment. Hence, the maximum of∑
i∈Dt Rijtx̂ijt is the one-dimensional coordinate of the right

end point of the line segment, which is maxi∈Dt Rijt. Note
Rijt = rijnjt, thus we have maxi∈Dt Rijt = maxi∈Dt rij

Algorithm Intepretation. Directed by the discussion above,
we design the online algorithm RORA, as given in Alg. 2,
where the main steps of OFRA are embedded in. Upon the
arrival of the aggregated requests from all j at time slot t,
a fractional solution is derived by OFRA (line 8). Then
yit for all i are randomly rounded into ŷit by treating the
fractional yit as probability (line 9−15). Data center i0 always
stores a replica for reliability (line 17) since (i.) with a small
probability, no data centers store a replica after the rounding
(line 9− 15), and (ii.) the origin can only handle a restricted
number of requests in practice. For each area j ∈ [J ], data
center i? with the minimal service cost rijt among all the
available data centers is chosen to serve the requests (line
18− 22).
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B. Competitive Analysis of RORA

Bounding the storage cost. Let Ut and Lt denote the upper
bound and lower bound of cit for all i ∈ [I] and t ∈ [T ]. The
storage cost can be upper bounded as in Theorem 6.

Theorem 6. The expected storage cost under the binary
solution output by RORA is no larger than 2 lnJ + Ut

Lt
times

of that under the fractional solution output by OFRA.

Proof:

We first analyze line 16 to line 22 of RORA. For each i
and each single sample 1 ≤ m ≤ 2 lnJ , the probability that
Y (i,m) ≤ yit is exactly yit . The probability that data center
i is rounded to be 1 is the probability that there exists an m,
1 ≤ m ≤ 2 lnJ , such that Y (i,m) ≤ yit, i.e. Θi ≤ yit.
Define events Aimt = {Y (i,m) ≤ yit}, Ait = {Θi ≤ yit},
and Ajt = {∃i ∈ [Bjt], Ait happens}, respectively. Thus, the
probability that i is rounded is to be 1 by line 15 is

Pr[Ait] = Pr[

2 ln J⋃
m=1

Aimt] (11)

By the union bound this probability is at most the sum of
each of the probability of Aimt, we have

(11) ≤ 2 ln Jyit (12)

Thus for each area j at time slot t, we have

Pr[Ajt] ≤
∑
i∈Bjt

Pr[Ait] ≤ 2 ln J
∑
i∈Bjt

yit (13)

We next consider the contribution of i0 to the the expected
storage cost at time slot t. According to line 5, we have

E1[ŷi0tci0t] = ci0tPr[ŷi0t] = ci0t (14)

Due to constraint (1a) and (1b), we have∑
i∈[I]

yit ≥
∑
i∈[I]

xijt ≥ 1, ∀j ∈ [J ], t ∈ [T ] (15)

Thus the ratio of expected storage cost of time slot t under
the rounding solution to that under the fractional solution is

E[
∑
i∈[I]

citŷit] ≤
2 ln J

∑
i∈[I] cityit + Ut

∑
i∈[I] yit∑

i∈[I] cityit

≤ 2 ln J +
Ut
∑
i∈[I] yit

Lt
∑
i∈[I] yit

= 2 ln J +
Ut
Lt

(16)

Bounding the service cost. Let Us = maxi∈[I],j∈[J] rij and
Ls = mini∈[I],j∈[J] rij . In the following, we first compute

the service cost of each area j at each time slot t under the
fractional solution output by OFRA and under the binary
solution output by RORA, respectively. Based on Lemma
1, we look deeper into the structures of each xijt output by
OFRA. For each i and t, suppose data center i is a responsible
data center of j at t if and only if xijt > 0. Let Bjt denote
the set of all responsible data centers of j at t. We further
define |Bmax| to denote the upper-bound of the number of
data centers each area can be served. Note that |Bmax| ≤ I .
According to constraints (6a) and (6b), the optimal fractional
solution of (6) has the following properties:

∀j ∈ [J ], t ∈ [T ] :

(i.)
∑
i∈Bjt

yit ≥ 1;

{
(ii.) xijt ≤ yit, if rij = maxi∈Bjt rij
(iii.) xijt = yit, otherwise (17)

We use spare data center to denote a data center which
satisfies (ii.) of (17) and let σjt denote the index of spare data
center for each j and t. Thus, the service cost of time slot t
under the fractional solution output by OFRA is

∑
j∈[J]

[ ∑
i∈Bjt/σjt

yitrijt + (1−
∑

i∈Bjt/σjt

yit)rσjt
]

(18)

For each i at each time slot j, we sort i with rij in an
ascending order and let {i[q]}q∈[I] to denote the index of a
data center in the sorted sequence with ri[q]j ≤ ri[q+1]j . Now
we analyze the service cost for each area j at each time slot t
produced by RORA. Given the rounding solution ŷit for all
i, greedy xijt for all j are optimal according to Lemma 1. We
may and may not map all the requests from area j to some
data center i ∈ Bjt.
Lemma 4. For each k ∈ [|Bjt|], we have

Pr

[
k⋃
q=1

{
yi[q]t=1

}]
≥
(

1− 1

J2

) k∑
q=1

yi[q]t (19)

The proof is given in our technical report [26]. Further, the
expected service cost will be bounded in Theorem 7 based on
Lemma 4.

Theorem 7. The expected service cost under the binary
solution output by RORA is no larger than 1 + |Bmax|

J2
Us
Ls

times of that under the fractional solution output by OFRA

The proof is given in our technical report [26].

Bounding the migration cost. Since migration cost under the
fractional solution is incurred for any data center i at any t+1
when yi(t+1) > yit, we define ∆i(t+1) = yi(t+1) − yit for
all i and t. Thus the total migration cost under the fractional
solution is

∑
t∈[T ]

∑
i∈[I]

wi max{0, yi(t+1) − yit} =
∑
t∈[T ]

∑
i∈[I]

wi max{0,∆i(t+1)}

(20)
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while the expected migration cost at time slot t is

E

∑
i∈[I]

wi max{0, ŷi(t+1) − ŷit}

 (21)

Theorem 8. The expected migration cost under the binary
solution output by RORA is no larger than 2 lnJ times of
that under the fractional solution output by OFRA.

The proof is given in our technical report [26].

Theorem 9. The total cost under the binary solution output
by RORA is no larger than max{2 lnJ + Ut

Lt
, 1 + |Bmax|

J2
Us
Ls
}

times of that under the fractional solution output by OFRA.

Proof: To simplify, let A,B,C denote the total storage
cost, total service cost, and total migration cost under the
fractional solution respectively. Let E[COST ] denote the
expected total cost under the binary solution output by RORA.
Taking Theorem 6, 7, and 8 together, we have

E[COST ]

A+B + C

≤
(2 ln J + Ut

Lt
)A+ (1 + |Bmax|

J2
Us
Ls

)B + (2 ln J + 1)C

A+B + C

≤
max{2 ln J + Ut

Lt
, 1 + |Bmax|

J2
Us
Ls
, 2 ln J + 1}(A+B + C)

A+B + C

= max{2 ln J +
Ut
Lt
, 1 +

|Bmax|
J2

Us
Ls
} (22)

Theorem 10. The final competitive ratio our RORA is
max{2 lnJ + Ut

Lt
, 1 + |Bmax|

J2
Us
Ls
} ×

[
(1 + ε) ln(1 + I

ε ) + 2
]
.

Proof: The final solution output by RORA is feasible to
the original problem (1). Let E[COST (RORA)] denote the
expected total cost under the binary solution output by RORA,
COST (OFRA) denote the total cost under the fractional
solution output by OFRA, and OPT denote the cost under the
optimal solution of (1). Combining Theorem 9 and Theorem
5, the final competitive ratio is

E[COST (RORA)]

OPT
=
E[COST (RORA)]

COST (OFRA)
× COST (OFRA)

OPT

= max

{
2 ln J +

Ut
Lt
, 1 +

|Bmax|
J2

Us
Ls

}[
(1 + ε) ln(1 +

I

ε
) + 2

]
(23)

In the following section, we will show the practical perfor-
mance of the ratio by trace-driven simulations.

VI. PERFORMANCE EVALUATION

We conduct trace-driven simulations to evaluate the per-
formance of Alg. 2. Based on the Amazon CloudFront pricing
structure [29], we choose US, EU, South America (SA), Japan
(JP), Singapore/Hong Kong (SHK), and Australia (AU) as the 6
request areas. The number of data centers located in each area
is derived according to the distribution of zones of Amazon
CloudFront [30].

We also compare the effectiveness of our Algorithm 2
with extended versions of two existing heuristics, Greedy data
center (GC), Greedy Area (GA), proposed in [19] and a one-
shot optimization. The basic idea of GC is: for each time slot
t, we iteratively decide to place the replica on a data center
with the maximum utility and assign to it with all the potential
requests. The potential requests are those from all the areas
within the QoS distance to the selected data center while not
yet served in the current time slot. The utility of data center i at
time slot t is equal to

∑
j∈Qit

njt∑
j∈Qit

njtrijt+cit+wi(1−yi(t−1))
, where

Qit is the set of all the areas within the QoS distance to data
center i. The basic idea of GA is: for each time slot t and each
area j, we redirect all the requests in area j with the lowest
potential cost, where the potential cost of data center i for
serving area j is equal to njtrijt + cit + wi(1− yi(t−1)).

A. Evaluation Setup and Prameter Settings.

Traffic Collection and Content Chunking We have proved
in Theorem 1 that without the constraints of storage capacity
and bandwidth capacity, optimizing on each unique content
leads to an overall optimization over all the contents. Thus
we take as input both VoD traces and downloads traces into
our online algorithm respectively to evaluate the performance
of our algorithm. The trace data is extracted from the pattern
of user requests on Oct. 1, 2004 where each of the request
demands for a VoD content of 100 minutes, 300 MB [31].
We also extract the downloads traces from the pattern of web
traffic in [32]. In accordance with the model, we use content
chunking [6] to split a content into multiple chunks, each
of which is translated into a request in the corresponding
time slot. Moreover, we split a VoD content into chunks of
5 minute duration, which is also the length of each time slot.
As for the downloads traces, we split content into chunks of
50 MB in size. Subsequently, the length of each time slot is
equal to size of a web page volume

50MB . Furthermore, we manually divide
the overall requests into US, EU, SA, Asia & Pacific and
Japan according to CloudFront Pricing Model [29], following
a poisson distribution.

Cost Parameters. Based on the real pricing structure of
Amazon CloudFront [29][33], we set the cost parameters
as in Table III with minor adjustments. Our parameters are
determined as follows. We believe that the pricing structure
of CloudFront reflects the cost difference among areas such
that it can be used as cost parameters in our problem. Storage
cost and bandwidth cost for serving requests and migration
are determined based on storage cost [33], Regional Data
Transfer Out to Internet [29], and Regional Data Transfer Out
to Origin [29] as follows:

TABLE III: Cost Parameters

requst area US EU SA JP SHK AU
c̄it 0.03 0.03 0.041 0.033 0.03 0.033

r̄ijt

US 0.085
EU 0.085
SA 0.140
JP 0.140
SHK 0.250
AU 0.140

wi 0.020 0.020 0.060 0.060 0.125 0.100
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Note that each area is indexed by a unique j in our model,
which may contain multiple i’s since a single location can
host more than one data centers (e.g., US). To be consistent
with the interpretation in Sec. III, the parameter of service
cost per request is set as rijt = unit bandwidth cost + α ×
RTT. The round-trip time (RTT) between each pair of data
center and request area are emulated using manually injected
delays in programs following the formula RTT(ms) = 0.02×
Distance(km) + 5 from [34]. The unit bandwidth is set based
on the corresponding entry along the diagonal of the matrix in
Table III. The RTT is ignored when request area is the same
as the data center location. Since a latency up to 200ms [35]
will deteriorate the user experience significantly, some rijt are
set to be +∞ to force the rejection of redirection such that the
user experience is guaranteed. For example, the distance from
Sao Paulo to France is about 9440 km, then average rijt from
data centers in EU to request areas in SA is (9440 × 0.02 +
5)×0.1% + 0.085 = 0.0.2788, while it is (9440×0.02 + 5)×
0.1% + 0.140 = 0.3338 from data centers in Sao Paulo (SA)
to request areas in EU.
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Fig. 7: Comparison among Alg. 2 and existing schemes

B. Comparison with Offline Optimum

We first study the competitive ratio achieved by
RORA,computed by dividing the offline minimal cost (in-
curred by solving (1) exactly using MOSEK Optimizer) by
the cost output by Alg. 2. Due to the complexity of solving
the offline problem with a large number of variables, we set
the default number of time slots to be 300.

Fig. 1 and Fig. 2 together illustrate how ε and I influence
the performance of Alg. 1 and Alg. 2 respectively. The ratio
of Alg. 1 is obtained through dividing the objective value
of (1) under the fractional solution of Alg. 1 by the offline
minimal cost. A larger ratio of both Alg. 1 and Alg. 2 comes
with a larger number of data centers, similar to the impact
of I on the theoretical ratio obtained in (9). Nevertheless,
the impact of ε is different in Alg. 1 and Alg. 2, which can
be explained as follows. The deterministic Alg. 1 optimally
solves a well designed approximation of the relaxed original
problem, therefore achieving a relatively stable performance.
On the contrary, the randomized algorithm relies heavily on
the repeated number of our simulation and thus more unstable.
Moreover, both the ratios of Alg. 1 and Alg. 2 are under the
average cases, which do not fit into the variation trend of the
theoretical competitive ratio.

Deriving from the result from the two figures above, we
choose a relative small ε rather than the optimal ε to minimize
the theoretical ratio. More specifically, ε is equal to 0.1 in
the following simulations. Fig. 3 further indicates that the
more number of areas, the larger the competitive ratio. The

reason is that, by using the trace data as input, we have
max{2 lnJ+Ut

Lt
, 1+ I

J2
Us
Ls
} = 2 ln J+Ut

Lt
, i.e., a larger number

of areas J leads a larger competitive ratio. Fig. 4 shows that
the performance of Alg. 2 is not compromised with increasing
number of time slots.

C. Comparison with Existing Schemes

We next compare the competitive ratios achieved by RORA
and two heuristics (Greedy data center (GC) and Greedy Area
(GA)) which are modified to the online fashion. We also use the
MOSEK Optimizer to optimally solve the one-shot optimiza-
tion at each time slot (we identify a lack of comparable online
algorithms from the CDN cost-aware optimization literature).
Fig. 5, 6, and 7 indicate that our proposed online algorithm
RORA can achieve better performance than the online version
of the three offline algorithms. Additionally, we believe that
both GC and GA perform well in offline setting since they are
not surpassed much by the one-shot optimum.

VII. CONCLUSION

This work aims to efficiently manage cloud resources in
different locations over time to minimize the operational cost
of the CDN provider, while delivering short response delay
to user requests. We first leverage a regularization method
borrowed from online learning to reshape the relaxation of
the original problem. Therefore the new problem can be
decomposed into a set of sub-problems, each of which can
be solved optimally in polynomial time. Such a fractional
solution of the new problem is feasible to the relaxation of
the original problem. Furthermore, we design a randomized
rounding algorithm to obtain the final randomized binary so-
lution. We show that the final solution to the original problem
yields a competitive ratio which is independent of the number
of requests or time horizon, based on the analysis via a primal-
dual framework. The cost effectiveness is further validated by
both theoretical proof and a series of trace-driven simulations.
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