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Abstract— With the recent advent of network functions vir-
tualization (NFV), enterprises and businesses are looking into
network service provisioning through the service chains of virtual
network functions (VNFs), instead of relying on dedicated hard-
ware middleboxes. Accompanying this trend, an NFV market is
emerging, where NFV service providers create VNF instances,
assemble VNF service chains, and sell them for the use of
customers, using resources (computing, bandwidth) that they
own or rent from other resource suppliers. Efficient service
chain provisioning and pricing mechanisms are still missing, to
charge assembled service chains according to demand and the
supply of resources at any time. We propose an online stochastic
auction mechanism for on-demand service chain provisioning
and pricing at an NFV provider. Our auction takes in buy bids
for service chains from multiple customers and sell bids from
various resource suppliers to supplement the NFV provider’s geo-
distributed resource pool, with resource occupation/contribution
durations. We extend online primal-dual optimization framework
for handling both buyers and sellers, with a new competitive
analysis. The online mechanism maximizes the expected social
welfare of the NFV ecosystem (the NFV provider, customers and
resource suppliers) with a good competitive ratio as compared
with the expected offline optimal social welfare, while guarantee-
ing truthfulness in bidding, individual rationality for both buyers
and sellers, and polynomial time for computation. We evaluate
our mechanism through trace-driven simulation studies, and
demonstrate a close-to-offline-optimal performance in expected
social welfare under realistic settings.

Index Terms— Auction mechanism design, online algorithms,
network functions virtualization.

I. INTRODUCTION

NETWORK functions virtualization (NFV) is a recent
paradigm for running network functions, e.g., intrusion

detection systems (IDSs), firewalls, proxies and WAN opti-
mizers, as software on virtual machine (VM) instances on
industry standard servers. Today, a new form of network
function typically emerges as a one-off solution to a specific
need, implemented using dedicated hardware middleboxes and
“patched” into the existing network infrastructure through
manual installation, which are costly and difficult to main-
tain. NFV enables significant reduction in deployment cost
and management overhead [1] through dynamic, automatic
deployment of virtualized network functions (VNFs) [2]. VNFs
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are typically connected into service chains (an ordered set of
VNFs) to provide network service [2].

More and more enterprises and businesses are resorting to
VNFs for provisioning network services. Accompanying this
trend, an NFV market is emerging, where dedicated NFV
service providers create VNF instances, build VNF service
chains, and offer them to customers on demand. The service
chains are assembled using resources (computing and band-
width) that an NFV provider owns or rents from other resource
suppliers (e.g., cloud providers). Customers can browse the
VNFs available at an NFV provider, and specify the VNFs to
compose their service chains. There are yet many open issues
to resolve in order to enable an efficient NFV market, among
which resource allocation optimization and pricing are the
top priorities. Efficient service chain provisioning and pricing
mechanisms are still missing.

We study an NFV market where the NFV provider owns
a geo-distributed pool of resources, allocates resources to
assemble service chains upon demand, and may purchase extra
resources from resource suppliers if deemed appropriate. The
customers bid for service chains while the resource suppliers
sell their available resources to the NFV provider through sell
bids. We seek an efficient online mechanism for the NFV
provider to carry out dynamic service chain provisioning and
pricing on the go. The design objective is to maximize the
social welfare of all parties while guaranteeing truthfulness in
bidding, individual rationality and polynomial time for online
computation. Instead of resorting to a double auction, we
novelly design the online auction such that both buy and sell
bids can be similarly handled in a consistent fashion.

First, we characterize the interaction among the NFV
provider, VNF service chain customers, and resource suppliers
in an online model and design an efficient online mechanism
to tackle the key issues of resource provisioning and pricing
schemes. Such a practical three-party NFV market paradigm
is new in the literature. Our auction guarantees truthfulness
of both buyers and sellers, and obtains near-optimal expected
social welfare with a competitive ratio of 1 − O(ε), where
ε can be arbitrarily close to 0. The key is to convert the
social welfare maximization problem in the online stochastic
model to a deterministic fractional program, exploiting the
properties of the bid arrival process. The fractional program
provides an upper-bound of the offline optimal social welfare
in expectation, and facilitates our online algorithm design
based on a primal-dual framework, by removing the time
dimension indices of the dual prices.

Second, we extend the primal-dual framework to handle
both buyers and sellers (with positive and negative values
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of the input parameters). Technically, our model involves
negative inputs (sell bids) in the underlying resource allocation
problem (an integer linear program (ILP)) of the auction.
Exploiting the auxiliary fractional linear program where the
resource occupation/contribution durations are removed, we
use a flat price independent of buy/sell price of each bidder
for each type of resource, to handle both buy and sell bids for
guaranteeing truthfulness. We apply online price learning as a
subroutine that uses previous bids to learn the set of prices that
determine future resource allocation and payments/rewards,
and periodically update the prices as more bids are revealed,
for better approaching the optimal social welfare.

Third, we carefully design the online price learning method
to handle the departure of a bidder. To our knowledge,
previous work on learning-based online primal dual algorithms
(e.g., [3]) do not deal with bid departures, which is a crucial
part of our model – both service chain customers and resource
contributors cease their resource occupation or supply after a
specified period of time. By estimating the average resource
demand/supply of a buyer/seller according to the valid duration
of each bid, we learn future resource availability from the
arrived bids and update average prices of resources for future
time slots. Our analysis of competitive ratio novelly takes
into account the time factor by connecting the expected
resource consumption/contribution of each bid at each time
slot with the average resource consumption/contribution esti-
mation over the entire time span, as used in our price learning
subroutine.

The rest of the paper is organized as follows. We discuss
related work in Sec. II and define the problem model in
Sec. III. Sec. IV presents our online auction design with
theoretical analysis. Simulations are presented in Sec. V.
Sec. VI concludes the paper.

II. RELATED WORK

Early efforts on NFV focused on bridging the performance
gap between specialized hardware and virtualized network
functions running on VMs [4], [5], as well as designing
management platforms for VNF deployment, traffic steer-
ing, and flow state migration across multiple instances of a
VNF [6], [7]. These systems significantly facilitate the
dynamic deployment and scaling of VNFs. A few recent
studies investigate optimal placement and scaling of VNF
instances and traffic routing in service chains for cost min-
imization. VNF-P [8] presents a one-time optimization model
for VNF placement, considering hybrid deployment where part
of the network service is provided by dedicated hardware and
part by VNF instances, and designs a heuristic algorithm.
Mehraghdam et al. [9] model a mixed integer quadratically
constrained program (MIQCP) to pursue different optimization
goals in VNF placement, without giving solution algorithms.
These work mostly deal with one-off placement of the NFV
service chains, ignoring the dynamic nature of an NFV system.

In contrast, we take a few important steps further: (1) we
design an efficient online algorithm for dynamic service chain
placement and pricing; (2) we study the rather new NFV
market [10]; to the best of our knowledge, there is no existing
study on mechanism design for the NFV market; (3) we

consider dynamic resource pooling with both buy and sell
of resources in the NFV market, which renders significant
challenges in online mechanism design.

There has been a sustainable body of research on cloud
auctions in both the offline and online settings [11], [12] [13].
Unlike the proposed online auction in this work, they cannot
handle request departures or only involve buy bids for cloud
resources. A very recent work [14] proposes an efficient
VNF chain auction which guarantees truthfulness and achieves
near-optimal social welfare in polynomial time. However,
the problem they solved is in an offline setting and the
technique can not be readily applied to online VNF auctions.
An online version of double auction, where bids arrive and
expire at different times, has been considered in the studies
of continuous double auction (CDA) [15]. These studies aim
to maximize the profit of the auctioneer or the number of
items sold, but unfortunately provide no truthfulness guaran-
tee. Wurman et al. [16] adopt and extend the monotonicity-
based truthful characterization based on the work of Bredin
and Parkes et al. [17] in developing their online truthful
double auctions. Their methodology lacks economic efficiency
(e.g., social welfare maximization) guarantee, and can not be
readily adapted to our NFV market. The reason is that the
items sold or bought by agents in their problem are identical
and cannot be released or reused after the agents depart.
In contrast, buyers and sellers in our models have heterogenous
demands/supplies of resource combinations, which could be
reused/released after the occupation/contribution deadlines.
Hajiaghayi et al. [18] design truthful online double auctions
based on a bipartite matching algorithm. In their work, the
auctioneer makes immediate and invokable decisions once an
agent arrives, which is also one of the critical features that
our mechanism provides. However, economic efficiency is not
guaranteed and a strong assumption is made that all the sellers
have fixed asking prices.

There also exist some theoretical work on online sto-
chastic auctions. Wang et al. [19] design a learning-based
algorithm for online resource allocation problems where the
types (e.g., bidding price, resource demands) of customers
are i.i.d., without considering additional resource supplies.
Agrawal et al. [3] design similar algorithms for solving
online LPs where the columns of coefficient matrix of an LP
arrive in a random order. Moreover, existing online stochastic
algorithms typically assume that the total number of inputs
is known in advance, while our mechanism works even when
such knowledge (total number of bids) is estimated but not
accurate.

III. PROBLEM MODEL

A. The NFV Market

We consider an NFV market among three parties: (i) Cus-
tomers, each requiring a service chain to process its data flow.
(ii) Resource suppliers who can provide computing resources
(CPU, RAM, disk) in the form of virtual machines (VM)
and/or data transfer bandwidth between geo-dispersed VMs at
certain times. (iii) An NFV service provider who owns geo-
distributed computing resources and bandwidth in-between,
installs VNFs, deploys and sells service chains according
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Fig. 1. NFV market.

to customer demand. It may also purchase resources from
resource suppliers to supplement its resource pool. An illus-
tration of the NFV market is given in Fig. 1.

The geographic span of the NFV provider’s computing
resources can be divided into zones in set S, where a zone may
correspond to one or multiple servers, or a datacenter. K types
of VNFs in set K can be provided in each zone (K = |K |).
Each VNF can be deployed on multiple VMs and each of
these VMs is referred to as an instance of this VNF. The
NFV provider can maximally provision Cks instances of type-
k VNF in zone s, ∀s ∈ S, k ∈ K , using resources it owns in the
respective zone. The NFV provider owns an upload bandwidth
capacity of �out

s from zone s to other zones, a download
bandwidth capacity of �in

s from other zones to zone s, and a
bandwidth capacity of Lss ′ on the link from zone s to zone
s′, ∀s ∈ S, s′ ∈ S/{s}. We assume that the bandwidth inter-
connecting computing resources in the same zone is always
abundant. The entire lifespan of the system is T = [1, T ].

Each customer i demands one service chain consisting of
a sequence of VNFs in K , with one or multiple instances
needed for each VNF, e.g., 2 firewall instances and 1 load
balancer instance in the chain “Firewall→Load Balancer” for
customer 3 in Fig. 1. Let dik denote the number of instances
of VNF k that customer i requires in its service chain. dik = 0
for all VNFs (k’s) which do not belong to the chain. Different
VNFs and/or different instances of the same VNF can be
deployed in different zones. Let π̂kk′

i denote the bandwidth
a customer needs for flow transfer between two instances of
two consecutive VNFs k and k ′ in its chain.

A customer may have multiple options for geographic
deployment of their VNF instances, e.g., to deploy all the
2 firewalls and 1 load balancer in the same zone, or 2 firewalls
in one zone and 1 load balancer in another. Let �i denote the
set of deployment options of customer i . We define a demand
matrix diγ ∈ Z

K×S for each option γ ∈ �i , where each
element dks

iγ is the number of instances of VNF k that customer
i wants in zone s in this option, with

∑
s∈S dks

iγ = dik . The
service chain configuration (instance numbers and bandwidth
in-between) and geographic deployment can be computed by
the customer based on estimated flow arrival rates, processing
capacity of each VNF instance, and any end-to-end flow delay
requirement, which has been studied in [20], [21], and [9] and
is orthogonal to the focus of this paper.

A customer submits its service chain demand as a buy bid.
Let viγ be bidder i ’s true valuation of option γ . The true values
for different options indicate preferences of the customer for
its options. biγ is the corresponding bidding price customer
i submits. Let τi be the usage duration of the service chain.
Therefore, customer i ’s bid can hence be expressed as follows:

Bi = ({biγ }γ∈�i , {dks
iγ }k∈K ,s∈S,γ∈�i , {π ss ′

iγ }s �=s ′∈S,γ∈�i , τi ).

(1)

Here, π ss ′
iγ is the aggregate bandwidth demand of bidder

i from s to s′ in option γ , which can be readily com-
puted according to a customer’s flow demand π̂kk′

i between
VNFs and instance deployment strategies dks

iγ ’s, i.e., π ss ′
iγ =

∑
k∈K

∑
k′∈K /{k} π̂kk′

i max(dks
iγ , dk′s ′

iγ ).
A resource supplier sells its available resources to the NFV

provider as VMs and bandwidth for VNF deployment. The
resources owned by a supplier may be located in one zone
or distributed across multiple zones. In general, each resource
supplier i has 1 or more sell options in �i . Similarly, the
same Bi in (1) is used to express a sell bid from resource
supplier i . Different from a buy bid where all quantities are
non-negative, in a sell bid, we have biγ ≤ 0, dks

iγ ≤ 0, and

π ss ′
iγ ≤ 0, ∀k ∈ K , s, s′ ∈ S, γ ∈ �i . It should be noted that

−biγ ≥ 0 denotes the asking price for option γ (−viγ is the
true valuation), −dks

iγ ≥ 0 denotes the number of VM instances

that i can provide in zone s to run VNF k, and −π ss ′
iγ ≥ 0

denotes the bandwidth that i can provide from zone s to s′.
τi is the duration during which i ’s resources can be used.

The NFV provider serves as an auctioneer to determine the
winning bids and the service chain deployment. There are
in total I bids arriving at different times (I = |I |). Bid i
arrives at ti , and can be either a sell bid or a buy bid with any
probability. Upon receiving a buy (sell) bid, the NFV provider
makes the following decisions: (i) whether to accept the bid
and if so, which buy (sell) option to accept, as indicated by
binary variable xiγ , with 1 indicating the acceptance of option
γ of bid i , and 0 otherwise; (ii) the payment p̂i to collect from
the bidder i , where p̂i > 0 if the bidder is a customer, and
p̂i < 0 if the bidder is a resource supplier (− p̂i > 0 is the
reward from the NFV provider to the supplier).

B. Online Stochastic Model and Mechanism Design Goals

We model the arrival process of bids during T = [1, T ] as
a Poisson process with an arrival rate λ [22]. There are two
key properties of a Poisson process [23]: (i) the total number
of arrivals in T , I , is a random variable following the Poisson
distribution with an expectation of λT ; (ii) the arrival time of
each bid among I can be uniformly and independently mapped
to [1, T ].1 Exploiting (ii) above, we assume that the arrival
time of bid i , i.e., ti , is uniformly and independently drawn
within [1, T ], and the bids are indexed according to their order
of arrival in any fixed realization of the arrival process. Each
bid vector Bi , as defined in (1), is drawn independently from

1The algorithm design relies on the expectation of I and property (ii) but
does not restrict that I follows Poisson distribution.
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a set of bid types, D, following an unknown distribution, i.e.,
Bi ’s are i.i.d.2

We target the following properties in our NFV market
mechanism design. (i) Truthfulness in bidding price: For any
bidder, declaring its true valuation of the service chain to
buy or resources to sell in its bid always maximizes its
utility, regardless of any other bids. The utility function of

bidder i is ui =
{
viγ − p̂i , if ∃γ ∈ �i , xiγ = 1

0, if xiγ = 0,∀γ ∈ �i
regard-

less of whether it is a sell or buy bid. (ii) Computational
efficiency: Polynomial-time algorithms for resource allocation
and payment calculation are needed for the auction to run
efficiently in an online fashion. (iii) Individual rationality:
Each bidder obtains a non-negative utility by participating in
the auction. (iv) Social welfare maximization in expectation:
Given a realization of the bid arrival process, the social welfare
is the sum of aggregate utility of all customers and resource
suppliers,

∑
i∈I

∑
γ∈�i

(viγ − p̂i )xiγ , and the overall profit
of the NFV provider. Since payments in the bidders’ utilities
and the NFV provider’s profit cancel each other, the social
welfare is

∑
i∈I

∑
γ∈�i

viγ xiγ (equals
∑

i∈I
∑
γ∈�i

biγ xiγ

under truthful bidding). We aim to upper-bound the ratio of
the expected social welfare achieved with our mechanism (over
different realizations of the bid arrival process) to the expected
offline optimal social welfare.

Under a fixed realization of the bid arrival process, the
offline social welfare maximization and winner determination
problem can be formulated as follows (also assuming truthful
bidding is guaranteed). The expected offline optimal social
welfare can be computed based on the objective value of this
problem over different realizations of the bid arrival process.

P : maximize:
∑

i∈I

∑

γ∈�i

biγ xiγ (2)

subject to :∑

γ∈�i

xiγ ≤ 1, ∀i ∈ I (2a)

∑

i∈I :
ti≤t<ti+τi

∑

γ∈�i

dks
iγ xiγ ≤ Cks , ∀k ∈ K , s ∈ S, t ∈ T

(2b)∑

i∈I :ti≤t<ti+τi

∑

γ∈�i

π ss ′
iγ xiγ ≤ Lss ′,

∀s ∈ S, s′ ∈ S/{s}, t ∈ T (2c)∑

i∈I :ti≤t<ti+τi

∑

γ∈�i

∑

s ′∈S/{s}
π s ′s

iγ xiγ ≤ �in
s , ∀s ∈ S, t ∈ T

(2d)∑

i∈I :ti≤t<ti+τi

∑

γ∈�i

∑

s ′∈S/{s}
π ss ′

iγ xiγ ≤ �out
s , ∀s ∈ S, t ∈ T

(2e)
xiγ ∈ {0, 1}, ∀i ∈ I , γ ∈ �i (2 f )

Constraint (2a) indicates that at most one option is adopted

2Assuming the overall system span T is much longer than the duration τi
in all bid types in D, we can safely assume that τi of different bids is drawn
from the same range regardless of the bid arrival time, since the probability
of ti + τi > T is very small and not considering those extreme bids barely
affects the overall social welfare in expectation.

for each bid i . (2b) guarantees that the overall number of
instances of VNF k in any zone s at any time t , used
in provisioning service chains (which are running at t) in
all accepted bids, does not go beyond the capacity limit.
(2c) ensures that the total traffic on each link (s, s′) from
all service chains using this link at t does not exceed the
respective bandwidth capacity. Similarly, (2d) and (2e) guar-
antee that the total inbound and outbound bandwidth usage at
each zone due to the deployed service chains at each time is
no larger than the available download and upload bandwidth,
respectively.

Note that in the left-hand-side summation in constraints
(2b)-(2e), dks

iγ and π s ′s
iγ are negative for an accepted option

of a sell bid i . This is equivalent to adding the respective
provisioned resources to the right-hand-side resource capacity
in those constraints, i.e., supplementing the resource pool of
the NFV provider to serve buy bids.

The offline problem is established assuming complete
knowledge of the system over its entire lifespan. In a dynamic
system, with the arrival of bids, the variables and constraints
emerge gradually. For example, on the arrival of bid i , a new
constraint (2a) appears for this bid, and a set of new variables
xiγ ,∀γ ∈ �i , are added to constraints (2b) – (2e). In the
following, we design an online auction mechanism for the
NFV provider to determine immediately whether to accept
a bid i and which option to serve, as well as the bidder’s
payment if accepted.

IV. ONLINE AUCTION DESIGN

A. Primal-Dual Framework

We start with simplifying (2). Observe that constraints (2b)
to (2e) are similar in the sense that they make sure the overall
consumption of a resource (a VNF type, the bandwidth of
a link, or the upload/download bandwidth in a zone) does
not exceed the respective capacity at any time. We use m to
index the generalized resource type and the total number of
the generalized resource types (including all the resources)
is equal to (K + 2)S + |E|, where E = {(s, s′),∀s ∈
S, s′ ∈ S/{s}} denotes the set of links connecting pairs of
zones. Let M denote the set of generalized resource types
and let M1,M2,M3,M4 respectively denote the set of VNF
types, the set of upload bandwidth at all the zones, the
set of download bandwidth at all the zones, and the set of
bandwidth of the links. We use Cm to denote the capacity of a
generalized resource type m ∈ M . Then (2) is equivalent to the
following:

P : maximize:
∑

i∈I

∑

γ∈�i

biγ xiγ (3)

subject to :
∑

γ∈�i

xiγ ≤ 1, ∀i ∈ I (3a)

∑

i∈I :
ti≤t<ti+τi

∑

γ∈�i

cm
iγ xiγ ≤ Cm , ∀m ∈ M , t ∈ T (3b)

xiγ ∈ {0, 1}, ∀γ ∈ �i , i ∈ I (3c)
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where:

cm
iγ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dks
iγ , if Cks → Cm, ∀m ∈ M1∑

s ′∈S/{s}
π s ′s

iγ , if �in
s → Cm , ∀m ∈ M2

∑

s ′S/{s}
π ss ′

iγ , if �out
s → Cm , ∀m ∈ M3

π ss ′
iγ , if Lss ′ → Cm , ∀m ∈ M4

and a → b denotes the mapping from an original resource
capacity a to the generalized resource capacity b. For example,
Cks → Cm means that Cks is represented by Cm where m
denotes the corresponding resource (VNF k in zone s) in
set M1.

Let ui and pmt be the dual variables associated with
3(a) and 3(b), respectively. The dual program of (3) is (relaxing
3(c) to xiγ ≥ 0, noting that xiγ ≤ 1 is redundant due to 3(a)):

D : minimize:
∑

t∈T

∑

m∈M

Cm pmt +
∑

i∈I

ui (4)

subject to :
ui ≥ biγ −

∑

m∈M

∑

t∈[ti ,ti+τi )

pmtc
m
iγ , ∀i ∈ I , γ ∈ �i

(4a)

pmt ≥ 0, ∀m ∈ M , t ∈ T (4b)

ui ≥ 0, ∀i ∈ I (4c)

Our core idea of the online winner determination algorithm
design, for social welfare maxmization, is as follows.
We resort to the KKT conditions [24] of the offline primal
and dual problems in (3) and (4) to maintain a feasible primal
solution as well as a feasible dual solution online, which pur-
sue the offline optimal solution. On the arrival of a sell or buy
bid i , a new dual variable ui ≥ 0 appears, subject to constraints
(4aa), that is, ui ≥ biγ − ∑

m∈M
∑

t∈[ti ,ti+τi )
cm

iγ pmt for all
γ ∈ �i . Let p̃ denote the offline optimal solution of dual
variables pmt ,∀m ∈ M , t ∈ T . The KKT conditions indicate
that in the offline primal and dual solutions to (3) and (4), xiγ

must be zero unless constraint (4a) is tight for option γ . Thus,
temporarily assuming that we know p̃mt , we can assign each
ui to be

ui = max
{
0,max
γ∈�i

{
biγ −

∑

m∈M

∑

t∈[ti ,ti+τi )

cm
iγ p̃mt

}}
(5)

(the maximal of 0 and the right hand side (RHS) of
constraints (4a)) and letting γi = argmaxγ∈�i

{
biγ −

∑
m∈M

∑
t∈[ti ,ti+τi )

cm
iγ p̃mt

}
, making constraint (4a) tight

for γi . Then, we let xiγi = 1 if and only if ui > 0, satisfying
the necessary condition of the KKT conditions. The rationale
for accepting a bid in this way is as follows: If we interpret
p̃mt as the marginal price (payment) per unit of resource m at
time t , then the second term on the RHS of (4a) becomes the
total payment that bid i should pay for the requested service
chain if it is a buy bid, or the inverse of the second term is the
total reward that the bidder should receive if it is a sell bid.
So the RHS of (4a) is the utility of bid i , assuming truthful
bidding: valuation minus payment if it is a buy bid or reward
minus valuation if it is a sell bid. Therefore, the above method

effectively accepts bid i achieving positive utility, in the best
option that maximizes its utility, and ui is bid i ’s utility. In this
way, we target utility maximization for each bidder (no matter
whether it is a seller or buyer), which leads to truthfulness and
social welfare maximization.

However, in the online problem, we do not know the offline
optimal dual solution p̃ of (4). Exploiting the stochastic bid
arrival model, we hope to get an approximately optimal dual
solution of the offline problem in expectation from the first
ε ∈ (0, 1) fraction of bids, and to successively refine our
dual solution as more bids arrive. We will show that our
approximately optimal dual solution is sufficient for coordinat-
ing the primal winner determination online to approximately
maximize social welfare.

B. An Online Auction With Stochastic Input

Upon the arrival of a new bid i , deciding whether to serve
the bid and which option to use is equivalent to choosing a
feasible assignment for the new primal variables xiγ of (3a).
If the NFV provider decides to serve bid i in one of its
options γi , then let xiγi = 1; otherwise, xiγ will be zero for
all options γ ∈ �i . Besides winner determination, we should
also determine how much to charge for each winning buy bid
and how much to pay for each accepted sell bid.

Expected Offline Optimization Problem: The offline problem
in (3) is defined with respect to a set of bids that have been
realized from the underlying stochastic arrival process. Next,
we describe the expected offline primal program (over the
random realizations of bids) in (6) and the corresponding
dual program in (7). We will refer to them as the distribution
instance programs. The optimal objective value of the primal
problem in (6) serves as an upper-bound of the expected social
welfare of the offline optimal problem (3) in our competitive
analysis (see Lemma 7) and guides us to design the online
auction mechanism.

Let δ j denote the probability that bid type j is drawn
from distribution D. Recall that the expected number of bids
is λT . Thus, the expected number of times that type j is
chosen among the realized bids is λT δ j . In the distributed
instance programs, we let x jγ denote the probability that a bid,
conditioned on its type being j , is served in option γ , over
random realizations of bids. Then, the contribution of type-
j bids to the expected social welfare is λT δ j

∑
γ∈�i

b jγ x jγ .
With slight abuse of notation, we use j to denote a bid of type
j instead of bid j , in b jγ , x jγ , cm

jγ , � j and u j . Summing over
all bid types we derive the objective function of (6).

Next, we revisit the capacity constraints. Constraint (6a)
means that each bid of a specific type j is served in at most
one option. If a bid of type j is served with option γ , then it
consumes cm

jγ of type-m resource for a duration τ j (out of T ).
So on average (over time), a bid of type j served with option
γ consumes λT δ j

τi
T cm

jγ x jγ of type-m resource at each time.
For example, in a T = 2000 time span, every 2 times lots 1
bid arrives in expectation, i.e., λ = 0.5. Suppose the bid type j
is drawn with probability of 0.1 each time, then the expected
number of bids that are drawn as type j is 0.5 × 2000 ×
0.1 = 100 in total. If an option γ of a bid of type j requires
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cm
jγ amount of resource of each m and occupies the resources

for 1 time slot, then the expected amount of type-m resource

occupied by the bid is
cm

jγ
2000 in each time slot if option γ is

accepted, since the bid arrives with probability of 1
T in any

time slot and only occupies resources for 1 time slot. Putting

together, bids drawn as type j occupy
cm

jγ
20 amount of resource

m in each time slot in expectation if option γ is accepted.
Thus, constraint (6b) ensures that the average consumption
of a resource does not exceed its capacity (expected capacity
constraint). Note that this is a non-trivial relaxation of the
capacity constraints in (3b) as we remove the time dimension.
A priori, it is not clear whether the optimum of the relaxed
program in (6) is much larger than that of (3). Fortunately, we
show that it is possible to design an online algorithm based
on (6), to obtain a 1 − O(ε) fraction of the expected optimal
social welfare, under the assumption that each bid does not
consume a significant fraction of the overall capacity of any
resource.

Pδ : maximize:
∑

j∈D

λT δ j

∑

γ∈� j

b jγ x jγ (6)

subject to :
∑

γ∈� j

x jγ ≤ 1, ∀ j ∈ D (6a)

∑

j∈D

∑

γ∈� j

λT δ j
τ j

T
cm

jγ x jγ ≤ Cm , ∀m ∈ M (6b)

x jγ ≥ 0, ∀ j ∈ D, γ ∈ � j (6c)

The dual program of (6) is:

Dδ : minimize:
∑

m∈M

Cm pm +
∑

j∈D

λT δ j u j (7)

subject to :
u j ≥ b jγ −

∑

m∈M

pm
τ j

T
cm

jγ , ∀ j ∈ D, γ ∈ � j (7a)

pm ≥ 0, ∀m ∈ M (7b)

u j ≥ 0, ∀ j ∈ D (7c)

After we remove the time dimension by using time averaged
resource consumption in (6), it suffices to (approximately)
derive price pm for each type-m resource in (7).

To derive primal and dual solutions achieving a social
welfare close to that of the expected offline problem (6), we
resort to the KKT conditions to make decisions, similar to
the idea discussed in Sec. IV-A. The obstacle is still that
we do not know the offline optimal dual solution p̃ in the
online setting, and we cannot even derive the expected offline
optimal p̃ without any information of the distribution D of
the bid types. Our idea is to learn an approximately optimal
dual solution p̃ of the offline problem based on the past bids,
and progressively refine our dual solutions as time evolves.
In particular, we divide bid arrivals in [1, T ] into log2 ε

−1

stages, each marked by the arrival of a bid of index 2η
ελT �.
Here η ∈ {0, ..., log2 ε

−1 − 1} indexes the stage. For each
stage, we model an empirical formulation of (6) in Pη in (8)
over the first 2η
ελT � bids in set Iη = {1, . . . , 2η
ελT �},
replacing the expectations over all bids in the objective and

constraint (6b) with the sum over those sample bids, and
accordingly shrinking the capacity limits by a factor of Iη

λT ,

where Iη = |Iη| = 2η
ελT �. Let χη = ε
√
λT
Iη

= ε
√

λT
2ηελT =

√
ε
2η . Note that ε ≤ χη ≤ √

ε. We further shrink the capacity

limits by a factor of (1 − ε
√
λT
Iη

) to account for the sampling
error and make sure overall resource consumption of bids is
less than the capacity. Hence in (8), the modified resource
capacity is (1− ε

√
λT
Iη
)

Iη
λT Cm = (1−χη)2ηεCm . Note that we

convert bid type j in the expected program (6) back to bid i
in (8). The dual of (8) is formulated in (9).

Pη : maximize:
∑

i∈Iη

∑

γ∈�i

biγ xiγ (8)

subject to :
∑

γ∈�i

xiγ ≤ 1, ∀i ∈ Iη (8a)

∑

i∈Iη

∑

γ∈�i

τi

T
cm

iγ xiγ ≤ (1 − ε

√
λT

Iη
)

Iη
λT

Cm , ∀m ∈ M

(8b)

xiγ ∈ {0, 1}, ∀i ∈ Iη, γ ∈ �i (8c)

Dη : minimize:
∑

m∈M

(1 − ε

√
λT

Iη
)

Iη
λT

Cm pm +
∑

i∈Iη

ui (9)

subject to :
ui ≥ biγ −

∑

m∈M

pm
τi

T
cm

iγ , ∀i ∈ Iη, γ ∈ �i (9a)

pm ≥ 0, ∀m ∈ M (9b)

ui ≥ 0, ∀i ∈ Iη (9c)

Upon the arrival of the 2η
ελT �th bid, we solve the dual
problem in (9) using all bids from bid 1 to bid 2ηελT to
compute the dual variables, where the solution for p is denoted
as pη. The dual problem is a linear program and can hence
be exactly solved using an efficient algorithm such as the
Karmarkar’s Algorithm [25]. By iteratively solving (9) with
more and more bids, we gradually learn an approximately
optimal dual solution p̃ of the offline problem. The intuition is
that since the types of bids are i.i.d., drawn from an underlying
distribution, the time-averaged resource consumption of the
past bids approximately reflects the time-averaged resource
consumption of all bids in expectation, especially when more
past bids are accumulated.

With the learned dual solution pη, we make allocation and
payment decisions upon each bid arrival: we let ui be the max-
imal of 0 and the right hand side (RHS) of constraints (9a),

ui = max
{
0,maxγ∈�i

{
biγ − ∑

m∈M
τi
T cm

iγ pηm
}}

(10)

and set xiγi = 1 for γi = argmaxγ∈�i

{
biγ −∑

m∈M
τi
T pηmcm

iγi

}
,

if ui > 0 and
∑

i∈I
∑
γ∈�i

cm
iγ xiγ + cm

iγi
< Cm ,∀m (no

capacity of any resource would be exceeded if the bid
is accepted in option γi ), and compute the payment by
p̂i = ∑

m∈M
τi
T pηmcm

iγi
. However, note that our primal solution

derived in this way may not be offline optimal as it may
not satisfy the sufficient condition of the KKT conditions.
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Algorithm 1: Plastic: An Online Auction With Price
Learning

Input: S, K , |E|, C, ε, λ, T
Output: x,Op
Define: Iη = 2η
ελT �
Initialize: η = 0; M = (K + 2)× S + |E|;

1 while a new bid i arrives do
2 if i ≤ 
ελT � then
3 /*reject the first 
ελT � bids*/
4 Reject bid i by setting xiγ = 0 for all γ ∈ �i ;
5 else
6 ui = max

{
0,maxγ∈�i

{
biγ − ∑

m∈M
τi
T pη−1

m cm
iγ

}}
;

7 γi = argmaxγ∈�i

{
biγ − ∑

m∈M
τi
T pη−1

m cm
iγi

}
;

8 if ui > 0 and
∑

i∈I
∑
γ∈�i

cm
iγ xiγ + cm

iγi
< Cm ,∀m

then
9 Accept bid i by setting xiγi = 1, and xiγ = 0

for all γ �= γi ;
10 Calculate the payment: p̂i = ∑

m∈M
τi
T pη−1

m cm
iγi

;
11 if biγi > 0 then
12 /*buy bid i*/
13 Assemble the service chain according to

option γi and provide it to the customer;
14 Collect payment p̂i from the customer;
15 else
16 /*sell bid i*/
17 Add the resources in option γi from the

seller to the resource pool;
18 Send payment − p̂i to the seller;
19 end
20 else
21 Reject bid i by setting xiγ = 0 for all γ ∈ �i ;
22 end
23 end
24 if i = Iη then
25 /*update prices*/
26 Exactly solve the dual linear program in (8d) and

obtain pη;
27 Update η = η + 1;
28 end
29 end

The good news is that our solution does not deviate from the
offline optimal solution much: the only difference between
our solution and the offline optimum is that when ui = 0,
we choose xiγ = 0 for all γ while the optimal solution may
choose xiγi = 1. That is, our solution is relatively conservative
in the tie-breaking cases. Fortunately, the loss in social welfare
can be bounded as we will show in Lemma 8, Lemma 9 and
Lemma 10 in Sec. IV-C.2.

Algorithm Procedure: Our online price learning auction,
Plastic, is given in Alg. 1. For the first 
ελT � bids, the price p0

is not in place; so we simply reject all of them (lines 2-4). Then
from bid 
ελT � + 1 to bid 2
ελT �, we use the optimal value
of p0 learned from the first 
ελT � bids (by solving D0 above)

as the allocation threshold. We determine each utility variable
ui of bid i ∈ [2η−1
λT �+ 1, 2η
λT �] by using pη−1

m in place
of p̃m as in (10) (also in line 6). If ui > 0 and accepting
the bid will not violate any resource capacity constraint, we
accept the bid in the best option γi and compute the payment
(lines 7-10). For a winning buy bid, we assemble the required
service chain using the asked resources and charge bidder i the
payment p̂i (lines 11-14). For an accepted sell bid, we take the
resources contributed by the seller and give it the reward − p̂i ,
since cm

iγ in a sell bid is non-positive and hence p̂i ≤ 0 (lines
15-18). On the arrival of bid 2η
ελT �, we further aggregate
the bids in Iη and solve the dual optimization problem in (9),
and then update η to η+1 (lines 24-28). We repeat the process
and the last time we update the price pη is the arrival time of
bid 2(log2 ε

−1)−1
ελT �. For example, suppose λT = 210 and
ε = 2−6. We reject the first 24 bids and solve (9) under the
input of the first 24 bids with η = 0 before the (24 + 1)th bid
arrives. We use p1 solved from (9) as prices for the following
bids from the (24 + 1)th to the 25th and solve (9) again under
the input of the first 25 bids with η = 1. We periodically
solve (9) to update prices every time the bid number doubles
until the last bid arrives. Such prices serve as thresholds for
filtering out low value bids and for calculating payment of
each accepted bid. Note that our algorithm does not require
any knowledge of the bid type distribution D (δi ). Though
it takes λ and T as input, their values can just be estimates.
We will show in the simulations that inaccurate estimations of
the total number of bids bring little impact on the performance
of the algorithm.

Truthfulness, Individual Rationality and Polynomial Time:
Theorem 1: Our online auction Plastic in Alg. 1 guar-

antees truthfulness of both buyers and sellers, individual
rationality of all bidders, as well as polynomial running time.

Proof (Truthfulness in Bidding Price:) Recall that in each
stage we aggregate the bids arrived so far to solve dual prices
for use in the next stage. Thus our adopted marginal prices
for computing the payment/reward of bid i (a sell or buy
bid) depend only on information of past bids, and are hence
independent of bidding price of bid i . Moreover, in line 7
of Alg. 1, we always select the option to serve a winning
bid that maximizes the bidder’s utility, using the derived
prices. Therefore our auction follows sequential posted price
mechanisms [26] where a bidder cannot increase its utility
by reporting a fake bidding price. (Truthfulness in resource
demand and duration:) For a buyer, requesting less VNF
instances/bandwidth or a shorter usage duration may lead
to a failure in serving the customer’s traffic flow. Thus no
buyer would take the risk to do that. If a buyer reports
higher-than-necessary resource demand or a longer duration,
the payment will be larger, which decreases its utility since
the resource prices are non-negative according to (9b). For
a seller, its reported resource amounts and supply duration
are no larger/longer than that he can provide, otherwise it
cannot fulfill its promise if the bid is accepted. Inversely,
reporting smaller resource amounts or a shorter contribution
duration reduces its utility due to a lower reward it will get.
(Individual rationality:) According to (10), the utility of a
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bidder (seller or buyer) is always non-negative. (Polynomial
running time:) In the auction process, we exactly solve an
LP , the dual problem in (9), for 
log2 ε

−1� times in total.
Solving the dual problem each time can be completed in
polynomial time (e.g., using Karmarkar’s Algorithm [25], the
time complexity is O(I 3.5 N2 log N log log N) where each bid
is encoded in N bits). To process a bid i , we sum up the
payment for each requested type of resource by multiplying
the τi

T fraction of the demand by the corresponding dual price
for each option γ ∈ �i . Then, we calculate the utility ui and
decide acceptance and payment of bid i by checking the utility.
Since for each option the running time is O(((K +2)S+|E|)N)
and the number of options is O((K + 2)S + |E|), the time
complexity for handling each bid is at most O(((K + 2)S +
|E|)2 N). Given the above, the time complexity of the online
auction is (
log2 ε

−1�)O(I 3.5 N2 log N log log N)+ I O(((K +
2)S +|E|)2 N) which is at most O(
log2 ε

−1�I 3.5((K +2)S +
|E|)2 N2 log N log log N). �

C. Competitive Analysis

We next show that our algorithm achieves near optimal
social welfare in expectation in three steps. (1) With high
probability, the total number of bids coming in T is close to
the expected number λT . Conditioned on (1), we can further
show that (2) with high probability our algorithm does not
over-allocate any resources, and (3) with high probability, our
solution achieves a 1 − O(ε) fraction of the offline optimal
social welfare in expectation.

1) Feasibility of the Original Problem: Note that the solu-
tions trivially satisfy constraint (3a) and (3c). Hence it remains
to prove our solution x(p) satisfies constraint (3b) with
high probability. Lemma 4 shows that with high probability,
accepted bids of our algorithm consume on average (over
time) at most a 1 − 1

2χ
2
η fractional of the capacity for any

type of resource (i.e., they satisfy (6b) even if we decrease
the capacity by a factor of 1 − 1

2χ
2
η ). (ii) Lemma 5 shows

that with high probability, accepted bids consume at most the
maximal capacity for any type of resource at any time t (i.e.,
they satisfy (3b)). We define the following random variables
which will be useful for our analysis:

Xim = τi

T

∑

γ∈�i

cm
iγ xiγ (pη) (11)

Yim (t) =
⎧
⎨

⎩

∑

γ∈�i

cm
iγ xiγ (pη), if ti ≤ t < ti + τi

0, otherwise
(12)

Here Yim (t) is the demand for resource m of bid i in the
accepted option γi at time t , and in the following lemma, we
show that Xim is at least the expectation of Yim (t), which is
used in the proof of Lemma 5 later. Let A denote the uniform
distribution where the arrival time of each bid is independently
drawn within [1, T ].

Lemma 1: The expectation of Yim (ω) on t is no larger than
Xim when A is a uniform distribution within [1, T ].

Proof: Since cm
iγ , τi are chosen independently of ti , so

we can fix cm
iγ and τi in the calculation of the expectation of

Yim(ω) on ti ∼ A. For any fixed t ∈ [1, T ], we have

Eti∼A[Yim (t)] = Pr[ti ≤ t < ti + τi ]
∑

γ∈�i

cm
iγ xiγ (pη)

= Pr[t − τi < ti ≤ t]
∑

γ∈�i

cm
iγ xiγ (pη) (13)

Since we have 0 ≤ t ≤ T , then Pr[t−τi < ti ≤ t] has different
values between two cases (see (13a) and (13b)). Note that the
probability mass function of the random variable arrival time ti
for any fixed t is Pr[ti = t] = 1

T where t ∈ [1, T ]. Thus we
have

(13) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t

T

∑

γ∈�i

cm
iγ xiγ (pη), 0 ≤ t < τi (13a)

τi

T

∑

γ∈�i

cm
iγ xiγ (pη), τi ≤ t ≤ T (13b)

Given this, we have that E[Yim(ω)] < Xim when 0 ≤ t < τi

and E[Yim(ω)] = Xim when τi ≤ t ≤ T , which gives the
lemma in general. �

Lemma 2: With probability at least 1 − ε, the total number
of bids arrived during [1, T ] is in the range of [(1− ε

2 )λT, (1+
ε
2 )λT ], given λT > 4

ε3 .
Proof: According to Chebyshev’s Inequality [27], we have

that

Pr[|I − λT | ≥ ε

2
λT ] = Pr[|I − E[I ]|

≥ ε

2
λT ] ≤ Var[I ]

( ε2λT )2
= 4λT

ε2λ2T 2 = 4

ε2λT

Thus we have

Pr[(1− ε
2
)λT ≤ I ≤ (1+ ε

2
)λT ] ≥ 1 − Pr[|I − λT | ≥ ε

2
λT ]

≥ 1 − 4

ε2λT
(14)

If λT ≥ 4/ε3 holds, we have (14) ≥ 1 − ε. �
Lemma 3: With probability at least 1 − ε, we have (1 −

χη
2 )λT ≤ I ≤ (1 + χη

2 )λT , for any η ∈ {0, ..., log 1
2
ε − 1}.

Proof: Since minη χη =
√

ε

2log1/2 ε
= ε, the lemma follows

Lemma 2. �
Lemma 4: On the condition of (1− ε

2 )λT ≤ I ≤ (1+ ε
2 )λT ,

for any η ∈ {0, 1, ..., log 1
2
ε − 1}, we have

∑

i∈Iη+1\Iη

Xim ≤ (1 − χ2
η

2
)2ηεCm, ∀m ∈ M

with probability at least 1 − ε, given minm∈M Cm
maxi,γ,m |cm

iγ | ≥
13M log(2I 2/ε)

ε2 .
Lemma 5: Conditioned on (1 − χη/2)λT ≤ I ≤ (1 +

χη/2)λT and
∑

i∈I Xim ≤ (1 − χ2
η

2 )2
ηεCm, we have

∑

i∈Iη+1\Iη

Yim (ω) ≤ 2ηεCm , ∀m ∈ M , η ∈ {1, .., log 1
2
ε − 1},

ω ∈ {ti , ti + τi }i∈I

with probability at least 1−ε, given that minm∈M Cm
maxi∈I ,γ∈�i ,m∈M |cm

iγ | ≥
13M log(2I 2/ε)

ε2 for all m ∈ M .



400 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 35, NO. 2, FEBRUARY 2017

Lemma 6: With probability at least 1 − 2ε, we have
∑

i∈Iη+1\Iη

Yim (ω) ≤ 2ηεCm , ∀γ ∈ �i , m ∈ M ,

η ∈ {1, .., log 1
2
ε − 1}, ω ∈ {ti , ti + τi }i∈I

under the assumptions (i) λT ≥ 4/ε3, and
(ii) mini∈M Cm

maxi∈I ,γ∈�i ,m∈M |cm
iγ | ≥ 13M log(2I 2/ε)

ε2 .

Proof: Suppose N is the event that (1 − χη/2)λT ≤
I ≤ (1 + χη/2)λT and F is the event that

∑
i∈Iη+1\Iη Xim ≤

(1− 1
2χ

2
η )Cm for all m, ω. Lemma 2 shows that N holds with

probability at least 1− ε. Lemma 4 shows that conditioned on
N , F holds with probability at least 1−ε. Lemma 5 shows that
conditioned on both N and F , the conclusion of the lemma
holds with probability at least 1 − ε. Thus, we have

Pr[
∑

i∈Iη+1\Iη

Yim(ω) ≤ 2ηεCm ]

≥ Pr[
∑

i∈Iη+1\Iη

Yim (ω) ≤ 2ηεCm | F ,N ] Pr[F | N ] Pr[N ]

≥ (1 − ε)3 ≥ 1 − 3ε

�
2) Competitive Ratio in Social Welfare: Let O PT denote

the offline optimal social welfare, i.e., the optimal objective
value of the offline problem in (3). The following lemma
shows that the objective value of problem (6) serves as an
upper-bound of the expected social welfare of the offline
problem.

Lemma 7: The optimal objective value of (6) is an upper-
bound of E[O PT ], the expectation of the offline optimal
social welfare, computed by solving the offline social welfare
maximization problem in (3) over all possible realization of
the bid arrival process.

Proof: We can readily see that the average of optimal solu-
tions of the offline problem in (3), computed over all possible
realizations of bid arrival process, provides a feasible solution
to the distribution instance program in (6). These solutions
achieve an expected offline social welfare of E[O PT ]. Hence
the optimal social welfare of the distribution instance program
can only be larger than E[O PT ]. �

Assumption 1: The inputs of the program (8) are in general
position, namely for any dual solution vector p derived by
solving the dual program (9), there can be at most M
equations such that biγi = ∑

m∈M pmcm
iγ , for all i ∈ I and γi

denotes the best option of bid i .
Let xiγ (pη) denote the primal solution output by Alg. 1,

which is a function of the price vector solved in (8). According
to Alg. 1, we have

xiγ (pη) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1,

if γ = argmaxγ ′∈�i
{biγ ′ −

∑

m∈M

τi

T
pηmcm

iγ ′ }

and biγ >
∑

m∈M

τi

T
pηmcm

iγ

0,

otherwise

(15)

Let xηiγ denote the optimal solution of (8). Let xi (pη) and
xηi be the sum of xiγ (pη) over γ ∈ �i and the sum of xηiγ
over γ ∈ �i , respectively. The following lemma states that
our solution x(pη), which is induced by dual price vector pη

solved in (9) at stage η, will deviate at most M from the
optimal solution xη of (8).

Lemma 8:
∑

i∈I xηi − M ≤ ∑
i∈I xiγi (p

η) ≤ ∑
i∈I xηi ,

where γi = argmaxγ ′∈�i
{biγ ′ − ∑

m∈M
τi
T pηmcm

iγ ′ }.
Proof: Applying complementary slackness conditions to

(8) and (9), the optimal solution of (8) satisfies that xηiγ =
0 if biγi <

∑
m∈M pηmcm

iγ . Compared with (15), if bid i
satisfies biγi = ∑

m∈M pηmcm
iγ , the optimal solution xηiγ could

be 1 while our induced solution xiγ (pη) definitely equals
to 0. In the remaining cases where biγi <

∑
m∈M pηmcm

iγ or
biγi >

∑
m∈M pηmcm

iγ , we have xiγ (pη) = xηiγ . These imply
that bids accepted by Alg. 1 are also accepted by the offline
optimal solution while some of the accepted bids in the optimal
solution are rejected by Alg. 1. Since there are at most M bids
which satisfy biγi = ∑

m∈M pηmcm
iγ according to Assumption 1,

there are at most M bids that are accepted by the optimum
while rejected by Alg. 1.

�
Lemma 9: Given minm∈M Cm

maxi,γ,m |τi cm
iγ | ≥ 13M log(2I 2/ε)

ε2 , we have

∑

i∈Iη+1

∑

γ∈�i

biγ xiγ (pη)) ≥ (1 − 2χη − ε)P
η+1(xη+1) (16)

where
∑

i∈Iη+1

∑
γ∈�i

biγ xiγ (pη)) is the objective value of

Pη+1 under the allocation vector x(pη) output by Alg. 1,
and P
η+1(xη+1) is the optimal objective value of (8) under
optimal solution xη+1.

Lemma 10: Given minm∈M Cm
maxi,γ,m |τi cm

iγ | ≥ 13M log(2I 2/ε)
ε2 , we have

∑

i∈Iηmax+1

∑

γ∈�i

biγ xiγ (pηmax)) ≥ (1 − 2χη − ε)P
δ (17)

where
∑

i∈Iη+1

∑
γ∈�i

biγ xiγ (pη)) is the objective value of

Pη+1 under the allocation vector x(pη) output by Alg. 1, and
P
δ is the optimal objective value of (6).

Lemma 11: Let (xη,pη,uη) denote the optimal primal-dual
solution of (8) and (xδ,pδ,uδ) denote the optimal primal-dual
solution of the distribution instance program (6), we have

P
η(xη) ≤ 2ηε

1 − ε/2
Pδ
 (18)

where Pδ
 is the optimal objective value of Pδ in (6).
Theorem 2: For any ε > 0, the online auction Plastic in

Alg. 1 is 1 − O(ε) competitive in expected social welfare with
i.i.d. bid types and uniform bid arrival time distribution, as
compared to the expected social welfare of offline problem (3),
for all inputs such that

minm∈M Cm

maxi,γ ,m |cm
iγ | ≥ 13M log(2I 2/ε)

ε2 (19)

V. PERFORMANCE EVALUATION

We perform trace-driven simulation studies to evaluate our
online auction mechanism Plastic.
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A. Simulation Setup

We set the number of zones to 13, according to the number
of Google data centers [28]. Each customer demands a service
chain containing 2−5 VNFs, randomly picked among firewall,
proxy, NAT and IDS. The rate of traffic flow to be handled
by each service chain is produced by multiplying the average
rate of HTTP requests in the Wikipedia trace [29] with a
coefficient in [0.5, 1.5]. The number of instances of each VNF
in each chain (i.e., dik ) is set based on the traffic rate and
typical processing capacity of one instance of each VNF, as
given in the table below [30]. For example, if the incoming
traffic rate to a service chain “Firewall → IDS” is 800Mbps,
then the numbers of firewall and IDS instances are 1 and 2,
respectively, since 900Mbps × 1 ≥ 800Mbps, 600Mbps ×
2 ≥ 800Mbps. We distribute the flow evenly to multiple
instances of a VNF in the service chain. Hence the bandwidth
demand between instances of two consecutive VNFs can be
determined accordingly. Following the previous example, the
bandwidth demand from a firewall instance to an IDS instance
is 800Mbps/2. The CPU demand of each instance is given in
the table below while the RAM and disk capacities are set
according to those of the respective VM instances on Amazon
EC2 [31]. We independently randomly choose a zone for each
instance in a required chain. By default, each customer submits
1−5 options in its bid, each of which corresponds to a random
VNF placement as done above. After setting all the resource
demands (cm

iγ ), we normalize all |cm
iγ |’s to be within [0, 1], by

dividing each demand by maxi∈I,γ∈�i ,m∈M |cm
iγ |. The bidding

price of each option in each buy bid is the weighted sum of
normalized demands, where the weights are randomly picked
within [0, 1].

By default, we set λ = 0.5, and decide the total number
of bids I according to the Poisson distribution with the
expectation of λT . We independently and uniformly choose an
arrival time within [1, T ] for each bid, to simulate a Poisson
process. We will also show performance of our algorithm when
λ, as an input to Alg. 1, is not accurately known, with the bid
arrival process deviating from a Poisson process. We set each
bid to be a buy bid with probability 0.9 and a sell bid with
probability 0.1. For the sell bids, resource amounts and bidding
prices are set similarly to how those in buy bids are set, except
for making them negative values. The duration of each bid (τi )
is uniformly randomly drawn from [10, 103], which may not
be much smaller than T .

For each zone, we set the upload/download bandwidth
capacities of the NFV provider (�out

s and �in
s ) to be the

total outgoing traffic rate of all required service chains mul-
tiplied by a random number within [0.2, 1]. We set the
bandwidth capacity of each link (Lss ′) as follows: suppose
a zone is connected to n outgoing (incoming) links; then the

Fig. 2. Performance of Plastic with different S.

Fig. 3. Performance of Plastic with differet ε.

bandwidth capacity of each of the links is set to be 1
n of

the upload (download) capacity of the zone, multiplied by a
random number within [0.6, 1]. In the default setting, we set

minm∈M Cm
maxi∈I ,γ∈�i ,m∈M |cm

iγ | , the lower-bound of the ratio of resource

capacity to the corresponding demand in each option of each
bid, to be 500. We decide the capacity of each VNF in each
zone (Cks ), by multiplying minm∈M Cm

maxi,m,γ |cm
iγ | by a random number

within [1.0, 1.5].

B. Comparison With Offline Optimum

We estimate the expected offline social welfare by solving
(3a) exactly using CPLEX for 50 times under different real-
izations of the bid arrival process, in each set of experiments
below. We first compute the ratio of the average social welfare
achieved by Plastic (over different realizations of the bid
process) over the expected offline optimal social welfare.
Fig. 2 indicates that the ratio decreases slightly with the
increase of the number of zones. Fig. 3 shows that the input
parameter ε to our Alg. 1 does not influence the ratio much.
It implies that very few bids need to be rejected in stage 1
in Plastic. Theorem 2 shows that the theoretical competitive
ratio is inversely related to ε; our empirical studies reveal little
impact of ε. In addition, recall the capacity assumption we
made in (19). The default value 500 of minm∈M Cm

maxi,γ,m |cm
iγ | used in

our experiments is much smaller than its lower bound in the
assumption computed using M , I , ε in our experimental set-
tings. This implies that although a lower bound of the capacity
is required for our competitive analysis, in practice, even if the
assumption is not obeyed, the average social welfare achieved
by Plastic is still close to the offline optimum.

In Fig. 4, we run Plastic by feeding βλ into the algorithm,
instead of the actual arrival rate λ used to produce the bid
arrivals, where β is the percentage in legends of the figure.
The results show that the inaccurate estimation of λ (and hence
λT needed in Alg. 1) does not affect the performance of our
mechanism either. Fig. 5 illustrates that the ratio is positively
correlated with resource capacity, which is consistent with our
theoretical analysis that a larger E[ Cm

|cm
iγ | ] is more desirable.

In Fig. 6, we compare the ratios achieved when the bid arrivals
are produced following a Poisson process (the default) and
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Fig. 4. Performance of Plastic with different levels of inaccurate estimation
of λ.

Fig. 5. Ratio of Plastic with different Cm .

Fig. 6. Ratio of Plastic with different bid arrival processes.

two other arrival patterns (A1 and A2). Following A1, the total
number of bids I is drawn from a deviated Poisson distribution
according to the pattern shown in [23, Fig. 6], which violates
the first property of a Poisson process that we mentioned at
the beginning of Sec. III-B. Following A2, arrival time of
each bid is chosen with a varying probability over [1, T ], set
roughly according to [23, Fig. 3], which violates the second
property in Sec. III-B. Fig. 6 show that the ratio is worse
with A2 (the non-uniform bid arrival time distribution) than
A1 (a different distribution of total number of bids). Never-
theless, the ratios achieved by our online auction in all these
figures are above 0.92, which are indeed very close to the
offline optimum.

C. Comparison With an Existing Scheme

We further compare Plastic with an online algorithm
H ST . H ST is an extension of the algorithm from [32]: it
uses a pre-determined price function (denoted by pmt(qmt ))
of the amount of currently allocated resource m (qmt ), for
each type of resource at each time, to compute the payment
for both buyers and sellers, which also serves as the threshold
for winner determination; it does not include the initial bid
rejection stage and price updates. The price function is as
follows, where Um and Lm are respectively the maximal and
minimal demand for type-m resource in absolute value over
all the bids.

pmt (qmt ) = Lm

2 maxi∈I
T
τi

M
(
2 maxi∈I

T
τi

MUm

Lm
)

qmt
Cm

We compare the performance of the algorithms by computing
a similar ratio for H ST , the average social welfare achieved by
H ST divided by the expected offline optimal social welfare.

Fig. 7. Comparison with different percentages of sellers in all bids.

Fig. 7 shows that Plastic works much better than H ST
under different percentages of sell bids among all bids, since
when utilization is extremely low, H ST may mistakenly reject
sellers who should have been accepted to supply resources
for more later buyers. The results verify that our algorithm
works better in an online auction where both buyers and sellers
participate.

VI. CONCLUSION

This paper aims to design a novel online stochastic auc-
tion mechanism for the NFV market to provision and price
service chains, and to purchase supplementary resources on
the go. We leverage novel online primal-dual frameworks
with a learning-based strategy embedded for obtaining the
resource prices as the dual solutions. The prices are repeatedly
updated to serve as thresholds for winner determination, and
for the computation of the payment/reward for each winning
buyer/seller. As new technical contributions, our mechanism
design with competitive analysis significantly extends existing
techniques by handling both buyers and sellers, each of
which occupies the VNF service chain or supplies resources
only for a limited period of time. We show that the pro-
posed mechanism achieves truthfulness for both VNF ser-
vice chain buyers and resource sellers, with a near-optimal
social welfare in expectation. Trace-driven simulations further
validate the performance of the online mechanism in differ-
ent variations of the problem settings as used in theoretical
analysis.

APPENDIX A
PROOF OF LEMMA 4

Proof: For a fixed price p and m, we say a random
sample Iη is “bad” for this p if and only if p = pη, but
∑

i∈I
τi
T cm

iγ xiγ (p) > (1 − χ2
η

2 )Cm for some m. First, we show
that the probability of bad samples is small for every fixed p
and m. Then we take union bound over all “distinct” prices and
constraint dimension m of (8) that with high probability the
learned price pη will be such that

∑
i∈Iη+1\Iη

τi
T cm

iγ xiγ (pη) ≤
(1 − χ2

η

2 )2
ηεCm for all m. For simplicity of notations, we

define events A = {∑i∈Iη Xim ≤ (1 − χη)2ηεCm}, B =
{∑i∈Iη+1\Iη Xim ≥ (1 − χ2

η

2 )2
ηεCm}, D = {∑i∈Iη+1

Xim ≥
(1 − χ2

η

2 )2
η+1εCm} and let Dc denote the complement of

the event D. We aim to prove the probability that A and
B occur simultaneously is at most ε under the condition of
(1 − ε

2 )λT ≤ I ≤ (1 + ε
2 )λT . Since we have Pr[A, B] =

Pr[A, B, D]+Pr[A, B, Dc]. We calculate Pr[A, B, D] first and
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obtain Pr[A, B, Dc] similarly.

Pr[A, B, D] ≤ Pr[A, D] ≤ Pr[A | D] ≤ Pr[
∑

i∈Iη

Xim

− Iη
Iη+1

∑

i∈Iη+1

Xim ≤ α | D] (20)

Where α = (1−χη) Iη
I Cm− λT

2I (1− χ2
η

2 )Cm . Due to λT
I ≥ 1

1+ χη
2

,

we further have

α ≤ 2ηεCm(1 − χη − 1 − χ2
η

2

1 + χη/2
) ≤ 2ηεCm(

−χ2
η /2

1 + χη/2
) < 0

(21)

We normalize cm
iγ ’s such that |Xim | ∈ [0, 1] and

use Cm
maxi,γ,m |cm

iγ | in place of Cm . We define random

variables

σ 2(X) = 1

Iη+1

∑

i∈Iη+1

(Xim − 1

Iη+1

∑

i∈Iη+1

Xim)
2

≤ 1

2ηε I

∑

i∈Iη+1

Xim = 1

2ηε I
(1 − χ2

η

2
)2η+1εCm (22)

�(X) = max
i∈I

Xim − min
i∈I

Xim ≤ 2 (23)

According to Hoeffding-Berstein Inequality, we have

(20) ≤ exp(
−α2

2Iησ 2(X)+ (−α)�(X) ) (24)

Then taking (21), (22), (23) and Iη/I ≤ 2ηε
1−χη/2 , λT

I ≤ 1
1− χη

2
into (24), we have

(24) ≤ exp(
−α2

2 Iη
2ηε I (1 − χ2

η

2 )2
η+1εCm + 2(−α)

)

≤ exp(
−22ηε2C2

m
χ2
η

4(1+χη/2)2
1

1−χη/2 (1 − χ2
η

2 )2
η+1εCm + χ2

η

2(1+χη/2)2 2ηεCm

)

≤ exp(
−2ηεCm

χ2
η

4(1+χη/2)2

2(1 + χη/2)+ χ2
η

2(1+χη/2)2
)

≤ exp(
−2χηεCmχ

2
η

8(1 + χη/2)+ 2χ2
η

) (25)

Putting χη < 1, ε < 1
2 , and χη =

√
ε

2η into (25), we have

(25) = exp(
−2ηεCm

ε
2η

8(1 + χη
2 )+ 2 ε

2η
)

≤ exp(
−ε2Cm

12 + 2ε
) ≤ exp(

−ε2Cm

13
) ≤ ε

2M I M log 1
2
ε

(26)

where the last inequality holds under that Cm/maxi∈I |cm
iγ | ≥

13M log(2I 2/ε)
ε2 , and (2I )M ≥ 2 log2 1/ε which follows

λT ≥ 4/ε3 (Lemma 2) and I ≥ 1
1+χη λT ≥ 1/2λT .

Similarly, we have Pr[A, B, Dc] ≤ ε
2M I M log 1

2
ε
.

Then Pr[A, B] ≤ ε
M I M log 1

2
ε
. Then, we take a union

bound over all “distinct” prices p’s. Each distinct p is
characterized by a unique separation of I ({biγ , ci }I

i=1)
points in M-dimensional space by a hyperplane. The total
number of such distinct prices is at most I M . Taking union
bound over M resources and log2(ε

−1) stages proves the
lemma. �

APPENDIX B
PROOF OF LEMMA 5

Proof: For a fixed p, m, η, and ω, we have

Pr[
∑

i∈Iη+1\Iη

Yim (ω) ≤ 2ηεCm ,

∑

i∈Iη+1\Iη

Xim ≥ (1 − χ2
η

2
)2ηεCm ]

≤ Pr[
∑

i∈Iη+1\Iη

Yim (ω) ≤ 2ηεCm |

∑

i∈Iη+1\Iη

Xim = (1 − χ2
η

2
)2ηεCm ] (27)

Similarly as σ 2(X) and �(X), we have

σ 2(Y) =
∑

i∈I

(Yim (ω)− Ȳkis (ω))
2 ≤ 2�(Y)

= max
i,m,ω

Yim (ω)− min
i,m,ω

Yim(ω) ≤ 1 (28)

where Ȳim(ω) is the demand of type-m resource of i at time
slot ω (ω ∈ {ti , ti + τi }i∈I ). Further we have that

(27) ≤ Pr[
∑

i∈Iη+1\Iη

Yim(ω)−Eti∼A [Yim(ω)]≥
χ2
η

2
2ηεCm | L′]

≤ exp
( −(χ2

η

2 2ηεCm)
2

2σ 2(Y)+ χ2
η

2 2ηεCm�(Y)

)
(29)

By the assumed lower bound on Cm , we have ε2Cm
2 ≥ 1.

Thus,

(29) ≤ exp(
−ε4C2

m

8ε2Cm
) = exp(

−ε2Cm

8
) ≤ exp(−M log(2I 2/ε))

≤ εM

(2I )M I M log 1
2
ε

≤ ε

2I M I M log 1
2
ε

(30)

The last inequality holds due to (2I )M ≥ 2I M , when I and
M are large. Taking union bound over I M distinct prices, M
resources, and 2I time, and over the log2 ε

−1 stages proves
the lemma. �
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APPENDIX C
PROOF OF LEMMA 9

Proof: Define the auxiliary primal and dual programs as
follows.

Pψ : maximize:
∑

i∈Iη+1

∑

γ∈�i

biγ xiγ (31)

subject to :
∑

γ∈�
xiγ ≤ 1, ∀i ∈ Iη+1 (31a)

∑

i∈Iη+1

τi

T

∑

γ∈�i

cm
iγ xiγ ≤ ψm , ∀m ∈ M (31b)

xiγ ∈ {0, 1}, ∀γ ∈ �i , i ∈ Iη+1 (31c)

where : ψm =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

i∈Iη+1

τi

T

∑

γ∈�i

cm
iγ xiγ (pη),

pηm > 0 (31d)

max{
∑

i∈Iη+1

τi

T

∑

γ∈�i

cm
iγ xiγ (pη),

2η+1εCm}, pηm = 0 (31e)

Its dual program is:

Dψ : minimize:
∑

m∈M

ψm pm +
∑

i∈Iη+1

ui (31)

subject to :
ui ≥ biγ −

∑

m∈M

pm
τi

T
cm

iγ , ∀γ ∈ �i , i ∈ Iη+1 (32a)

pm ≥ 0, ∀m ∈ M (32b)

ui ≥ 0, ∀i ∈ Iη+1 (32c)

Note that {xiγ (pη)}i∈I,γ∈�i and pη satisfy the complemen-
tarity slackness conditions [24], and hence are optimal primal
and dual solutions of the constructed linear programs (31)
and (32). The remaining proof shows that with probability
at least 1 − ε, (1 − 2χη − ε)xδ is a feasible solution to
the constructed program (31), and then the lemma follows.
First, we show that with probability 1 − ε, we have ψm ≥
(1 − 2χη − ε)2η+1εCm,∀m ∈ M . Recall that pη is the
optimal dual solution of program (9). Let xη be the optimal
primal solution of program (8) (Recall x(pη) is the induced
solution by optimal dual prices of Pη in (9)). Then, by the
complementarity conditions [24], if pηm > 0, the m-dimension
constraint must be satisfied by equality, i.e.,

∑
i∈Iη

τi
T cm

iγ xηiγ =
(1−χη)2ηεCm . Then, given the observation made in Lemma 8,
and the condition Cm ≥ M

ε2 ≥ M
2ηε which follows the

assumption of minm∈M Cm
maxi,γ,m |cimγ | ≥ 13M log( 2I 2

ε )

ε2 given ε ≤ 1, we
have for any m,
∑

i∈Iη

τi

T
cm

iγ xiγ (pη) ≥
∑

i∈Iη

τi

T
cm

iγ xηiγ −M ≥ (1 − χη−ε)2ηεCm .

(33)

Next, using the Hoeffding-Bernstein’s Inequality, we show that
with probability at least 1 − ε, ∀m ∈ M ,

ψm =
∑

i∈Iη+1

τi

T

∑

γ∈�i

cm
iγ xiγ (pη) ≥ (1 − 2χη − ε)2η+1εCm .

(34)

The proof of (34) is as follows. If pηm = 0, then by definition
we have ψm ≥ Cm which satisfies (34). It remains to reason
about the case where pηm > 0 that, for any fixed m, the prob-
ability of

∑
i∈D Iη+1δi

τi
T cm

iγ xiγ (pη) < (1 − 2χη − ε)2η+1εCm

is at most ε. Recall the definition of Xim in (11). We have

σ 2(X) ≤ 1

2η+1ε I

∑

i∈Iη+1

Xim = 1

I
(1 − 2χη − ε)Cm ,

�(X) ≤ 2 max
i∈Iη+1

|Xim | ≤ 2 (35)

According to (33), we have
∑

i∈Iη

τi

T

∑

γ∈�i

cm
iγ xiγ (pη) ≥ (1 − χη − ε)2ηεCm (36)

Define events

G = {
∑

i∈Iη+1

τi

T

∑

γ∈�i

cm
iγ xiγ (pη) ≤ (1 − 2χη − ε)2η+1εCm}

(37)

G′ = {
∑

i∈Iη+1

τi

T

∑

γ∈�i

cm
iγ xiγ (pη) = (1 − 2χη − ε)2η+1εCm}

(38)

Then, for a fixed m, and any distinct price vector p, when
p = pη, we have

Pr[
∑

i∈Iη

Xim ≥ (1 − χη − ε)2ηεCm,G]

≤ Pr[
∑

i∈Iη

Xim ≥ (1 − χη − ε)2ηεCm | G′] (39)

Let α = 2ηε(1 − χη − ε − λT
I (1 − 2χη − ε)). Then we have

(39) ≤ Pr[
∑

i∈Iη

Xim − λT

2I

∑

i∈Iη+1

Xim ≥ αCm | G] (40)

Since α = 2ηε(1 − χη − ε − λT
I (1 − 2χη − ε)), and

1
1+χη/2 ≤ λT

I ≤ 1
1−χη/2 , we have 2ηε

(3−ε)χη−χ2
η

2+χη ≥ α ≥
2ηε

χη(1+ε)+χ2
η

2−χη > 2ε3

1−ε > 0. Putting (35) and Xim in (11) into
(40), we have that (40) is at most

exp(
−α2C2

m

2Iησ 2(X)+ αCm�(X)
)

≤ exp(
−α2C2

m
2ηελT Cm

I (1 − 2χη − ε)+ 2αCm
)

≤ exp(
−2ηε(

χη(1+ε)+χ2
η

2−χη )2C2
m

(1−2χη−ε)Cm

1− χη
2

+ 2ηCm[(3−ε)χη−χ2
η ]

2+χη
) (41)
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Given ε ≤ χη ≤ √
ε and 1 ≤ 2η ≤ 1

ε , we have

2ηε(
χη(1 + ε)+ χ2

η

2 − χη
)2 ≥ 2ηε(

(
√

ε
2η + ε

2η )

2 −
√

ε
2η

)2

≥ 2ηε(

√
ε

2η

2 − ε
)2 ≥ ε2

4
;

1

1 − χη
2

(1 − 2χη − ε) ≤ 1 − 3ε

1 −
√
ε

2

≤ 2; 2η
(3 − ε)χη − χ2

η

2 + χη

≤ 2η3ε
1
2

2 +
√

ε
2η

≤ 3ε
1
2

2
ε + 1

≤ 1 (42)

Putting (42) into (41), we have that (41) ≤ exp(−ε2Cm/4
2+1 ) ≤

ε
2I M I M log 1

2
ε
, where the last inequality holds under the assump-

tion that Cm/maxi∈I |cm
iγ | ≥ 13M log(2I 2/ε)

ε2 , and (2I )M ≥
log2 1/ε which follows λT ≥ 4/ε3 and I ≥ 1

1+χη λT ≥
1/2λT . Then we take union bound over each distinct p and
the number of capacity constraints 2I M , we have proved (34)
in the case pηm > 0. Given that (i) constraints (8a) and (8c)
are the same as (31a) and (31c) and (ii) constraints (8b) and
(31b) which only differ in RHS are associated by the result
of (34), we have that (1 − 2χη − ε)xη+1 is a feasible solution
to (31). Therefore, the optimal objective value of (31), i.e.,
Pψ(x(pη)), is at least the objective value of (31) under the
solution of (1 − 2χη − ε)xη+1, i.e., Pψ((1 − 2χη − ε)xη+1).
Let ηmax = log2 ε

−1−1 denote the maximal value in the range
that η follows. We have the following lemma. �

APPENDIX D
PROOF OF LEMMA 10

Proof: According to Lemma 9, we have (34)
for all η ∈ {0, .., log2 ε

−1 − 1}. Thus we get that
ψm = ∑

i∈Iηmax +1

τi
T

∑
γ∈�i

cm
iγ xiγ (pηmax) ≥ (1 − 2χηmax −

ε)2ηmax+1εCm . Since we have defined Iη+1 = I when η =
ηmax . And the expectation of the number of bids is equal to I .
Thus, similarly as the end of Lemma 9, we have (i) constraints
(6a) and (6c) are the same as (31a) and (31c) in expectation
and (ii) constraints (6b) and the expectation of (31b) only
differ in RHS are associated by the result of (34), we have that
(1 − 2χη − ε)xδ is a feasible solution to (31) where xδ is the
optimal solution of Pδ . Therefore, the optimal objective value
of (31), i.e., Pψ(x(pδ)), is at least the objective value of (31)
under the solution of (1−2χη−ε)xδ, i.e., Pψ((1−2χη−ε)xδ).

�

APPENDIX E
PROOF OF LEMMA 11

Proof: Compare the dual programs (7) with (9). Since any
realization of bid i ∈ Iη can be found in the distribution D, thus
(pδ,uδ) is a feasible solution to Dη. Further, since (pη,uη) is
the optimal solution to the minimization problem Dη, we have
that Dη(pη,uη) ≤ Dη(pδ,uδ). Combined with weak duality,
we have that Pη(xη) ≤ Dη(pη,uη) ≤ Dη(pδ,uδ). Then we

have

E[Dη(pη,uη)] ≤ E[Dη(pδ,uδ)]
= E[

∑

m∈M

(1 − ε
√
λT
Iη
)

Iη
λT Cm pδm +

∑

j∈Iη

uδj ]

≤ E[
∑

m∈M

(1 −
√

ε
2η )

Iη
λT Cm pδm +

∑

j∈Iη

uδj ]

≤ Iη
λT

∑

m∈M

Cm pδm +
∑

j∈D

Iηδ j u
δ
j (43)

Since Iη = 2ηελT when η = {0, · · · , log2 ε
−1 − 1}, and

we have (1 − ε/2)λT ≤ I ≤ (1 + ε/2)λT , thus Iη
I ≤

2ηε λT
I ≤ 2ηε

1−ε/2 . Therefore, (43) ≤ 2ηε
1−ε/2

( ∑
m∈M Cm pδm +

∑
i∈D Iδ j uδj

) = 2ηε
1−ε/2 Dδ(pδ,uδ) = 2ηε

1−ε/2 Pδ(xδ) Note that
Pδ(xδ) = Pδ
, which the lemma follows. �

APPENDIX F
PROOF OF THEOREM 2

Proof: Using Lemma 6, Lemma 9 and Lemma 1, we have
that with probability of (1−2ε)× (1− ε)≥ 1−3ε, the events∑

i∈Iη+1\Iη Yim(ω) ≤ 2ηεCm ,
∑

i∈Iη+1

∑
γ∈�i

biγ xiγ (pη)) ≥
(1−2χη−ε)P
η+1(xη+1),

∑
i∈Iηmax+1

∑
γ∈�i

biγ xiγ (pηmax)) ≥
(1 − 2χηmax − ε)P
δ , and P
η(xη) ≤ 2ηε

1−ε/2 Pδ
 happen simul-
taneously for all η ∈ {0, ..., log 1

2
ε − 1},m ∈ M , γ ∈ �i . Let

� denote the event that the four events happen simultaneously.
Then we have

E[
∑

η

∑

i∈Iη+1\I

∑

γ∈�i

biγ xiγ (pη) | �]

≥
∑

η

E[
∑

i∈Iη+1

biγi xiγi (p
η) | �]

−
∑

η

E[
∑

i∈Iη

biγi xiγi (p
η) | �]

≥
∑

η

(1 − 2χη − ε)E[P
η+1(xη+1) | �]

−
∑

η

E[P
η(xη) | �]

≥ Pδ
 − 1

Pr[ω] (E[P
ηmin(xηmin)]

−
∑

η

(2χη + ε)E[P
η+1(xη+1)])

≥ (1 − ε)Pδ
 − 1

1 − 3ε

× (2χη + ε)(2ηminε+∑
η 2η+1ε)Pδ


1 − ε
2

(44)

≥ Pδ
 − 1

1 − 3ε
13εPδ


1

1 − ε
2

× (
∑

η

2ηε = 1 − ε,
∑

η

χη2ηε ≤ 2.5ε) (45)
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E[
∑

η

∑

i∈Iη+1\Iη

biγi xiγi (p
η)] ≥ Pr [�]

× E[
∑

η

∑

i∈Iη+1\I

∑

γ∈�i

biγ xiγ (pη) | �] (46)

≥ (1 − 3ε)
(
Pδ
 − 13ε

(1 − 3ε)(1 − ε
2 )

)

≥ (1 − 21ε)Pδ
 (ε ≤ 1

2
) (47)
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