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Abstract—Today’s laaS clouds allow dynamic scaling of VMs allocated to a user, according to real-time demand of the user. There are
two types of scaling: horizontal scaling (scale-out) by allocating more VM instances to the user, and vertical scaling (scale-up) by
boosting resources of VMs owned by the user. It has been a daunting issue how to efficiently allocate the resources on physical
servers to meet the scaling demand of users on the go, which achieves the best server utilization and user utility. An accompanying
critical challenge is how to effectively charge the incremental resources, such that the economic benefits of both the cloud provider and
cloud users are guaranteed. There has been online auction design dealing with dynamic VM provisioning, where the resource bids are
not related to each other, failing to handle VM scaling where later bids may rely on earlier bids of the same user. As the first in the
literature, this paper designs an efficient, truthful online auction for resource provisioning and pricing in the practical cases of dynamic
VM scaling, where: (i) users bid for customized VMs to use in future durations, and can bid again in the following time to increase
resources, indicating both scale-up and scale-out options; (ii) the cloud provider packs the demanded VMs on heterogeneous servers
for energy cost minimization on the go. We carefully design resource prices maintained for each type of resource on each server to
achieve threshold-based online allocation and charging, as well as a novel competitive analysis technique based on submodularity of
the offline objective, to show a good competitive ratio is achieved. The efficacy of the online auction is validated through solid

theoretical analysis and trace-driven simulations.

Index Terms—Algorithm design, online auction, cloud computing

1 INTRODUCTION

Manual or auto scaling of resources has been widely sup-
ported in today’s laaS clouds. Most of the major cloud
providers provide horizontal scaling (scale-out), to add
more virtual machine (VM) instances to a user’s application
upon demand [1][2][3]. Some others enable vertical scaling
(scale-up) by live addition of resources to VMs used by a
user [4][5][6], using hot-plug technologies of CPU, memory,
disk storage, etc. [7][8]. Scale-up can be potentially easier,
but the resource increase cannot exceed the physical limit of
a physical server; scale-out may involve data replication and
be thus costly, but the resources that can be increased are
potentially unlimited. The choice and preference of scaling
modes are at user’s call, depending on their respective
resource need and program implementation.

Efficient timely allocation of resources on servers to
accommodate time-varying demands of users is at the core
of dynamic VM scaling. Practically, without knowing which
VM is to be scaled up and which user will opt for scaling
out, it is daunting to decide on which servers to place the
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VMs in the first place, even to just provide a somewhat
good guarantee of resource availability for future scaling
demands. The challenge escalates when we take server costs
into consideration, striving to achieve high efficiency in
power consumption and server utilization at the same time.
An effective online solution is still missing, to optimize both
user satisfaction and provider utility, i.e., the social welfare.

An accompanying important challenge, economics wise,
is how to price the incremental resources on the go, such
that the benefits of both the cloud provider and users are
guaranteed. Almost all the current Iaa$S offerings adopt fixed
pricing [9], to charge a fixed unit price per preconfigured
VM or per unit of resources, which does not change in
the short term. There have been recent practices and pro-
posals towards market-based pricing, for timely adaptation
to demand-supply relation changes, that allocates resources
to users who value the resources most and boosts both
provider revenue and user utility. The Spot Instance market
of Amazon EC2 is the pioneer production system adopting
bidding-based dynamic VM pricing, but has been shown
by studies not being a truly market-driven pricing system
[10][11].

A number of online auction mechanisms have been
proposed to achieve dynamic cloud resource allocation
and pricing. They treat dynamically-arrival user demands
as independent bids, ignoring possible connections among
bids submitted at different times by a user. In the practical
scenarios of VM scaling, a user may bid repeatedly after
submitting his initial bid, to increase the resources needed,
and hence later bids from the same user are related to earlier
bids. With such time-coupling bids, the existing cloud auc-
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tion mechanisms are not applicable: our study has identified
that the offline optimal resource allocation problem, whose
solution any online decisions strive to approach, renders
a completely different form from those studied in existing
online cloud auctions. This brings significant difficulty in
online mechanism design to approximate the offline opti-
mum, and calls for new solutions.

Targeting market-driven, dynamic resource provisioning
and pricing for VM scaling, this paper proposes a provenly
efficient online auction mechanism. The following practical
auction model is investigated: (i) Users bid for tailor-made
VMs (with customized bundles of resources) to use in future
durations, e.g., based on empirical estimation/prediction of
resource needs of their jobs; (ii) a user can bid again in
the following time to increase resources, either before or
after the start of his VM usage, when he learns better his
resource need, and the bid indicates his preferences in scale-
up or scale-out; (iii) the cloud provider packs the demanded
VMs onto heterogeneous servers on the go, considering
scaling preferences of users and striving for energy cost
minimization on servers. Our online auction design aims to
achieve truthfulness, individual rationality, computational
efficiency, and competitiveness in social welfare, i.e., a small
ratio between the social welfare of the online mechanism
over that of the offline optimum, computed assuming full
knowledge over the system span.

We reveal the following key technical challenge in
achieving such an efficient online mechanism. To guarantee
competitiveness, the online allocation and pricing algorithm
should typically be designed based on the structure of
the offline resource allocation problem, and connections
between the online decisions and increments of the offline
social welfare should be established. To the best of our
knowledge, the only well established technique for online
auctions, where users bid for future resources with produc-
tion (server) cost, is to exploit the online primal-dual frame-
work [12][13], which requires that the corresponding offline
optimization problem is convex with linear constraints.
We identify that the offline optimization problem for VM
scaling with time-coupling bids is non-standard, with a
submodular objective function and non-linear constraints,
such that none of the existing primal-dual frameworks is
applicable.

Our contributions. We address the above challenge and
design an efficient online auction as follows.

First, we construct an expressive bidding language to
characterize different cases of dynamic demand scaling,
which allows users to request and scale resources on differ-
ent servers according to their preferences. We also uncover
the underlying relation between users’ online bidding be-
havior and the offline social welfare maximization problem.
We identify an important property of the offline social wel-
fare function, namely, submodularity, which plays a crucial
role in our analysis.

Second, we design an efficient online auction mechanism
based on carefully designed price functions. The prices for
each unit of each resource on each server for each future
time slot are maintained according to resource utilization
on the server, and used to compute potential payments of
users if their requested resources are allocated on the server.
Such payments serve as thresholds to filter out low value

bids, reserving resources for upcoming high value bids.
Computed before taking in an accepted bid, such a payment
is bid-independent, hence guaranteeing truthfulness of the
mechanism.

Third, we design a novel competitive analysis technique
which, based on submodularity of the objective function of
the offline problem, obtains an upper bound of the offline
optimum and shows a good competitive ratio achieved by
our online mechanism. Currently, no competitive online
algorithms exist for optimizing a submodular offline ob-
jective function under a complicated problem structure as
in our case, i.e.,, complex non-linear constraints. Our online
analysis is novel in the literature and may be useful for other
online algorithm design problems with a submodular offline
objective.

The rest of the paper is organized as follows. We discuss
related work in Sec. 2, and define the auction model in Sec. 3.
Sec. 4 presents our online auction design with analysis given
in Sec. 4.2. We present simulation results in Sec. 5 and
conclude the paper in Sec. 6.

2 RELATED WORK

There have been a number of system work (e.g., [14][15])
on resource scaling design in IaaS cloud, which exploit
prediction of user demand for proactive resource scaling.
They target at cost-effective practical schemes, without
showing theoretical guarantee of the performance. Dynamic
and efficient resource allocation is at the heart of resource
scaling, and has been extensively investigated. For example,
Alicherry et al. [16] study VM allocation in distributed cloud
systems, taking into consideration the latency among the
VMs. Joe-Wong et al. [17] seek to balance efficiency and
fairness when allocating VMs to users. However, pricing of
the allocated VMs is left out of the scope of these studies.
Lin et al. [18] and Jiao ef al. [19] design online algorithms for
cloud resource provisioning considering switching cost of
servers. They focus on minimizing total cost incurred while
we aim to maximize social welfare which includes both
valuation of user jobs and the operational cost of servers.
Towards market-driven pricing together with dynamic
resource allocation, cloud auctions have been proposed in
both offline/one-time settings [20][21] and online scenarios
[22][23]]24]. Most of the online auctions are built on dif-
ferent assumptions of the cloud system. Zhang et al. [22]
consider a single type of cloud resource. Shi et al. [23]
allow preemption of resources already occupied and paid
by a user, which is typically not true in practice. In [24],
users come and go over multiple rounds of the auction,
while each user only occupies the allocated resources for
one round. Moreover, none of these studies consider VM
placement on physical servers and server cost minimization,
which is in fact an important element in the social welfare
that they aim to maximize. Therefore, these schemes cannot
be easily extended to handle resource scaling, which relies
heavily on whereabout of the VMs on different servers. A
recent work [12] designs online auctions, where users bid for
future resources and the cloud provider packs user-specified
resource bundles onto heterogeneous servers on the fly,
considering server cost in social welfare maximization and
resource reusability. Unfortunately, the online primal-dual
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framework for algorithm design that they applied is not
applicable to an offline resource allocation problem with a
non-convex objective function and non-linear constraints.

Recently, a sustainable body of theoretical literature has
investigated submodular objective functions in both of-
fline [25][26] and online [27][28] optimization. For example,
Feldman et al. [28] relax the sectary problem to a model
with a submodular objective, assuming elements arrive at a
random order. Buchbinder et al. [27] study online algorithms
for submodular function maximization in several models,
allowing the algorithms to preempt previously accepted
elements. We have identified that these models studied are
structurally different from our model. Instead, we design
novel competitive analysis techniques to prove the efficiency
of our online mechanism.

3 PROBLEM MODEL

3.1 Resource Scaling Auction

Consider an IaaS cloud with S servers. Let [X] denote the
set of integers {1,2,..., X }. A server s € [S] provisions K
types of resources, e.g., CPU, RAM and disks, with capacity
Cls of each resource k € [K]. During a long span of T time
slots, the cloud provider allocates the resources to N cloud
users, who may come and go throughout the span, through
an online auction. Each user as a bidder may demand a vir-
tual machine (VM) of different resource composition from
time to time, and use the requested VMs for variant lengths
of time. The resource composition of each VM, as specified
in a user bid, can vary over its usage span, according to
time-varying need of the user’s job on the VM. This can
be enabled by dynamic addition and removal of resources
to and from the VM, through “hotplug” technologies that
adjust CPU cycles, memory and disks allocated to a run-
ning VM, supported in various virtualization environments
[71[29].

Moreover, a user can (re)submit a bid later, to adjust
his resource demands needed on the VMs requested earlier,
according to the bidding results of previous VM requests
(accepted or rejected), as well as his more precise estimation
of future workload as the time draws near. In particular, if
his previous bid fails, he can ask for the same VM again,
or a VM with adjusted resource composition (increase or
decrease) and/or usage span (expand or shrink); if the
previous bid is successful, the user can ask for more re-
sources either on an acquired VM (scale-up) or in the form
of another VM on another server (scale-out). In the latter
case, the new bid can be submitted either before or after
an acquired VM has been launched: besides adding more
resources in each time slot of VM usage, (i) if the VM is not
yet running, the starting time of the VM can be advanced
and the end time can be extended; (ii) if the VM has been
launched, the end time can be postponed.

3.2 Bidding Language

We develop the following bidding language to model the
above behavior of bidders. Let I,, be the total number of
bids that a user n € [N] submits during the entire time span

[T], and B,,; denote the ith bid of user n, submitted in time
slot t,,;.! Each bid can be expressed by
B = (t;”'; t:lria {dm'k (t)}ke[K],te[t_ Tk {bnis}SE[S])' 1)

ni’

Here ¢, and t, represent the desired start time and end
time of usage of the required resources, respectively. Nat-
urally, we have t,; < t,, < t'. The third element in
B,,; describes resources requested for each time slot during
the usage interval, where d,,;;(t) is the demand of type-
k resource in time slot ¢, set according to prediction of
workload. If this is the very first bid of user n, or all previous
bids of the user fail, d,;(t),Vk € [K], specify resource
composition of the new VM at time ¢; if there exist successful
bids before B, is submitted, d,;x(t)’s specify incremental
resources to be added, either onto a VM that the user has
successfully acquired, or in the form of a new VM.

User n indicates his choice or preferences of creating a
new VM or adding resources onto an acquired VM using
bidding prices by;s, Vs € [S]. byis denotes the willingness-
to-pay for the resources, if they are allocated on server s.
If the bid is successful, resources are allocated on a server
assigned with a previously-acquired VM of the same user,
and that VM’s running span overlaps with [t ], the
incremental resources will be added to that VM (the scale-
up case). If the bid is accepted on a server without such
an already acquired VM, a new VM will be created and
launched in due time (the scale-out case or deployment of
the first-ever VM). A user can set b,,;5’s according to concrete
implementation of his program and detailed jobs running
on the VMs. For example, if launching a new VM involves
significant data replication, the user may prefer scale-up
than scale-out, by setting b,;; (where 5 is the server his
previous VM is running on) larger than any other b,,;,’s. If
the user program is not implemented to exploit dynamically
added CPU cores, but can smoothly handle distributed
computation, the user may prefer scale-out and set a by,is
(where s # §) larger than b,,;;.

Note that “s” is used to differentiate bid prices for
presentation clarity only: in practice, the cloud provider
does not have to inform a user which actual servers his
VMs are running on; the bidder can communicate with the
provider by a message like “I am willing to pay a if my
requested resources are added to the VM I acquired in time
slot b, and I can pay c if they are put on another server”.
If the cloud provider can share more insider view of the
data center network, a user can differentiate bid prices for
provisioning his new VM on a server on the same rack (with
one that runs an existing VM of his), on a different rack but
sharing the same switch, etc.

We next give concrete examples to illustrate our bidding
model. Suppose user 1 plans to run a MapReduce job.
There are 3 servers. At time slot 1, he requests one VM
with one unit of resource (considering one type of resource
for simplicity) to run a Mapper during time slots 5 to 7,
with the bid By; = (5,7,{1,1,1},{1,1,1}), and requests a
second VM to run a reducer during time slots 6 to 8 with
Bz = (6,8,{1,1,1},{1,1,1}). He sets the same price of 1 in

1. We allow concurrent submission of multiple bids in the same time
slot, i.e., tp; = tn; for j # 4, and randomly order simultaneous bids
arriving at the same time.
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both bids, no matter which server the VMs are provisioned
on. At time slot 3, he realizes that the resource asked for the
Mapper VM is insufficient. If By, has been successful with
the Mapper assigned to server 1, he can submit another
bid Bz = (5,7,{1,2,3},{1,0,0}) to request adding 1, 2
and 3 units of resource to the same Mapper in its three
running time slots, respectively, at the additional price of
1. Or he can submit B3 = (5,7,{1,2,3},{0,1,1}) instead,
if he wants to run a new Mapper on either of the other
two servers. If By has been rejected, he may resubmit a
new bid in time slot 3 with boosted resources and prices,
Biz = (5,7,{2,3,4},{2,2,2}).2 If after the start of the
Mapper acquired through Bj;, at time slot 6, the user
realizes that the resource for the Mapper is still insufficient,
he may submit another bid By4 = (7,9, {1, 5,5}, {5,0,0}),
to boost the VM resource to 5 from the next time slot (7) till
time slot 9. An illustration of this example is shown in Fig.
1.

3.3 Goals of Online Auction Design

Upon receiving each bid B,,;, the cloud provider makes the
following decisions on the spot. (i) Resource provisioning:
Tnis, Vs € [S], indicating whether resources requested in
B,,; are to be provisioned on server s (z,;s = 1) or not
(znis = 0). 2p;s, being zero for all s implies rejection of B,,;.
(ii) Payment: p,,;, denoting the charge to user n if B,,; is
accepted.

Our online mechanism design targets the following
properties (which will be shown in Theorem 3): (1) Truth-
fulness. For any bidder, declaring his true information (start
and end time of resource usage, resource needs) and true
valuations of the resources in his bid always maximizes
his utility (valuation minus payment), regardless of all the
other bids. (2) Individual rationality. Each user always obtains
a non-negative utility by submitting a bid in the auction.
(3) Computational efficiency. Polynomial-time algorithms for
resource allocation and payment calculation are needed
for the auction, to run efficiently in an online fashion. (4)
Competitiveness in social welfare. The social welfare over the
system span [7] is the sum of cloud provider’s profit (aggre-
gate payment of all winning bids minus total cost) and all
users’ utilities, which equals the aggregate user valuation
minus the provider’s cost. A cloud system operates at the
maximal efficiency if social welfare is maximized over the
running span, benefiting both the cloud provider and users.
We aim to achieve a small competitive ratio, computed by
dividing the offline optimal social welfare by the social
welfare achieved by the online mechanism.

In computing cloud provider’s profit, we consider the
operational cost of servers, which is mainly due to the
power cost decided by server power consumption. In prac-
tice, most cloud data centers keep their servers on, which
remain in the low-power idle mode if no jobs are running, to
avoid time-consuming booting up if switched completely off
[30]. Decisions on turning servers on/off are usually made

2. Note that in this case the demands and valuations of B13 become
larger since Bi3 has to include the demand and valuations of the
rejected bid Bii. In this sense, for each user, previously accepted bids
are fewer, the resource demands and valuations (or bidding prices) are
larger.

at a much larger time scale than those for VM allocation, e.g.,
Amazon EC2 adjusts its server provisioning roughly once
per month [12]. Therefore, we realistically assume that all S
servers are turned on in the span 7" under our investigation.
Each server consumes a basic amount of power with no VM
running, and power usage increases with the increase of
resource occupied on the server. Let fis(-) denote the cost
function of server s on yys(t), the amount of type-k resource
used on the server at time slot . We consider the following
cost function:

Frs(yrs(t)) = {hksyks;

+00,

if yps(t) € [0, Cs]
Yrs(t) > Chs

When the consumption of type-k resource, yxs(t), on server
s does not exceed the capacity Cls, the respective server cost
increases linearly with the increase of resource usage; other-
wise, the cost becomes infinity, which would never happen
if the resource capacity constraint is respected. Such a linear
cost has been shown through measurements: server power
consumption increases roughly linearly with the utilization
of CPU, memory, disk I/O and network I/0 [31], if CPU
DVFS (Dynamic Voltage Frequency Scaling) is not enabled.’
his indicates the relative weight of cost due to each type of
resource in the overall server cost. It has also been shown
that power consumption of memory, disk I/O and network
I/0O are significantly lower than that of the CPU, further
ranked in a decreasing order among themselves [32], and
the power usage due to different resources is additive [31].
We note that when his = 0, the cost function becomes a
zero-infinity function, which represents the special case of
no server cost considered.

@

3.4 The Offline Social Welfare Maximization Problem

We next formulate the offline social welfare maximization
problem, solving which provides the offline optimal deci-
sions, assuming all user scaling demands in [T] are known
and truthful bidding is guaranteed. The offline optimum
will serve as the basis, to compare our online algorithm
with.

In participating in the auction, each user n has a value
function v, : {0,1}/»*5 s [0,+00). The user’s overall
value, for all I,, bids he submits, is denoted as v, (x,),
which depends on x,,, a feasible overall resource assignment
scheme for user n in [T]. Here X, = {Znis}ie[r,],ses €
{0,1}2*5, where x,,;s = 1 if user n’s bid i is accepted on
server s and ;s = 0 otherwise. The resource assignment
is feasible if it satisfies Zse[s] Tnis < 1forany i € [I,], ie.,
any bid B,,; is accepted to at most one server.

Let D,,;x(t) denote the overall demand of user n for
type-k resource for future time slot ¢, which is his updated
estimation of resource need for the future time slot when he
submits his ith bid at ¢,,;. Note that this D,,;(t) is the overall
resource (type k) that user n wants to use in time slot ¢:
some of the amount may have been allocated by accepting
the user’s earlier bids before B,;, and some is requested
through B,,;. The relationship between the asked resource
dpix(t) in By,; and this D,,;(t) will be discussed soon after
we formulate the offline problem, as follows.

3. We leave the case of super-linear CPU cost function due to DVFS
for future studies.
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maximize: Z Up (Xn) Z Z Z Jres(yns(t (3)
née[N] T] s€[S] ke[K]
subject to:
D> wnis <1, Vn € [N],i € [In] (3a)
s€[S]
Z E xnzs nzk )_ <m3X1 {Dnjk ) Z xnjs}) Syks(ﬂ’
ne[N]i€[ly] n]gtét:‘] s€[S]
Vk € [K],s € [S],t € [T] (3b)

The offline problem aims to maximize social welfare
over system span 7T, ie., the sum of the overall val-
ues of all users minus the total server cost over t €
[T]. We will discuss the connection between user’s by;s’s
and his overall value v, soon. Constraint (3a) ensures
that each bid B,; is accepted to at most one server.
Constraint (3b) connects x,;s’s and ygs(t): Dpix(t) —
MaX) <oy 17 <ttt {Dhn;jr(t )ZSE[S Tnjst is the addi-
tional amount of resource k allocated to user n for t, if
B,,; is accepted; the maximization operation is to come
up with the overall allocated resource to the user before
B,,;. Hence summing up all such resource allocation for all
accepted bids on server s, we obtain the total amount of
type-k resource allocated on s at t, ie., yis(t). Note that
the capacity constraint, yis(t) < Cis, is implicitly satisfied
by any feasible solution achieving non-trivial social welfare,

due to our definition of the cost function in (2). Based on our
best attempts, constraint (3b) cannot be formulated into an
equivalent linear constraint, leading to significant difficulty
in computing both the offline and online solutions. We
next show the objective function is submodular, after giving
relations between our offline formulation and online bids of
the users.

Relation between online and offline problems. In the
online auction, a bid of a user B,,; depends on his previous
bids in two ways: (1) the amount of resources requested
and, thus, the bid prices may depend on which of the
previous bids are accepted (recalling the example in the last
paragraph of Sec. 3.2) (2) the bid prices may also depend
on the servers to which the previous accepted bids are
assigned (if the user has a preference between scaling out
and scaling up). As a reasonable assumption, the online
bid prices can be formulated by the offline value function
(assuming truthful bidding) which embodies the auction’s
decisions on previous bids. In particular, an online bid price
bnis is set as the additional value user n can obtain, if the
bid B,,; is accepted to server s, as follows:
n)=0) .

bnzs - Un( -1 Ve(w)) (ngi_l)) (v’ﬂ(
(4)

U (x,(f Dy e(*)) is the overall value of user n up to the time
after submitting bid B,,; if the bid is accepted on server s,

and vn% x\i 1)) is the overall value of user n so far otherwise.

Here x\/ ) denotes user n’s resource assignment vector by
the online auction after handling its (i — 1)th bid, i.e., for
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any j < i, xﬁwsl) = 1 if the online auction accepted bid j

on server s’ and 0 otherwise, and for any j > ¢ and any ¢/,
Tpje = 0. is an I, x S vector with eiss) = 1 and all
other entries being zero, and x V x’ denotes a vector whose
entries are equal to the max of the Corresponding entries in
xand X/, ie, (xVX); =1lifz; =1lorz, = 1. Sox(z Dy
e®®) equals x¥) with bid i accepted to server s. In addition,
the amount of resource k for time t € [t,,;,t;.] that user n
requests in his bid B,;, should be the incremental amount
to meet his total resource demand D,,;(t), depending on

whether his previous bids are accepted or not:

max
1<j<i—1:t,,

Z xn]s}

s€[S]
(Dnok(t) =0). (5)

To give a better understanding of the relation of online
and offline problem, we introduce the “pure” value part
of the value function v(-). The other part will be defined
later to handle the user’s preference for scaling up/out.
The “pure” value function represents the value of resources
required by the bid, without considering scaling-up/out.
Practically, a larger amount of any type of resource leads
to a higher “pure” value. In the offline setting, each total
demand D,,;x(t) and the corresponding total “pure” value
of each bid is fixed. They represent the input that can be
known in advance by the offline problem. Suppose in an
extreme case, user n has won all his previous bids, then
each demand of each bid i will be Dy (t) — Dyi—1yx(t)
(Dnox(t) = 0). However, in many other cases, we can
not say the online submitted demand d,;;(t) is equal to
Diir(t) — Dp(i—1)x(t). For any of the rejected bids, the user
will require the demands again, adding the demands to the the
demands of the next bid. That is the fundamental problem
which makes the online input (both online demands and the
corresponding bid prices) relying on the previous auction
solutions. Finally, we relate online d,,;x(t) to offline D, (%)
by (5). For the offline value function v(-), we do not need
to restrict the specific function of the “pure” value part. The
basic idea is that: For any user, the online demands hence the
online “pure” value of a later bid are larger if his previously
accepted bids are fewer. Since the marginal increase of the
offline “pure” value equals to the online “pure” value,
the above basic idea directly proves that offline “pure”
value function is submodular according to the definition
(see Definition 1. in the following). It is also one of the
fundamental ideas through the proof of submodularity in
Lemma 1 and Theorem 1. Since the submodularity is a
general property that a “pure” value function possesses, the
mechanism with the competitive analysis works for other
studies where value functions could be more arbitrary than
this work if they do not consider the user’s preference for
scaling up or out and the server cost.

<t<t+ mk

The value function. We consider the value v,, of user n
consists of two parts: a monotone “pure” value function
Uy (X,,) for the resources allocated to him, minus a cost func-
tion ®,(x,) specifying the decreased value due to scaling
up/out. The “pure” value u,(x,) depends on acceptance of
user n's bids. After the ith bid, user n may have a unit value

Snik for each unit of resource k in interval [t,;, ¢} ] if his ith
bid is accepted. His “pure” value u,, is simply the sum of
the unit values of the resources obtained from the accepted
bids in the entire span [T]. More correctly, readers may think
of the “pure” value function to be the one in the above
example throughout the rest of the paper. Nonetheless, note
that a much richer family of “pure” value functions satisfy
submodularity. A user n may be subjected to a cost when
his bids ¢ and j are accepted on the same server, or on
different servers. Let ¢ n(ij) denote the scale-up cost of user
n when ¢ and j are accepted on the same server, for all
1 < j, which may represent the delay of resource hotplug.
Let (bf;(fj) denote his scale-out cost if 7 and j are accepted on
different servers, e.g., data replication and communication
cost among the VMs. The total cost of user n in [T] due to
scaling up/out between accepted bids can be computed as

n Xn Z Z ¢n(lj)m7zvsxn]€ + Z Z ¢aufj Tnislnjs’
i<j s€[9] 1<j s#s’

(©)

Note that ¢ (ij) and ;’;(‘f ;) are only introduced for defining

the value function v,. A user n does not need to specify
them in his bids. Since the decisions for previous bids and
the costs are known to the user, he just submits bidding
prices by,;s calculated according to (4).

Assumption 1 (rational unit value). The unit value d,, of
user n for each unit of resource k in interval [t ¢, ] after
his ith bid is accepted, is greater than the cost hj for each
unit of resource k on any server s.

The assumption is reasonable as otherwise, serving the
bid on any server will lead to a negative profit gain of the
cloud provider. Let w(x) denote the social welfare in (3) as
a function of the resource assignment x of all users. Based
on Assumption 1, we establish submodularity of w(x).

Submodularity 1f Q) is a finite set, a function h : {0,1}? —
R is submodular if for every x, y € {0,1}% with z,, < y,
forallw € Q and any w’ € Q such that y,» = 0, we have

h(x) > h(y Ve“") — h(y)

Here, {0, 1} is the power set of (2, i.e., the set of all subsets
of €. In the functions that we define which will be shown
to be submodular (e.g., w(x),g(x)), Q denotes the set of
decision variables, i.e., {Znis }se[s],ic[1],ne[N], €ach of which
is either 0 or 1.

h(xVe) —

So far, w(x) is defined only for the set of feasible assign-
ment vectors: X' = {x | Y cq)Tnis < 1,Vn € [N],Vi €
[I,]}. To show that w(x) is submodular, we must extend the
definition of w(x) to all binary vectors. We will decompose
the social welfare into two parts and handle them separately.
Denote the “pure” value minus server cost as

g(X): Z un Xn Z Z Z fks yks . (7)
n€e[N]

te[T] s€[S] ke[K]
We have w(x) = g(x)—®(x) (with ®(x) = >_,,c(n) Pn(xn))-
Since ®(x) is well defined for all binary vectors, it suffices to

extend the definition of g(x) to all binary vectors as follows:
max g(x')

g(X) - x'€X:Vi Vs, !, <Tnis



JOURNAL OF IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, XX 2017 7

TABLE 1: Key Notation

N | # of users T | # of time slots
K | # of resource types | S | # of servers
B,,; | bid ¢ of user n tni | arrival time of B,,;
I, | # of bids that user n submits
Cys | capacity of type-k resource on server s
t.(t1.) | start (end) time of resource usage in B,;
dnir(t) | demand of type-k resource at ¢ of By,
Tnis | serve B,; on server s (1) or not (0)
D,ir(t) | offline overall demand of type-k resource at
t when user n submits the ith bid
Onik | value per unit resource k demand of B,;
@ (i) | the cost incurred by winning bid By,
and B,,; on a same server (scale-up).
Zq(‘f ;) | the cost incurred by winning B,; and B,,;
on different servers (scale-out).
bnis | bidding price if B,,; is accepted to server s

bpis
Uk MAX e (5] i€ [Ln],nE[N],tEltr, 1] dnin(D)

ni’

Ly | minge(s)ie(r,],nelN] & e

nis

[t t] dnir(t)
Yrs(t) | allocation amount of resource k on s at ¢
Prs(t) | marginal price of resource k on s at ¢
Dni | payment of bid B,,;
g(x) | pure value minus server cost
given an assignment X
w(x) | social welfare function
given an assignment X
Wnis(X) | marginal welfare of accepting a user n’s bid 4
given an assignment x
énis(x) | marginal scaling cost of accepting

a user n’s bid ¢ given an assignment x

Lemma 1. The “pure” value minus server cost g(x) defined in
(7) is submodular.

The detailed proof is given in Appendix A.

Theorem 1. The social welfare function w(x) (which equals the
objective in (3)) is submodular.

The detailed proof is given in Appendix B.

Assumption 2 (small scale up/out costs). Suppose x is a
feasible resource assignment that does not accept bid i of
user n (i.e., Tnp;s = 0 for all s’ € [S]). Then, the increase
in g(x) in (7) for accepting the bid on any server is at least
« times the increase in the total scale up/out cost ®,,(xy,),
where « is a large enough value (e.g., a > 3).

Since the social welfare equals g(x) — ®(x), this assump-
tion states that accepting a bid increases the social welfare
substantially, which is reasonable in practice as well.

4 ONLINE AUCTION FOR SOCIAL WELFARE MAX-
IMIZATION

In this section, we introduce our online auction design.

4.1 Online Auction (T'oast)

Resource provisioning. Let us first explain how the auc-
tioneer decides whether to accept a bid B,; or not and

to which server it is assigned if accepted. We maintain
a price for each unit of resource of each type k on each
server s for each future time slot ¢, denoted by pgs(t),
according to reserved allocation of the respective resource
on the respective server at that time due to already accepted
bids. We compute the potential payment of B,;, if the
requested resources are to be provisioned on server s, as
Pris = Yiepo, i+, 2kelK] dnik(t)prs(t), Vs € [S]. Hence
the corresponding utility gain received by user n, if the bid
is accepted, would be b,;s — P,;s (bidding price minuses
payment). We check if the user’s utility is positive on some
servers. If so, we choose the server giving the largest utility
gain, ie., s* = argmax,(g (bnis — Pnis), to serve the bid,
ie., Tnisx = 1 and z,;s = 0 for all s # s*, and increase
the amount of allocated resources yis«(t) by dpix(t) on
server s* for all resources k € [K] and all time slots
t € [t;;,t;]. If no server provides a positive utility, reject
the bid, ie., x,;s = 0 for all s € [S] . The above utility-
maximizing approach for each bid leads to truthfulness and
approximate social welfare maximization for some carefully
chosen prices which we will explain next.

Payment design. We design a price function pys(t) that

depends on the amount of allocated resource, yys(t), for all
k € [K],s € [S],t € [T], as follows:

Yks (1)
_Lk — hks QKS(Uk — hkg) Cks
Prs(t) = 9K S ( L — e + his

(8)

where Ly = min Onis
k s€[S],i€[In],nE[N] Kzte[t;,t:i dm'k(t)

bnis
U, = max

selS)ie[ln]ne N telts, th,] dnir(t)

Here Uy, is an upper bound of the unit price of resource k
in the sense that no user would want his bid to be accepted
at price Uy. Ly, is a lower bound on the unit price of type-
k resource in the sense that even the lowest bid would be
accepted if the unit price for resource k is Ly, for all k. The
first term of the above price design ensures that (i) the cloud
would accept even the lowest bid at the beginning, but (ii)
the price grows exponentially as the demand increases so
the cloud would not allocate all resources to low value bids
that come early at the risk of having no capacity left for high
value bids in the future. The second term ensures that (iii)
the gain in social welfare when a bid is served outweighs
the loss in total server cost. Indeed, designing the online
pricing rules is the key to obtain a good competitive ratio
in social welfare. The price of serving each B,,; on server
s* is computed by summing up the products of resource
demands and current unit prices on server s*, over all k&

and t € [t £5)], ie,
S S duntpe- (1) -

ni’ 'ni
Pni =
t€ltyy b REIK]

Online Auction. We summarize the online auction mecha-
nism, referred to as T'oast, in Alg. 1. Note that the payment
(line 10) is computed based on unit resource prices on the
selected server s* before counting in resources requested in
the bid (line 2). Hence, the payment is independent of the
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ALGORITHM 1: The Online Auction Mechanism (T'oast)
Input: S, K,C, U, L

Output: x, p

Initialize: x =0,y =0, p(y) = p(0),p=0

Upon arrival of bid B.,; according to (1):

Compute Ppis = Zte[ 2 kepr) dnik()prs (1), Vs € [S];

tpton
Uni = MaXs¢c[S] (bnzs — Pris);
if un; > 0 then
Accept Byi;
8" = argmax ¢ () (bnis — Pnis);
Update znis+ = 1, and allocate each resource £ at
amount of d,(t) on server s*, for each ¢ € [t;, ;" ];
Update yis+ (t) = yrs=(t) + dnir(t),
Vk € [K],t € [ty th];
Update pxs+ () in (8), Vk € [K],t € [t;,;, t1];
Charge B; the payment of pn; = Pris=;
else

L Reject By;;

bid, which is the key to guarantee truthfulness. In addition,
although our online auction requires Uy and L;, as input,
whose exact values are not known before all bids have
arrived, we can adopt estimated values of these upper and
lower bounds as input to our online algorithm, e.g., based
on past experience. We will show in Sec. 5 the impact of the
estimation accuracy.

Theorem 2. Alg. 1 outputs a feasible solution of (3).
The detailed proof is given in Appendix C.

Theorem 3. The online auction in Alg. 1 is truthful in valuation,
bid arrival time and VM execution duration, achieves individual
rationality for each bidder and the cloud provider, and processes
each bid in O(K ST) time.

The detailed proof is given in Appendix D.

4.2 Competitive Analysis of Algorithm Toast

We next analyse the competitive ratio achieved by our
online auction. Let x(A) be the assignment vector of the
algorithm and x* be the offline optimal assignment. In order
to show competitiveness of the algorithm, we need to show
that w(x(A)) is comparable to w(x*). However, it is difficult
to compare them directly. We adopt a two-step approach
from the literature of submodular maximization (e.g., [27]):
(i) first show that w(x(A)) is comparable to w(x(A) V x*),
which is the welfare of accepting both the bids accepted by
our algorithm and those accepted by the offline optimum;
then (ii) show that w(x(A)Vx*) is comparable to w(x*), i.e.,
the offline optimum.

To show (i), imagine we start with w(x(A4)) and add one
by one the bids that are accepted by the offline optimum
in x* but not by the algorithm in x(A). We need to upper
bound the marginal value of accepting each such bid. Simi-
larly, to show (ii), imagine we start from w(x*) and add one
by one the bids that are accepted by the algorithm in x(A)
but not by the optimum in x*. We need to lower bound the

(potentially negative) marginal value of accepting each such
bid.

Let wWp,s(x) denote the marginal welfare of accepting a
user n’s bid i on server s given an assignment Xx, i.e.,

Wpis(x) = w(x V e™®)) —w(x).

©)
Similarly, let
Priis (%) = D_ byl Tnss + D D Dlis) Tngsr
j#i i s #s
denote the additional scale-up/out costs for accepting a user

n’s bid ¢ on server s given x. As a corollary of Assumption
2, the following lemma holds.

(10)

Lemma 2. Suppose x satisfies that ;s = 0 for all ' € [S],
and ZS,E[S] Tnjst < 1 forall j. Then, we have

1
q)nis (X) S anzs (X)

Proof of Lemma 2 is given in Appendix E.
As a further corollary, we have the following lemma.

Lemma 3. Suppose x satisfies that ;s = 0 for all ' € [S],
and 3o c1g) Tnjs: < 1 for all j Then wy;s(x) > 0

In case the bid has been accepted to some other servers
in x, we lower bound the changes in the welfare function
with the following lemma, which follows by monotonicity
of g(x). Note that the algorithm can guarantee that each
bid is accepted to at most one server while in the analysis
we temporarily allow multiple entries of x to be 1. The
reason is that a well-defined submodular function should
not be restricted by such a constraint Zse[ 5] Tnis < 1. The
following lemma essentially shows that if we choose more
than one servers for an accepted bid, the decreased social
welfare (—wp;s(x)) will be no more than the additional
scale-up/out costs incurred.

Lemma 4. Suppose x satisfies that there exists s' # s such that
Tnisr = 1. Then, w7ais(x) > _(pnis(x)-

Proof of Lemma 4 is given in Appendix F.

To upper bound the marginal values of accepting a bid
that is accepted by the offline optimum in x* but not by the
algorithm in x(A), w.rt. x(A), we divide such bids into two
subsets.

i =
S5 =

1)
(12)

{(n,j7s) | x:ljs = 1,VS/ 7é S,[E(A)njsl = O}
{(n,j.s) | xh;s = 1,38 # 5, 2(A)pje = 1}

Similarly, divide the bids that are accepted by the algorithm
in x(A) but not by the optimal in x* into two subsets

81 = {(nvja 3) | m(A)njs - 17VS/ 7é S’x;js’ = 0} (13)
So={(n,54,5) | 2(A)njs = 1,38" # 5,27, =1} (14)

The following lemma is to show that w(x* V x(A))
is comparable to w(x*) as we stated in step (i) at the
beginning of this subsection.

Lemma 5. The social welfare of the offline optimum is upper
bounded by

w(x*) < w(x*Vx(A)) + Z(n,i,s)ESz éniS(X* v x(4))

Proof of Lemma 5 is given in Appendix G.
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The following lemma is to show that w(x(A)) is compa-
rable to w(x*Vx(A)) as we stated in step (i) at the beginning
of this subsection.

Lemma 6. We have

w(x* Vx(A)) <wx(4)) +

>

(n,i,s)€ST

Wnis(x(A4))

Proof of Lemma 6 is given in Appendix H.
Lemma 7. We have

D Dp(x* vx(A)) <

(n,i,8)ESs

1

w(x”) + Sw(x(4))

Proof of Lemma 7 is given in Appendix I.

Lemma 8. We have

S nisyes: Wnis(X(A)) < 3k o4 [Prs(Yas(t)) —

Proof of Lemma is given in Appendix J.

hk,s} Cks

Lemma 9. Suppose w(x*) >3, HLx—hia)Cre Thep,

D30 [prs(Yaslt

te[T] s€[S] ke[K]

QKS(Uk — hks) .
” In (W)w(){(/‘)) + Zw(x )

Proof of Lemma 9 is given in Appendix K.

hks] Cks

< max
se[S),ke

Theorem 4. Suppose w(x*) > >3, %gf)ck Then,

our designed online auction Toast has a competitive ratio of

O(maxses) ke (< 21).

Proof. Putting Lemma 5 -9 together proves the theorem. O

Recall that Ly, is a lower bound of the bidding prices per
unit of demand among all the bids. Thus Ly — hys is the
minimum social welfare contributed by a bid if it is served
by server s and (Lyj, —hys)Cks is the minimal social welfare if
the capacity of k-type resource on server s is fully occupied.
Thus, the assumption in Theorem 4 is essentially that the
workload at each time slot is high enough to fully occupy
at least one resource on two servers or two resources on one
server, which is easy to fulfill in practice.

5 PERFORMANCE EVALUATION
5.1

We evaluate our online auction using trace-driven simu-
lations, exploiting Google cluster-usage data [33], which
contains resource capacity of servers and job information
submitted to the Google cluster. A job comprises multiple
tasks, each of which is accompanied by its resource require-
ment (CPU, RAM and disk). We associate each job with a
user and translate each of the job’s tasks into a VM bid of the
user, requesting K = 3 types of resource demands extracted
from the traces. Especially, the overall resource demand of
user n when submitting the ith bid (D, (t)) equals the total
demand of the resource in the first i tasks of the job; the
resource requirement specified in the ith bid (d,:(t)) is set
according to (5). The number of bids per user (I,,) is within
[1,50].

Experimental Setup

There are in total 7' = 1000 time slots and each time
slot is 10 seconds long. Google cluster data provides the
arrival time of each job, and the start time and end time
of each task in a job. We scale the duration of Google jobs
down to our time scale, and set the time a user submits his
first bid according to the job arrival time in Google data.
We also order tasks in a job according to their start time,
and set start (end) time of VM usage in the bids, ¢, (¢,),
according to the start (end) time of the respective tasks. The
arrival time of each bid i (7 > 2) of a user n is set uniformly
within [t,,;_1),1,,]. We set the bidding prices in each bid
according to (4). We uniformly randomly set ¢n(w) s and
¢ot’s within [0, 3 ee- o+, Zkeix) dnik (£)0nir/In] (note
scaling up/out cost of each bid is not always as small as
Assumption 2 requires). The unit values 6, of users are set
within the upper and lower bounds of users’ value per unit
of resource per unit of time, U, and Ly, which will be varied
in different experiments. By default, U, = 50, L, = 1.
We simulate servers with heterogenous resource capacities
(Cks) following the distribution of server configurations
summarized from the Google data as follows (CPU and
Memory units are normalized so that the maximum capacity
is 1):

percentage of machines 53% 30% 8% 6% 3%
CPU 0.50 0.50 0.50 1.00 0.25
Memory 0.50 0.25 0.750 1.00 0.25

Since the Google data does not provide disk configurations,
we set the disk storage capacity of servers randomly within
[320, 800](GB). The total capacity of each type of resource
to provision, and hence the number of servers to simulate,
is roughly according to the total amount of demand from
all bids multiplying a random number in [0.4,0.8]. hg, is
uniformly distributed within [0.4, 0.6] for CPU (different for
different servers s), and within [0.005,0.02] for RAM and
disk, roughly following the percentage measured in [32].

We compare our online auction with the offline opti-
mum, as well as two heuristic schemes, Twice-the-Cost (T'C')
and Twice-the-Index (T'I) (we identified a lack of comparable
approaches from the cloud auction literature). The two
heuristics share the same steps with our online auction,
except for adopting different price functions [34]: For T'C,
Prs(t) = 2fr,(Yrs(t)), ie., the marginal price at ¢ is twice
of the marginal cost for ¢; for T'I, pys(t) = f,;S(kas(t)), ie.,
the marginal price for ¢ is the marginal cost on twice of the
resource usage at t.

5.2 Comparison with Offline Optimum

We study the ratios computed by dividing the offline op-
timal social welfare by the social welfare achieved by our
online algorithm under different settings. The offline opti-
mal social welfare is obtained by solving the offline problem
(3) exactly with a brute force approach, by enumerating all
possible solutions, due to the hardness of solving the non-
convex offline problem. Due to the high time complexity of
the method, we limit the largest number of bids from all
users to be 30 in this set of experiments and the number of
servers to very small as well. Fig. 2 shows that the ratios are
around 2 with varying numbers of servers.
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5.3 Performance with Under/Over-Estimation of U, and
Ly

We evaluate performance of our online auction at different
levels of under-estimation and over-estimation of the actual
values (the case of 100%) of Uy, and Ly, which are input in
the price functions in T'oast. Fig. 3 and Fig. 4 illustrate how
the social welfare achieved is influenced by their under-
estimation or over-estimation, with over-estimation more
preferred for L; and under-estimation more preferred for
Uy.

5.4 Comparison with Two Heuristics

Fig. 5 shows that T'oast outperforms T'I significantly and
achieves slightly better performance than 7'C. In Fig. 6, we
further compare T'oast and T'C' by running the algorithms
under different values of Uy /Ly. Especially, Uy /Ly is 10
for TC1 and Toastl, 50 for TC2 and Toast2, and 250
for TC3 and Toast3 in the figure. We observe that when
Uk /Ly, is larger, T'oast outperforms T'C' more. This can be
explained by that the price function of T'C' is only related to
the marginal server cost which underperforms in filtering
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Fig. 3: Social welfare achieved by T'oast with different
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out low value bids when the range of bidding price per unit
of demand is large.

We also further compare Toast and T'I in Fig. 7, by
setting the ratio of total resource capacity/total demand of
each type of resource in the system at each time within dif-
ferent ranges. The range is [0.6, 0.8], [0.4, 0.6], and [0.2, 0.4]
for Toastl (T'I1), Toast2 (T'12), and Toast3 (T'13), respec-
tively. We observe that when the resource is more scarce, our
mechanism outperforms T'I more. This is expected since T
rejects more bids when the server utilization is high, because
its prices surge when resource allocation reaches half of the
server capacity.

6 CONCLUDING REMARKS

This work designs a truthful and efficient online auction for
dynamic resource scaling and pricing, where cloud users
repeatedly bid for resources into the future with increased
amounts, according to their scale-up/out preferences. We
consider server energy cost minimization in social welfare
maximization, and reveal an important property, submodu-
larity, of the objective function in the resulting significantly
more challenging offline problem. A novel competitive
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analysis framework is established for submodular function
optimization with non-linear constraints, demonstrating a
good competitive ratio of our online mechanism. The cur-
rent work focuses on dynamic increase of resources, which
is supported in today’s IaaS clouds. On the other hand,
resource scale-down and scale-in involve selling resources
back to the provider. Designing efficient online mechanisms
for a bi-directional market is significantly more challenging,
which we seek to investigate in our future work, possibly
exploiting double auctions.

7 ACKNOWLEDGEMENTS

This work was supported in part by grants from
Hong Kong RGC under the contracts HKU 17204715,
17225516, 17202115E, C7036-15G (CRF), grants NSFC
(61571335, 61628209), HKU URC Matching Funding,
Huawei HIRP (HO2016050002BE), and Hubei Science Foun-
dation (2016CFA030, 2017AAA125).

APPENDIX A
PROOF OF LEMMA 1

Proof. Informally, (7) is submodular because the marginal
increase of (7) due to accepting a bid ¢ (of user n) is propor-
tional to the amount of resources obtained through the bid,
which decreases if more of the other bids are accepted.

Formally, we need to show that for any n € [N], i € [I,,],
s € [S], and any x, x’ such that ;s = z/,;, = 0 and z,,j >
Ty, forall j € [I,] and s’ # s, the marginal increase in
“pure” value minus server cost of accepting bid 7 on server
s satisfies

(X vV e(nzs)) ( ) < g(X' vV e(m‘s)) _ g(x’)

Since g(x) = > neqn) Un(Xn) = 2ok st Srs(Uns(1)), we
have
Q(X\/e(ms)) = ZnG[N] Zke[K] Zte[t;i,t:i}(5nik_hk5)d"ik (t)

According to Assumption 1, 6,5 > his. And recall that
dnik(t) = D"ik(t)_ma‘xlgjgi—l:t;jS

Since we have ;s > x;ljs/ for all j € [I,,] and s €
[S], dnir(t) under x V e(™) is no larger than that under
%'V €("%) Thus the lemma follows. O

APPENDIX B
PROOF OF THEOREM 1

Proof. We need to show that for any n € [N], i € [I,], s €
[S] and any x,x’ such that Tnis = ;s = 0 and zy s >

7,4 forall j € [I,] and s’ # s, the marginal increase in
social welfare of accepting bid 7 on server s satisfies

w(x Ve™) —w(x) <wx' Vel —w(x)

Since w(x) = g(x) — ®(x), it suffices to show that
g(x v ") — g(x) < g(x' v ")) — g(x)  (15)
and
B(xVel) — d(x) > d(x' ve™)) —d(x')  (16)

Inequality (15) holds by our assumption of g’s being sub-
modular. Next, we show (16). By (6), we have that for any
x, B(x V e(™*)) — &(x) is equal to

up out
Djticene=1 Pu(ij) T 2ojicas s, ;=1 Pnli) -

which is non-decreasing in x since qbn(u) s and ¢n(z 0 's are

non-negative. So (16) holds because ;s > 3, for all
j € [I,] and s € [S].

O

APPENDIX C
PROOF OF THEOREM 2

Proof. VM consolidation constraint (3a). This follows by the
definition of our online auction (line 8 and 9 of Alg. 1).
Capacity constraint (3b). By our payment design in (8), we
have pys(t) = U, when yys(t) = Cks, which is high enough
to ensure negative utility for any bid. So the algorithm
assigns resources within the server capacities. O

APPENDIX D
PROOF OF THEOREM 3

Proof. (Truthfulness in bidding price) The marginal prices that
the cloud provider presents to bid B,,; depend only on the
demands of resources before the arrival of bid B,,; and the
demands of bid B,;, thus, are independent on B,,;’s bidding
price. Further, the cloud provider always assigns bids to
servers to maximize each bid’s utility given the current
marginal prices. Assuming the bidders are myopic, i.e., a
bidder only cares about the utility in his current bid. So it
falls into the family of sequential posted price mechanisms
(e.g., [35]) and, thus, a bidder cannot improve its utility by
lying about the bidding price of any of his bids.
(Truthfulness in arrival time) Since the marginal prices are
non-decreasing in the amount of allocated resources, which
is non-decreasing over the resource allocation time, i.e., let
Yis(tni, t) denote the amount of resource k on s in ¢ which
has been allocated by t,,; (tn; < t) and yps(tni, t) is non-

decreasing over t,,;. Hence a bidder cannot decrease the total

i+ {Dnjk(t) Xose(s) Tnjs }- price of the resource that it requests by delaying its arrival.
nj

Note that the arrival time of a bid is the first time the bidder
is aware of his latest updated demands so the arrival time
can not be earlier.

(Truthfulness in VM execution duration) Dropping part
of the true resource occupation duration in the request
would risk failing to complete the job. So no bidder would
do that. On the other hand, the marginal prices are non-
negative according to (8). So requesting a superset of the
true VM occupation duration increases a bidder’s payment
and decreases her utility.

(Individually rational) According to line 4 of Alg. 1, the
utility in any bid of a bidder is always non-negative. The
profit of the provider is also non-negative based on the
formulation of py; in Sec. 4 which implies pgs(yis(t)) >
Fhs (ks (8).

(Polynomial running time) To process a bid B, the
algorithm first sums up the marginal prices for all requested
resources over the occupation duration for each server
s € [S] to compute the payment that bid B,,; should pay
if it would be served on server s. This step runs in O(K ST)
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time. Then, the algorithm computes u,; and decides the
allocation and payment of bid B,,; by checking the utility
of the bid if it would be served on each server s, which
can be done in O(S) time. Finally, the algorithm updates
the amount of allocated resources yy(t) and the respective
marginal prices pys(t), which can be done in O(K ST') time.

O

APPENDIX E

PROOF OF LEMMA 2

Proof. According to Assumption 2, the increase in g(x) for
turning x,;s from 0 to 1 is at least a (> 3) times the cor-
responding increase in ®,,(x,,). Moreover, we have g(x) =
w(x) + P(x). Thus we have wy;s(x) + i (x) > S@nis(x),
which the lemma follows. O

APPENDIX F

PROOF OF LEMMA 4

Proof. According to Lemma 1, g(x) is monotone, i.e., the
increase in g(x) for turning s from 0 to 1 is always

nonnegative. Therefore, W,;s(X) + Ppnis(x) > 0, which the
lemma follows. O

APPENDIX G
PROOF OF LEMMA5

Proof. Let 5! be a vector with ones in the entries in S; and
zeros in other entries. Define 52 similarly. Then, we have
x* V x(A) = x* vV eS' V e52. By submodularity, we have

w(x* Vx(A) = w(x* Ve veH)

>w(x)+ Y
(n,i,s)€Sy
+ 2

Wyis (X*V eSt v eSQ)
(n,i,s)ESs

Wpis(X*V esl)

Note that x* V 5 satisfies the conditions in Lemma 3.

So the second term on the RHS of the above 1nequahty is
at least 0. By Lemma 4, we have Wy;s(x* V el v e¥) =
<I>ms(x VeStyveS?) = <i>ms(x V x(A)). So the lemma
follows. O

APPENDIX H
PROOF OF 6

Proof. Define e5i and e similarly as in the previous
proof. Then, we have x* V x(A) = x(4) vV e51 V e%2. By
submodularity, we have

w(x* Vx(A)) = w(x(4) VeSi ves)

Sw(x(A)+ D nis(x(A))
(n,i,s)€ST
+ D

Upis (x(A) V €57)
(n,i,8)€SS

By Lemma 4, the last term is less than or equal to 0. O

APPENDIX |
PROOF OF 7

Proof. Note that @nis(x) is linear in x (Eqn. (10)). We
get that Oy5(x* V x(A)) < $pis(x*) + Ppis(x(A)). Since
PP = ¢out = 0, we have that &,,;5(x(A)) = Pps(x(A) A
e("%)) Further, by Lemma 2, we have &,;,(x(4) A
e®)) < Lip,;(x(A) A e™?)). Here x A x’ denotes a
vector whose entries are equal to the min of the cor-
responding entries in x and x/, ie, (x A X'); = 1 if
both z; = 1 and z; = 1 hold. By submodularity, we
get that ’U}(X(A)) > Z(n,i,s):xmszl w’ﬂls(x(A) A e(nis)) >
D (nsis)eSs Wnis (X(A) A e(")), where the second inequal-
ity holds because Sy is a subset of the (n,i,s)’s that are
accepted by x (i.e., xn;s = 1) and each term in the sum
is non-negative (Lemma 3). Thus >° = s Bis(x(A)) <
Fw(x(A)).

Moreover, for each x,;s € Sz, there exists a s’ # s such
that z,,;5» € xX*, e, x,, = 1. According to Assurpption 2,
we have Zke (K telt, bt ](ém-k — his)dnik(t) > 3Pps (X*)

and Zke[K],te[tW ](5mk = his )dnir(t) > 3(i)m's(X*)-

"l:hus we have 3 ik e, o ](5mk — hps )dpir(t) —
(I)fzis/(X*) > %Zke K]»té[tnthiJ((S”ik' - hks’)dnik(t) >
20,,5(x*), ie., Ppis(x*) < %d)msf(x*). SincAe w(x*) >
Z(nzs’) HORWES 1’(1)7”5 (X*)/ we have 2937”'5652 (I)Nis(x*) <
fw(x*). Putting together the inequalities shows the
lemma. O
APPENDIX J

PROOF OF 8

Proof. Note that the marginal valuation wy,;s(x(A)) repre-
sents the valuation of bid B,,; if it is served on server s
conditioned on the decisions on all other bids being the
same as those by our algorithm Toast. For each z,;s € SF,
bid B,,; is rejected by our algorithm. Therefore, the marginal
valuation of accepting bid B,,; on server s when the bid
arrived (which, by submodularity, is greater than or equal
to Wp,s(x(A))), is smaller than the payment on that server
s. Let y{""(t) denote the allocated amount of resource k at
t on s just before the arrival of B,,;. Then we have

Wnis(x(A)) < 30 ST [Pt () — hs] dnare (1)
teft, tF,] kE[K]

< Z Z pk’s(Yks(t))_hks}dnik(t)
teft,, ¢, kEIK]

‘ni?

where the second inequality holds because pys(yks(t)) is
monotone.

Moreover, the bids in S7 are a subset of the bids accepted
by the offline optimal. So the total demand of these bids for
any resource on any server does not exceed the capacity of
the server. Thus, summing up over all (n,i,s) € Sf, we
have

>

(n,i,8)€ST

<Y s (Waslt

te[T] s€[S] ke[K]

hks] Cks

wnls

O
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APPENDIX K
PROOF OF 9

[14]

Proof. For any bid B,,; that is accepted by the algorithm on [15]

some server s, i.e., ;s = 1, its marginal value is at least the

payment. Thus, we have [16]

[17]
ch (t
[Prs (Yrs(t)) —

zz/

te[T] s€[S] ke[K]

hies| Ay (t)

17)

[18]

Next, we lower bound each term in the above sum as [19]

follows:

Yies (t)
/0 [pks(yks(t)) — hks]dyks(t)

Yeol®) L — By, (2KS(Uy — hio) \ o
/0 2KS ( Ly — his ) Jayes )
. (Lk — hks)C’ks 2KS(Uk — hks) Y’“m
QKSm(M)( Ly — hs )

ki ks
(L — his)Chs

S —hks
2K S In( S0 h) )
1

T (25 Wit <[pks(yks(t)) — his] Os —

Li—hgs

[20]

[21]

[22]

[23]

(L — his)Chs >[24]

2KS

where the last equality holds by our payment design in (8). [25]
The lemma then follows by summing over all k € [K], s €

[S], and t € [T] and using the assumption that the optimal  [26]

. 2(Lk—his)Crs

welfare is at least w(x*) > 37, (’“K% O
[27]
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