
Improving Inter-domain Routing through Multi-agent Reinforcement
Learning

Xiaoyang Zhao∗, Chuan Wu∗, Franck Le†
∗Department of Computer Science, The University of Hong Kong, Email: {xyzhao, cwu}@cs.hku.hk

†IBM T. J. Watson Research Center, Email: fle@us.ibm.com

Abstract— Border Gateway Protocol (BGP), the de-facto
inter-domain routing protocol, allows Autonomous Systems
(AS) to apply their own local policies for selecting routes and
propagating routing information. However, BGP cannot make
performance-based routing decisions, and instead often routes
traffic through congested paths, resulting in poor performance.
This paper presents an efficient and scalable multi-agent rein-
forcement learning (MARL) method for inter-domain routing.
It allows ASes to achieve higher overall throughput for real-
time traffic demand, with the following highlights: (1) it ensures
that traffic is forwarded along policy compliant paths; (2) it
satisfies partial observability and selfishness of each AS; (3)
the proposed solution is scalable as it only requires ASes to
share information within a limited radius; (4) the solution is
incrementally deployable, requiring only tens of ASes in the
entire network to run it to start reaping benefits. We conduct
extensive evaluation on actual network topologies ranging from
hundreds to tens of thousands of ASes. The results show
throughput improvements of up to 17% as compared to default
BGP routing.

I. INTRODUCTION

Border Gateway Protocol (BGP) allows each Autonomous
System (AS) to implement its own local policy. Despite
its flexibility and remarkable success, BGP cannot make
performance-based routing decisions. As a result, traffic is
often routed through paths that are congested, leading to
poor performance (e.g., low throughput, high latency). This
limitation can severely impact the performance of emerging
large-scale data science projects (e.g., Large Hadron Col-
lider, Square Kilometre Array, and Linac Coherent Light
Source) [1], where large datasets frequently need to be
transferred across sites, and analyzed by distributed systems.

We argue there is ample room for improvement based on
the following insight: Among equally preferred routes (e.g.,
multiple customer routes to a same destination prefix), the
BGP best path selection algorithm implements multiple tie-
breakers through subjective (e.g., shortest AS PATH length)
and arbitrary rules (e.g., lowest neighbor BGP RID) [2].
Instead of relying on those arbitrary tie-breakers, among
equally preferred routes, can a reinforcement learning (RL)
approach help select the best route to maximize performance
(e.g., maximize overall throughput)? Adopting a RL based
approach to address that problem raises several questions and
challenges:

This work was supported in part by grants from Hong Kong RGC under
the contracts HKU 17204619, 17225516, C5026-18G(CRF).

(1) RL requires exploring, and the long learning period
may raise concerns. In particular, can a RL solution provide
improvements especially as Internet traffic patterns keep
evolving?

(2) How much information should the ASes share? More
information provide better visibility and can result in larger
improvement. However, it can also raise concerns about
scalability and privacy.

(3) Can the solution be incrementally deployable? Requir-
ing every AS to adopt and deploy the solution before being
able to observe benefits will make adoption challenging.

In this paper, we pursue a multi-agent reinforcement
learning (MARL) framework for inter-domain routing that
achieves higher system throughput of transferring real-time
traffic, while satisfying partial observability and selfishness
of each AS. We learn the routing model that will be deployed
on each AS using MARL. The proposed model will encode
network status implicitly in a neural network (NN) that maps
flow observation to a routing policy (e.g., which next-hop to
forward flows). We overcome challenges described above to
improve inter-domain routing as follows:

. We design an efficient MARL model to improve system
throughput, which is deployed on ASes. Each AS trains and
executes its own routing policy in a distributed way, with
the objective to maximize average throughput of by-passing
traffic flows. We show that our solution can improve system
throughput by 20% above in environments traced from reality
and by 14% above in large-scale networks with heavy traffic.
This is because an AS learns from partial observations, which
greatly restricts the input dimension to the RL model.

. We compare performance by allowing ASes to share
their observations with 1-hop neighbors, 2-hop neighbors, 3-
hop neighbors and all other ASes. Results show that sharing
more information can bring better benefits. However, we
found that when information is only shared among 1-hop
and 2-hop neighbors, our solution still achieves 22% and
24% improvement respectively.

. Our model is incrementally deployable and scalable. We
cut down AS’s action space and adopt multiple inferences [3]
to ensure that the dimension of input/output is not related to
the number of overall flows and ASes. With only twenty
Tier 1 ASes deploying the model, it can offer significant
performance improvement by 14% in a large-scale network.



II. BACKGROUND AND RELATED WORK

Internet Routing Optimization has been substantially stud-
ied, e.g., using Multi-Protocol Label Switching (MPLS) or
modifying BGP parameter settings [4] [5]. Software defined
networking (SDN) based routing systems have been studied
in recent years. With SDN, desired routing paths can be
set up for particular applications. The Multi-dimension Link
Vector (MLV) Network [6] uses OpenFlow in data plane and
enables flexible inter-domain routing. Google and Facebook
have SDN-based Internet routing systems, i.e., Espresso [7]
and Edge Fabric [8], respectively. SDN-based systems are
effective but not widely deployed; we therefore still focus
on improving the existing networks.
RL has recently been used for sequential decision making in
traiffic engineering problems. Iroko [9] is an emulator, where
agent can quickly learn a fair distribution policy, despite
the volatility of the network traffic. Zou et al. [10] adopt
a sequence-to-sequence model to learn implicit forwarding
paths based on empirical network traffic data. Both studies
assume the agent has a global view of network state, which
is impractical in Internet environment.
MARL has been used for routing in different networks.
Ye et al. [11] use MARL for wireless sensor network
routing, where an agent chooses a cooperative neighboring
set and forwards packets using Q-learning algorithm, to
reduce delivery latency. Pourpeighambar et al. [12] propose
multi-agent routing solutions to minimize average end-to-end
delay in a cognitive ratio network. Mao et al. [13] design an
Accnet framework for intra-domain routing which requires
information sharing among all agents. We are the first to
study MARL for inter-domain routing, with distributed rout-
ing policies to optimize system throughput while satisfying
partial observability and selfishness of ASes.

III. MARL-BASED INTER-DOMAN ROUTING

A. System Overview

The Internet consists of multiple ASes, each of which
interacts with others in the process of business negotiation
and traffic management. We abstract business relationships
between ASes to be customer-provider and peer-peer, as
illustrated in Fig. 1. The routing advertisement between
connected ASes follows basic BGP rules [2]: (i) customer
advertises all known routing paths to its providers; (ii)
provider advertises routing paths known from all customers
to each of its customers; (iii) peer advertises routing paths
known from all customers to each of its peers.

End-to-end traffic flows with indicated sources and des-
tinations are cooperatively transferred by correlative ASes.
Each AS follows routing policy produced by its RL model
to choose next-hops for by-passing flows. The routing pol-
icy satisfies basic requirements of business relationship: (i)
prefer customer ASes as next-hop to peer ASes; (ii) prefer
peer ASes as next-hop to provider ASes.

We abstract the network to be a topology containing N
nodes (ASs) and E edges (links between correlative ASs).
The capacity of edge e ∈ E is Ce. The traffic demand F is

Fig. 1: Types of AS relationships: ASes D, E and F are customers
of those above; ASes B and C are both providers of ASes below
and customers of ASes above; ASes B and C are peers of each
other; AS A is a provider to B and C.

an N ×N binary matrix, where element (fs, fd) with value
1 represents that there is a flow whose source node is fs and
destination node is fd.

In our MARL framework, each AS is an agent that aims
to maximize average throughput of its own by-passing end-
to-end flows. Training and executing are performed in a
decentralized manner. We consider the system objective to
be maximizing overall throughput, i.e., sum of all flows’
throughput.

B. RL Model

We present detailed design of the RL model on each agent.

State Space. Each agent has its own observable field. We
define the observation of agent i as oi = (~w,x,~h,~v):

• ~w is a 2-dimensional vector, indicating source and desti-
nation of the flow to be routed with the current inference.
Source and destination of traversing flows can be extracted
by by-passing agents through simple passive monitoring.

• x is an L×2 matrix encoding flows that the agent needs to
transfer, where L is the maximum number of flows that can
be transferred by an agent concurrently. Each vector ~xn in x,
is a 2-dimensional vector, indicating source and destination
of one flow.

Encoding this information helps agent produce routing
policy considering potential traffic demand. We do not
encode the entire traffic matrix because agents are partially
observable and knowing traffic demand among the whole
network is unrealistic.

• ~h is an m-dimensional vector where m is the number
of neighboring agents. Each element represents traffic load
status of the link connecting to one neighboring agent,
computed as the number of flows on that link divided by its
capacity. For each AS, connecting links are the most directly
observable knowledge to learn network status.

• ~v is an L-dimensional vector. Each element represents
observed throughput of the respective flow using routing de-
cision from the last inference. Such throughput information
helps an agent learn link status far beyond the immediate
neighbors, useful for network load-balancing. A routing
agent can derive throughput of an end-to-end flow through
passive monitoring of the number of transferred packets with
corresponding TCP flow header per unit time.



We define the input state of the RL model at each agent as
si = (ok, akj)k∈R,j∈F , where akj represents agent k’s action
for flow j (meaningful only if j tranverses k) and R ⊆ N .
In reality, an AS observes status of its own by-passing flows
and may also learn some flow information from neighboring
ASes. Information sharing among ASes is limited because
of partial observability and selfishness of the ASes. We
consider different levels of information sharing in order
to gain insights on how information exchange influences
learning effectiveness.

(1) R = N . Agent i has observations and actions of all
agents in the network. Knowing other agents’ observations
and actions allows an agent a maximum view of the whole
network. Having global state is not realistic for inter-domain
routing, but can be used as a baseline for performance
evaluation.

(2) R = Mi, where Mi represents the neighboring agent
set (including itself) of agent i. Compared with global state,
neighboring state is more realistic to observe, for extended
observable filed at each agent.

(3) R = Di, where Di represents 2-hop neighboring set of
agent i.

(4) R = Ti, where Ti represents 3-hop neighboring set of
agent i.

(5) R = {i}. Agent i only has its own observations,
i.e., local state. In this case, individual agents take actions
independently and regard others as part of the environment.

Action Space. After collecting si, agent i selects an action
ai based on policy πiθ(ai|si), which is a probability distri-
bution over action space. The policy is produced by a neural
network (NN) with θ as the set of parameters. Naturally, an
agent can transmit different flows concurrently. For flows
with different destinations, candidate next-hop sets can be
different because of BGP routing advertisement. Considering
action space as a combination of concurrent flows’ next-hop
sets will lead to a large action space. To reduce the action
space and expedite policy learning, we perform multiple
inferences to produce action for each flow sequentially [3],
and simplify the action space to be neighboring agent set
Mi. In this way, the size of the action space is the degree of
the agent.

To satisfy the common business peering relationship poli-
cies, in the output layer of the policy network, we mask
the invalid actions, which choose next-hop AS not existing
in routing path table, by setting its probability to 0 in the
probability distribution. Then we re-scale the probabilities
on all actions such that the sum still equals to 1 [3].

Reward. The whole system aims to maximize the sum
of all flows’ throughput in the traffic matrix. However, each
agent is selfish, aiming to maximize its own reward. Our
system works in a time-slotted fashion. In each interval t,
an agent performs multiple inferences over its RL model to
produce routing decisions for current by-passing flows. The
reward rt observed in an interval t is the average throughput
of all concurrent flows traversing agent i in t, which are

routed using actions produced by the inferences:

rt =
∑
j vj

nt

where nt represents the number of concurrent traversing
flows at the agent in t and vj is the throughput for each.

C. Model Training

Individual policy NN on each agent is trained by updating
the NN parameters θ using policy gradients computed with
samples. In each interval, we have one sample correponding
to each flow routing inference, in the form of < s, a, r, s′ >:
a is the routing decision produced for the respective flow; s
and s′ are the input states before and after the routing action
for the flow is taken; r is the reward computed in the current
interval.

The goal of training policy NN is to maximize the ex-
pected cumulative discounted reward J(θ) = E[

∑
t≥0 γ

trt],
where γ ∈ [0, 1] is the discount factor. The policy gradient
used for NN update can be calculated as:

∇θJ(θ) = Eπθ [
∑
t∇θlog(πθ(at|st))Qπθ (st, at)]

where t represents number of inferences done, the Q value
indicates the ‘quality’ of action a taken in given state s
following the policy πθ, calculated as expected cumulative
discounted reward to obtain after selecting a under s follow-
ing πθ.

However, high variance in Q values prevents convergence
of the policy model. We adopt the actor-critic [14] algorithm,
which introduces an advantage function, i.e., Qπθ (s, a) −
V πθ (s), where V πθ (s) is calculated as the expected cumu-
lative reward following the policy πθ from state s, over all
possible actions in the state. Then this advantage function is
used for policy gradient calculation instead of Qπθ (s, a).

Specifically, the actor is a policy network. Input state s
is connected to a fully connected layer, and then to another
fully connected layer before the output layer. The output of
the policy network is a probability distribution over action
space. The value function V πθ (s) is estimated by a value
network (the critic) as the output, which has the same
input and architecture as the policy network, except that
the output layer is a linear neuron without any activation
function. The value network is trained using the temporal
difference method [14]. Fig. 2 gives an overview of our DRL
architecture at each agent, in the case of using local state as
input only.

We adopt a number of techniques to ensure exploration
and expedite training convergence. We use an ε − greedy
approach [14] to adequately explore the action space; or the
system may converge to a poor local optimum. In each infer-
ence, an agent has probability ε to randomly choose a valid
action in the action space, and probability 1 − ε to choose
the action produced by the current policy πθ. In addition,
we adopt experience replay to alleviate correlation in the
samples sequence [14], to avoid the following situation: high
reward after running one time interval will lead an agent to
adopting actions following the same policy, which prevents
it from exploring samples with higher rewards.



Fig. 2: DRL architecture at each agent. Sloc represents local
state. Flow w is the current flow whose routing decision is
to be inferenced.

We perform decentralized, synchronized offline training
on each agent, with multiple traffic matrices traced from
reality. In each training epoch, the traffic matrices are divided
into small batches and used for training one by one. We use
the trained policy network for online routing decision making
at the respective agent.

IV. PERFORMANCE EVALUATION

A. Experimental setup

Testbed Implementation. In reality, our proposed RL model
is run at each AS in the Internet in a fully distributed manner,
and each AS is equipped with at least one computing node to
train and execute routing policy. To evaluate performance of
our MARL based routing, we build a testbed with 20 1080Ti
GPUs, with 2-4 GPUs on one computing node. Each com-
puting node has one 8-core Intel Silver 4108 CPU@1.8GHz,
48GB RAM, and one 1Gbps NIC. We emulate multiple
agents (ASes) by training and executing their RL models
in parallel on the same GPU.

An overview of our implementation is shown in Fig. 3,
where each model corresponds to one agent. In each comput-
ing node, we run one process per GPU, each responsible for
training and executing multiple models. Messages (e.g., ac-
tions, observations) are transferred between processes using
Message Queues when necessary (e.g., encoding neighboring
or global state), to obtain input state s to each model. After
receiving input states, agents produce actions in parallel.
In addition, we design one special process in a particular
computing node to be responsible for: collection of actions
taken by all agents; status update of network environment;
computation of rewards for all agents. Then, messages (new
states s′, rewards r) will be distributed to corresponding
agents.
DRL Training. We implement NN training using libraries
provided on Tensorflow. Each model’s policy and value
networks have one hidden layer with H neurons. We decide
H as the square root of the product of input dimension
and output dimension [15]. The rationale is that with too
few neurons, we may not estimate an appropriate routing
strategy while too many can easily lead to over-fitting and

Computing node 1

process

GPU
model

model
model

process

GPU
model

model
model

messages

Computing node n

process

GPU
model

model
model

process

GPU
model

model
model

messages

process

update network status

Actions

Actions Actions

Actions

rewards
new states

rewards
new states

rewards
new states

Fig. 3: Testbed Implementation

unnecessary feature acquisition. We choose Leaky ReLU as
activation function for the hidden layer, set normal distribu-
tion for kernel with mean = 0, stddev = 0.05, and set bias
with constant value 0.1. Softmax is used as the activation
function in output layer for the policy network. Besides, we
adopt Adam optimizer with initial learning rate 10−5 and
discount factor γ = 0.9 for the reward. The exploration
factor ε is set to 0.3 at the beginning and will decrease as
the training proceeds.

B. Evaluation on PhEDEx traces

Flow-based Routing. We first do flow-level routing, i.e.,
perform model inference at each agent for each by-passing
flow based on its source and destination. We evaluate it on
traces from PhEDEx.

PhEDEx, Physics Experiment Data Export [16], is a
project to manage the movement of data within CMS (Cen-
ters for Medicare and Medicaid Services). We use a topology
with 131 nodes (including customer-provider, peer-to-peer
relationships) and 200 traffic matrices (each containing 350
to 400 end-to-end flows) from PhEDEx. We split the traffic
matrices into training dataset (90%, batch size is 16 traffic
matrices) and testing dataset (10%). Capacity of each link is
set to 100, and the flows have the same traffic demand of 1.

We compare the performance of our approach under
different input states at each agent: local state only, one-hop
neighbor state, two-hop neighbor state, three-hop neighbor
state and global state (corresponding to cases (1)-(5) in
Sec. III-B). We also compare with a random method by
which each agent randomly chooses a valid next-hop for each
flow. Fig. 4(a) shows the training curves, where the system
throughput is averaged over those of all traffic matrices in
each epoch. Intuitively, higher system throughput can be
achieved when each agent has more information.

In Table I, we evaluate trained models using 20 testing
traffic matrices, and present percentages of improvement as
compared to the random method and the upper bound of
optimal system throughput (computed by formulating the
flow routing problem into a mixed integer problem as follows
and solving it with MatLab-Yalmip).

max
∑
f∈F vf



subject to:

∑
j:(i,j)∈E

xfij −
∑

i:(j,i)∈E

xfji =


0, for i = Nf

−1, for i = tf

1, for i = sf
(1)

xfij ∈ {0, 1},∀(i, j) ∈ E, f ∈ F (2)

0 ≤
∑
f∈F

vfx
f
ij ≤ Cij ,∀(i, j) ∈ E (3)

vf ≥ min
(i,j)∈E:xfij=1

{
Cij∑
f ′∈F x

f ′

ij

}
,∀f ∈ F (4)

where vf is the throughput of flow f . Constraints 1 and 2
ensure flow conservation on each node, where sf and tf

indicate source and destination of flow f , respectively. Nf =
N− tf −sf . xfij is a binary value denoting existence of flow
f on edge (i, j), i.e., xfij = 1 if flow f traverses edge (i, j),
and xfij = 0, otherwise. Constraint 3 ensures that the sum
of throughput of flows passing through an edge can never
exceed its capacity. Constraint 4 guarantees fairness among
flows. Using TCP, flows traversing a link roughly share the
link bandwidth.

We see that even with only local information (i.e., infor-
mation is not shared among ASes), our system can quite
closely approach the upper bound (more than 86%). Further,
information sharing is helpful to achieve better performance.
The rationale is that, encoding other agents’ observations
helps an agent capture much wider network status and
encoding actions of others ensures environment stability
at individual agents. Though equipping agents with global
observation is unrealistic in the Internet environment, agents
with 3-hop neighboring information are also able to achieve
more than 90% of the upper-bound performance.

In practice, we can implement flow-based routing by
taking advantage of the BGP AS SET to include union
of paths for each flow during routes advertisement. For
example, when an AS X receives two flows F1 and F2
with the same destination AS Z, by default it will select one
next hop AS for both F1 and F2; if AS X adopts a flow-
based RL model for routing, in the advertisement phase, it
can select next hop AS A1 for F1 and next hop AS A2 for
F2, and advertise the union of paths for F1 and F2 to its
neighbors (i.e., F1→ Z and F2→ Z).

Destination-based Routing. We next evaluate our approach
following two important properties of default BGP routing:

(1) Destination-based routing. Each AS chooses the next-
hop for each flow only based on the flow destination, but
not the source.

(2) Shortest AS path based routing. When an AS has several
candidate next-hops, BGP aims to choose the one with
shortest length of AS-path to indicated destination.

To compare with default BGP routing (destination-
based and shortest path), we adapt our model to produce
destination-based routing decisions by modifying ~w in input

0 20 40 60 80 100 120 140 160 180
training epoch

7.5k
7.8k
8.1k
8.4k
8.7k
9.0k
9.3k
9.6k
9.9k

10.2k
10.5k

sy
st

em
 th

ro
ug

hp
ut

(a) PhEDEx Flow-based (b) PhEDEx Dest-based

RL with local info
RL with neighbor info
RL with 2-hop info
RL with 3-hop info
RL with global info
Random Method

0 20 40 60 80 100 120 140 160 180
training epoch

7.5k
7.8k
8.1k
8.4k
8.7k
9.0k
9.3k
9.6k
9.9k

10.2k
10.5k

RL with local info
RL with neighbor info
RL with 2-hop info
RL with 3-hop info
RL with global info
default BGP routing

0 100 200 300 400 500 600 700
training epoch

8.9k
9.1k
9.3k
9.5k
9.7k
9.9k

10.1k
10.3k
10.5k
10.7k
10.9k

sy
st

em
 th

ro
ug

hp
ut

(c) Large Dest-based

RL with local info
RL with neighbor info
RL with 2-hop info
RL with 3-hop info
RL with global info
default BGP routing

0 100 200 300 400 500 600 700
training epoch

8.9k
9.1k
9.3k
9.5k
9.7k
9.9k

10.1k
10.3k
10.5k
10.7k
10.9k

(d) Large Fewer Nodes

deploy RL on 20 Tier 1 Nodes
deploy RL on 16 Tier 1 Nodes
deploy RL on 12 Tier 1 Nodes
default BGP routing

Fig. 4: Training curves under different input states and
network topologies.

state to our RL model at each agent to ~w′, a value indicating
destination of the flow to be routed only. In this way, for
flows with different sources but the same destination, the
same routing decision will be produced.

Fig. 4(b) shows the training convergence curves based on
the same traces as used in flow-based routing. Table II gives
the average improvement percentages as compared to default
BGP, tested with 20 test traffic matrices using trained models.
We observe that without control at the flow level, destination-
based routing still brings improvement of up to 17%.

TABLE I: Performance of Flow-based MARL

Input States Improvement as Upper bound
compared to random achieved

local info 20.1% 86.3%
1-hop neighbor info 22.5% 88.1%
2-hop neighbor info 24.1% 89.2%
3-hop neighbor info 25.8% 90.5%
global info 26.3% 90.8%

TABLE II: Performance of Destination-based MARL

Input States Improvement as compared to default
BGP

local info 10.2%
1-hop neighbor info 12.6%
2-hop neighbor info 14.6%
3-hop neighbor info 16.4%
global neighbor info 17.1%

C. Evaluation on Large Topology

We next investigate scalability of our approach. We build
a topology containing 10,000 nodes (with customer-provider
and peer-peer relationships between neighboring nodes). The
topology is a hierarchical structure, with 20, 500, 3000 and
6480 nodes in four tiers, respectively. Nodes in a higher tier
have larger degrees than nodes in a lower tier. We allow
each AS to have multiple providers and path diversity to
avoid congestion.



We use the gravity model [17] to produce 1000 traffic
matrices for training and 100 traffic matrices for testing,
which emulate realistic Internet traffic. Each traffic matrix
contains about 20000 end-to-end flows, and the maximum
number of concurrent flows traversing a tier-1 node is up to
1000. The capacity of each link is 100, and the flows have
the same traffic demand of 1.

We use destination-based MARL and compare with de-
fault BGP routing. We only equip 20 tier-1 nodes with
our RL approaches, and other nodes in the topology use
the default BGP routing policy to forward traversing traffic
flows. The reason is that nodes in tier-1 undertake most
of the traffic management work; an efficient routing policy
adopted by these nodes may lead to significant improvement
of system throughput.

Fig. 4(c) shows the training convergence curves of MARL
with 1000 training traffic matrices on the large topology. We
evaluate the trained models using 100 testing traffic matrices,
and show the average improvement of our MARL approaches
with default BGP routing in Table III. With only 20 tier-1
nodes using our RL-based routing policies, the improvement
in the overall system throughput can still be 16%, which
exhibits good scalability and practicality of our approach: in
real-world large networks, we only need to deploy RL on a
small set of hub ASes, in order to achieve good improvement
of global throughput.

Further, we evaluate impact of the number of nodes
employing our RL-based routing in the entire network. The
results are shown in Fig. 4(d) (training curves) and Table
IV (testing results), where information sharing among the
RL nodes is restricted to one hop. With fewer RL nodes
in the network, the improvement is only slightly less, again
showing good adoptability of our approach in practice.

TABLE III: Performance of Destination-based MARL on
Tier-1 ASes only

Input States Improvement as compared to default BGP
local info 11.6%
1-hop neighbor info 14.2%
2-hop neighbor info 15.8%
3-hop neighbor info 16.5%
global info 16.9%

TABLE IV: Performance of Destination-based MARL with
Different Numbers of RL Agents

Number of RL Agents Improvement as compared to default
BGP

20 RL Nodes 14.2%
16 RL Nodes 13.3%
12 RL Nodes 11.9%

V. CONCLUSION AND FUTURE WORK

This paper presents an efficient and scalable MARL
framework for inter-domain routing, to achieve high system
throughput for real-time traffic demand. It’s particularly use-
ful for federation of collaborative networks running large dis-
tributed analytics and frequently transferring large amounts

of data between sites. Experimental evaluation based on
realistic network topologies shows improvements of system
throughput by up to 17%, as compared to default BGP
routing.

For future work, we identify further efforts needed to
improve our solution, as follows: i) we may explore GNN
techniques to learn embeddings of the network, for better
routing decisions; ii) we will compare our MARL framework
with more inter-domain routing optimization approaches; and
iii) we will explore benefits of our design with more network
topologies and traffic patterns.

REFERENCES

[1] A. O. Kazakci et al., “Data science as a new frontier for design,”
in DS 80-10 Proceedings of the 20th International Conference on
Engineering Design (ICED 15) Vol 10: Design Information and
Knowledge Management Milan, Italy, 27-30.07. 15, 2015, pp. 189–
198.

[2] Y. Rekhter, S. Hares, and T. Li, “A Border Gateway Protocol
4 (BGP-4),” RFC 4271, Jan. 2006. [Online]. Available: https:
//rfc-editor.org/rfc/rfc4271.txt

[3] Y. Bao, Y. Peng, and C. Wu, “Deep learning-based job placement in
distributed machine learning clusters,” in IEEE INFOCOM 2019-IEEE
Conference on Computer Communications. IEEE, 2019, pp. 505–513.

[4] P. B. Godfrey, M. Caesar, I. Haken, Y. Singer, S. Shenker, and
I. Stoica, “Stabilizing route selection in bgp,” IEEE/ACM Transactions
on Networking, vol. 23, no. 1, pp. 282–299, 2014.

[5] E. Alabdulkreem, H. S. Al-Raweshidy, and M. F. Abbod, “Mrai
optimization for bgp convergence time reduction without increasing
the number of advertisement messages,” Procedia Computer Science,
vol. 62, pp. 419–426, 2015.

[6] Z. Chen, J. Bi, Y. Fu, Y. Wang, and A. Xu, “Mlv: A multi-dimension
routing information exchange mechanism for inter-domain sdn,” in
2015 IEEE 23rd International Conference on Network Protocols
(ICNP). IEEE, 2015, pp. 438–445.

[7] K.-K. Yap, M. Motiwala, J. Rahe, S. Padgett, M. Holliman, G. Baldus,
M. Hines, T. Kim, A. Narayanan, A. Jain et al., “Taking the edge
off with espresso: Scale, reliability and programmability for global
internet peering,” in Proceedings of the Conference of the ACM Special
Interest Group on Data Communication. ACM, 2017, pp. 432–445.

[8] B. Schlinker, H. Kim, T. Cui, E. Katz-Bassett, H. V. Madhyastha,
I. Cunha, J. Quinn, S. Hasan, P. Lapukhov, and H. Zeng, “Engineering
egress with edge fabric: Steering oceans of content to the world,” in
Proceedings of the Conference of the ACM Special Interest Group on
Data Communication. ACM, 2017, pp. 418–431.

[9] F. Ruffy, M. Przystupa, and I. Beschastnikh, “Iroko: A framework to
prototype reinforcement learning for data center traffic control,” arXiv
preprint arXiv:1812.09975, 2018.

[10] Y. Zuo, Y. Wu, G. Min, and L. Cui, “Learning-based network
path planning for traffic engineering,” Future Generation Computer
Systems, vol. 92, pp. 59–67, 2019.

[11] D. Ye, M. Zhang, and Y. Yang, “A multi-agent framework for packet
routing in wireless sensor networks,” sensors, vol. 15, no. 5, pp.
10 026–10 047, 2015.

[12] B. Pourpeighambar, M. Dehghan, and M. Sabaei, “Multi-agent learn-
ing based routing for delay minimization in cognitive radio networks,”
Journal of Network and Computer Applications, vol. 84, pp. 82–92,
2017.

[13] H. Mao, Z. Gong, Y. Ni, and Z. Xiao, “Accnet: Actor-coordinator-
critic net for” learning-to-communicate” with deep multi-agent rein-
forcement learning,” arXiv preprint arXiv:1706.03235, 2017.

[14] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[15] D. M. Bourg and G. Seemann, AI for game developers. ” O’Reilly
Media, Inc.”, 2004.

[16] J. Rehn, T. Barrass, D. Bonacorsi, J. Hernandez, I. Semeniouk,
L. Tuura, and Y. Wu, “Phedex high-throughput data transfer man-
agement system,” in Computing in High Energy and Nuclear Physics
(CHEP), vol. 2006, 2006.

[17] M. Roughan, “Simplifying the synthesis of internet traffic matrices,”
ACM SIGCOMM Computer Communication Review, vol. 35, no. 5,
pp. 93–96, 2005.


